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Motivations

Markov Decision Processes with Rewards

I external nondeterminism + probabilistic behavior

I many useful applications (A.I., planning, games, biology, . . . )

Compositional Reasoning M =M1 ⊗M2 ⊗ · · · ⊗Mn

I scalability and reusability of models

I may suffer from an exponential growth of the state space
(the parallel composition of n systems with m states has mn states!)

Bisimilarity Distances . . . to measure the degree of similarities
(bisimilarity is not robust: it only relates states with identical behaviors)

I approximate reasoning on quantitative models

I need of efficient methods for computing bisim. distances
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Markov Decision Processes with Rewards (MDPs)

M = (S ,A, τ , ρ)

s0

s1 s2 s3

a[3] b[−1]

Executions: ω = (s0, a0)(s1, a1) . . .

Discounted accumulated reward λ ∈ (0, 1)

Rλ(ω) =
∑

i∈N λ
i · ρ(si , ai )

Goal: To find policies π : S → A that maximize the expected value
of Rλ on probabilistic executions starting from a given state.
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Algebraic Operators on MDPs

Complex systems can be conveniently represented as the algebraic
composition of simpler sub-systems.

How to define generic operators on MDPs?

M1 ⊗M2 = (S1× S2, A1 ⊗A A2 , τ1 ⊗τ τ2 , ρ1 ⊗ρ τ2)

set of
states

set of
actions

probability
transition
function

reward
function

X Synch. parallel comp. X CCS-like parallel comp.
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Metric analogue of congruence

Robust semantics for quantitative systems:

I Pseudometrics are the quantitative analogue equivalences

I Bisimilarity Pseudometrics: δM(s, t) = 0 ⇐⇒ s ∼M t

What is the quantitive analogue of congruence?

s1 ∼M1 t1 and s2 ∼M2 t2 =⇒ s1 ⊗ s2 ∼M1⊗M2 t1 ⊗ t2

I δM1(s1, t1) + δM2(s2, t2) ≥ δM1⊗M2(s1 ⊗ s2, t1 ⊗ t2)

I ‖δM1 , δM2‖ w δM1⊗M2 (⊗ is non-extensive)
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A Bisimilarity Pseudometric on MDPs

We consider the λ-discounted bisimilarity distances proposed by
Ferns et al. [UAI’04]:

δMλ : S × S → R≥0 is the least fixed point of

FMλ (d)(s, t) = max
a∈A

{
|ρ(s, a)− ρ(t, a)|+λ·Td(τ(s, a), τ(t, a))

}

Remarkable property Ferns et al. [UAI’04]

Upper-bound of expected accumulated rewards w.r.t. optimal policies

|VMλ (s)− VMλ (t)| ≤ dMλ (s, t)
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Kantorovich Metric: Td : ∆(S)×∆(S)→ R≥0

The distance between τ(s, a) and τ(t, a)
is the optimal value of a Transportation Problem

Td (τ(s, a), τ(t, a)) = min

 ∑
u,v∈S

d(u, v) · ω(u, v)

∣∣∣∣∣ ∀u ∈ S
∑

v∈S ω(u, v) = τ(s, a)(u)

∀v ∈ S
∑

u∈S ω(u, v) = τ(t, a)(v)



ω can be understood as transportation of τ(s, a) to τ(t, a).

s

si

τ(s, a)(si) t
tj

τ(t, a)(tj)

ω(si , tj )
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Safe algebraic operators on MDPs

Proving non-extensiveness for ⊗ may lead to rather involved proofs
(δMλ is defined as the least fixed point of FMλ )

. . . we characterized a class of operators on MDPs

p-Safe operators

FM1⊗M2

λ (‖d1, d2‖p) v ‖FM1

λ (d1),FM2

λ (d2)‖p

Theorem: p-Safeness =⇒ non-extensiveness

X Synch. parallel comp. X CCS-like parallel comp.
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Computing the
behavioral distance

given s, t ∈ S , to compute δMλ (s, t)

On-the-fly algorithm
[Bacci2,Larsen,Mardare TACAS’13]

I lazy exploration of M
I save comput. time + space

Compositional strategy

I exploit the compositional
structure of M1 ⊗M2
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Alternative characterization of δMλ

Coupling for M: C =
(
ωa
s,t ∈ Π(τ(s, a), τ(t, a))

)a∈A
s,t∈S

(to be thought of as a “probabilistic pairing of M)

ΓCλ(d)(s, t) = max
a∈A

{
|ρ(s, a)− ρ(t, a)|+ λ

∑
u,v∈S

d(u, v) · ωa
s,t(u, v)

