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The focus of the talk

® We are interested in Quantitative Aspects

® Models - probabilistic, timed, weighted, etc.

® Behavior - from equivalences to distances

® Formal Verification - quantitative Model Checking
® in particular: Linear-time Properties

® observables are execution runs (no internal access!)

® WHhy? --systems biology, machine learning, artificial
intelligence, security, etc.
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Markov Chains

Given an initial state, MCs can be interpreted as “machines”
that emit infinite traces of states with a certain probability
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Probabilistic
Model Checking

On probabilistic systems we cannot verify
strong assertions such as “the system will never fail”...

PENLPD 77

What is the probabability that the MC with
initial state s satisfies the formula ?
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Approximate
verification

® Model Checking does not scale to large
systems (even after model reduction, symbolic

tecn., partial-order reduction, etc.)

® One should reduce the accuracy of the model,
...hence introduce an error

¢ Proposed solution:
Behavioral metrics to quatify the error
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LTL(s,t) = supgertL |P(s)([P]) - P(t)([P])]

the LTL™ distance

LTL>(s,t) = supeeLti|P(s)([P]) - P()([])]

-
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Two logical distances

Three natural questions
QIl: Can we compute the two metrics!?
Q2: Can we compute them exactly?

If not, can we approximate them
to any arbitrary precision?

Q3: What about complexity?
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Characterizations

Trace distance

T(s,t) = supeeco) |P(s)(E) - P(t)(E)]

Stutter-trace distance

ST(s,t) = supeco(sy) |P(s)(E) - P(t)(E)|

Characterization Theorem

LTL(s,t) =T(s,t) and LTLX(s,t) = ST(s,t)

J
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Direct Consequences

® There is no maximizing formula
® Decidability is still an open problem

® The threshold problem is NP-hard
(i.e., whether the distance exceeds a given
threshold - Lyngs@-Pedersen JCSS’02)

Q: Can we approximate the logical/trace

distances up to any arbitrary precision?
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Computing the
Approximants

® Both lower & upper approx. are computable

® For each k>0, | and ui can be computed in
polynomial time in the size of the MC

proved via alternative the threshold
characterizations pProblem for %(s t)
is still NP-hard

(*) MC with rational transition probabilities 9725
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Upper approx. are
Branching Metrics!

(I if szt

O(d)(s,t) =X
| X K(d)(T(s),T(t)) otherwise

it is the Kantorovich
distance of
Desharnais at al.!

[Kantorovich Iiftingj
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Upper approx. are
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Exact semantics
do NOT converge

metric-based

(monotone) Uk = Uhk
(bound) uc =T

(convergence) infruc=T

equiv.-based
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Concluding Remarks

® Metrics for Model Checking
® Approximation algorithms (via duality)

® Branching converge to linear

Future Work

® Better algorithms? (on-the-fly techniques)
® different kind of models (non-determinism?)

® explore topological properties
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The theorem behind...

For y,v:2 — R finite measures on (X,2)
and FC2 field such that o(F)=2

Representation Theorem

[IM - V]| = sup [U(E) - V(E)

EcF
A

/ \

F is much simpler than 2, nevertheless
it suffices to attain the supremum!




