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Abstract

We present three modal logics for the spi-calculus
and show that they capture strong versions of the
environment sensitive bisimulation introduced by
Boreale et al. Our logics differ from conventional
modal logics for process calculi in that they al-
low us to describe the knowledge of an attacker
directly.

1 Introduction

In recent years the study of correctness issues of
security protocols has become an important re-
search topic. Following Dolev and Yao [5], a basic
assumption is that all communication of a proto-
col may be visible to the hostile environment and
that this hostile environment is capable of interfer-
ing with the protocol by altering or blocking any
message and by creating new messages. Moreover,
these are the only kinds of attacks – an attacker
cannot exploit weaknesses of the encryption algo-
rithm itself (the ’perfect encryption hypothesis’).

In the Dolev-Yao setting, an important approach
to reasoning about properties of security protocols
is to usemodal logics, an important example of
which is the logic of authentication introduced by
Burrows et al. in [1].
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Another promising approach in the Dolev-Yao
setting is that of usingprocess calculi. A recent
such calculus is the spi calculus of Abadi and Gor-
don [3], a dialect of theπ-calculus [9]. In the spi
calculus security protocols are described as pro-
cess terms and the correctness relation is captured
by a notion of behavioural equivalence [8]. Abadi
and Gordon proposed may-testing equivalence as
their choice of equivalence. However, may-testing
equivalence does not allow for a simple proof tech-
nique. As a result, both Abadi and Gordon [2] and
Boreale et al. [4] have introduced modified notions
of bisimulation equivalence which capture both the
interaction with and the knowledge of the environ-
ment.

In this paper we relate the two strands of re-
search by presenting three modal logics for the
environment-sensitive semantics of the spi calcu-
lus introduced by Boreale, De Nicola and Pugliese
[4]. Our main result is that these logics capture
strong versions of the environment sensitive bisim-
ulations of [4] in both their late and early versions.
In this way, our work can be viewed as extend-
ing the results on logics for theπ-calculus [10].
An important consequence of our results is that
nonbisimilar processes can be distinguished by our
logics. If P in environmentσP andQ in environ-
mentσQ are inequivalent, then there is some prop-
ertyφ satisfied by one process but not by the other
in their respective environments.

Our modal logics are environment-sensitive;
they provide us with the ability to describe both
the knowledge of an attacker and the behaviour of
a protocol. The logics are all based on a common
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sublogicΦ from which we shall construct the log-
icsF , EM andLM. We consider a version of the
spi calculus without pairs; the generalization to the
full calculus is straightforward.

In [6] Durgin, Pavlovic and Mitchell have intro-
duced a modal logic for a process calculus based
on ideas from strand spaces and the spi calculus.
An important difference between our work and
theirs is our explicit aim is to determine logics that
correspond to the equivalence-based notion of cor-
rect in the spi calculus.

2 The spi calculus: Syntax

We shall consider a spi calculus which is a sub-
set of the original calculus of [3] in that we omit
numbers and pairs. Unlike [3, 4], where encryption
is a message term constructor while decryption is
a process construct, both are part of our message
term language.

The syntactic categories of the spi calculus are:
an infinite set ofnames, a, b, k . . . ∈ N , an infinite
set ofvariables, u, v, . . . ∈ V, a set ofexpressions
L,M,N, . . . ∈ L, a set ofguards, G . . . ∈ G, and
a set ofagents,A,B, . . . ∈ Ag.

Messages are defined as follows:

K,L ::= a | u | {L}EL | {L}DL

{L1}EL2
represents the termL1 encrypted under

key L2. {L1}DL2
represents the termL1 de-

crypted (if possible) with keyL2. The term
{. . . {{M}Ek1

}Ek2
} . . .}Ekn successively encrypted

undern keys k1, . . . , kn will be denoted by the
shorthand{M}E

k̃
. The set ofmessages, M, are

the expressions ofL that only consist of names and
encryptions. They have the syntax

