
Deciding Framed Bisimilarity

Hans Hüttel∗

BRICS, Department of Computer Science, Aalborg University

Fredrik Bajers Vej 7E, 9220 Aalborg Øst, Denmark

June 20, 2002

Abstract

The spi-calculus, proposed by Abadi and Gordon, is a process calculus based on the

π-calculus and is intended for reasoning about the behaviour of cryptographic proto-

cols. We consider the finite-control fragment of the spi-calculus, showing it to be Turing-

powerful (a result which is joint work with Josva Kleist, Uwe Nestmann, and Björn Vic-

tor.) Next, we restrict our attention to finite (non-recursive) spi-calculus. Here, we show

that framed bisimilarity, an equivalence relation proposed by Abadi and Gordon, show-

ing that it is decidable for this fragment.

1 Introduction

The spi-calculus, originally proposed by Abadi and Gordon [AG97a], is a process calculus

based on the π-calculus [MPW92] and is intended for describing and reasoning about the

behaviour of cryptographic protocols.

An important insight of the spi-calculus is that correctness properties can be expressed

as statements of behavioural equivalence. For instance, a protocol P(M) transmitting the

message x satisfies the secrecy property w.r.t. M if we cannot distinguish between two in-

stances of P which transmit different messages. Expressed using behavioural equivalence,

this reduces to stating that

∀M1,M2.P(M1) ∼ P(M2)

Deciding correctness properties of cryptographic protocols now amounts to deciding the

behavioural equivalence ∼.
∗hans@cs.auc.dk

1

Various notions of behavioural equivalence have been put forward. Abadi and Gor-

don [AG97a] choose may-testing equivalence (originally proposed by De Nicola and Hen-

nessy [NH83]). While may-testing is ideal from a philosophical point of view – processes

are equivalent iff they behave in the same way under all attacks/observations – this equiv-

alence is defined via universal quantification over observer processes and is therefore less

ideal from the perspective of actually determining the equivalence of processes.

Consequently, in [AG98b] Abadi and Gordon define a bisimulation-style equivalence,

framed bisimilarity, and show it to be as a sound approximation of may-testing equivalence.

A main motivation behind their work was to define a notion of behavioural equivalence

which has a useful proof technique and is decidable.

The main focus of this paper is to examine to which extent the latter is the case.

As the full spi-calculus is Turing-powerful one can only hope for a positive decidabil-

ity result within a proper subcalculus. A natural candidate would be the finite-control

spi-calculus, the spi-calculus counterpart of regular CCS; finite-control processes have a

bounded number of parallel components and, because of the presence of recursion, are able

to describe multiple protocol runs.

However, even the finite-control spi-calculus is Turing-powerful [HKNV97]. In this pa-

per we first demonstrate this by presenting an encoding of Minsky’s two-counter machines

into the finite-control calculus, a result which is joint work with Josva Kleist, Uwe Nestmann,

and Björn Victor.

Next, we restrict our attention to finite spi-calculus processes and show that framed

bisimilarity is decidable in this fragment. The finite spi-calculus processes are the recursion-

free processes of the spi-calculus, corresponding to single runs of a cryptographic protocol.

In [AL00] Amadio and Lugiez consider a finite spi-calculus similar to ours and show

that its associated reachability problem is decidable (albeit NP-hard). As further work they

mention finding an algorithm for deciding bisimilarity.

A main problem in obtaining our result stems from matching input transitions, since two

processes must be equivalent under all value instantiations; we overcome this problem by

showing that only finitely many values need be considered.

2 The spi-calculus

The spi-calculus extends the π-calculus [MPW92, Mil99] with primitives for encryption and

decryption. As in the π-calculus, communication takes place over channels that can either

2

be public or restricted. Messages may be decrypted; the perfect encryption hypothesis is

adopted in the spi-calculus – an attacker cannot guess the key of an encrypted message.

2.1 Syntax

In this section we present the two fragments of the spi-calculus that we shall study in the

rest of the paper. Our syntax largely follows that of [AG97a]. We only consider shared

key cryptography since the definitions related to framed bisimilarity in [AG98b] only use

shared key cryptography. However, an extension of the results in the present paper should

be straightforward.

2.1.1 Terms

Common to our two fragments is the set of terms that can be communicated by processes.

Unlike the π-calculus, the spi-calculus allows us to communicate composite terms. The set

of terms, T , has its syntax defined by the following grammar.

L,M,N ::= x | n | {M}N | (M,N)

In the above, x ranges over the set of variables, n ranges over the set of names, {M}N denotes

the term M encrypted using key N and (M,N) denotes the pair whose components are the

termsM and N.

