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INntroduction

Moore‘56, Hopcroft‘71: Minimization algorithm for DFA
(partition refinement wrt Myhill-Nerode equiv.)

Minimization via partition refinement:

« Kanellakis-Smolka’83: minimization of LTSs wrt
Milner's strong bisimulation

e Baier’96: minimization of MCs wrt Larsen-Skou
probabillistic bisimulation

o Alur et al.’92, Yannakakis-Lee’97: minimization of
timed & real-time transition systems.

* and many more...
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A fundamental problem

Jou-Smolka’90 observed that behavioral equivalences
are not robust for systems with real-valued data
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Solution!
€quiv. 5 distance

/ d(mo, ﬂo) \
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Metric-baseo
Approximate Minimization

Closest Bounded Minimum Significant
Approximant (CBA) Approximant Bound (MSAB)
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CBA: Example*

MC(5)

(*) With respect to the undiscounted
probabilistic bisimilarity distance 5/33




CBA: Example*

(*) With respect to the undiscounted
probabilistic bisimilarity distance




CBA: Example*

(*) With respect to the undiscounted
probabilistic bisimilarity distance




CBA: Example*

(*) With respect to the undiscounted

probabilistic bisimilarity distance 5/33




CBA: Example*
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CBA: Example*

. ><; X

x:i(10+\/ﬁ)

Y™ 200
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CBA: Example*

B = X

1
436 163163 = — (10 n \/163)
d(mg,ng) = — — ~ 0.49 30
675 13500 o1
Y= %00

(*) With respect to the undiscounted probabilistic bisimilarity distance 6/33



Talk Outline

* Probabilistic bisimilarity distance
» fixed point characterization (Kantorovich oper.)
e remarkable properties
* relation with probabilistic model checking
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Probabilistic bisimulation

& ®
e { @3

It tries to match the behaviors "quantitatively”
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Coupling

Definition (W. Doeblin 36)

on M Is a distribution w on MxM such that

¢ Ynemw(m,n) = py(m) (left marginal)
. > mem wW(mM,N) = v(n) (right marginal).

A coupling of a pair (u,v) of probability distributions

~

_J

One can think of a coupling as a measure-theoretic

relation between probabillity distribution
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A quantitative generalization

minimize Z w(u,v) d(u,v)
u,veM
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A quantitative generalization
of probabilistic bisimilarity

The A-discounted probabilistic bisimilarity pseudometric
is the smallest dx: MxM—[0,1] such that

(1 if £(m)=L(n)
da(m,n) :<

min AZ w(u,v) da(u,v) otherwise
\fUEfXTUﬂ)J(ﬂ» u,veM
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A quantitative generalization
of probabilistic bisimilarity

The A-discounted probabilistic bisimilarity pseudometric
is the smallest dx: MxM—[0,1] such that

(1 if £(m)=L(n)

min AZ w(u,v) da(u,v) otherwise
\U)EQ(T(m),T(ﬂ)) u,veM

Kantorovich distance

(K(d)(u,v) = min Z w(u,v) )
weQ(y,v) u,veM
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Remarkable properties

~

-

Theorem (Desharnais et. al 99)

~
m~n iff  di(m,n) =0

J

Theorem (Chen, van Breugel, Worrell 12)
a8 )
\_

The probabillistic bisimilarity distance
can be computed in polynomial time

12/33



Relation with Model Checking

Theorem (Chen, van Breugel, Worrell 12)
' Forallo e LTL |Pr(mE®) - Pr(nkE= ¢) | < di(m,n) '
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Relation with Model Checking

Theorem (Chen, van Breugel, Worrell 12)
' Forallo e LTL |Pr(mE®) - Pr(nkE= ¢) | < di(m,n) '

...iImagine that [M|>|N|, we can use N in place of M

- approximate
Pr(n = ¢) <[solution on cpj

¥~ Pr(m = )
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Talk Outline

*x Metric-based Optimal Approximate Minimization
» (Closest Bounded Approximant (CBA)
— definition, characterization, complexity
* Minimum Significant Approximant Bound (MSAB)
— definition, characterization, complexity
e Expectation Maximization-like algorithm
— 2 heuristics + experimental results
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The CBA-A problem

