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Introduction
• Moore‘56, Hopcroft‘71: Minimization algorithm for DFA 

(partition refinement wrt Myhill-Nerode equiv.) 

• Minimization via partition refinement: 
• Kanellakis-Smolka’83: minimization of LTSs wrt 

Milner’s strong bisimulation 
• Baier’96: minimization of MCs wrt Larsen-Skou 

probabilistic bisimulation 
• Alur et al.’92, Yannakakis-Lee’97: minimization of 

timed & real-time transition systems. 
• and many more…
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A fundamental problem
Jou-Smolka’90 observed that behavioral equivalences  

are not robust for systems with real-valued data
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Solution! 
equiv.  distance

d(m0,n0)



Metric-based 
Approximate Minimization
Closest Bounded  

Approximant (CBA)
Minimum Significant 

Approximant Bound (MSAB)
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Talk Outline
Probabilistic bisimilarity distance
• fixed point characterization (Kantorovich oper.) 
• remarkable properties 
• relation with probabilistic model checking 

Metric-based Optimal Approximate Minimization
• Closest Bounded Approximant (CBA) 

— definition, characterization, complexity 
• Minimum Significant Approximant Bound (MSAB)  

— definition, characterization, complexity 
• Expectation Maximization-like algorithm 

— 2 heuristics + experimental results
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Coupling

A coupling of a pair (μ,ν) of probability distributions 
on M is a distribution ω on M×M such that 

• ∑n∈M ω(m,n) = μ(m)       (left marginal) 
• ∑m∈M ω(m,n) = ν(n)        (right marginal). 

Definition (W. Doeblin 36)  

One can think of a coupling as a measure-theoretic 
relation between probability distribution 
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A quantitative generalization 
of probabilistic bisimilarity

The λ-discounted probabilistic bisimilarity pseudometric  
is the smallest dλ: M×M→[0,1] such that

min     λ ∑  ω(u,v) dλ(u,v)   otherwise 
u,v∈M

dλ(m,n) =
ω∈Ω(τ(m),τ(n))

1                                           if ℓ(m)≠ℓ(n)
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K(d)(μ,ν) =   min    ∑  ω(u,v) d(u,v)

u,v∈Mω∈Ω(μ,ν)
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Remarkable properties
Theorem (Desharnais et. al 99) 

m ~ n     iff     dλ(m,n) = 0   

Theorem (Chen, van Breugel, Worrell 12) 
The probabilistic bisimilarity distance  
can be computed in polynomial time

12/33



Relation with Model Checking
Theorem (Chen, van Breugel, Worrell 12) 

For all φ ∈ LTL     | Pr(m ⊨ φ) - Pr(n ⊨ φ) | ≤ d1(m,n)
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Theorem (Chen, van Breugel, Worrell 12) 

For all φ ∈ LTL     | Pr(m ⊨ φ) - Pr(n ⊨ φ) | ≤ d1(m,n)

Pr(m ⊨ φ)

Pr(n ⊨ φ)

0 1

dd

approximate 
solution on φ

…imagine that |M|≫|N|, we can use N in place of M
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The CBA-λ problem
The Closest Bounded Approximant wrt dλ 

Instance: An MC M, and a positive integer k
Ouput: An MC Ñ, with at most k states 
             minimizing dλ(m0,ñ0)

dλ(m0,ñ0) = inf { dλ(m0,n0)  |  N ∈ MC(k) }
we get a solution iff the  
infimum is a minimum
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CBA-λ as a Bilinear Program

dλ(m0,ñ0) = inf { dλ(m0,n0)  |  N∈MC(k) } 
               = inf { d(m0,n0)  |  Γλ(d)≤d, N∈MC(k)}
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dλ(m0,ñ0) = inf { dλ(m0,n0)  |  N∈MC(k) } 
               = inf { d(m0,n0)  |  Γλ(d)≤d, N∈MC(k)}Metric-based State Space Reduction for Markov Chains 7

mimimize dm0,n0

such that dm,n = 1 `(m) 6= ↵(n)

�
P

(u,v)2M⇥N cm,n
u,v · du,v  dm,n `(m) = ↵(n)

P
v2N cm,n

u,v = ⌧(m)(u) m,u 2 M , n 2 N
P

u2M cm,n
u,v = ✓n,v m 2 M , n, v 2 N

cm,n
u,v � 0 m,u 2 M , n, v 2 N

Fig. 2. Characterization of CBA-� as a bilinear optimization problem.