2.1.2 The finite-control spi-calculus

The finite-control spi-calculus is a straightforward extension of the finite-control π-calculus

introduced by Lin [Lin91].

As the definition below shows, a finite-control process consists of a fixed number of se-

quential processes running in parallel.

Definition 1 The set of finite-control spi-calculus processes is given by the grammar

R ::= M(x).R | M〈N〉.R | (νn)R

| D(M) | 0 | [M = N]R | R1 + R2

| let (x, y) = M inR | rec D(M).R

| caseL of {x}N inR

P ::= R | (νn)P | P|P

3

The spi-calculus distinguishes between variables x, y, z, . . . ∈ V and names

c,m,n, k . . .N . Names refer to a key or a channel, whereas variables are instantiated to

messages. When concerning channels, a name c is used for input and its co-name c used for

output.

The spi-calculus has two communication primitives. M〈N〉.P is output; N is emitted on

the channel M. M(x).P is input; the variable x is received on the channel M, and x is bound

in P.

While encryption is handled at the level of message terms, decryption is a process con-

struct. caseL of {x}N inP is used to decrypt terms; x is bound in P. The other term destructor

is let (x, y) = M inP which allows us to split a pair; the variables x and y are bound in P.

The remaining process constructs are also found in the π-calculus: (νn)P is the restriction

construct. The new name n is bound in P. P | Q denotes parallel composition and 0 is the

empty process. Finally, the match construct [M = N]P can proceed as P iffM is equal to N.

In the finite-control calculus we allow two additional constructs, namely nondetermin-

istic choice, R1 + R2 and recursively defined processes, rec D(M).R. D(M) ranges over

recursion constants which may be parameterised by a term.

We identify processes up to renaming of bound names and variables. A process without

any free variables is closed; we let P denote the set of closed processes. Furthermore we let

fn[[P]] denote the set of free names in P, and fv[[P]] the free variables in P. For any set of terms

S, we let n(S) denote the set of names occurring in S, free as well as bound. P[M/x] denotes

the substitution of the term M for all free occurrences of x in the process P and is defined as

expected.

The original presentation of the spi-calculus in [AG97a] introduces natural numbers into

the syntax. This, however, is unimportant as we can encode the naturals using encryption

and decryption. Let a, b be fresh names. We then let

[[0]] = a

[[n+ 1]] = [[{[[n]]}b]]

The test-for-zero process construct now becomes

[[case v of 0 : P suc(x) : Q]] = case v of {x}b inP + [v = a]Q

In our undecidability proof in section 3 we use natural numbers freely by implicit appeal to

this encoding.

4

2.1.3 Finite processes

The syntax of processes in the finite spi-calculus omits nondeterministic choice and recursion

from the finite-control fragment.

P,Q, R ::= (νn)P | M〈N〉.P | M(x).P | P | Q

| [M = N]P | 0 | let (x, y) = M inP | caseL of {x}N inP

2.1.4 Agents

An agent can be a process, an abstraction or a concretion. The syntax of agents is defined by

the following grammar:

A,B ::= P | C | F

F,G ::= (x)P

C,D ::= (ν~m)〈M〉P

(x)P is an abstraction, which needs to bind a term to x before proceeding. (ν~m)〈M〉P is a

concretion, which is immediately able to output the term M. A will denote the set of closed

agents.

2.2 Semantics

Our labelled commitment semantics of the spi-calculus is that of [AG98b].

2.2.1 Reduction and structural congruence

The reduction relation describes how processes unfold and make preparations for a reaction.

In particular, the rules describe how the term deconstructors behave (Table 1) and, for finite-

control processes, how a recursive process proceeds by unfolding the recursive definition

(Table 2) . In the case of a decryption we only proceed if the key is a name. See Table 1.

Structural congruence, ≡, is defined in Table 3. It captures the identities that should

intuitively hold.

2.2.2 The commitment relation

The commitment transition system (P, { α
−→| α ∈ N ∪ {τ}},A) has its transition relation defined

inductively by the rules in Definition 4.

