Computing Behavioral Distances, Compositionally

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare

Dept. of Computer Science, Aalborg University

Quantitative Models

Expressiveness, Analysis, and New Applications

19–24 January 2013 — Dagstuhl, Germany

Motivations

Markov Decision Processes with Rewards

- external nondeterminism + probabilistic behavior
- ▶ many useful applications (A.I., planning, games, biology, ...)

Compositional Reasoning $\mathcal{M} = \mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \cdots \otimes \mathcal{M}_n$

- scalability and reusability of models
- may suffer from an exponential growth of the state space (the parallel composition of n systems with m states has mⁿ states!)

Bisimilarity Distances ... to measure the degree of similarities (bisimilarity is not robust: it only relates states with identical behaviors)

- approximate reasoning on quantitative models
- need of efficient methods for computing bisim. distances

Motivations

Markov Decision Processes with Rewards

- external nondeterminism + probabilistic behavior
- ▶ many useful applications (A.I., planning, games, biology, ...)

Compositional Reasoning $\mathcal{M} = \mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \cdots \otimes \mathcal{M}_n$

- scalability and reusability of models
- may suffer from an exponential growth of the state space
 (the parallel composition of n systems with m states has mⁿ states!)

Bisimilarity Distances ... to measure the degree of similarities (bisimilarity is not robust: it only relates states with identical behaviors)

- approximate reasoning on quantitative models
- need of efficient methods for computing bisim. distances

Motivations

Markov Decision Processes with Rewards

- external nondeterminism + probabilistic behavior
- many useful applications (A.I., planning, games, biology, ...)

Compositional Reasoning $\mathcal{M} = \mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \cdots \otimes \mathcal{M}_n$

- scalability and reusability of models
- may suffer from an exponential growth of the state space
 (the parallel composition of n systems with m states has mⁿ states!)

Bisimilarity Distances ... to measure the degree of similarities (bisimilarity is not robust: it only relates states with identical behaviors)

- approximate reasoning on quantitative models
- need of efficient methods for computing bisim. distances

$$\mathcal{M} = (S, A, \tau, \rho)$$

$$\mathcal{M} = (S, A, au,
ho)$$

finite set of states set of labels
$$\mathcal{M} = (S, A, au,
ho)$$

finite set of states set of labels
$$\mathcal{M} = (S, A, \tau, \rho)$$
probability transition function
$$\tau: S \times A \to \Delta(S)$$

Executions:
$$\omega = (s_0, a_0)(s_1, a_1) \dots$$

Discounted accumulated reward $\lambda \in (0,1)$

$$R_{\lambda}(\omega) = \sum_{i \in \mathbb{N}} \lambda^{i} \cdot \rho(s_{i}, a_{i})$$

Goal: To find policies $\pi: S \to A$ that maximize the expected value of R_{λ} on probabilistic executions starting from a given state.

Algebraic Operators on MDPs

Complex systems can be conveniently represented as the algebraic composition of simpler sub-systems.

How to define generic operators on MDPs?

Algebraic Operators on MDPs

Complex systems can be conveniently represented as the algebraic composition of simpler sub-systems.

How to define generic operators on MDPs?

Algebraic Operators on MDPs

Complex systems can be conveniently represented as the algebraic composition of simpler sub-systems.

How to define generic operators on MDPs?

$$\mathcal{M}_1 \otimes \mathcal{M}_2 = (S_1 \times S_2, A_1 \otimes_A A_2, \tau_1 \otimes_\tau \tau_2, \rho_1 \otimes_\rho \tau_2)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Robust semantics for quantitative systems:

- ▶ Pseudometrics are the quantitative analogue equivalences
- **Bisimilarity Pseudometrics:** $\delta^{\mathcal{M}}(s,t) = 0 \iff s \sim_{\mathcal{M}} t$

Robust semantics for quantitative systems:

- ▶ Pseudometrics are the quantitative analogue equivalences
- **Bisimilarity Pseudometrics:** $\delta^{\mathcal{M}}(s,t) = 0 \iff s \sim_{\mathcal{M}} t$

$$s_1 \sim_{\mathcal{M}_1} t_1$$
 and $s_2 \sim_{\mathcal{M}_2} t_2 \implies s_1 \otimes s_2 \sim_{\mathcal{M}_1 \otimes \mathcal{M}_2} t_1 \otimes t_2$

Robust semantics for quantitative systems:

- ▶ Pseudometrics are the quantitative analogue equivalences
- **Bisimilarity Pseudometrics:** $\delta^{\mathcal{M}}(s,t) = 0 \iff s \sim_{\mathcal{M}} t$

$$s_1 \sim_{\mathcal{M}_1} t_1$$
 and $s_2 \sim_{\mathcal{M}_2} t_2 \implies s_1 \otimes s_2 \sim_{\mathcal{M}_1 \otimes \mathcal{M}_2} t_1 \otimes t_2$

Robust semantics for quantitative systems:

- ▶ Pseudometrics are the quantitative analogue equivalences
- **Bisimilarity Pseudometrics:** $\delta^{\mathcal{M}}(s,t) = 0 \iff s \sim_{\mathcal{M}} t$

$$s_1 \sim_{\mathcal{M}_1} t_1 \text{ and } s_2 \sim_{\mathcal{M}_2} t_2 \implies s_1 \otimes s_2 \sim_{\mathcal{M}_1 \otimes \mathcal{M}_2} t_1 \otimes t_2$$

Robust semantics for quantitative systems:

- ▶ Pseudometrics are the quantitative analogue equivalences
- **Bisimilarity Pseudometrics:** $\delta^{\mathcal{M}}(s,t) = 0 \iff s \sim_{\mathcal{M}} t$

$$s_1 \sim_{\mathcal{M}_1} t_1 \text{ and } s_2 \sim_{\mathcal{M}_2} t_2 \implies s_1 \otimes s_2 \sim_{\mathcal{M}_1 \otimes \mathcal{M}_2} t_1 \otimes t_2$$

- $\qquad \qquad \delta^{\mathcal{M}_1}(s_1,t_1) + \delta^{\mathcal{M}_2}(s_2,t_2) \geq \delta^{\mathcal{M}_1 \otimes \mathcal{M}_2}(s_1 \otimes s_2,t_1 \otimes t_2)$
- $||\delta^{\mathcal{M}_1}, \delta^{\mathcal{M}_2}||_1 \supseteq \delta^{\mathcal{M}_1 \otimes \mathcal{M}_2}$ (\otimes is **non-extensive**)

Robust semantics for quantitative systems:

- ▶ Pseudometrics are the quantitative analogue equivalences
- **Bisimilarity Pseudometrics:** $\delta^{\mathcal{M}}(s,t) = 0 \iff s \sim_{\mathcal{M}} t$

$$s_1 \sim_{\mathcal{M}_1} t_1 \text{ and } s_2 \sim_{\mathcal{M}_2} t_2 \implies s_1 \otimes s_2 \sim_{\mathcal{M}_1 \otimes \mathcal{M}_2} t_1 \otimes t_2$$

- $||\delta^{\mathcal{M}_1}, \delta^{\mathcal{M}_2}||_{\mathbf{p}} \supseteq \delta^{\mathcal{M}_1 \otimes \mathcal{M}_2}$ (\otimes is \mathbf{p} -non-extensive)

We consider the λ -discounted bisimilarity distances proposed by Ferns et al. [UAI'04]:

$$\delta_{\lambda}^{\mathcal{M}} \colon S \times S \to \mathbb{R}_{\geq 0}$$
 is the **least fixed point** of

$$F_{\lambda}^{\mathcal{M}}(d)(s,t) = \max_{a \in A} \left\{ |\rho(s,a) - \rho(t,a)| + \lambda \cdot \mathcal{T}_d(\tau(s,a),\tau(t,a)) \right\}$$