following property:

for all m 2 M,n 2 N, l
m,n

= 0 i↵ ↵(n) = `(m) . (14)

Notice that, the constraints (7–8) ensure that l
m,n

2 {0, 1} (i.e., is a binary
variable). The constraints (7–10) ensure that an ↵ satisfying (14) is well defined
and has image is included in L. Conversely, for any labeling ↵ : N ! L there
exists an assignment of the variables l

m,n

that satisfy (7–10) and (14).
Finally, an assignment for the variables d

m,n

satisfying the constraints (5–6)
represents a prefix point of � C

�

. Note that (5) guarantees that d
m,n

= 1 whenever
↵(n) 6= `(m) —indeed, by (14), l

m,n

= 1 i↵ ↵(n) 6= `(m).
Let F

�

hM, ki denote the bilinear optimization problem in Fig. 1. From what
we said before we obtain the following result.

Theorem 8. inf {�
�

(M,N ) | N 2MC(k)} is the optimal value of F
�

hM, ki.

Corollary 9. Any instance of CBA-� admits an optimal solution.

Proof. We have to show that �
�

(M,N ⇤) = inf {�
�

(M,N ) | N 2 MC(k)} for
some N ⇤ 2 MC(k). Let h be the number of variables in F

�

hM, ki. The con-
straints (5–13) describe a compact subset of Rh —it is an intersection of closed
sets bounded by [0, 1]h. Since the objective function is linear, the infimum is
attained by a feasible solution. The thesis follows by Theorem 8. ut

4 The Bounded Approximant Threshold Problem

The Bounded Approximant problem w.r.t. �
�

(BA-�) is the threshold decision
problem of CBA-�, and it asks whether, for an MC M, integer k � 1, and
rational ✏ � 0, there exists N 2 MC(k) such that �

�

(M,N )  ✏. In this section,
we provide upper- and lower-bound for the complexity of BA-�.

The characterization of CBA-� as a bilinear optimization problem (Section 3)
provides us with the following complexity upper-bound.

Theorem 10. For any � 2 (0, 1], BA-� is in PSPACE.

16/33
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CBA-λ as a Bilinear Program
Lemma (Meaningful labels)

For any N∈MC(k), there exists N’∈MC(k) with 
labels taken from M, such that dλ(M,N) ≥ dλ(M,N’) 
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mimimize d
m0,n0

such that ⁄
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(u,v)œM◊N

cm,n

u,v

· d
u,v

Æ d
m,n

m œ M , n œ N (5)

1 ≠ –
n,l

Æ d
m,n

Æ 1 n œ N , l œ L(M), ¸(m) ”= l (6)
–

n,l

· –
n,l

Õ = 0 n œ N , l, lÕ œ L(M), l ”= lÕ (7)
q

lœL(M) –
n,l

= 1 n œ N (8)
q

vœN

cm,n

u,v

= ·(m)(u) m, u œ M , n œ N (9)
q

uœM

cm,n

u,v

= ◊
n,v

m œ M , n, v œ N (10)
cm,n

u,v

Ø 0 m, u œ M , n, v œ N (11)

Figure 1 Characterization of CBA-⁄ as a bilinear optimization problem.

I Definition 6 (Closest Bounded Approximant). Let k œ N and ⁄ œ (0, 1]. The closest
bounded approximant problem w.r.t. ”

⁄

for an MC M is the problem of finding an MC N
with at most k states minimizing ”

⁄

(M, N ).

Clearly, when k is greater than or equal to the number of bisimilarity classes of M, an
optimal solution of CBA-⁄ is the bisimilarity quotient. Therefore, without loss of generality,
we will assume 1 Æ k < |M | and M to be minimal. Note that, under these assumptions M
must have at least two nodes with di�erent labels.

Let MC(k) denote the set of MCs with at most k states and MC
A

(k) its restriction to
those using only labels in A ™ L. Using this notation, the optimization problem CBA-⁄ on
the instance ÈM, kÍ can be reformulated as finding an MC N ú such that

”
⁄

(M, N ú) = min {”
⁄

(M, N ) | N œ MC(k)} , (1)

In general, it is not obvious that for arbitrary instances ÈM, kÍ a minimum in (1) exists. At
the end of the section, we will show that such a minimum always exists (Corollary 9).