M,N ::= a | {N}Ea

Guards have the structure

G ::= tt | G ∧G | L = L | L : N

Finally, agents are defined by

A ::= 0 | L(u).A | LL.A | GA | A+A

| A|A | (ν a)A | !A

In an agent(ν a)A, the namea is bound inA and
in the agentL(u).A, the variableu is bound in
A. The sets offree names, fn(A), bound names,
bn(A), names, n(A), free variables, fv(A), and
bound variables, bv(A), of an agentA are defined
as expected.A{M/u} denotes the agent obtained
by replacing every free occurrence ofu in A by
M , renaming bound names as necessary. We iden-
tify agents up toα-conversion of bound names and
variables. If agentsA1 andA2 can be identified
in this way, we writeA1 ≡α A2. A processis an
agent that does not contain any free variables;Pr
denotes the set of all processes. The set of pro-
cesses is ranged over byP ,Q, andR.

3 Environments

An environment records the knowledge of an ob-
server/attacker. Following [4], an environment is
a functionσ : Z → M, whereZ is a set of en-
vironment variables such thatZ ∩ V = ∅. We
write {M1/x1,M2/x2, . . . ,Mn/xn} for the en-
vironmentσ defined byσxi = Mi for all i ∈
{1, 2, . . . , n}. σ[x 7→M ] denotes the environment
that mapsx toM and any other environment vari-
abley to σy.

3.1 Environment messages

The messages that an environmentσ can send to a
process are evaluatedenvironment messages.

The set of environment messages,Υ, is given by
the following grammar.

ζ ::= a | x | {ζ}Eζ | {ζ}Dζ

The set of environment variables in an environment
messageζ is denoted fz(ζ).
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We evaluate environment messages using the
functione : L →M∪{⊥}, defined in section Ta-
ble 1 and let⊥ represent the value of any message
that cannot be evaluated. Typically, such messages
involve a decryption operation that cannot be per-
formed.

3.2 The knowledge of an environment

Our semantics of the spi calculus is environment-
sensitive; it depends on the information that can
be deduced from the environment. We employ the
characterization of the knowledge of an environ-
ment presented in [4, 11]. The analysis of a set
of messagesW is the set of messages that can be
deduced fromW by decryption.

Definition 1 The analysis of a setW ⊆ M, writ-
tenA(W ), is the smallest set satisfying

(i) W ⊆ A(W )

(ii) if k ∈ A(W ) and{M}Ek ∈ A(W ) thenM ∈
A(W )

�

The knowledge of a set of messagesW is the set
of names of the analysis ofW .

Definition 2 The knowledge of a setW ⊆ M,

writtenK(W ), is defined byK(W )
def
= A(W )∩N .

�

For an environmentσ we will use the shorthand
notationsA(σ) and K(σ) for A(range(σ)) and
K(range(σ)). Given a set of messagesW , we de-
note by core(W,M) what is left of the messageM
when it is decrypted as much as possible with re-
spect to the knowledge ofW .

Definition 3 Let W ⊆ M. The core of the
messageM ∈ M with respect toW , written
core(W,M), is defined by

core(W,M)
def
=

 core(W,M ′)
if M = {M ′}Ek
andk ∈ K(W )

M otherwise

�

For an environmentσ and a messageM we
will use the shorthand notation core(σ,M) for
core(range(σ),M).

3.3 Equivalence of environments

Following [4], two environments are equivalent if
they have the same decryption power. IfÑi is a
tuple of messages wherei ∈ I andJ ⊆ I, we
write Ñ [J̃ ] for the tuple{Ni | i ∈ J}.

Definition 4 Let σ andσ′ be environments where
dom(σ) = dom(σ′) = {xi | i ∈ I} for some

I. For eachi ∈ I let Ni
def
= core(σ, σ(xi)) and

N ′i
def
= core(σ′, σ′(xi)). σ andσ′ are equivalent,

written σ ∼e σ′, if for eachi ∈ I the following
holds,

(i) for some tupleJ̃i ⊆ I it holds thatσ(xi) =
{Ni}EÑ [J̃i]

andσ′(xi) = {N ′i}EÑ ′[J̃i],

(ii) for eachj ∈ I, Ni = Nj if and only ifN ′i =
N ′j , and

(iii) Ni ∈ N if and only ifN ′i ∈ N .

�

4 The spi calculus: Semantics

We here present the environment sensitive seman-
tics introduced in [4] and our notion of bisimilarity.
The semantics has two levels.