We consider the λ -discounted bisimilarity distances proposed by Ferns et al. [UAI'04]:

$$\delta^{\mathcal{M}}_{\lambda} \colon \mathcal{S} imes \mathcal{S} o \mathbb{R}_{\geq 0}$$
 is the **least fixed point** of

$$F_{\lambda}^{\mathcal{M}}(d)(s,t) = \max_{a \in A} \left\{ |\rho(s,a) - \rho(t,a)| + \lambda \cdot \mathcal{T}_d(\tau(s,a),\tau(t,a)) \right\}$$
distance between rewards

We consider the λ -discounted bisimilarity distances proposed by Ferns et al. [UAI'04]:

$$\delta^{\mathcal{M}}_{\lambda} \colon S \times S \to \mathbb{R}_{\geq 0}$$
 is the **least fixed point** of

$$F_{\lambda}^{\mathcal{M}}(d)(s,t) = \max_{a \in A} \left\{ |\rho(s,a) - \rho(t,a)| + \lambda \cdot \mathcal{T}_d(\tau(s,a),\tau(t,a)) \right\}$$
 distance between rewards and recursively...

distance between transition probabilities

We consider the λ -discounted bisimilarity distances proposed by Ferns et al. [UAI'04]:

$$\delta^{\mathcal{M}}_{\lambda} \colon S \times S \to \mathbb{R}_{\geq 0}$$
 is the **least fixed point** of

$$F_{\lambda}^{\mathcal{M}}(d)(s,t) = \max_{a \in A} \left\{ |\rho(s,a) - \rho(t,a)| + \lambda \cdot \mathcal{T}_d(\tau(s,a),\tau(t,a)) \right\}$$

Remarkable property

Ferns et al. [UAI'04]

Upper-bound of expected accumulated rewards w.r.t. optimal policies

$$|V_{\lambda}^{\mathcal{M}}(s) - V_{\lambda}^{\mathcal{M}}(t)| \leq d_{\lambda}^{\mathcal{M}}(s,t)$$

Kantorovich Metric: $\mathcal{T}_d : \Delta(S) \times \Delta(S) \to \mathbb{R}_{>0}$

The distance between $\tau(s, a)$ and $\tau(t, a)$ is the optimal value of a Transportation Problem

$$\mathcal{T}_d(\tau(s,a),\tau(t,a)) = \min \left\{ \sum_{u,v \in S} d(u,v) \cdot \omega(u,v) \, \middle| \, \forall u \in S \, \sum_{v \in S} \omega(u,v) = \tau(s,a)(u) \, \right\}$$

 ω can be understood as transportation of $\tau(s,a)$ to $\tau(t,a)$

$$s \xrightarrow{\tau(s,a)(s_i)} s_i$$

$$\omega(s_i,t_j) \xrightarrow{t} \tau(t,a)(t_j) \xrightarrow{t} t$$

Kantorovich Metric: $\mathcal{T}_d : \Delta(S) \times \Delta(S) \to \mathbb{R}_{>0}$

The distance between $\tau(s, a)$ and $\tau(t, a)$ is the optimal value of a Transportation Problem

$$\mathcal{T}_{d}(\tau(s, a), \tau(t, a)) = \min \left\{ \sum_{u, v \in S} d(u, v) \cdot \omega(u, v) \middle| \begin{array}{c} \forall u \in S \sum_{v \in S} \omega(u, v) = \tau(s, a)(u) \\ \forall v \in S \sum_{u \in S} \omega(u, v) = \tau(t, a)(v) \end{array} \right\}$$

$$\frac{1}{\omega} \in \Pi(\tau(s, a), \tau(t, a))$$

 ω can be understood as transportation of au(s,a) to au(t,a).

$$s = \tau(s,a)(s_i)$$

$$\omega(s_i,t_j) = t$$

Kantorovich Metric: $\mathcal{T}_d : \Delta(S) \times \Delta(S) \to \mathbb{R}_{>0}$

The distance between $\tau(s, a)$ and $\tau(t, a)$ is the optimal value of a Transportation Problem

$$\mathcal{T}_{d}(\tau(s,a),\tau(t,a)) = \min \left\{ \sum_{u,v \in S} d(u,v) \cdot \omega(u,v) \middle| \begin{array}{l} \forall u \in S \sum_{v \in S} \omega(u,v) = \tau(s,a)(u) \\ \forall v \in S \sum_{u \in S} \omega(u,v) = \tau(t,a)(v) \end{array} \right\}$$
matching
$$\omega \in \Pi(\tau(s,a),\tau(t,a))$$

 ω can be understood as transportation of $\tau(s, a)$ to $\tau(t, a)$.

