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Markov Decision Processes with Rewards
external nondeterminism + probabilistic behavior

many useful applications (A.l., planning, games, biology, ...)

Compositional Reasoning M = M; @ My ® --- @ M,
scalability and reusability of models

may suffer from an exponential growth of the state space
(the parallel composition of n systems with m states has m" states!)

Bisimilarity Distances . ..to measure the degree of similarities
(bisimilarity is not robust: it only relates states with identical behaviors)

approximate reasoning on quantitative models

need of efficient methods for computing bisim. distances
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Markov Decision Processes with Rewards (MDPs)

finite set of states set of labels
M= (S5,AT1,p)
probability transition function raward e
T: S XA = A(S) p:Sx AR
S0 .
Executions: w = (sg, ag)(s1,a1) ...
3[31/ b[*l] (07 0)( 1, 1)
N Discounted accumulated reward X € (0,1)
1 -7 //l \\ 1
37 73 3 i
VAR Ra(w) = 2ien A p(si ai)
51 52 53

Goal: To find policies 7: S — A that maximize the expected value
of Ry on probabilistic executions starting from a given state.
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Algebraic Operators on MDPs
Complex systems can be conveniently represented as the algebraic

composition of simpler sub-systems.

How to define generic operators on MDPs?
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Algebraic Operators on MDPs

Complex systems can be conveniently represented as the algebraic
composition of simpler sub-systems.

How to define generic operators on MDPs?

Mi@ Mo = (51 %5, Al ®@aAr, 11 ®r T2, p1 D) T2)

set of set of el iy reward
. transition X
states actions function function

\/ Synch. parallel comp. \/ CCS-like parallel comp.
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Metric analogue of congruence

Robust semantics for quantitative systems:
Pseudometrics are the quantitative analogue equivalences
Bisimilarity Pseudometrics: 6M(s,t) =0 <= s~ t

What is the quantitive analogue of congruence?
s1~Mm; trand s ~aq, b = S1 QS ~agem, 1O B
Mi(s1, t1) 4+ 0M2 (s, 1) > MM (51 @ 55, 11 ® 1)

oM, §Mz]|, O gMa@Ma (® is p-non-extensive)
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We consider the A-discounted bisimilarity distances proposed by
Ferns et al. [UAI'04]:

61 S x S — Ry is the least fixed point of

F(d)(s,t) = max {Io(s. 3) = p(t, a) |+ A Ta(7(s.2). 7(,2)) |
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A Bisimilarity Pseudometric on MDPs
We consider the A-discounted bisimilarity distances proposed by
Ferns et al. [UAI'04]:

61 S x S — Ry is the least fixed point of

F(d)(s. £) = max { |o(s. 2) = p(t, @) A Ta(7(s. 2), 7(2.2)) |

distance between rewards

and recursively. . .

distance between
transition probabilities
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A Bisimilarity Pseudometric on MDPs

We consider the A-discounted bisimilarity distances proposed by
Ferns et al. [UAI'04]:

61 S x S — Ry is the least fixed point of

F(d)(s. t) = max { lo(s,2) = (. )| +ATa(7(s. 2). 7(t. 2)) |

Remarkable property Ferns et al. [UAI'04]

Upper-bound of expected accumulated rewards w.r.t. optimal policies

VE"(s) = V&(1)] < a8 (s, 1)
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The distance between 7(s, a) and 7(t, a)
is the optimal value of a Transportation Problem

7:!(7-(57 a)vT(t7 a)) = min { Z d(l.l, V) : w(“: V)

u,veS

YueS Y, csw(u,v) =7(s,a)(u)
Vv €S Y esw(u,v) =7(t,a)(v)
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Kantorovich Metric: 7,: A(S) x A(S) — Ry

The distance between 7(s, a) and 7(t, a)
is the optimal value of a Transportation Problem

o o y Yues ZVES UJ(“: V) = T(S, a)(u)
Ta(7(s,a),(t,a)) = min {MZES d(u,v) - w(u,v) Vv eSS cswlu,v)=7(t,a)(v) }

matching w € MN(7(s,a), 7(t,a))

w can be understood as transportation of 7(s, a) to 7(t, a).