A useful property of CBA-⁄ is that an optimal solution can be found among the MCs
using labels from the given MC.

I Lemma 7 (Meaningful labels). Let M be an MC. Then, for any N Õ œ MC(k) there exists
N œ MC

L(M)(k) such that ”
⁄

(M, N ) Æ ”
⁄

(M, N Õ).

In the following, fix ÈM, kÍ as instance of CBA-⁄, let m0 œ M be the initial state of M.
By Lemma 7, Theorem 5 and Tarski fixed-point theorem

inf {”
⁄

(M, N ) | N œ MC(k)} = (2)
= inf

)
“C

⁄

(M, N ) | N œ MC
L(M)(k) and C œ �(M, N )

*
(3)

= inf
)

d(M, N ) | N œ MC
L(M)(k), C œ �(M, N ), and �C

⁄

(d) ı d
*

, (4)

where �(M, N ) denotes the set of all coupling structures for the disjoint union of M and
N . This simple change in perspective yields a translation of the problem of computing the
optimal value of CBA-⁄ to the bilinear program in Figure 1.

In our encoding, N = {n0, . . . , n
k≠1} are the states of an arbitrary N = (N, ◊, –) œ MC(k)

and n0 is the initial one. The variable ◊
n,v

is used to encode the transition probability
◊(n)(v). Hence, a feasible solution satisfying (9–11) will have the variable cm,n

u,v

representing

ICALP 2017
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with at most k states minimizing ”

⁄

(M, N ).

Clearly, when k is greater than or equal to the number of bisimilarity classes of M, an
optimal solution of CBA-⁄ is the bisimilarity quotient. Therefore, without loss of generality,
we will assume 1 Æ k < |M | and M to be minimal. Note that, under these assumptions M
must have at least two nodes with di�erent labels.

Let MC(k) denote the set of MCs with at most k states and MC
A

(k) its restriction to
those using only labels in A ™ L. Using this notation, the optimization problem CBA-⁄ on
the instance ÈM, kÍ can be reformulated as finding an MC N ú such that

”
⁄

(M, N ú) = min {”
⁄

(M, N ) | N œ MC(k)} , (1)

In general, it is not obvious that for arbitrary instances ÈM, kÍ a minimum in (1) exists. At
the end of the section, we will show that such a minimum always exists (Corollary 9).

A useful property of CBA-⁄ is that an optimal solution can be found among the MCs
using labels from the given MC.

I Lemma 7 (Meaningful labels). Let M be an MC. Then, for any N Õ œ MC(k) there exists
N œ MC

L(M)(k) such that ”
⁄

(M, N ) Æ ”
⁄

(M, N Õ).

In the following, fix ÈM, kÍ as instance of CBA-⁄, let m0 œ M be the initial state of M.
By Lemma 7, Theorem 5 and Tarski fixed-point theorem

inf {”
⁄

(M, N ) | N œ MC(k)} = (2)
= inf

)
“C

⁄

(M, N ) | N œ MC
L(M)(k) and C œ �(M, N )

*
(3)

= inf
)

d(M, N ) | N œ MC
L(M)(k), C œ �(M, N ), and �C

⁄

(d) ı d
*

, (4)

where �(M, N ) denotes the set of all coupling structures for the disjoint union of M and
N . This simple change in perspective yields a translation of the problem of computing the
optimal value of CBA-⁄ to the bilinear program in Figure 1.

In our encoding, N = {n0, . . . , n
k≠1} are the states of an arbitrary N = (N, ◊, –) œ MC(k)

and n0 is the initial one. The variable ◊
n,v

is used to encode the transition probability
◊(n)(v). Hence, a feasible solution satisfying (9–11) will have the variable cm,n

u,v

representing

ICALP 2017

CBA-λ as a Bilinear Program
Lemma (Meaningful labels)

For any N∈MC(k), there exists N’∈MC(k) with 
labels taken from M, such that dλ(M,N) ≥ dλ(M,N’) 
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this characterization has two main consequences…

1.CBA-λ admits always a solution  
(finite intersection of closed subsets) 

2.CBA-λ can be approximated up 
to any precision

CBA-λ as a Bilinear Program

18/33



Complexity of CBA-λ
“To study the complexity of an optimization problem 

one has to look at its decision variant”
(C. Papadimitriou)
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Complexity of CBA-λ
“To study the complexity of an optimization problem 

one has to look at its decision variant”
(C. Papadimitriou)