Safe algebraic operators on MDPs

Proving non-extensiveness for \otimes may lead to rather involved proofs $(\delta^{\mathcal{M}}_{\lambda} \text{ is defined as the least fixed point of } F^{\mathcal{M}}_{\lambda})$

Safe algebraic operators on MDPs

Proving non-extensiveness for \otimes may lead to rather involved proofs $(\delta^{\mathcal{M}}_{\lambda} \text{ is defined as the least fixed point of } F^{\mathcal{M}}_{\lambda})$

... we characterized a class of operators on MDPs

p-Safe operators

$$F_{\lambda}^{\mathcal{M}_1\otimes\mathcal{M}_2}(\|d_1,d_2\|_p) \sqsubseteq \|F_{\lambda}^{\mathcal{M}_1}(d_1),F_{\lambda}^{\mathcal{M}_2}(d_2)\|_p$$

Theorem: *p*-Safeness ⇒ non-extensiveness

Safe algebraic operators on MDPs

Proving non-extensiveness for \otimes may lead to rather involved proofs $(\delta^{\mathcal{M}}_{\lambda} \text{ is defined as the least fixed point of } F^{\mathcal{M}}_{\lambda})$

...we characterized a class of operators on MDPs

p-Safe operators

$$F_{\lambda}^{\mathcal{M}_1\otimes\mathcal{M}_2}(\|d_1,d_2\|_p) \sqsubseteq \|F_{\lambda}^{\mathcal{M}_1}(d_1),F_{\lambda}^{\mathcal{M}_2}(d_2)\|_p$$

Theorem: p-Safeness \implies non-extensiveness

- ✓ Synch. parallel comp.
- √ CCS-like parallel comp.

Computing the behavioral distance

given $s,t\in S$, to compute $\delta_{\lambda}^{\mathcal{M}}(s,t)$

On-the-fly algorithm

[Bacci²,Larsen,Mardare TACAS'13]

- ▶ lazy exploration of M
- save comput. time + space

Compositional strategy

• exploit the compositional structure of $\mathcal{M}_1 \otimes \mathcal{M}_2$

Alternative characterization of $\delta_{\lambda}^{\mathcal{M}}$

Coupling for
$$\mathcal{M}$$
: $\mathcal{C} = \left(\omega_{s,t}^a \in \Pi(\tau(s,a),\tau(t,a))\right)_{s,t \in S}^{a \in A}$ (to be thought of as a "probabilistic pairing of \mathcal{M})

$$\Gamma_{\lambda}^{\mathcal{C}}(d)(s,t) = \max_{a \in A} \left\{ |\rho(s,a) - \rho(t,a)| + \lambda \sum_{u,v \in S} d(u,v) \cdot \omega_{s,t}^{a}(u,v) \right\}$$

 \ldots and we call discrepancy, $\gamma_{\lambda}^{\mathcal{C}}$, the least fixed point of $\Gamma_{\lambda}^{\mathcal{C}}$

Theorem (Minimal Coupling)

$$\delta_{\lambda}^{\mathcal{M}} = \min\{\gamma_{\lambda}^{\mathcal{C}} \mid \mathcal{C} \text{ coupling for } \mathcal{M}\}, \qquad \text{for all } \lambda \in (0,1)$$

Alternative characterization of $\delta_{\lambda}^{\mathcal{M}}$

Coupling for
$$\mathcal{M}$$
: $\mathcal{C} = \left(\omega_{s,t}^a \in \Pi(\tau(s,a),\tau(t,a))\right)_{s,t \in S}^{a \in A}$ (to be thought of as a "probabilistic pairing of \mathcal{M})

$$\Gamma_{\lambda}^{\mathcal{C}}(d)(s,t) = \max_{a \in A} \left\{ |\rho(s,a) - \rho(t,a)| + \lambda \sum_{u,v \in S} d(u,v) \cdot \omega_{s,t}^{a}(u,v) \right\}$$

