Converging from Branching to Linear Metrics on MCs

(theoretical aspects)

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare

Aalborg University, Denmark

30 November - 2 December, 2015 - Beijing, China

• We are interested in **Quantitative Aspects**

- We are interested in **Quantitative Aspects**
 - Models probabilistic, timed, weighted, etc.

- We are interested in **Quantitative Aspects**
 - Models probabilistic, timed, weighted, etc.
 - **Behavior** from equivalences to **distances**

- We are interested in **Quantitative Aspects**
 - Models probabilistic, timed, weighted, etc.
 - Behavior from equivalences to distances
 - Formal Verification quantitative Model Checking

- We are interested in Quantitative Aspects
 - Models probabilistic, timed, weighted, etc.
 - Behavior from equivalences to distances
 - Formal Verification quantitative Model Checking
- in particular: Linear-time Properties

- We are interested in **Quantitative Aspects**
 - Models probabilistic, timed, weighted, etc.
 - Behavior from equivalences to distances
 - Formal Verification quantitative Model Checking
- in particular: Linear-time Properties
 - observables are execution runs (no internal access!)

- We are interested in Quantitative Aspects
 - Models probabilistic, timed, weighted, etc.
 - Behavior from equivalences to distances
 - Formal Verification quantitative Model Checking
- in particular: Linear-time Properties
 - observables are execution runs (no internal access!)
 - **Why?** --systems biology, machine learning, artificial intelligence, security, etc.

Markov Chains

Markov Chains

We are given "machines" that emit infinite traces of symbols with a certain probability

with prefix in S₀...S_n"

(Pnueli)

Linear Temporal Logic

(Pnueli)

Linear Temporal Logic

Atomic prop. Next Until
$$\phi \coloneqq p \mid \bot \mid \phi \rightarrow \phi \mid X\phi \mid \phi U\phi$$

Semantics of a formula

$$[\phi] = \{\pi \mid \pi \models \phi\}$$

(Pnueli)

Linear Temporal Logic

Atomic prop. Next Until
$$\phi \coloneqq p \mid \bot \mid \phi \rightarrow \phi \mid X\phi \mid \phi U\phi$$

Semantics of a formula

$$[\phi] = \{\pi \mid \pi \models \phi\}$$

with usual satisfiability relation

Probabilistic Model Checking

Probabilistic Model Checking

On probabilistic systems we cannot verify strong assertions such as "the system will never fail"...

Probabilistic Model Checking

On probabilistic systems we cannot verify strong assertions such as "the system will never fail"...

$$P(s)([\phi]) = ?$$

What is the probabability that the MC with initial state s satisfies the formula φ ?

 Model Checking does not scale to large systems (even with model reduction, symbolic techniques, partial-order reduction, etc.)

- Model Checking does not scale to large systems (even with model reduction, symbolic techniques, partial-order reduction, etc.)
- One should reduce the accuracy of the model,
 ...hence introduce an error

- Model Checking does not scale to large systems (even with model reduction, symbolic techniques, partial-order reduction, etc.)
- One should reduce the accuracy of the model,
 ...hence introduce an error
- Proposed solution:
 Behavioral metrics for quatifying the error

$$|P(M_0)([\phi]) - P(M_1)([\phi])|$$

$$|P(M_0)([\phi]) - P(M_1)([\phi])|$$

the LTL distance

$$LTL(s,t) = \sup_{\phi \in LTL} |P(s)([\phi]) - P(t)([\phi])|$$

the LTL distance

$$LTL(s,t) = \sup_{\phi \in LTL} |P(s)([\phi]) - P(t)([\phi])|$$

the LTL-x distance

$$LTL^{-x}(s,t) = \sup_{\phi \in LTL^{-x}} |P(s)([\phi]) - P(t)([\phi])|$$

the LTL distance

$$LTL(s,t) = \sup_{\phi \in LTL} |P(s)([\phi]) - P(t)([\phi])|$$

the LTL-x distance

$$LTL^{-x}(s,t) = \sup_{\phi \in LTL^{-x}} |P(s)([\phi]) - P(t)([\phi])|$$

LTL without next operator

Three natural questions

Q1: Can we compute the two metrics?

Q2: Can we compute them exactly? If not, can we approximate them to any arbitrary precision?

Q3: What about complexity?

Trace distance

$$T(s,t) = \sup_{E \in \sigma(\mathcal{T})} |P(s)(E) - P(t)(E)|$$

Stutter-trace distance

$$ST(s,t) = \sup_{E \in \sigma(ST)} |P(s)(E) - P(t)(E)|$$

Trace distance -

$$T(s,t) = \sup_{E \in \sigma(\mathcal{T})} |P(s)(E) - P(t)(E)|$$

Events up-to trace equivalence

$$ST(s,t) = \sup_{E \in \sigma(ST)} |P(s)(E) - P(t)(E)|$$

Trace distance

$$T(s,t) = \sup_{E \in \sigma(\mathcal{T})} |P(s)(E) - P(t)(E)|$$

Stutter-trace distance

$$ST(s,t) = \sup_{E \in \sigma(ST)} |P(s)(E) - P(t)(E)|$$

Events up-to stutter trace equivalence

Trace distance

$$T(s,t) = \sup_{E \in \sigma(\mathcal{T})} |P(s)(E) - P(t)(E)|$$

Stutter-trace distance

$$ST(s,t) = \sup_{E \in \sigma(ST)} |P(s)(E) - P(t)(E)|$$

Characterization Theorem

$$LTL(s,t) = T(s,t)$$
 and $LTL^{-x}(s,t) = ST(s,t)$

• There is no maximizing formula

- There is no maximizing formula
- Decidability is still an open problem

- There is no maximizing formula
- Decidability is still an open problem
- The threshold problem is NP-hard (i.e., whether the distance exceeds a given threshold - Lyngsø-Pedersen JCSS'02)

- There is no maximizing formula
- Decidability is still an open problem
- The threshold problem is NP-hard (i.e., whether the distance exceeds a given threshold - Lyngsø-Pedersen JCSS'02)

Q: Can we approximate the logical/trace distances up to any arbitrary precision?