4.1 Processes

At the process level transitions have the form
A

α−→ A′, whereα is given by the grammar

α ::= τ | a(u) | (ν c̃)āN

The semantics of processes is given by the la-
belled transition system (Ag, Act, −→), where
−→ is the smallest relation closed under the rules
in table 3. The symmetric rules for Sum, Par, and
Com have been omitted.
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e(a)
def
= a e({L}EK)

def
=
{
{N}Eb if e(K) = b ∈ N ∧ e(L) = N 6=⊥
⊥ otherwise

e(u)
def
=⊥ e({L}DK)

def
=
{
N if e(K) = b ∈ N ∧ e(L) = {N}Eb
⊥ otherwise

Table 1: The message evaluation functione : L →M∪ {⊥}

e′(tt)
def
= tt e′(G1 ∧G2)

def
= e′(G1) ∧ e′(G2)

e′(L1 = L2)
def
=
{

tt if e(L1) = e(L2) 6=⊥
ff otherwise

e′(L : N )
def
=
{

tt if e(L) ∈ N
ff otherwise

Table 2: The guard evaluation functione′ : G → {tt, ff}

Note that our semantics is alate operational se-
mantics; this is apparent in the clause [Inp] where
the variableu is left uninstantiated. Our choice of
a late semantics makes it easier to formulate both
late and early environment-sensitive bisimulation
equivalence in Section 4.3

4.2 Environment sensitive semantics

At the environment sensitive level of our seman-
tics, configurations consist of a process together
with an environment.

Definition 5 The set of configurations,Γ, is de-
fined as

Γ
def
= {σ :B P | σ : Z →M, P ∈ Pr}

�

The environment sensitive semantics is given
by the labelled transition system(Γ,Acte,−→),
where−→ is the smallest relation closed under
the rules in table 4. Transitions have the form
σ B P

α−→
δ
σ′ B P ′ and represent interactions be-

tween the processP and the environmentσ. α is

the process action andδ is the complementary en-
vironment action. The set of environment actions,
Acte, is defined by the grammar

δ ::= − | a(z) | (ν c̃)āζ

4.3 Environment sensitive bisimulation

Environment sensitive bisimilarity, introduced in
[4] relates configurations of environment sensitive
semantics. Unlike [4], we considerstrongequiv-
alences. First, we define a strongearly environ-
ment sensitive bisimilarity where the matching of
a transition may depend on the message sent by the
environment.

Definition 6 A symmetric relationR ⊆ Γ×Γ is a
strong early environment sensitive bisimulation if
(σP B P, σQ B Q) ∈ R impliesσP ∼e σQ and
wheneverσP B P

α−→
δ

σ′P B P ′ there existα′,

σ′Q, andQ′ such thatσQ B Q
α′−→
δ

σ′Q B Q′ and

(σ′P B P
′, σ′Q B Q

′) ∈ R. �

Definition 7 The configurationsσP B P and
σQ B Q are strong early environment sensitive

4



[Alpha]

A′
α−→ A′′

A
α−→ A′′

A ≡α A′
[Inp]

L(u).A
a(u)−→ A

e(L) = a

[Outp]
L1L2.A

āN−→ A

e(L1) = a ande(L2) = N 6=⊥
[Grd]

A
α−→ A′

GA
α−→ A′

e′(G) = tt

[Sum]
A1

α−→ A′1

A1 +A2
α−→ A′1

[Par]

A1
α−→ A′1

A1|A2
α−→ A′1|A2

bn(α) ∩ fn(A2) = ∅

[Com]

A1
(ν c̃)āN−→ A′1 A2

a(u)−→ A′2

A1|A2
τ−→ (ν c̃)(A′1|A′2{N/u})

c̃ ∩ fn(A2) = ∅

[Res]

A
α−→ A′

(ν b)A α−→ (ν b)A′

b /∈ n(α)

[Open]

A
(ν c̃)āN−→ A′

(ν b)A
(ν {b}∪c̃)āN−→ A′

b ∈ (n(N) \ c̃) andb 6= a

[Rep]

A |!A α−→ A′

!A α−→ A′

Table 3: Late operational semantics for the Spi-calculus.
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[E-Tau]
P

