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Abstract Machines of Systems Biology

In this talk: bigraphs
as a formal framework theory for
integrating and comparing models

(Cardelli 08)
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Interactions we want to model

Let take as example the vesicle formation process:
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0. Introduction to Bigraphs
Biological Bigraphs and Bio3 framework

syntax
well-formedness
semantics

Example: vesicle formation

Formal comparison results
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A (very short) introduction to Bigraphs

bigraph o ”
G: (m, X)—(n,Y) 5 \ -

place graph / }
G?:m—n

vo
v2

v1

| \

sites ... 0 1 2 o T1

roots ... /c\) 1\ /\ | Yo n

(Milner 01)

link graph
Gl X =Y

...outer names

...inner names



. . . bigraphs continued (basic notation)

. outer name
root (region) =

control

port

edge

site xo —
inner name

place = root or node or site link = edge or outer name

point = port or inner name
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. bigraphs continued (definition)

...we take advantage of the variant of (Bundgaard-Sassone 06)
where edges have type.

Signature: (K, ar, &)

Bigraphs:
GP = (V,ctrl, prnt): m — n (place graph)
Gt = (V, E,ctrl,edge, link): X — 'Y (link graph)

G = (V, E,ctrl, edge, prnt, link): (m,X) — (n,Y) (bigraph)
_ (GP, GL)



Why using bigraphical theory

Using bigraphs is convenient for many reasons:

connectivity together with locality

lots of successful encodings
(CCS, m-calculus, Ambient Calculus, Petri nets, . ..)

local reaction rules

construction of compositional bisimilarities
for observational equivalences

general tools (see BPL project)



Talk outline

Biological Bigraphs and Bio framework
+ syntax

+ well-formedness

+ semantics
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Proteins and bonds in bigraphs: intuition

Protein signature: (P, ar,{v,h})

Sites can be visible, hidden, or free, determining the protein interface status

hidden-\—-\ X (___free

\
v ¥

visible hidden

7
VA

7
A

vy (G(Y +2+3+4°+5)| GTP(1)) wvy.(G(1Y + 243+ 4% 45) | GDP(1Y))

(*) Edge types could be extended to capture phosphorilated states (and more)
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BioJ syntax and bigraphical meaning

Systems P,Q:= o|Axp) {STPSS| PxQ|vnP
Pn P ‘ fn S 25 l PSS (pinch and fuse)

Membranes S, T = 0|A,pp)| S*xT

an_ ) ‘ f# (co-pinch and co-fuse)

(S PSS J\?
S P “@

membrane J \
contents Ra(1 4 2%) * {Ma(1*) x Mb(1”) T Rb(1 + 2") * C(1)fS§
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Well-formedness conditions

The syntax is too general: many syntactically correct terms do
not have a clear biological meaning.

Definition (Well-formedness)

Graph—likeness: free names occurs at most twice + only binary bonds
Impermebility: protein bonds cannot cross the double layer
Action pairing: actions and co-actions have to be well paired

Action prefix: no occurrences of action terms within an action prefix

77

o<®

hyper edges # bonds impermeability violated!
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Well-formedness conditions

The syntax is too general: many syntactically correct terms do
not have a clear biological meaning.

Definition (Well-formedness)

Graph—likeness: free names occurs at most twice + only binary bonds
Impermebility: protein bonds cannot cross the double layer
Action pairing: actions and co-actions have to be well paired

Action prefix: no occurrences of action terms within an action prefix

Well-formedness is ensured by a

type system
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Type system

rl; r2 - T (Judgement)
A ~
free names of K _ 7 ! | \\\ free actions
occurring once /,' s Bi\oﬂ term " occurring in K
...occurring twice - - (system/membrane)
e € {0,0} AeP Vxefn(p). |p,x| <2
empty) ————— prot
(empty) 0;0+e:0 {xefn(p)\|p,x|:1};{x€fn(p)\\p,x\:2}FA(p):@( )
(action) te{p,pt,f} TTaFK:0 act(K)=0 MilobEPir xgl 7l =0 (v-prot)
M, xTa b tes Ko {t} M\ {x}Fuvx.P:1
(cof) te{pf} TulaxkPirU{toti} {toti}nr=0 (v-action)
x; 0 {fi} Mifobvx.P:r
op € {x,+}
M,NhEK:T AT A Lio M, NES:r MAEP:o
(par) (MUM)N(ATUA) #B (Tl =olr (MUM)NAy £0  (tIp)*t =olr (cell
P M,A1;T2, M, TEFKopL:7Uco MM, A, TEISTPIS:TUC
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Properties of the type system

Proposition (Unicity of type)

Let K a Biog term. If ;> F K:7and Ay; As = K : o, then
MM=A;,=~Arand7T=0

Theorem (Well-formedness)

A Biof system P is well-formed if and only if ['1;ToF P : 7

... later subject reduction

14 /29



Semantics: Bio( reactive system

A Biof3 reactive system (1, —) is parametrized over two reaction
rule specifications:

+ Protein reactions: similar to chemical reaction rules,
but with (essential) spatial informations

+ Mobility configurations: protein configurations that
trigger membrane re-modeling

Reactions for Membrane transport are fixed
( indeed, biological membrane modifications )
are very limited: only pinching and fuse

15/29



Membrane transport: pinch

T T
Pn P pinch-in

Pl [s] @ — s P Q

Pns PPy S+ T1 QIS — {TUISTPIS*QSS

T T
p,,L Pn pinch-out

s ®l o) TSP a

P 5 S* T 1pn3Px QIS — (STPIS*{T1QSS
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Membrane transport: fuse

f#' fuse-hor S
S P T Q — T P Q

fas (STPIS* U x T1QJS — (S* TP *QSS

- fuse-ver S

TSPQ_‘> T Q

(> T 1fns{STPIS* QS5 — P+ {S*T1 QS
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Mobility configurations

Membrane transport must be justified by protein interactions.