 \ldots and we call discrepancy, $\gamma_{\lambda}^{\mathcal{C}}$, the least fixed point of $\Gamma_{\lambda}^{\mathcal{C}}$

Theorem (Minimal Coupling)

$$\delta_{\lambda}^{\mathcal{M}} = \min\{\gamma_{\lambda}^{\mathcal{C}} \mid \mathcal{C} \text{ coupling for } \mathcal{M}\}, \qquad \text{for all } \lambda \in (0,1)$$

$$C_{1} \leq_{\lambda} C_{2} \iff \gamma_{\lambda}^{C_{1}} \sqsubseteq \gamma_{\lambda}^{C_{2}}$$

$$C_{2} \qquad C_{3}$$

$$C_{4} \qquad C_{5}$$

$$D$$

Greedy strategy

Moving Criterion: $C_i = \{\dots, \omega_{u,v}^a, \dots\}$ $\omega_{u,v}^a$ not opt. w.r.t. $TP(\gamma_{\lambda}^{C_i}, \tau(u, a), \tau(v, a))$

Improvement: $C_{i+1} = \{\dots, \omega^*, \dots\}$ ω^* optimal sol. for $TP(\gamma_{\lambda}^{C_i}, \tau(u, a), \tau(v, a))$

Theorem

- \triangleright each step ensures $C_{i+1} \triangleleft_{\lambda} C_i$
- ightharpoonup moving criterion holds until $\gamma_{\lambda}^{\mathcal{C}_i}
 eq \delta_{\lambda}$
- ▶ the method always terminates

$$C_1 \leq_{\lambda} C_2 \iff \gamma_{\lambda}^{C_1} \sqsubseteq \gamma_{\lambda}^{C_2}$$

Greedy strategy

Moving Criterion: $C_i = \{\dots, \omega_{u,v}^a, \dots\}$ $\omega_{u,v}^a$ not opt. w.r.t. $TP(\gamma_{\lambda}^{C_i}, \tau(u, a), \tau(v, a))$

Improvement: $C_{i+1} = \{\dots, \omega^*, \dots\}$ ω^* optimal sol. for $TP(\gamma_{\lambda}^{C_i}, \tau(u, a), \tau(v, a))$

Theorem

- \triangleright each step ensures $C_{i+1} \triangleleft_{\lambda} C_i$
- ightharpoonup moving criterion holds until $\gamma_{\lambda}^{\mathcal{C}_i}
 eq \delta_{\lambda}$
- ▶ the method always terminates

Let $\mathcal{M}=\mathcal{M}_2\otimes\mathcal{M}_2$ and \otimes be non-extensive, than

$$\delta_{\lambda}^{\mathcal{M}} \sqsubseteq \|\delta_{\lambda}^{\mathcal{M}_1}, \delta_{\lambda}^{\mathcal{M}_2}\|_{p}$$

Let $\mathcal{M}=\mathcal{M}_2\otimes\mathcal{M}_2$ and \otimes be non-extensive, than

$$\delta_{\lambda}^{\mathcal{M}} \sqsubseteq \|\delta_{\lambda}^{\mathcal{M}_{1}}, \delta_{\lambda}^{\mathcal{M}_{2}}\|_{p}$$

$$// \qquad \qquad \qquad \left(\begin{array}{c} \text{Min. Coupling} \\ \text{Theorem} \end{array} \right)$$

$$\gamma_{\lambda}^{\mathcal{D}} \qquad \|\gamma_{\lambda}^{\mathcal{D}_{1}}, \gamma_{\lambda}^{\mathcal{D}_{2}}\|_{p}$$

Let $\mathcal{M}=\mathcal{M}_2\otimes\mathcal{M}_2$ and \otimes be non-extensive, than

A good starting coupling should not exceed the upper-bound given by non-extensiveness!

Let $\mathcal{M}=\mathcal{M}_2\otimes\mathcal{M}_2$ and \otimes be non-extensive, than

A good starting coupling should not exceed the upper-bound given by non-extensiveness!

