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The focus of the talk
• We are interested in Quantitative Aspects

• Models - probabilistic, timed, weighted, etc.

• Behavior - from equivalences to distances

• Formal Verification - quantitative Model Checking

• in particular: Linear-time Properties

• observables are execution runs (no internal access!)

• Why? --systems biology, machine learning, artificial 
intelligence, security, etc.  
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Given an initial state, MCs can be interpreted as “machines”
that emit infinite traces of states with a certain probability
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 (with prefix s0...sn ∈ S0...Sn)

P(s)(𝕮(S0...Sn)) =
“probability that, starting from s,

the MC emits a path
with prefix in S0...Sn”

...

Cylinder-set
construction 
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(Pnueli)

Atomic prop.

[φ] = {π | π ⊨ φ}
Semantics of a formula

with usual 
satisfiability relation

measurableevent!
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Probabilistic 
Model Checking

P(s)([φ]) = ?
What is the probabability that the MC with 

initial state s satisfies the formula φ?

On probabilistic systems we cannot verify 
strong assertions such as “the system will never fail”...
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Approximate 
verification

• Model Checking does not scale to large 
systems (even after model reduction, symbolic 
tecn., partial-order reduction, etc.)

• One should reduce the accuracy of the model,
...hence introduce an error

• Proposed solution:
Behavioral metrics to quatify the error
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A distance for 
approx. Model Checking

M0 M1

P(M0)([φ]) P(M1)([φ])

d

0 1

|P(M0)([φ]) - P(M1)([φ])|

dd

should bound
the error

probability of
satisfying φ

 ≤ d 
for all formulas!
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Two logical distances

LTL(s,t) = supφ∈LTL |P(s)([φ]) - P(t)([φ])|

the LTL distance

the LTL-x distance

LTL-x(s,t) = supφ∈LTL |P(s)([φ]) - P(t)([φ])|-x

LTL without next operator

         Three natural questions
 
 Q1: Can we compute the two metrics?

 Q2: Can we compute them exactly? 
       If not, can we approximate them
       to any arbitrary precision? 

 Q3:  What about complexity?
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Characterizations

T(s,t) = supE∈σ(𝓣) |P(s)(E) - P(t)(E)|
Trace distance

Stutter-trace distance
ST(s,t) = supE∈σ(𝑺𝓣) |P(s)(E) - P(t)(E)|

Characterization Theorem

LTL(s,t) = T(s,t)    and    LTL-x(s,t) = ST(s,t)
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T(s0,s1) = √2 / 4

(from Chen-Kiefer LICS’14)

A tiny yet tricky example

irrational numbermaximizing event 

is not ω-regular!
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Direct Consequences

• There is no maximizing formula

• Decidability is still an open problem

• The threshold problem is NP-hard
(i.e., whether the distance exceeds a given 
threshold - Lyngsø-Pedersen JCSS’02)

  Q:  Can we approximate the logical/trace
       distances up to any arbitrary precision?
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σ(𝓣)
A(𝓣k)

sup {|Ps(E)-Pt(E)| : E∈A(𝓣k)}

...

A(𝓣1)
sup {|Ps(E)-Pt(E)| : E∈A(𝓣1)}

sup {|Ps(E)-Pt(E)| : E∈A(𝓣0)}
A(𝓣0)

What about the sequence of 
upper-approximants?
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Ωk = {           | 𝓒 of rank k}

𝓒: S×S →Δ(Sk × Sk)
such that 𝓒(s,t)∈Ω(P(s)k,P(t)k)

Coupling Structure of rank k Stochastic process 
generating pairs of paths 
divided in multisteps of 

length k

Coupling Structure

(iii) UkΩk is dense in Ω(P(s),P(t))

(i) Ωk ⊆ Ω(P(s),P(t)),      (ii) Ωk ⊆ Ωhk   (for all k,h>0)
Lemma

Probability induced by 𝓒 starting from (s,t) 

P𝓒(s,t)
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Computing the 
Approximants

• Both lower & upper approx. are computable

• For each k>0, lk and uk can be computed in 
polynomial time in the size of the MC

proved via alternative
characterizations 

the threshold problem for T(s,t)is still NP-hard!

(*) MC with rational transition probabilities 
19/25



Upper approx. are
Branching Metrics!

Θ(d)(s,t) = 
1                      if s≢t

K(d)(τ(s),τ(t))   otherwise

20/25



Upper approx. are
Branching Metrics!

Θ(d)(s,t) = 
1                      if s≢t

K(d)(τ(s),τ(t))   otherwise

the 1st upper-approx is 
the least fixed point 
of the operator Θ

20/25



Upper approx. are
Branching Metrics!

Θ(d)(s,t) = 
1                      if s≢t

K(d)(τ(s),τ(t))   otherwise

the 1st upper-approx is 
the least fixed point 
of the operator Θ

Kantorovich lifting

20/25



Upper approx. are
Branching Metrics!

Θ(d)(s,t) = 
1                      if s≢t

K(d)(τ(s),τ(t))   otherwise

the 1st upper-approx is 
the least fixed point 
of the operator Θ

Kantorovich lifting
it is the Kantorovich 

distance of 
Desharnais at al.!

20/25



Upper approx. are
Branching Metrics!

Θ(d)(s,t) = 
1                      if s≢t

K(d)(τ(s),τ(t))   otherwise

the 1st upper-approx is 
the least fixed point 
of the operator Θ

Kantorovich lifting

its kernel is Larsen-Skouprobabilistic bisimilarity!

it is the Kantorovich 
distance of 

Desharnais at al.!

20/25



Upper approx. are
Branching Metrics!

Θk(d)(s,t) = 
1                              if s≢t

K(Λk(d))(τk(s),τk(t))   otherwise

the k-th upper-approx is 
the least fixed point 
of the operator Θk

21/25



Upper approx. are
Branching Metrics!

Θk(d)(s,t) = 
1                              if s≢t

K(Λk(d))(τk(s),τk(t))   otherwise

the k-th upper-approx is 
the least fixed point 
of the operator Θk

its kernel is k-step generalization of probabilistic bisimilarity...
21/25



Upper approx. are
Branching Metrics!

Θk(d)(s,t) = 
1                              if s≢t

K(Λk(d))(τk(s),τk(t))   otherwise

the k-th upper-approx is 
the least fixed point 
of the operator Θk

its kernel is k-step generalization of probabilistic bisimilarity...

k-steps 
transition

21/25



Upper approx. are
Branching Metrics!

Θk(d)(s,t) = 
1                              if s≢t

K(Λk(d))(τk(s),τk(t))   otherwise

the k-th upper-approx is 
the least fixed point 
of the operator Θk

Kantorovich lifting + ≢-selector

its kernel is k-step generalization of probabilistic bisimilarity...

k-steps 
transition
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Exact semantics 
do NOT converge

(monotone)          uk ≥ uhk           ~k ⊆ ~hk 

(bound)                uk ≥ T              ~k ⊆ ≈

(convergence)     infk uk = T         Uk ~k ≠ ≈ 

metric-based        equiv.-based
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Concluding Remarks

• Metrics for Model Checking

• Approximation algorithms (via duality)

• Branching converge to linear

• Better algorithms? (on-the-fly techniques)

• different kind of models (non-determinism?)

• explore topological properties

Future Work
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The theorem behind...

||μ - ν|| = sup |μ(E) - ν(E)| 
E ∈ F

F is much simpler than Σ, nevertheless 
it suffices to attain the supremum!

For μ,ν: Σ → ℝ+ finite measures on (X,Σ)
and F⊆Σ field such that σ(F)=Σ  

Representation Theorem