τ−→ P ′

σ B P
τ−→
−

σ B P ′
[E-Inp]

P
a(u)−→ P ′

σ B P
a(u)−→

(ν c̃)āζ
σ[z̃ 7→ c̃] B P ′{N/u}

e(ζσ) = N 6=⊥, z̃ ∩ dom(σ) = ∅, a ∈
A(σ), c̃ = n(ζ), andc̃ ∩ fn(P, σ) = ∅

[E-Out]

P
(ν c̃)āN−→ P ′

σ B P
(ν c̃)āN−→
a(z)

σ[z 7→ N ] B P ′

a ∈ A(σ), z /∈ dom(σ), andc̃∩fn(σ) = ∅

Table 4: Environment sensitive semantics.

bisimilar, writtenσP B P ∼EESB σQ B Q, if
there exists a strong early environment sensitive
bisimulationR such that(σP B P, σQ B Q) ∈ R.
�

Alternatively, we could define alate version
of environment sensitive bisimilarity where the
matching of a transition is independent of the mes-
sage sent by the environment. Here we capture the
late instantiation by means of the late semantics at
the process level.

Definition 8 A symmetric relationR ⊆ Γ × Γ is
a strong late environment sensitive bisimulation if
(σP B P, σQ B Q) ∈ R impliesσP ∼e σQ and if
P

α−→ P ′ then

(i) if α = τ then there existsQ′ such thatQ
α−→

Q′ and(σP B P ′, σQ B Q′) ∈ R.

(ii) if α = a(u) and a ∈ A(σP ) then

there existsQ′ such thatQ
a(u)−→ Q′ and

for all ζ ∈ Υ, where e(ζσP ) 6=⊥ and
n(ζ) ∩ fn(P,Q, σP , σQ) = ∅, (σP [z̃ 7→
c̃] B P ′{e(ζσP )/u}, σQ[z̃ 7→ c̃] B

Q′{e(ζσQ)/u}) ∈ R, wherez̃ ∩ dom(σP ) =
∅ andc̃ = n(ζ).

(iii) if α = (ν c̃)āM , a ∈ A(σP ), and c̃ ∩
fn(P, σ1) = ∅ then there exist̃d, N , andQ′

such thatQ
(ν d̃)āN−→ Q′, whered̃∩fn(Q, σ2) =

∅, and(σP [z 7→ M ] B P ′, σQ[z 7→ N ] B
Q′) ∈ R, wherez /∈ dom(σP ).

�

Definition 9 The configurationsσP B P and
σQ B Q are strong late environment sensitive
bisimilar, writtenσP B P ∼ESB σQ B Q, if there
exists a strong late environment sensitive bisimu-
lationR such that(σP B P, σQ B Q) ∈ R. �

5 Logical formulae

The logics that we shall present all contain the
usual propositional connectives and have two kinds
of formulae. Common to all three logics is the
set of environment formulae, ranged over byφσ.
These are atomic formulae that describe the con-
tents of an environment.
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The logics differ from each other with respect to
their process formulae, ranged over byφP . These
are modal formulae that describe the behaviour of
a process. More precisely, the difference lies in the
input modalities which correspond to the matching
conditions for early, resp. late bisimulation.

Any formula may containformula messages
from the setΩ, ranged over byη.

5.1 Logical formulae: Syntax

The syntax of formulae and formula messages is:

φ ::= ¬φ |
∧
i∈I

φi | φσ | φP

φσ ::= # = n | x 7→ {a}E
k̃
| x 7→ {?}E

k̃

| core(x) : N
η ::= u | x | {η}Eη | {η}Dη

φP ::= 〈τ〉φ | 〈aζ〉φ | 〈a(u)〉Eφ
| 〈a(u)〉Lφ | 〈ā〉φ | [η = η]φ

whereI is an index set which may be infinite. We
sometimes use additional propositional connec-
tives, lettingφ1∨φ2 andtt stand for¬(¬φ1∧¬φ2)
and

∧
i∈∅ φi, respectively.