5

[M = M] > P

let (x, y) = (M,N) inP > P[M/x][N/y]

case {M}n of {x}n inP > P[M/x]

Table 1: The reduction rules for term destructors

rec D(x).P > P[rec D(Mi).P/D(Mi)]

Table 2: The reduction rule for recursion

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

P + (Q+ R) ≡ (P +Q) + R P +Q ≡ Q+ R P + 0 ≡ P

(νm)(νn)P ≡ (νn)(νm)P (νn)0 ≡ 0 P | (νn)Q ≡ (νn)(P | Q) if n 6∈ fn[[P]]

P > Q

P ≡ Q
P ≡ Q Q ≡ R

P ≡ R P ≡ P

P ≡ Q
Q ≡ P

P ≡ Q
P | R ≡ Q | R

P ≡ Q
(νn)P ≡ (νn)Q

Table 3: Rules defining structural congruence

6

In Definition 4 we use the interaction operator • defined by

C • F , (ν~n)(Q | P[N/x]) F • C , (ν~n)(P[N/x] | Q),

when {~n} ∩ fn[[P]] = ∅. Here, we extend restriction and composition as follows:

(νn)(x)P , (x)(νn)P

Q | (x)P , (x)(Q | P)

(νn)(ν~m)〈M〉P ,

(νn, ~m)〈M〉P if n ∈ fn[[M]]

(ν~m)〈M〉(νn)P otherwise

Q | (ν~m)〈M〉P , (ν~m)〈M〉(Q | P)

where we assume x 6∈ fv[[Q]], n 6∈ {~m} and {~m} ∩ fn[[Q]] = ∅. The dual composition A | Q is

defined symmetrically.

(Input) m(x).P
m

−→ (x)P (Output) m〈M〉.P m
−→ (ν)〈M〉P

(Com-1)
P

m
−→ F Q

m
−→ C

P | Q
τ

−→ F • C
(Com-2)

P
m

−→ C Q
m

−→ F

P | Q
τ

−→ C • F

(Par-1)
P

α
−→ A

P | Q
α

−→ A | Q
(Par-2)

Q
α

−→ A

P | Q
α

−→ P | A

(Sum-1)
P

α
−→ A

P +Q
α

−→ A
(Sum-2)

Q
α

−→ A

P +Q
α

−→ A

(Res)
P

α
−→ A α 6∈ {m,m}

(νm)P
α

−→ (νm)A
(Red)

P > Q
α

−→ A

P
α

−→ A

Table 4: The commitment semantics of the spi-calculus

3 The finite-control fragment is Turing-powerful

As the finite-control spi-calculus calculus is the spi-calculus analogue of the finite-control

fragment of the π-calculus, introduced by [Lin91], one might expect the situation to be same

7

as in the π-calculus. Here, Dam [Dam97] has shown that late and early bisimilarity [MPW92]

as well as open bisimilarity [San96] are all decidable. Dam’s result depends on the fact that

it is always suffices to consider a finite set of names due to the bounded parallelism of a

finite-control process.

However, the finite-control spi-calculus is in fact Turing-powerful, destroying all hope of

obtaining positive decidability results for any non-trivial notion of behavioural equivalence.

The encoding presented here is joint work with Josva Kleist, Uwe Nestmann, and Björn

Victor.

3.1 Encoding two-counter machines in the finite-control fragment

For our proof of this fact, we consider another universal model of computation, namely the

two-counter machines of [Min67]. A two-counter machine is a simple imperative program

consisting of a sequence of labelled instructions that can modify the values of two nonneg-

ative integer counters, c0 and c1. Two instructions are singled out, namely Lstart and Lstop.

The program starts with the line Lstart and halts if Lstop is reached. The instruction set con-

sists of two different types of instructions (in the indices of the counter variables we always

assume addition and subtraction modulo 2):

1. L : ck := ck + 1; goto Ln

2. L : if ck = 0 then goto L1n else ck := ck − 1; goto L2n

We can always assume that a type 1 instruction has L 6= Ln (if L = Ln the machine would

loop forever) and that a type 2 instruction has L 6= L1n (here, too, if L = L1n the machine would

loop forever) and L 6= L2n (we can simply duplicate the instruction in question.)

Theorem 2 Any two-counter machine can be simulated in the finite-control spi-calculus.

PROOF: We define an encoding [[]] from two-counter machine instructions into the finite-

control spi-calculus. The idea is simply that the two counters are represented by processes

and the each instruction corresponds to a process that communicates with the counters.

We assume the following set of names, which we denote by n:

• For every instruction label Ln we introduce the name ln, used to signal a goto , and

the constant Dln .

• For counter ck we introduce the names

dk indicating that the counter is decremented

8

ck indicating that the counter is incremented

rk indicating that the value of the counter is being read

A counter ck is represented as the process

Ck = rec Dk(x).(rk〈x〉.Dk(x) + dk.Dk(x− 1) + ik.Dk(x+ 1))

Instructions are encoded as

[[L : ck := ck + 1; goto Ln]] = rec Dl.l.ik. ln .Dl

[[L : if ck = 0 then

goto L1n else

ck := ck − 1; goto L2n]] = rec Dl.l.rk(y).([y = 0] l1n .Dn + [y 6= 0]dk . l2n .Dn)

Suppose that a two-counter machineM is composed of a sequence of instructions S1, . . . , Sm.