This is formalized by means of
membrane reactions configurations

pinching ( P, Pl, 57 5/, Q

configuration

teaion ([P S| R T, Q

configuration

)
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Mobility configurations

Membrane transport must be justified by protein interactions.

This is formalized by means of
membrane reactions configurations

pinching
configuration ( P

fusing ( 'D’ 57 R7 7—7 Q )

configuration

18/29



Protein reactions across multiple localities

¢—i ( ( Protein reactions are

endowed with spatial
E; ‘\’ % information

( C(1)* Re(142%) , R(1Y42) | Rm(1¥+2Y) ) =5

vz.{ C(17) % Re(1742%) |, Re(1¥+2) | Rm(1*+2) )

19/29
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¢—1H ( ( Protein reactions are

endowed with spatial
E; ‘\’ % information

"Rn(1¥42Y) 1) =5

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

vz.( C(17) % Re(1742%) | Re(1Y42) | | | R(1¥42Y) )
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|
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Reactions preserve well-formedness

Theorem (Subject reduction)
Let P, Q be Biof3 systems.

fr;foFP:7and P — Q, then ;Ao - Q: 0

where either [, = A, and T =0,

or To=~0x,nand7T =0+ {t,, t-} (t e {p,f})

Free names of P and @ can differ
only for one occurrence of an action name

20/29



Introduction to Bigraphs
Biological Bigraphs and Bio3 framework

syntax
well-formedness
semantics

2. Example: vesicle formation

Formal comparison results
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2
P

We formalize the above vesicle formation pathway
showing the Biof specification needed to define
the Biof reactive system
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rec

(C(1) * Re(1+2%), Re(1Y + 2) | Rm(1¥ +2¥)) —= vz.(C(1%) * Re(1% + 2%), Rc(1¥ +2) | Rm(1* +2Y))

22/29



(Re(1¥ + 2) % Ad(1 + 2)

) 25 Ly (Re(1X +27) % Ad(1 +2) |)
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coat

(Ad(1X 4+ 2) * CI(1) |) — vy (Ad(1X +2¥) « CI(1Y) |)

22/29



6
e |

pReas 7
{(P,P',S,S,Q)}

P=3% (C¥) *Re(1* +2%)) P =0

S=35, (Rm(1¥ +2%)) s'=0

Q =0, (Re(1% +22) x Ad(1° +2) x CI(1P))
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Another example: Fc receptor-mediated phagocytosis

Even more complex biological pathways can be specified. . .

=~
?% >HB Act £ particle-R

i
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Introduction to Bigraphs
Biological Bigraphs and Bio3 framework

syntax
well-formedness
semantics

Example: vesicle formation

3. Formal comparison results
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Formalizing connections between models
A formal connection between the protein-only and membrane
mobility-only models can be established:

biological
bigraphs

Each transition in biological bigraphs
corresponds to either a protein-only
transition or to a mobility-only transition

mobility
bigraphs

protein only bigraphs
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Formalizing connections between models

A formal connection between the protein-only and membrane
mobility-only models can be established:

biological
bigraphs

mobility
bigraphs

Each transition in biological bigraphs
corresponds to either a protein-only
transition or to a mobility-only transition

|

. |

implements |

fusion /fission |

|
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Proteins Membranes
NI N confinements,
regulation holds storage, transport
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Projecting to x-calculus

(k-calculus syntax) S, T ::=10 ‘ A(p) ‘ S, T ‘ (X)(S)

Using the "projective approach” we can formalize the connection
between Bio3 framework and k-calculus:

(o) =0 (Ap(p)) = Ap(p) (P* Q)= (P),(Q)
0) =0 (Asp(p)) = Aap(p)  (S*T)=(S),(T)
(LS 1PSS) = (S).(P) (vn.P) = (n)((P))
(Pns P) = (P) (py 5 S) = (S)

(fn s P) = (P) (f) =0

Theorem (Semantics)

(P|S) —piop vX.(P'| Sy iff (C[P,S]) — (vX.C[P',S])




Type system for x-calculus

The previous encoding induces a type system for graph-likeness

AeP Vxe fn(p).lp,x| <2

zero) ———— prot
(er0) G0 0 e (o) [ooxl = 13 [ € o) | Io.x = 23 - AG) )
M,N;ro=S A, T, AT
M;MES x¢rn (MuM)N(AL1UA) =0
(res) ————F ¢ (par)
MM\ {x} - (x)S M, A1;T2,82,THS, T

1. a K solution S is graph-like iff ['1;> = S
2. for a Biof system P, if ;2 P : 7 then I'y; 2 (P)
3.5, T ksolutions, if [';ToFSand S —3 T, then ;o = T
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Conclusions & Future Work

Done:
-+ a bigraphical model for protein-membrane interactions
+ a model-driven (and user-friendly) framework

-+ formalization of causality among mobility and protein
interaction

+

a formal type system for well-formedness

To do:

stochastic refinement of reactions (stochastic bigraphs)
adding molecular transporters/channels

refinements on fluidity and distances

+ + + +

tools (modeling and simulation)
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Thanks :)