Approximation Algorithm

(in the slides only for the Trace Distance)

generalizes / improves Chen-Kiefer LICS'14

Approximation Algorithm

(in the slides only for the Trace Distance)

$$T(s,t) = \min \{w(\neq) \mid w \in \Omega(P(s),P(t))\}$$

$$T(s,t) = \min \{w(\neq) \mid w \in \Omega(P(s),P(t))\}$$

$$T(s,t) = \min \{w(\neq) \mid w \in \Omega(P(s),P(t))\}$$

$$T(s,t) = \min \{w(\neq) \mid w \in \Omega(P(s),P(t))\}$$

Coupling Characterization (as total variation distance)

trace inequivalence

$$T(s,t) = \min \{w(\not=) \mid w \in \Omega(P(s),P(t))\}$$

Coupling Structures

of rank k

Coupling Structure's

Coupling Structure of rank k— $\mathcal{C}: S \times S \to \Delta(S^k \times S^k)$ the model in the box such that $\mathcal{C}(s,t) \in \Omega(P(s)^k,P(t)^k)$

Coupling Structure of rank k—

$$C: S \times S \rightarrow \Delta(S^k \times S^k)$$

such that $C(s,t) \in \Omega(P(s)^k, P(t)^k)$

the model in the box

Probability induced by C starting from (s,t)

$$P_{\mathcal{C}}^{\mathsf{v}}(\mathsf{s,t})$$

Coupling Structure of rank k—

$$C: S \times S \rightarrow \Delta(S^k \times S^k)$$

Probability induced by C starting from (s,t)

$$\Omega_k = \{ P_{\mathcal{C}}(\mathbf{s}, \mathbf{t}) \mid \mathcal{C} \text{ of rank } 2^k \}$$

Coupling Structure of rank k—

$$C: S \times S \to \Delta(S^k \times S^k)$$
 \leftarrow the model

such that $C(s,t) \in \Omega(P(s)^k, P(t)^k)$

in the box

Probability induced by C starting from (s,t)

$$\Omega_k = \{ P_{\mathcal{C}}(s,t) \mid \mathcal{C} \text{ of rank } 2^k \}$$

(i)
$$\Omega_k \subseteq \Omega(P(s),P(t))$$
, (ii) $\Omega_k \subseteq \Omega_{hk}$ (for all k,h>0)

(iii) $U_k\Omega_k$ is dense in $\Omega(P(s),P(t))$

$$\Theta(d)(s,t) = \begin{cases} I & \text{if } s \neq t \\ \\ K(d)(T(s),T(t)) & \text{otherwise} \end{cases}$$

$$\Theta(d)(s,t) = \begin{cases} I & \text{if } s \neq t \\ K(d)(T(s),T(t)) & \text{otherwise} \end{cases}$$

the 1st upper-approx is the least fixed point of the operator Θ

the 1st upper-approx is the least fixed point of the operator Θ

its kernel is Larsen-Skou probabilistic bisimilarity!

$$\Theta^k(d)(s,t) = \begin{cases} I & \text{if } s \not\equiv t \\ K(\Lambda^k(d))(\mathsf{T}^k(s),\mathsf{T}^k(t)) & \text{otherwise} \end{cases}$$

the k-th upper-approx is the least fixed point of the operator Θ^k

$$\Theta^k(d)(s,t) = \begin{cases} I & \text{if } s \not\equiv t \\ \\ K(\Lambda^k(d))(\tau^k(s),\tau^k(t)) & \text{otherwise} \end{cases}$$

the k-th upper-approx is the least fixed point of the operator Θ^k

its kernel is k-step generalization of probabilistic bisimilarity...

$$\Theta^{k}(d)(s,t) = \begin{cases} I & \text{k-steps} \\ \text{transition} \end{cases} & \text{if } s \not\equiv t \\ K(\Lambda^{k}(d))(T^{k}(s),T^{k}(t)) & \text{otherwise} \end{cases}$$

the k-th upper-approx is the least fixed point of the operator Θ^k

its kernel is k-step generalization of probabilistic bisimilarity...

the k-th upper-approx is the least fixed point of the operator Θ^k

its kernel is k-step generalization of probabilistic bisimilarity...

The Counterexample

The Counterexample

The Counterexample

Metrics for Model Checking

- Metrics for Model Checking
- Approximation algorithms (via duality)

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

Future Work

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

Future Work

different kind of models (non-determinism?)

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

Future Work

- different kind of models (non-determinism?)
- logic distance parametric on sets of formulas

- Metrics for Model Checking
- Approximation algorithms (via duality)
- Branching converge to linear

Future Work

- different kind of models (non-determinism?)
- logic distance parametric on sets of formulas
- explore topological properties

Thank you for the attention