Then the encoding of the machine is given by

[[M]] = (νn)

m∏
i=1

[[Si]] | C0 | C1

It is now easy see that the two-counter machine can reach a state where c0 = v0 and c1 = v1

if and only if [[M]]
τ

−→∗ P ′ where the term P ′ has counter constants whose values are Dk(v0)

and Dk(v1), respectively. 2

Corollary 3 Any nontrivial notion of behavioural equivalence is undecidable in the finite-

control spi-calculus.

4 Framed bisimilarity

Framed bisimilarity was introduced by Abadi and Gordon in [AG98b].

4.1 Frames and theories

Processes are related with respect to a frame-theory pair which represents the knowledge of

the environment.

Definition 4 A frame fr is a finite set of names. A theory th is a finite set of pairs of terms

(M,N). We let e range over the set of frame-theory pairs.

9

(Ind Var)
e ` x↔ x

(Ind Frame)
n ∈ fr

e ` n↔ n
(Ind Theory)

(M,N) ∈ th
e `M↔ N

(Ind Pair)
e `M↔ M ′ e ` N↔ N ′

e ` (M,N)↔ (M ′,N ′)
(Ind Enc)

e `M↔ M ′ e ` N↔ N ′

e ` {M}N ↔ {M ′}N ′

Table 5: Rules defining the indistinguishability relation

Intuitively, when comparing processes P and Q, the elements of the frame are the names

from P and Q that the attacker knows. If (M,N) ∈ th the attacker cannot distinguish the

termM coming from P and the term N coming from Q.

In what follows, when given an environment e we refer to its frame part as fre and its

environment part as the.

Definition 5 Let e = (fr, th) be an environment. TermsM andN are indistinguishable under

e, written e `M↔ N, if it can be derived by the rules in Table 5.

An environment must be consistent. This is captured by

Definition 6 Environment e is ok, written e ` ok, if:

1. ∀(M,N) ∈ th it must hold that M is closed, ∃M1,M2 : M = {M1}M2
and @N2 : e `

M2 ↔ N2. The converse must also hold for N.

2. whenever (M,N) ∈ th and (M ′,N ′) ∈ th,M = M ′ iff N = N ′.

Definition 7 Let e and e ′ be environments. e ′ extends e, written e ≤ e ′, iff ∀M,N : e `M↔
N⇒ e ′ `M↔ N.

A framed process pair is a quadruple (fr, th, P,Q), where P,Q ∈ P . If R is a set of framed

process pairs, we write e ` PRQwhen (fr, th, P,Q) ∈ R. A framed relation is a setR of framed

process pairs, such that e ` ok whenever e ` PRQ.

10

4.2 Framed simulations and bisimulations

Framed simulation is a late simulation [MPW92]; the choice of a matching transition for an

input transition does not depend on the value that will eventually be received.

Definition 8 A framed simulation is a framed relation S such that, whenever e ` PSQ, the

following three conditions hold

1. If P τ
−→ P ′ then there exists a process Q ′ such that Q τ

−→ Q ′ and e ` P ′SQ ′.

2. If P c
−→ (x)P ′ and c ∈ fr then there exists an abstraction (x)Q ′ with Q c

−→ (x)Q ′ and,

for all sets {~n} disjoint from fn[[P]]∪ fn[[Q]]∪f ∪ fn(th) and all closed terms M and N, if

(fr ∪{~n}, th) `M↔ N then (f ∪ {~n}, th) ` P ′[M/x]SQ ′[N/x].

3. If P c
−→ (ν~m)〈M〉P ′, c ∈ fr and {~m} ∩ (fn[[P]] ∪ fn(π1(th)) ∪ fr) = ∅ then there exists a

concretion (ν~n)〈N〉Q ′ with Q c
−→ (ν~n)〈N〉Q ′ and {~n} ∩ (fn[[Q]] ∪ fn(π2(th)) ∪ f) = ∅.

Furthermore ∃e ′ : e ≤ e ′, e ′ `M↔ N, and e ′ ` P ′SQ ′.

Definition 9 A framed bismulation is a framed simulation S such that S−1 = {e ′ ` QSP | e `
PSQ∧ e ′ = (fr, {(M,N) | (N,M) ∈ th})} is also a framed simulation.

Definition 10 Framed bisimilarity is the greatest framed bisimulation, written ∼f.

5 A decidability result

Definitions 8 and 9 do not provide us with a straightforward means of checking bisimilarity.