Bounded Approximant threshold wrt dλ 
Instance: An MC M, a positive integer k, and  
                 a rational ε>0 

Output: yes iff there exists N with at most k  
             states such that dλ(m0,n0) ≤ ε
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Complexity upper bound 

BA-λ is in PSPACE
Theorem  

Proof sketch: we can encode the question ⟨M,k,ε⟩∈BA-λ to that of 
checking the feasibility of a set of bilinear inequalities. This can be 
encoded as a decision problem for the existential theory of the reals, 
thus it can be solved in PSPACE [Canny—STOC88].
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Complexity lower bound 

BA-λ is NP-hard
Theorem  

Proof idea: we provide a reduction from VERTEX COVER.
                   (see the appendix for a sketch of the reduction)
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Complexity lower bound 

BA-λ is NP-hard
Theorem  

unlikely to solve
CBA as simple 

linear program

Proof idea: we provide a reduction from VERTEX COVER.
                   (see the appendix for a sketch of the reduction)
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The MSAB-λ problem
The Minimum Significant Approximant Bound wrt dλ

Instance: An MC M
Ouput: The smallest k such that dλ(m0,n0)<1, 
             for some N∈MC(k)
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The Minimum Significant Approximant Bound wrt dλ

Instance: An MC M
Ouput: The smallest k such that dλ(m0,n0)<1, 
             for some N∈MC(k)

For λ<1, the MSAB-λ problem is trivial, 
because the solution is always k=1
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The MSAB-λ problem
The Minimum Significant Approximant Bound wrt dλ

Instance: An MC M
Ouput: The smallest k such that dλ(m0,n0)<1, 
             for some N∈MC(k)

For λ<1, the MSAB-λ problem is trivial, 
because the solution is always k=1

For λ=1, the same problem is surprisingly difficult… 
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Complexity of MSAB-1
…as before we should look at its decision variant
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Complexity of MSAB-1

Significant Bounded Approximant wrt d1

Instance: An MC M and a positive k
Ouput: yes iff there exists N with at most k 
states such that d1(m0,n0)<1.

…as before we should look at its decision variant
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Complexity of MSAB-1

Significant Bounded Approximant wrt d1

Instance: An MC M and a positive k
Ouput: yes iff there exists N with at most k 
states such that d1(m0,n0)<1.

…as before we should look at its decision variant

SBA-1 is NP-complete
Theorem  
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SBA-1 ⊆ NP
Lemma 

Assume M be maximally collapsed. Then,

⟨M,k⟩∈SBA-1      iff

C

m0

mn

G(M) = 

BSCC

and   h+|C| ≤ k

number of labels 
in m0…mn-1 
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SBA-1 ⊆ NP
Lemma 

Assume M be maximally collapsed. Then,

⟨M,k⟩∈SBA-1      iff

C

m0

mn

G(M) = 

BSCC

and   h+|C| ≤ k

Proof sketch: compute with Tarjan’s algorithm all the SCCs of G(M). 
Then non deterministically choose a BSCC and a path to it. In poly-
time we can count the number of labels in the path and the size of 
the BSCC. 

number of labels 
in m0…mn-1 
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SBA-1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:

        ⟨G,h⟩∈VERTEX COVER   iff   ⟨MG, h+m+1⟩∈SBA-1

1

2

3

4

e1

e2

e3

e3 e2 e1 e0

1

2 3

2 3

4

1

1/2

1/2

1
1/2

1/2 1/2

1/2

1 1

1 1

1

sink

25/33



SBA-1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:

        ⟨G,h⟩∈VERTEX COVER   iff   ⟨MG, h+m+1⟩∈SBA-1

1

2

3

4

e1

e2

e3

e3 e2 e1 e0

1

2 3

2 3

4

1

1/2

1/2

1
1/2

1/2 1/2

1/2

1 1

1 1

1

sink

paths from e3 to e0
describes all vertex covers of G
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Towards an Algorithm…
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Towards an Algorithm…

• The CBA can be solved as a bilinear program.  
Theoretically nice, but practically unfeasible!  
                      (our implementation in PENBMI can  
                      handle MCs with at most 5 states…)
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Towards an Algorithm…

• The CBA can be solved as a bilinear program.  
Theoretically nice, but practically unfeasible!  
                      (our implementation in PENBMI can  
                      handle MCs with at most 5 states…)