}

. . . and we call discrepancy, γCλ , the least fixed point of ΓCλ

Theorem (Minimal Coupling)

δMλ = min{γCλ | C coupling for M}, for all λ ∈ (0, 1)

10 / 16



Alternative characterization of δMλ

Coupling for M: C =
(
ωa
s,t ∈ Π(τ(s, a), τ(t, a))

)a∈A
s,t∈S

(to be thought of as a “probabilistic pairing of M)

ΓCλ(d)(s, t) = max
a∈A

{
|ρ(s, a)− ρ(t, a)|+ λ

∑
u,v∈S

d(u, v) · ωa
s,t(u, v)

}

. . . and we call discrepancy, γCλ , the least fixed point of ΓCλ

Theorem (Minimal Coupling)

δMλ = min{γCλ | C coupling for M}, for all λ ∈ (0, 1)

10 / 16



On-the-fly strategy [Bacci2-Larsen-Mardare TACAS’13]

C1 Eλ C2 ⇐⇒ γC1
λ v γ

C2
λ

D

C1 C5

C2

C4

C3

Greedy strategy

Moving Criterion: Ci = {. . . , ωa
u,v , . . . }

ωa
u,v not opt. w.r.t. TP(γCiλ , τ(u, a), τ(v , a))

Improvement: Ci+1 = {. . . , ω∗, . . . }
ω∗ optimal sol. for TP(γCiλ , τ(u, a), τ(v , a))

Theorem

I each step ensures Ci+1 /λ Ci
I moving criterion holds until γCiλ 6= δλ

I the method always terminates
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ω∗ optimal sol. for TP(γCiλ , τ(u, a), τ(v , a))

Theorem

I each step ensures Ci+1 /λ Ci
I moving criterion holds until γCiλ 6= δλ

I the method always terminates

Heuristics for a better
starting coupling?
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A Compositional Heuristic

Let M =M2 ⊗M2 and ⊗ be non-extensive, than

δMλ v ‖δ
M1
λ , δM2

λ ‖p

γDλ v γD
∗

λ v ‖γ
D1
λ , γD2

λ ‖p

(
Min. Coupling

Theorem

)

A good starting coupling should not exceed
the upper-bound given by non-extensiveness!

Remark: D∗ should be obtained from D1 and D2
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Lifting algebraic operators on Couplings

Lifting operator

M1, M2 M1 ⊗M2

C1, C2 C1 ⊗∗ C2

p-Safe lifting operator

ΓC1⊗∗C2
λ (‖d1, d2‖p) v ‖ΓC1

λ (d1), ΓC1
λ (d2)‖p

δM1⊗M2
λ v γD1⊗∗D2

λ v ‖δM1
λ , δM2

λ ‖p
where Di is a coupling for Mi minimal w.r.t. Eλ

+

=
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Experimental Results

Query Instance OTF COTF # States

All pairs

E0 ‖ E1 0.654791 0.97248 9
E1 ‖ E2 0.702105 0.801121 9

E0 ‖ E0 ‖ E1 48.5982 13.5731 27
E0 ‖ E1 ‖ E2 23.1984 19.9137 27
E0 ‖ E1 ‖ E1 126.335 13.6483 27
E0 ‖ E0 ‖ E0 49.1167 14.1075 27

Single pair

E0 ‖ E0 ‖ E0 ‖ E1 ‖ E1 16.7027 11.6919 243
E0 ‖ E1 ‖ E0 ‖ E1 ‖ E1 20.2666 16.6274 243
E2 ‖ E1 ‖ E0 ‖ E1 ‖ E1 22.8357 10.4844 243
E1 ‖ E2 ‖ E0 ‖ E0 ‖ E2 11.7968 6.76188 243

E1 ‖ E2 ‖ E0 ‖ E0 ‖ E2 ‖ E2 Time-out 79.902 729
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Conclusion and Future Work

Results
I generic definition of algebraic operators on MDPs

I characterized a well-behaved class of operators (p-Safeness)

I on-the-fly algorithm for behavioral pseudometrics

I avoids entire exploration of the state space
I exploit compositional structure of the model (first proposal!)

I developed a proof of concept prototype
[http://people.cs.aau.dk/giovbacci/tools.html]

Future work
I expressiveness (probabilistic choice, co-recursive def., etc.)

I beyond non-extensiveness (continuous operators)

I apply similar techniques on CTMCs, CTMDPs, etc. . .
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