The Closest Bounded Approximant wrt d,
f e \
Instance: An MC M, and a positive integer k

Ouput: An MC N, with at most k states
minimizing da(Mmo,N
_ inimizing da(mo, o) Y

da(mo,fio) = ir/w\f { da(mo,no) | N € MC(k) }

we get a solution iff the
infimum is a minimum
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Ouput: An MC N, with at most k states
minimizing da(Mmo,N
_ inimizing da(mo, o) Y

dxa(Mo,No) = inf { dx(Mo,no) | N € MC(k) }

we get a solution iff the genera!\zationt%fm
infimum is a minimum bisimilarity quoO
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CBA-A as a Bilinear Program

dx(Mo,No) = inf { dx(Mo,no) | NeMC(K) }
= inf { d(mo,no) | Ta(d)<d, NeMC(k)}
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dx(Mo,No) = inf { dx(Mo,no) | NeMC(K) }
= inf { d(mo,no) | Ta(d)<d, NeMC(k)}

mimimize dmg,ng

such that d,, , =1

AZ(%U)GMXN C:Z,Un ) duav < dm,n

2 ven Cuw = T(m)(u)

m,n

ZUEM Cu,’u
m,n
Cup = 0

— en,v

t(m) # a(n)
{(m) = a(n)

m,u e M, ne N
meM,nve N
m,u e M, nveN
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CBA-A as a Bilinear Program

dx(Mo,No) = inf { da(mo,no) | NEMtC_Q<) }

= inf { d(mo,no) ||I"\(d)<d,[NeMC(k)}

mimimize dmg,ng
such that[d,, » =1
)\Z(u,v)EMxN CZt:Un ) duav < dm,n

| Zoen e’ = 7(m)(u) m,u€ M, neN
HZuEMCZ%”ZQn,v meM,nveN
£%n20 m,u € M, n,v € N

S ——— e — e — e — e S —

e —

{(m) = a(n)
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CBA-A as a Bilinear Program

da(Mo,No) = inf { dx(Mo,no) | NeMC(K) }
= inf { d(mo,No) Hﬁ(d)sd, NeMC(k)}

mimimize dmg,ng

such that[d,, » =1
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CBA-A as a Bilinear Program

(

\-

Lemma (Meaningful labels)
For any NeMC(k), there exists N'eMC

labels taken from M, such that da(M,N)

/N

1/

K)
0

with
\(M,N’)

~

WV,
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CBA-A as a Bilinear Program

Lemma (Meaningful labels)

" For any NeMC(K), there exists NeMC(K) with |
k labels taken from M, such that da(M,N) > di(M,N’) y
mimimize dy,, n,
such that Az(uv)eMchm” Ay < dm.n meM,neN
l—ap; <dnn<1 neN,leL(M),Llm)#I
Qi Oy =0 neN,l,I'e LIM),l#1
ZleL(M) o =1 neN
Z’UEN Coy = 7(m)(u) m,ue M, neN
> ueM Cu, wn = Ony meM,n,veN
Cyy 20 m,u € M, n,veN
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CBA-A as a Bilinear Program

(

\-

Lemma (Meaningful labels)
For any NeMC(Kk), there exists N'eMC(k) wit
M

labels taken from M, such that da(M,N) > d

~

) y

mimimize dpg n,

such that )\Z(u v)EMXN Cu' * Qupw < dmn

1_anl<dmn§1

H Qp |- Op 7 = 0

L ZZEL(/\Q Ol = 1

e

meM,neN

Z’UEN Czlvn — T(m) (’LL)

ZuGM u,v _an

neNleL() /(m) #£ 1
neN,LI'e LLM),l#1
neN

m,ue M, ne N
meM,nveN
m,u e M, n,ve N
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CBA-A as a Bilinear Program

this characterization has two main consequences...