~el : t’a)(tb\ ot
w(si, )~ ~, i“t %
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Proving non-extensiveness for ® may lead to rather involved proofs
(631 is defined as the least fixed point of F{*)
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...we characterized a class of operators on MDPs

p-Safe operators

F2(dh, dallp) E 1A (), F ()l

Theorem: p-Safeness = non-extensiveness

v Synch. parallel comp. V' CCS-like parallel comp.
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Computing the
behavioral distance

given s, t € S, to compute 63(s, t)

On-the-fly algorithm Compositional strategy
[Bacci?,Larsen,Mardare TACAS'13] exploit the compositional
lazy exploration of M structure of M; ® Mo

save comput. time + space
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Coupling for M: C = (w2, € N(7(s, a),7(t, a)))jetés

(to be thought of as a “probabilistic pairing of M)

r$(d)(s. £) = max{Io(s, ) = p(t,2)| + X 3 d(u,v)-w2,(u, 1)}

u,veS

...and we call discrepancy, ’}/f, the least fixed point of rg
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(to be thought of as a “probabilistic pairing of M)

r$(d)(s. £) = max{Io(s, ) = p(t,2)| + X 3 d(u,v)-w2,(u, 1)}

u,veS

...and we call discrepancy, ’}/f, the least fixed point of rg

5 = min{~§ | C coupling for M}, for all A € (0,1)
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On-the-fly strategy [Bacci?-Larsen-Mardare TACAS'13]

C1 <\ C = 5 CAP Greedy strategy
Moving Criterion: C; = {.. i oo .}
w?  not opt. w.r.t. TP(’)/A ,T(U a) (V, a))

LIV

Improvement: Ciy; ={...,w*, ...}
w* optimal sol. for TP(vf",T(u, a), (v, a))

Theorem

each step ensures Cj11 <y C;
moving criterion holds until ’yf" %0y

the method always terminates
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On-the-fly strategy [Bacci?-Larsen-Mardare TACAS'13]

C1 <\ C = 5 CAP Greedy strategy

o Moving Criterion: C; = {...,wj ,,...}

w?

Heuristics for a better u v
starting coupling?

not opt. w.r.t. TP(fyA ,T(U a), 7(v,a))

Improvement: Ciy; ={...,w*, ...}
C2 C3 w* optimal sol. for TP(vf",T(u, a), (v, a))

Theorem
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Let M = My ® M5 and ® be non-extensive, than
M M
O E 10y 63l
/ \
’Y,Z\DI;Vip L H’YA a%z”p

A good starting coupling should not exceed
the upper-bound given by non-extensiveness!

Remark: D* should be obtained from D; and D,
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My, Mot M; e M

C1, Cvz —C é* Co
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Mla M2 = Ml ® M2

+

@, Cvz — C1 ®" (s

r§=°% (I, dallp) E T (), S ()l
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Lifting algebraic operators on Couplings

Lifting operator
My, Mok Mi @ M;

C1, Cvz > C1 ®* C2
p-Safe lifting operator

r§=°% (I, dallp) E T (), S ()l

YEMe AP 5 5|,

where D; is a coupling for M; minimal w.r.t. <,
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The Pipeline Example
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Experimental Results

| Query | Instance | OTF | COTF | # States |
Eo || Ex 0.654791 | 0.97248 9
E || E 0.702105 | 0.801121 9
All pairs E | E | E 48.5982 | 13.5731 27
Eo | Ei || B2 23.1984 | 19.9137 27
Eo | E1 || Ex 126.335 | 13.6483 27
Eo || Eo || Eo 49.1167 | 14.1075 27
Bl Bl E|E | E 16.7027 | 11.6919 243
El&GE]|E]|E& 20.2666 | 16.6274 243
Single pair E|E|E|E]| E 22.8357 | 10.4844 243
E|E|E]| El E 11.7968 | 6.76188 243
El H E2 H EQ || EO || E2 || E2 Time-out 79.902 729
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Conclusion and Future Work

Results
generic definition of algebraic operators on MDPs

characterized a well-behaved class of operators (p-Safeness)

on-the-fly algorithm for behavioral pseudometrics

» avoids entire exploration of the state space
» exploit compositional structure of the model (first proposal!)

developed a proof of concept prototype
[http://people.cs.aau.dk/giovbacci/tools.html]

Future work
expressiveness (probabilistic choice, co-recursive def., etc.)
beyond non-extensiveness (continuous operators)
apply similar techniques on CTMCs, CTMDPs, etc. ..

16

16