Environment formulae φσ let us express the
contents of an environment. Firstly, we can ex-
press whether messages of the environment can
be completely decrypted with the keysk̃ from the
knowledge of the environment (x 7→ {a}E

k̃
) or not

(x 7→ {?}E
k̃

). This aspect of our logic resembles
the constructP seesX in the belief logic of [1]. If
a variablex is instantiated to a nameb, the set of
keysk̃ is empty and we use the shorthandx 7→ b.

Secondly, as we aim to be able to express en-
vironments up to equivalence we need to be able
to express that exactlyn environment variables are
bound by an environment (# = n) and whether
the core of a message is a name (core(x) : N ).

Process formulae φP describe the behaviour of
a process by means of the Hennessy-Milner-style
modalities used in modal logics for theπ-calculus
[10]. In both theearly input modality,〈a(u)〉Eφ,
and thelate input modality〈a(u)〉Lφ, u is bound in
φ. However, their semantics differ so as to corre-
spond to the matching conditions of early and late
bisimilarity. In the former modality,u is instanti-
ated inφ whereasu is the subject of a universal
quantification over possible input terms in the lat-
ter.

The syntactic conventions are standard. The
sets offree variables, fv(φ), andbound variables,
bv(φ), of a formula are defined as expected. We
write φ{η/u} for the formula obtained be replac-
ing every free occurrence ofu in φ by η, renaming
bound variables as necessary, and identify formu-
lae up to renaming of bound variables. The logicΦ
consists of closed formulae,Φ = {φ | fv(φ) = ∅}.
The following example illustrates how to express a
security property in the proposed modal logic.

Example 1. Let P
def
= (ν k3)b̄{k3}Ek3

andσP
def
=

[x1 7→ b, x2 7→ k1, x3 7→ {M}Ek2
]. ProcessP

can emit a secret key,k3, encrypted with itself on
the channelb to the environmentσP . This can be
described by the formula

x1 7→ b∧x2 7→ k1∧x3 7→ {?}Ek2
∧〈b̄〉x4 7→ {?}Ek3

Notice the modality of the latter conjunct. �

5.2 Logical formulae: Semantics

The satisfaction relation between configurations
and all formulae ofΦ apart from the late modality
〈a(u)〉Lφis given in Table 5. The late input modal-
ity 〈a(u)〉Lφ will be handled separately in section
6.2, as the semantics involves a universal quantifi-
cation over a suitable set of names. Section 6.2
describes how these names must be chosen.

The functionT (σ, ζ) substitutes each namea in
ζ to the environment variablex in σ that maps
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to a (T will only be used in a context whereσ
is bijective with respect to the names inζ, i.e.
|{x ∈ dom(σ) | σ(x) = a}| = 1).

We use the shorthand notationσ � φ if σ B P �
φ for all P ∈ Pr.

6 A logical characterization of
bisimilarity

The two notions of bisimilarity from Section 4.3
can be captured by our modal logics.

6.1 Characterization of∼EESB
We first present two early logicsF andEM that
both characterize strong early environment sensi-
tive bisimilarity.

Let Φ0 denote the set of those formulae ofΦ that
neither contain the match connective[η = η]φ nor
the modalites〈aζ〉φ, 〈a(u)〉Eφ, and〈a(u)〉Lφ.

• F is Φ0 extended with〈aζ〉φ

• EM is Φ0 extended with[η = η]φ and
〈a(u)〉Eφ.

To prove that strong early environment sensitive
bisimilarity can be characterized by the logicsF
andEM we define a logical process equivalence
for each of the two logics. Here we need the fol-
lowing definition.

Definition 10 Let ∆ be a subset ofΦ. Then
∆(σ B P )

def
= {φ ∈ ∆ | σ B P � φ} and the

relation=∆ is defined by=∆
def
= {(σP B P, σQ B

Q) | ∆(σP B P ) = ∆(σQ B Q)}. �

The following lemma is essential as it shows that
our environment formulae allow us to characterize
environments up to equivalence.

Lemma 1 Let σ be an environment. Then there
exists an environment formulaφσ ∈ Φ0 such that
σ � φσ and ifσ′ B Q � φσ thenσ ∼e σ′.