The goal of the rest of our paper is to address this issue. More precisely, we shall show that

in the case of finite processes

• we only need to consider finitely many terms when matching input transitions.

• we only need to consider finitely many possible frame extensions when matching input

transitions

• we only need to consider finitely many frame-theory extensions when matching out-

put transitions

Taken together, these observations will allow us to obtain a simple decision procedure

for framed bisimilarity.

11

5.1 Matching input transitions

Assume that we are trying to determine whether (fr, th) ` P ∼f Q. We have an input com-

mitment P c
−→ (x)P ′, have a candidate for a matching commitment, Q c

−→ (x)Q ′, and now

need to determine whether P ′ ∼f Q
′.

Assume that the maximal number of successive term destructors in P and Q is m, and

that the maximal number of term constructors of any term in th is d. Then we need only

consider the finitely many terms of depth ≤ m + d constructed from (fr, th) and a bounded

number of new names in order to determine if (fr, th) ` P ′ ∼f Q
′. This must hold as the

process can only inspect any input term up to m levels of encryption/pairing and because

the environment may ask us to regards terms whose depth is up to d as indistinguishable.

5.1.1 The depth of terms and processes

The notion of the maximal constructor depth of a term is as expected. It counts the level of

encryption and the level of pairing. The level of decryption takes precedence over the level

of pairing and only the level of decryption within the contents of a ciphertext matters, as

terms appearing in key position must be names. Otherwise, they will cause the process not

to evolve any further.

Definition 11 The maximal constructor depth d(M) of a term M is defined inductively by the

clauses

d(n) = 0

d(x) = 0

d({M}N) = d(M)+1

d((M,N)) = max(d(M),d(N))

The above definition easily extends to frame-theory pairs.

Definition 12 Let (fr, th) be a frame-theory pair where fr = {(M1,N1), . . . , (Mk,Nk)}. The

maximal constructor depth of (fr, th) is defined b

d((fr, th)) = max{max(d(Mi),d(Ni)) | 1 ≤ i ≤ k}

The maximal destructor depth of a process P is the maximal number of encryptions and

pairing operators that can ever be removed along the process P. Decryption and pair split-

12

ting operations each contribute by 1, whereas a parallel composition P | Q may contribute

with decryptions from both P and Q.

Definition 13 Let P be a finite process. The maximal destructor depth of P is denoted by

mdd(P) and defined inductively by the clauses

mdd(0) = 0

mdd((νn)P) = mdd(P)

mdd(M〈N〉.P) = mdd(P)

mdd(M(x).P) = mdd(P)

mdd(P | Q) = mdd(P)+ mdd(Q)

mdd([M = N]P) = mdd(P)

mdd(let (x, y) = M inP) = mdd(P)+1

mdd(caseL of {x}N inP) = mdd(P)+1

5.1.2 d-framed bisimilarity

d-framed bisimilarity is a variant of framed bisimilarity that only requires input transitions

to be matched for transmitted message terms up to a certain depth.

Definition 14 Let k be a nonnegative integer and let e be a frame-theory pair such that e `
ok. We write e `M↔k N if e `M↔ N and max(d(M),d(N)) = k. Whenever e `M↔k N

we say thatM and N are k-indistinguishable in e.

Since we only consider terms up to a certain depth, we need only consider finitely many

extensions of the frame. This is expressed in the following lemma.

Lemma 15 Let (fr, th) be a frame-theory pair and assume that max(d(M),d(N)) = k. If there

is a (fr ∪{~n}, th) such that (fr ∪{~n}, th) ` M ↔k N, then we may choose a {~n} where |~n| ≤ 2k
satisfying (fr ∪{~n}, th) `M↔k N.

PROOF: If M and N are not indistinguishable under (fr, th), this must be amended by ap-

plying the constructor rules, the rule (Ind Theory) and the rule (Ind Frame) to new names.

Every application of a constructor rule can introduce at most two new names, so at most 2k

new names can be introduced. 2

Lemma 15 leads to the following definition of d-framed simulation.

Definition 16 For any nonnegative integer d, a d-framed simulation is a framed relation S
such that, whenever (fr, th) ` PSQ, the following three conditions hold

13

1. If P τ
−→ P ′ then there exists a process Q ′ such that Q τ

−→ Q ′ and e ` P ′SQ ′.

2. If P c
−→ (x)P ′ and c ∈ fr then there exists an abstraction (x)Q ′ with Q c

−→ (x)Q ′

and, for all sets {~n} disjoint from fn[[P]]∪ fn[[Q]]∪ fr ∪ fn(th) such that |~n| ≤ 2d and all

closed terms M and N, if (fr ∪{~n}, th) ` M ↔i N and 0 ≤ i ≤ d then (fr ∪{~n}, th) `
P ′[M/x]SQ ′[N/x].