1.C

BA-A admits always a solution

(finite intersection of closed subsets)

2.C

BA-A can be approximated up

to any precision
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Complexity of CBA-A

“To study the complexity of an optimization problem
one has to look at its decision variant”

(C. Papadimitriou)
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Complexity of CBA-A

“To study the complexity of an optimization problem
one has to look at its decision variant”

(C. Papadimitriou)

Bounded Approximant threshold wrt da T

Instance: An MC M, a positive integer k, and
a rational >0

Output: yes iff there exists N with at most k
L states such that da(mo,no) = € y
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Complexity upper bound

Theorem

BA-A is in PSPACE

Proof sketch: we can encode the question {M,k,&>e BA-A to that of

checking the feasibility of a set of bilinear inequalities. This can be
encoded as a decision problem for the existential theory of the reals,
thus it can be solved in PSPACE [Canny—STOCB88].
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Complexity lower bound

Theorem

( BA-A is NP-hard )

Proof idea: we provide a reduction from VERTEX COVER.
(see the appendix for a sketch of the reduction)

21/33



Complexity lower bound

Theorem

( BA-A is NP-hard

unlikely to solve
CBA as simple
linear program

Proof idea: we provide a reduction from VERTEX COVER.
(see the appendix for a sketch of the reduction)
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The MSAB-A problem

Instance: An MC M

Ouput: The smallest k such that da(mo,no)<1,
_ for some NeMC(k)

/ The Minimum Significant Approximant Bound wrt dx \

_J
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The MSAB-A problem

/ The Minimum Significant Approximant Bound wrt dx \

Instance: An MC M

Ouput: The smallest k such that da(mo,no)<1,
for some NeMC(k
_ =MEt y

For A<1, the MSAB-A problem is trivial,
because the solution is always k=1
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The MSAB-A problem

/ The Minimum Significant Approximant Bound wrt dx \

Instance: An MC M

Ouput: The smallest k such that da(mo,no)<1,
for some NeMC(k
_ =MEt y

For A<1, the MSAB-A problem is trivial,
because the solution is always k=1

For A=1, the same problem is surprisingly difficult...
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Complexity of MSAB-1

...as before we should look at its decision variant
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Complexity of MSAB-1

...as before we should look at its decision variant

Significant Bounded Approximant wrt d
- g PP TN

Instance: An MC M and a positive k
Ouput: yes iff there exists N with at most k

L states such that d{(mo,no)<1. y
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Complexity of MSAB-1

...as before we should look at its decision variant

Significant Bounded Approximant wrt d
- g PP 1 )\

Instance: An MC M and a positive k

Ouput: yes iff there exists N with at most k
_ states such that d{(mo,no)<1. Y

Theorem
( SBA-1 is NP-complete )
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SBA-1 € NP

r Lemma ~
Assume M be maximally collapsed. Then,
(M,k)eSBA-1 iff G(M) = and h+|C| <k
\_ A

N Mo...Mn-1

number of Iabels]
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SBA-1 € NP

r Lemma ~

Assume M be maximally collapsed. Then,

and h+|C| <Kk
A

number of Iabels]

(M KyeSBA-1  iff G(M) =

-

N Mo...Mn-1

Proof sketch: compute with Tarjan’s algorithm all the SCCs of G(M).

Then non deterministically choose a BSCC and a path to it. In poly-

time we can count the number of labels in the path and the size of
the BSCC.
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SBA-1 is NP-hard

Proof sketch: by reduction to VERTEX COVER:
(G,heVERTEX COVER iff (Mg, h+m+1)cSBA-1
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SBA-1 is NP-hard

describes all vertex covers of G

@ [ paths from es to eo ]

Proof sketch: by reduction to VERTEX COVER:
(G,heVERTEX COVER iff (Mg, h+m+1)cSBA-1

25/33



Towards an Algorithm...
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Towards an Algorithm...