Remark: \mathcal{D}^* should be obtained from \mathcal{D}_1 and \mathcal{D}_2

Lifting algebraic operators on Couplings

Lifting operator

Lifting algebraic operators on Couplings

Lifting operator

$$\mathcal{M}_{1}, \quad \mathcal{M}_{2} \longmapsto \mathcal{M}_{1} \otimes \mathcal{M}_{2}
\downarrow \qquad \qquad \downarrow \qquad \qquad$$

p-Safe lifting operator

$$\Gamma_{\lambda}^{\mathcal{C}_1 \otimes^* \mathcal{C}_2}(\|d_1, d_2\|_{\rho}) \sqsubseteq \|\Gamma_{\lambda}^{\mathcal{C}_1}(d_1), \Gamma_{\lambda}^{\mathcal{C}_1}(d_2)\|_{\rho}$$

Lifting algebraic operators on Couplings

Lifting operator

$$\mathcal{M}_{1}, \quad \mathcal{M}_{2} \longmapsto \mathcal{M}_{1} \otimes \mathcal{M}_{2}
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
\mathcal{C}_{1}, \quad \mathcal{C}_{2} \longmapsto \mathcal{C}_{1} \otimes^{*} \mathcal{C}_{2}$$

+

p-Safe lifting operator

$$\Gamma_{\lambda}^{\mathcal{C}_1 \otimes^* \mathcal{C}_2}(\|d_1, d_2\|_{\rho}) \sqsubseteq \|\Gamma_{\lambda}^{\mathcal{C}_1}(d_1), \Gamma_{\lambda}^{\mathcal{C}_1}(d_2)\|_{\rho}$$

$$\delta_{\lambda}^{\mathcal{M}_{1}\otimes\mathcal{M}_{2}} \sqsubseteq \gamma_{\lambda}^{\mathcal{D}_{1}\otimes^{*}\mathcal{D}_{2}} \sqsubseteq \|\delta_{\lambda}^{\mathcal{M}_{1}}, \delta_{\lambda}^{\mathcal{M}_{2}}\|_{p}$$

where \mathcal{D}_i is a coupling for \mathcal{M}_i minimal w.r.t. \unlhd_{λ}

The Pipeline Example

The Pipeline Example

Experimental Results

Query	Instance	OTF	COTF	# States
All pairs	$E_0 \parallel E_1$	0.654791	0.97248	9
	$E_1 \parallel E_2$	0.702105	0.801121	9
	$E_0 \parallel E_0 \parallel E_1$	48.5982	13.5731	27
	$E_0 \parallel E_1 \parallel E_2$	23.1984	19.9137	27
	$E_0 \parallel E_1 \parallel E_1$	126.335	13.6483	27
	$E_0 \parallel E_0 \parallel E_0$	49.1167	14.1075	27
Single pair	$E_0 \parallel E_0 \parallel E_0 \parallel E_1 \parallel E_1$	16.7027	11.6919	243
	$E_0 \parallel E_1 \parallel E_0 \parallel E_1 \parallel E_1$	20.2666	16.6274	243
	$E_2 \parallel E_1 \parallel E_0 \parallel E_1 \parallel E_1$	22.8357	10.4844	243
	$E_1 \parallel E_2 \parallel E_0 \parallel E_0 \parallel E_2$	11.7968	6.76188	243
	$E_1 \parallel E_2 \parallel E_0 \parallel E_0 \parallel E_2 \parallel E_2$	Time-out	79.902	729

Conclusion and Future Work

Results

- generic definition of algebraic operators on MDPs
- characterized a well-behaved class of operators (p-Safeness)
- on-the-fly algorithm for behavioral pseudometrics
 - avoids entire exploration of the state space
 - exploit compositional structure of the model (first proposal!)
- developed a proof of concept prototype [http://people.cs.aau.dk/giovbacci/tools.html]

Future work

- expressiveness (probabilistic choice, co-recursive def., etc.)
- beyond non-extensiveness (continuous operators)
- apply similar techniques on CTMCs, CTMDPs, etc...