3. If P c
−→ A ≡ (ν~m)〈M〉P ′, c ∈ fr and {~m} ∩ (fn[[Q]]∪ fn(π1(th))∪ fr) = ∅ then

there is a concretion B ≡ (ν~n)〈N〉Q ′ such that Q c
−→ B, the set {~n} is disjoint from

fn[[Q]]∪ fn(π2(th))∪ fr and e ′ ` P ′SQ ′ for some e ′ ≥ (fr, th) where e ′ `M↔ N.

Definition 17 A d-framed bisimulation is a d-framed simulation S such that S−1 = {e ′ `
QSP | e ` PSQ∧ e ′ = (fre, {(M,N) | (N,M) ∈ the})} is also a d-framed simulation.

Definition 18 d-framed bisimilarity is the greatest d-framed bisimulation, written ∼df .

Our goal is to show that for finite processes P and Q we have that P and Q are framed

bisimilar iff they are d-bisimilar where d is the critical depth.

The critical depth of (e, P,Q) is the maximal depth of terms that must be considered as

inputs when determining whether P and Q are framed bisimilar under e.

Definition 19 Let (e, P,Q) be a framed process pair. The critical depth of (e, P,Q) is defined

by

cd(e, P,Q) = d(e)+ max(mdd(P),mdd(Q))

We let

cd(e, P) = cd(e, P, P)

When considering the result of an input commitment, we only need to consider instan-

tiations with terms whose depths do not exceed the critical depth. Intuitively, this suffices

as all subterms occurring below the critical depth are inaccessible by the destructors of a

process.

If two terms are indistinguishable, their subterms appearing at depth d can be replaced

by fresh names for any d such that the resulting terms will still be indistinguishable. This is

the idea behing d-pruning.

Example 20 LetM = {{a}b}c andN = {{d}e}f and assume that we have (M,N) ∈ th for some

theory th. Let fr = {h}. Then we have (fr, th) ` {M}h ↔ {N}h. We also have (fr ∪{g}, th) `
{{g}g}h ↔ {{g}g}h where g is a fresh name not found in fr. ((fr ∪{g}, th), {g}h ↔ {g}h) is the

1-pruning of (e,M,N).

14

The pruning of a pair of terms (M,N) at depth d generates a pair of pruned terms

(M ′,N ′). M ′ and N ′ are constructed by replacing subterms appearing at levels greater than

d by encryptions of arbitary fresh names by the same fresh names. The fresh names are then

added to the frame.

Definition 21 LetM andN be closed terms and let e ` ok. Further assume that e `M↔ N,

that all subterms appearing in key position inM andN are names and that d is a nonnegative

integer. The d-pruning of (e,M,N), denoted by prd((e,M,N)), is defined inductively by the

clauses

pr0(((fr, th), n, n)) = ((fr, th), n, n)

pr0(((fr, th),M,N)) = ((fr, th),M,N) if (M,N) ∈ th

pr0(((fr, th),M,N)) = ((fr ∪{a}, th), {a}a, {a}a)
if (M,N) 6∈ th

and a is fresh

prd+1((fr, th), {M1}k, {N1}k) = (e ′, {M ′}k, {N
′}k)

where (e ′,M ′,N ′) =

prd(((fr, th),M1,N1))

IfM is an open term, we define prd((e,M)) = (e,M).

The pruning operator extends to single terms by defining prd((e)(M)) = prd((e)(M,M)).

Note that, because of the usage of unspecified fresh names, the pruning operator as de-

fined here does not generate a unique pair of terms. This can be dealt with by means of

introducing suitable bookkeeping.

Note also how the definition exploits the fact that only names are allowed in key position.

Lemma 22 If e ` M ↔ N, d = max(d(M),d(N)) and prd((e,M,N)) = (e ′,M ′,N ′) then

e ′ `M ′ ↔d N ′.

PROOF: A straightforward induction in d, appealing to Definition 21. 2

We can extend the pruning operation to pairs of term vectors. This is done inductively;

we prune the components of the vectors successively, extending the frame as we proceed.

Definition 23 Let | ~M| = |~N| = k. Then prd((~M, ~N)) is defined inductively by

prd((e, (M1, . . . ,Mk), (N1, . . . , Nk))) = (e ′, (M ′1, . . . ,M
′
k), (N

′
1, . . . , N

′
k))

15

where

(e ′′,M ′1,N
′
1) = prd((e,M1,N1))

and

(e ′, (M ′2, . . . ,M
′
k), (N

′
2, . . . , N

′
k)) = prd((e

′′, (M2, . . . ,Mk), (N2, . . . , Nk)))

Lemma 24 Let P be a process such that P = A[~M/~x] and let d = cd(e, P). P > A iff P1 > A1
where P1 = A[~N/~x] where prd((e, ~M)) = (e ′, ~N) and A1 = A[~N/~x].