 The CBA can be solved as a bilinear program.
Theoretically nice, but practically unfeasible!
(our implementation in PENBMI can
handle MCs with at most 5 states...)
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Towards an Algorithm...

 The CBA can be solved as a bilinear program.
Theoretically nice, but practically unfeasible!
(our implementation in PENBMI can
handle MCs with at most 5 states...)

* We are happy with sub-optimal solutions it
they can be obtained by a practical algorithm.
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EM-like Algorithm

* Given the MC M and an initial approximant No

* it produces a sequence N, ..., Nn of approximants
having strictly decreasing distance from M

 Nh may be a sub-optimal solution of CBA-A

do>di>...>dn

e S—— ———= = —————— e e

r:-T‘ S S
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EM-like Algorithm

Algorithm 1
Input: M = (M, 1,0), No = (N, 00,a), and h € N,
1. 2+0

repeat
11+ 1
compute C € 2(M,N;_1) such that 5y (M, N;_1) = 5 (M, Ni_1)
0; + UPDATETRANSITION(#;_1,C)
M < (N, 91'705)

until o (M, N;) > (M, N;—1) ori > h

return N, 1

XN OUE W
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EM-like Algorithm

Algorithm 1
Input: M = (M, 7,£), No = (N,60y,a), and h € N.
1. 2+0

repeat
1< 1+1
compute C € 2(M,N;_1) such that 5y (M, N;_1) = 5 (M, Ni_1)
; < UPDATETRANSITION(0;_1,C)
M < (N, (9@,05)

until o (M, N;) > (M, N;—1) ori > h

return N;_q

XN OUE W

~ Intuitive Idea ™
Updaatelransition assigns greater

probabillity to transitions that are most

. representative of the behavior of M y
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Two update heuristics

 Averaged Marginal (AM): given Nx we construct
Nk+1 by averaging the marginal of certain
‘coupling variables” obtained by optimizing
the number of occurrences of the edges that
are most likely to be seen in M.

 Averaged Expectations (AE): similar to the above,
but now the Nk+1 looks only the expectation
of the number of occurrences of the edges
likely to be found in M.
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but now the Nk+1 looks on o
sition 1IN
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A=1 A=0.8
Case |M] | K Ox-init | dx-final | # | time | dx-init | Iy-final | # | time
23 | 5| 0.775 0.054 3 4.8 0.576 0.025 3 4.8
53 | 5 | 0.856 0.062 3 25.7 0.667 0.029 3 25.9
IPv4 103 | 5 | 0.923 0.067 3 | 116.3 | 0.734 0.035 3 | 116.5
(AM) 53 | 6 | 0.757 0.030 3 39.4 0.544 0.011 3 39.4
103 | 6 | 0.837 0.032 3 | 183.7 | 0.624 0.017 3 | 182.7
203 | 6 - - - TO - — - TO
23 | 5| 0.775 0.109 2 2.7 0.576 0.049 3 4.2
53 | 5 | 0.856 0.110 2 14.2 0.667 0.049 3 21.8
IPv4 103 | 5 | 0.923 0.110 2 67.1 0.734 0.049 3 | 1004
(AE) 53 | 6 | 0.757 0.072 2 21.8 0.544 0.019 3 33.0
103 | 6 | 0.837 0.072 2 | 105.9 | 0.624 0.019 3 | 159.5
203 | 6 — - - TO - — - TO
DrkW 39 | 7| 0.565 0.466 14 | 259.3 | 0.432 0.323 14 | 252.8
(AM) 49 | 7| 0.568 0.460 14 | 453.7 | 0.433 0.322 14 | 420.5
59 | 8 | 0.646 - - TO 0.423 — - TO
DrkW 39 | 7| 0.565 0.435 11 | 156.6 | 0.432 0.321 2 28.6
(AE) 49 | 7| 0.568 0.434 10 | 247.7 | 0.433 0.316 2 46.2
59 | 8 | 0.646 0.435 10 | 588.9 | 0.423 0.309 2 | 115.7