• We are happy with sub-optimal solutions if  
they can be obtained by a practical algorithm.
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EM-like Algorithm
• Given the MC M and an initial approximant N0 
• it produces a sequence N0, …, Nh of approximants  

having strictly decreasing distance from M 
• Nh may be a sub-optimal solution of CBA-λ

MC(k)
MC

N0

MdhN1
Nh

d0 > d1 > … > dh

27/33



EM-like Algorithm

Metric-based State Space Reduction for Markov Chains 11

By construction, M
G

is maximally collapsed and its underlying graph H has
a unique strongly connected component, namely the self-loop in e0. Each path
p = e

n

; e0 in H passes through all edge states, and the set of labels of the
endpoint states in p is a vertex cover of G. Since e0, . . . , en have pairwise distinct
labels, we have that G has a vertex cover of size at most h i↵ there exists a path
in H from e

n

to e0 that has at most n+1+h di↵erent labels. Thus, (15) follows
by Lemma 13. ut

As a straightforward consequence we get NP-completeness for MSAB-1.

Corollary 15. MSAB-1 is NP-complete.

Proof. Clearly, if k⇤ is the solution for MSAB-1 for hMi, then an instance hM, ki
of SBA-1 can be solved by checking k⇤  k. Therefore, MSAB-1 is at least as
di�cult as SBA-1. So, by Theorem 14, we obtain that MSAB-1 is NP-hard.
MSAB-1 is in NP because it can be solved by running, for i = 1 to |M | an
instance hM, ii of SBA-1 and return the smallest i such that hM, ii 2 SBA-1.
By Theorem 14, this procedure can be solved by a nondeterministic Turing
machine in polynomial-time in the size of M. ut

6 An Expectation Maximization Heuristic

In this section we describe an approximation algorithm for determining subop-
timal solutions of CBA-� for an arbitrary instance hM, ki.

Given an initial approximant N0 2 MC(k), the algorithm produces a se-
quence of MCs N0,N1, . . . in MC(k) having successively decreased distance from
M. We defer until later a discussion of how the initial MC N0 is chosen. The
procedure is described in Algorithm 1.

The intuitive idea of the algorithm is to iteratively update the initial MC by
assigning relatively greater probability to transitions that are most representa-
tive of the behavior of the MC M w.r.t. �

�

. The procedure stops when the last
iteration has not yield an improved approximant w.r.t. the preceding one. The
input also includes a parameter h 2 N that bounds the number of iterations.

The rest of the section explains in more detail two heuristics for implement-
ing the UpdateTransition function invoked at line 5. The purpose of this

Algorithm 1 Expectation Maximization
Input: M = (M, ⌧, `), N0 = (N, ✓0,↵), and h 2 N.
1. i 0
2. repeat
3. i i+ 1
4. compute C 2 ⌦(M,Ni�1) such that ��(M,Ni�1) = �C

�(M,Ni�1)
5. ✓i  UpdateTransition(✓i�1, C)
6. Ni  (N, ✓i,↵)
7. until ��(M,Ni) > ��(M,Ni�1) or i � h
8. return Ni�1
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EM-like Algorithm

UpdateTransition assigns greater 
probability to transitions that are most 

representative of the behavior of M

Intuitive Idea  
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By Theorem 14, this procedure can be solved by a nondeterministic Turing
machine in polynomial-time in the size of M. ut

6 An Expectation Maximization Heuristic

In this section we describe an approximation algorithm for determining subop-
timal solutions of CBA-� for an arbitrary instance hM, ki.

Given an initial approximant N0 2 MC(k), the algorithm produces a se-
quence of MCs N0,N1, . . . in MC(k) having successively decreased distance from
M. We defer until later a discussion of how the initial MC N0 is chosen. The
procedure is described in Algorithm 1.

The intuitive idea of the algorithm is to iteratively update the initial MC by
assigning relatively greater probability to transitions that are most representa-
tive of the behavior of the MC M w.r.t. �

�

. The procedure stops when the last
iteration has not yield an improved approximant w.r.t. the preceding one. The
input also includes a parameter h 2 N that bounds the number of iterations.