PROOF: Both implications are seen to hold by an inspection of the clauses in the definition

of the reduction relation. The interesting case is the decryption clause:

case {M}k of {y}k inP ′ > P ′[M/y]

If P = case {M}k of {y}k inP ′, then the definition of the pruning operator tells us that P1 =

case {N}k of {y}k inP ′1 where P ′ = A ′1[
~M/~x] and P ′1 = A ′[~N/~x] for some A ′1. We now see that

case {N}k of {y}k inP ′1 > P
′
1[N/y]

2

Lemma 25 Let P = A[~M/~x] and let d = cd(e, P). P α
−→ A ′ iff P1

α
−→ A ′1 where P1 = A[~N/~x]

where prd((e, ~M)) = (e ′, ~N) and A ′1 = B[~N/~x] and A ′ = B[~M/~x] for some B.

PROOF: In the case of both implications, the proof proceeds by transition induction. The

induction hypothesis in the case concerning the rule (Red) uses Lemma 24. The only other

interesting cases are the prefix axioms. 2

Theorem 26 Let P and Q be finite spi processes and let d = cd(e, P,Q) where e ` ok. We

have that e ` P ∼f Q iff e ` P ∼df Q.

PROOF: By definition, any framed bisimulation is also a d-framed bisimulation. It therefore

suffices to establish that e ` P ∼f Qwhenever e ` P ∼df Q. We show that

R =


(e, P,Q) ∃e ′, A, B, ~M, ~N.

P = A[~M/~x],Q = B[~N/~y]

e ′ ` A[~M ′/~x] ∼nf B[~N ′/~y]

(e ′, (~M ′, ~N ′)) = prd((e, ~M, ~N))

d = cd(e, P,Q)


is a framed bisimulation. This follows from Lemma 25. 2

16

5.2 Matching output transitions

Next, we have to deal with matching output transitions. Fortunately, there are only finitely

many candidates for an environment extension in the case of the output clause.

Unfortunately, as was shown in [BN02], the characterization of framed bisimilarity pre-

sented in [EHHN99] is sound but not complete. We are therefore unable to fall back on the

algorithm for computing environment extensions presented in [EHHN99]. Instead we use

Lemma 27 Let e ` ok and let M,N ∈ T . It is decidable whether there is an e ≤ e ′ such that

e `M↔ N.

PROOF: To construct an e ′ such that e ′ ` M ↔ N, we only need to add pairs of the form

(M1,N1) where max(d(M1),d(N1)) ≤ max(d(M),d(N)) and such that n[[M1]]∪n[[N1]] ⊆
n[[M]]∪n[[N]]. Only finitely many such candidate pairs exist. 2

6 Deciding framed bisimilarity

We can now state the main results of our paper.

Theorem 28 Let e ` ok and let P and Q be finite spi-calculus processes. For any d ≥ 0 it is

decidable whether e ` P ∼df Q.

PROOF: Table 6 presents a nondeterministic recursive algorithm B((e, (P,Q)) for determin-

ing if e ` P ∼df Q.

As the algorithm encodes the ‘bisimulation game’ of Definition 16, e ` P ∼df Q iff there

exists a successful evaluation of B((e, (P,Q))). The algorithm always terminates, as Lemma

15 and Lemma 27 guarantee that the checks performed in the conditional statements of the

algorithm are effective and as all transition sequences examined along recursive calls are

finite due to the absence of recursion. 2

Corollary 29 Let e ` ok and let P and Q be finite spi-calculus processes. It is decidable

whether e ` P ∼f Q.

7 Conclusions and further work

In this paper we have shown that framed bisimilarity is decidable for finite processes. The

ideas used in this paper are closely related to those employed in giving symbolic semantics to

process calculi. The precise relationship is a topic for further work.

