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The focus of the talk

® We are interested in Quantitative Aspects

e Models - probabilistic, timed, weighted, etc.

® Behavior - from equivalences to distances

® Formal Verification - quantitative Model Checking
® in particular: Linear-time Properties

® observables are execution runs (no internal access!)

® WHhy? --systems biology, machine learning, artificial
intelligence, security, etc.
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Probabilistic
Model Checking

On probabilistic systems we cannot verify
strong assertions such as “the system will never fail”...

PENLPD 77

What is the probabability that the MC with
initial state s satisfies the formula ?
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Approximate
verification

® Model Checking does not scale to large systems
(even with model reduction, symbolic
techniques, partial-order reduction, etc.)

® One should reduce the accuracy of the model,
...hence introduce an error

¢ Proposed solution:
Behavioral metrics for quatifying the error
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the LTL™ distance
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Two logical distances

Three natural questions
QIl: Can we compute the two metrics!?
Q2: Can we compute them exactly?

If not, can we approximate them
to any arbitrary precision?

Q3: What about complexity?
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Characterizations

Trace distance

T(s,t) = supeeco) |P(s)(E) - P(t)(E)]

Stutter-trace distance

ST(s,t) = supeco(sy) |P(s)(E) - P(t)(E)|

Characterization Theorem

LTL(s,t) =T(s,t) and LTLX(s,t) = ST(s,t)

J
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A tiny yet tricky example

(from Chen-Kiefer LICS’4)

° ° t
. ng even
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Direct Consequences

® There is no maximizing formula
® Decidability is still an open problem

® The threshold problem is NP-hard
(i.e., whether the distance exceeds a given
threshold - Lyngs@-Pedersen JCSS’02)

Q: Can we approximate the logical/trace

distances up to any arbitrary precision?
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— Coupling Structure of rank k—

C: SxS = A(Sk x SK) <[ the model
in the box
such that C(s,t)eQ(P(s)",P(t))

\

J

)

( Probability induced by C starting from (s,t) )
\Y4
Qi = { Pe(s,t) | C of rank 21}
r Lemma w

(i) UQx is dense in Q(P(s),P(t))

(i) Qu € QP(s),P(t)), (i) Qu € Qne (for all k,h>0)
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Upper approx. are
Branching Metrics!

(I if szt

O(d)(s,t) =X
| X K(d)(T(s),T(t)) otherwise

it is the Kantorovich
distance of
Desharnais at al.!

[Kantorovich Iiftingj
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Upper approx. are
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Concluding Remarks

® Metrics for Model Checking
® Approximation algorithms (via duality)

® Branching converge to linear

Future Work
® different kind of models (non-determinism?)

® |ogic distance parametric on sets of formulas

® explore topological properties
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