Table 1. Comparison of the performance of EM algorithm on the IPv4 zeroconf pro-
tocol and the classic Drunkard’s Walk w.r.t. the heuristics AM and AE.
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What we have seen

Theoretical
Metric-based state space reduction for MCs

1. Closest Bounded Approximant (CBA)
encoded as a bilinear program
2. Bounded Approximant (BA)

PSPACE & NP-hard for all A€(0,1]

3. Significant Bounded Approximant (SBA)
NP-complete for A=1

Practical
We proposed an EM-like method to

obtain a sub-optimal approximants
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Future Work

s BA-A SUM-OF-SQUARE-ROOTS-hard?
(conjecture: for A<1, BA-Ais in NP)

Can we obtain a real/better EM-heuristics?
What about different models/distances?

What about different constraints?
—pbeyond minimization!
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Thank you
for your attention



Appendix



BA-A 1Is NP-hard

(G,he VERTEX COVER iff (Mg, m+h+2, A°/2m?)e BA-A



EM-like algorithm
(experimental results)



IPv4 Zero Conf Protocol

Averaged Marginal (AM)
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IPv4 Zero Conf Protocol

Averaged Marginal (AM)

@  doo(M,No) = 0.67

A

Input model C@/@/‘ @\m\@@
e | |
2. dos(M,N1) ~ 0.043
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IPv4 Zero Conf Protocol

Averaged Marginal (AM)

Input model

IC@/O/.

e

/

/®’2/

\@

e

@

‘g\@

@
M@M@

@  doo(M,No) = 0.67
A

@

do.o(M,N+) =
(2

- 473684

&
o @)

0.043

" >

(2) dO.Q(M,Nz) ~ 0.041

@"//// - 0.090909 1 — @ /,A\\
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IPv4 Zero Conf Protocol

Input model

Averaged Expectations (AE)

AN

@

) \

@m-\

© 16@

e

/

/®%

e

‘g\@

@M@

do.o(M,Np) = 0.67

e



IPv4 Zero Conf Protocol

Averaged Expectations (AE)

Input model
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e
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IPv4 Zero Conf Protocol

Averaged Expectations (AE)

Input model /;Z \

do.o(M,Np) = 0.67

e

/

do.o(M,N1) = 0.08

/®ﬁ
®

T C@ @Q
\\

o
)

o
% 3
Q

)

]

N 3
o

.

@ / - @‘/Mm///. @\\\MM&\A@”\

@ " .

@‘w\ @'QO/
@< /;/@\ do.o(M,N2) = 0.11
o~ 0)
e g
"/ >/



Drunkard's Walk

Averaged Marginal (AM)

Input model
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Drunkard's Walk

Averaged Marginal (AM)
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Drunkard's Walk

Averaged Marginal (AM)

Input model

(o= @< O 0= R 0= TR0 RO RO RO 0 a)

(@< @< RO L @< D O @ v =@ dooMNo)~ 064
@@@%gﬁ@%@%@- do.o(M,N+) = 0.56

Do O e =@~ o ~O< e ~@ o=@} dos(MN2) = 0.567




Drunkard's Walk

Averaged Expectations (AE)

Input model
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Averaged Expectations (AE)

Input model

(o= @< O 0= R 0= TR0 RO RO RO 0 a)

(@< @< D NOL L Te< D RO Um0 =@ ss(MNo) =064

@@@%‘W@w@%@a 60.9(M,N1) = 0.56

@@@%‘%@ﬁ@%@a 60.9(M,N2) = 0.543




Drunkard's Walk

Averaged Expectations (AE)

Input model

(o= @< O 0= R 0= TR0 RO RO RO 0 a)

(@< @< D NOL L Te< D RO Um0 =@ ss(MNo) =064

O Oyt~ @ e ~ O e ~® 0= @} 555(MNy) = 0.56
@@@%‘%@w@%@a 60.9(M,N2) = 0.543

$®$.$@$@W@a 50.9(M,N3) = 0.540