17

B(((fr, th), (0, 0))) = tt

B(((fr, th), (P1, P2))) =

let (fr, th) = e in

for each Pi
a

−→ (x)P ′i where a ∈ fr

select a Pi+1
a

−→ (y)P ′i+1

if no such P ′i+1 exists

then fail

else

for each ~n where |~n| ≤ d, ~n ∩ fn[[Pi]]∪ fn[[Pi+1]]∪fn(th) = ∅
for each (fr ∪{~n}, th) `M↔d N
B(((fr ∪{~n}, th), (P ′i[M/x], P

′
i+1[N/y])))

for each Pi
a

−→ (ν~c)〈M〉P ′i where a ∈ fr

select a Pi+1
a

−→ (ν~d)〈N〉P ′i+1
if no such P ′i+1 exists

then fail

else

select e ≤ (fr ′, th ′) such that (fr ′, th ′) `M↔ N

B(((fr ′, th ′), P ′i, P
′
i+1))

for each Pi
τ

−→ P ′i

select a Pi+1
τ

−→ P ′i+1

if no such P ′i+1 exists

then fail

else

B(((fr, th), P ′i, P
′
i+1))

Table 6: A nondeterministic algorithm for checking bisimilarity

18

Recent, currently unpublished results [FN01, BN02] establish that the environment sen-

sitive bisimilarity of Boreale et al. [BDP99] corresponds to hedged bisimilarity, the variant of

framed bisimilarity that omits the frame-component. We therefore conjecture that our re-

sults and techniques carry over to environment sensitive bisimilarity.

A topic for further work is how to develop an efficient version of the bisimulation check-

ing algorithm. However, framed bisimulation subsumes the late bisimulation equivalence of

the π-calculus and the decision problem for this latter equivalence is known to be PSPACE-

complete for a number of recursion-free process calculi with value-passing [BT00].

As we have omitted recursion, we can only study attacks that involve a given number of

runs of a protocol. Another topic for further work is therefore to study the class of attacks

that can be detected within the finite spi-calculus.

Acknowledgements I would like to thank Josva Kleist for his careful reading of an earlier

version of this paper.

References

[AG97a] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi-

calculus. In Fourth ACM Conference on Computer and Communications Security.

ACM Press, 1997.

[AG98b] M. Abadi and A. D. Gordon. A bisimulation method for cryptographic protocols.

Nordic Journal of Computing, 5(4), pp. 267-303, Winter 1998.

[AL00] R.M. Amadio, D. Lugiez. On the reachability problem in cryptographic protocols

Proceedings of CONCUR 00, LNCS 1877, Springer-Verlag.

[BDP99] Boreale, Michele & De Nicola, Rocco & Pugliese, Rosario. Proof Techniques for

Cryptographic Processes (Extended version). Proceedings of LICS 99, pp. 157–166,

1999.

[BT00] M. Boreale and L. Trevisan A Complexity Analysis of Bisimilarity for Value-

passing Processes Theoretical Computer Science, Vol. 238, Number 1-2, pp. 313-345,

May 2000.

[BN02] J. Borgström and U. Nestmann On Bisimulations for the Spi Calculus Submitted

for publication.

19

[Dam97] Mads Dam On the Decidability of Process Equivalences for the π-Calculus The-

oretical Computer Science, vol. 183, 1997, pp. 215–228.

[EHHN99] A.S. Elkjær, H. Hüttel, M. Höhle and K. O. Nielsen. Towards automatic bisim-

ilarity checking in the spi calculus. Proceedings of DMTCS’99 and CATS’99.

Australian Computer Science Communications, 21(3), Springer, 1999.

[FN01] U. Frendrup and J. Nyholm Jensen. Bisimilarity in the Spi-Calculus Masters’

Thesis, Department of Computer Science, Aalborg University, June 2001.

[HKNV97] Hans Hüttel, Josva Kleist, Uwe Nestmann and Björn Victor. A symbolic seman-

tics for the spi-calculus. Unpublished manuscript.

[Lin91] Huimin Lin Complete Proof Systems for Observation Congruences in Finite-

Control Pi-calculus. In Kim G. Larsen and Mogens Nielsen (editors), Automata,

Languages and Programming, 25th Colloquium. Volume 1443 of Lecture Notes in

Computer Science, pages 443-454, Aalborg, Denmark, July 1998, Springer-Verlag.

[MPW92] Robin Milner, Joachim Parrow and David Walker. A Calculus of Mobile Pro-

cesses, Parts I and II. Information and Computation, vol. 100(1), 1992, pp. 1–77.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge

University Press, 1999.

[Min67] Marvin Minsky. Computation: Finite and Infinite Machines. Prentice-Hall 1967.

[NH83] Rocco De Nicola and Matthew C. B. Hennessy. Testing equivalence for processes.

In Josep Dı́az (editor) Automata, Languages and Programming, 10th Colloquium.

Volume 154 of Lecture Notes in Computer Science, pages 548–560, Barcelona, Spain,

18–22 July 1983. Springer-Verlag.

[San96] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica,

vol. 33, 1996, pp. 69–97.

20