The rest of the section explains in more detail two heuristics for implement-
ing the UpdateTransition function invoked at line 5. The purpose of this

Algorithm 1 Expectation Maximization
Input: M = (M, ⌧, `), N0 = (N, ✓0,↵), and h 2 N.
1. i 0
2. repeat
3. i i+ 1
4. compute C 2 ⌦(M,Ni�1) such that ��(M,Ni�1) = �C
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Two update heuristics
• Averaged Marginal (AM): given Nk we construct  

      Nk+1 by averaging the marginal of certain  
      “coupling variables” obtained by optimizing  
      the number of occurrences of the edges that  
      are most likely to be seen in M. 

• Averaged Expectations (AE): similar to the above,  
     but now the Nk+1 looks only the expectation  
     of the number of occurrences of the edges  
     likely to be found in M.  
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UpdateTransition in 

polynomial time for both 

heuristics!



Metric-based State Space Reduction for Markov Chains 15

Case |M | k
� = 1 � = 0.8

��-init ��-final # time ��-init ��-final # time

IPv4
(AM)

23 5 0.775 0.054 3 4.8 0.576 0.025 3 4.8
53 5 0.856 0.062 3 25.7 0.667 0.029 3 25.9
103 5 0.923 0.067 3 116.3 0.734 0.035 3 116.5
53 6 0.757 0.030 3 39.4 0.544 0.011 3 39.4
103 6 0.837 0.032 3 183.7 0.624 0.017 3 182.7
203 6 – – – TO – – – TO

IPv4
(AE)

23 5 0.775 0.109 2 2.7 0.576 0.049 3 4.2
53 5 0.856 0.110 2 14.2 0.667 0.049 3 21.8
103 5 0.923 0.110 2 67.1 0.734 0.049 3 100.4
53 6 0.757 0.072 2 21.8 0.544 0.019 3 33.0
103 6 0.837 0.072 2 105.9 0.624 0.019 3 159.5
203 6 – – – TO – – – TO

DrkW
(AM)

39 7 0.565 0.466 14 259.3 0.432 0.323 14 252.8
49 7 0.568 0.460 14 453.7 0.433 0.322 14 420.5
59 8 0.646 – – TO 0.423 – – TO

DrkW
(AE)

39 7 0.565 0.435 11 156.6 0.432 0.321 2 28.6
49 7 0.568 0.434 10 247.7 0.433 0.316 2 46.2
59 8 0.646 0.435 10 588.9 0.423 0.309 2 115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf pro-
tocol and the classic Drunkard’s Walk w.r.t. the heuristics AM and AE.

seems to be slightly faster than AM. Both the heuristics can handle instances
of size up to ⇠100 states. On the drunkard’s walk model, the two heuristics
appear to have opposite behavior w.r.t. the previous experiment. In this case is
AE the one returning the best solutions and it does it with fewer iterations an
significantly lower execution times.

7 Conclusions and Future Work

We addressed the state space reduction problem for Markov chains by proposing
a new approach based on behavioral metrics. Specifically, we introduced the
closest bounded approximant and the minimum significant approximant bound
problems. For the two we provided both lower- and upper-bound complexity
results. The first problem has been characterized as the solution of a bilinear
optimization problem. Finally, we implemented an expectation maximization
algorithm that performs well in practice still providing suboptimal solutions of
relatively good quality.

We conclude by mentioning the wide applicability of our results in the field
of automatic verification and analysis of probabilistic systems. Clearly, similar
problems can be addressed for other distances and type of models. As a future
work It would be nice to apply similar techniques on Markov decision processes
and combine this methods with the compositional approach described in [1].
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What we have seen
Metric-based state space reduction for MCs 

1. Closest Bounded Approximant (CBA) 
encoded as a bilinear program 

2. Bounded Approximant (BA) 
PSPACE & NP-hard for all 𝜆∈(0,1] 

3. Significant Bounded Approximant (SBA)  
NP-complete for 𝜆=1

Theoretical 

We proposed an EM-like method to 
obtain a sub-optimal approximants 

Practical 
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Future Work
• Is BA-λ  SUM-OF-SQUARE-ROOTS-hard? 

(conjecture: for λ<1,  BA-λ is in NP) 

• Can we obtain a real/better EM-heuristics? 

• What about different models/distances? 

• What about different constraints? 
                                  —beyond minimization!
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e1 e2 e3 e4
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1/m2
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1/2m

BA-λ is NP-hard

⟨G,h⟩∈VERTEX COVER   iff   ⟨MG, m+h+2, λ2/2m2⟩∈BA-λ

 1-(1/m)



EM-like algorithm 
(experimental results)
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