PROOF: Assume |dom(σ)| = n. Let φσ
def
=∧

i∈I φi be the formula whose conjuncts are de-
fined as follows:

• # = n always occurs as a conjunct

• x 7→ {a}E
k̃

occurs for anyx such that
core(σ, σ(x)) = a for a ∈ N andσ(x) =
{a}E

k̃
,

• x 7→ {?}E
k̃

= φi occurs for anyx such that
core(σ, σ(x)) = M /∈ N for someM and
σ(x) = {M}E

k̃

• core(x) : N = φi occurs for anyx such that
core(σ, σ(x)) ∈ N

By Table 5 it is easily seen thatσ B P � φσ for all
P ∈ Pr and ifσ′ B Q � φσ thenσ ∼e σ′. �

We can now show that=F and∼EESB coincide.

Theorem 1 σP B P =F σQ B Q if and only if
σP B P ∼EESB σQ B Q.

PROOF: We first prove thatσP B P ∼EESB
σQ B Q impliesσP B P =F σQ B Q. Assume
σP B P ∼EESB σQ B Q andσP B P � φ. We
must show thatσQ B Q � φ. The proof proceeds
by structural induction onφ. Next, we prove that
σP B P =F σQ B Q impliesσP B P ∼EESB
σQ B Q. We do this by showing that

S
def
= {(σP B P, σQ B Q) | σP B P =F σQ B Q}

is a strong early environment sensitive bisimula-
tion. �

Next, we prove that=EM and∼EESB coincide.

Theorem 2 σP B P =EM σQ B Q if and only if
σP B P ∼EESB σQ B Q.

PROOF: We will first prove thatσP B P ∼EESB
σQ B Q impliesσP B P =EM σQ B Q. Assume
σP B P ∼EESB σQ B Q andσP B P � φ.
We must show thatσQ B Q � φ. The proof is
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σ B P � ¬φ if σ B P 2 φ
σ B P �

∧
i∈I φi if σ B P � φi for all i ∈ I

σ B P � 〈τ〉φ if there existsP ′ such thatσ B P
τ−→
−

σ B P ′ and

σ B P ′ � φ

σ B P � 〈aζ〉φ if there exist̃b, u, σ′, andP ′ such thatσ B P
a(u)−→

(ν b̃)āζ
σ′ B P ′

andσ′ B P ′ � φ
σ B P � 〈a(u)〉Eφ if for all ζ ∈ Υ with n(ζ) ∩ fn(P, σ) = ∅ ande(ζσ) 6=⊥ there

exist b̃, σ′, andP ′ such thatσ B P
a(u)−→

(ν b̃)āζ
σ′ B P ′ and

σ′ B P ′ � φ{T (σ′, ζ)/u}
σ B P � 〈ā〉φ if there exist̃b,M, x, σ′, andP ′ such that

σ B P
(ν b̃)āM−→
a(x)

σ′ B P ′ andσ′ B P ′ � φ

σ B P � [η1 = η2]φ if e′([η1 = η2]σ) = tt impliesσ B P � φ
σ B P � # = n if |dom(σ)| = n

σ B P � x 7→ {a}E
k̃

if σ(x) = {a}E
k̃

andk̃ ⊆ K(σ)
σ B P � x 7→ {?}E

k̃
if σ(x) = {core(σ, σ(x))}E

k̃
, core(σ, σ(x)) /∈ N , and

k̃ ⊆ K(σ)
σ B P � core(x) : N if core(σ, σ(x)) ∈ N

Table 5: The satisfaction relation

by structural induction onφ. Next, we prove that
σP B P =EM σQ B Q impliesσP B P ∼EESB
σQ B Q. This follows from theorem 1 and the fact
thatσP B P � 〈aζ〉φ if and only if σP B P �
〈a(u)〉E [u = T (σP [z̃ 7→ n(ζ)], ζ)]φ. �

6.2 Characterization of∼ESB
We now present the logicLM and show that it
can be used to characterize strong late environment
sensitive bisimilarity. It is somewhat involved to
prove this result using the technique of the proofs
of theorems 1 and 2 if we employ Definition 8 as
is. In clause(ii) of the definition we must quantify
over the infinitely many input messagesζ ∈ Υ,
wheree(ζσ1) 6=⊥ and n(ζ)∩fn(P,Q, σ1, σ2) = ∅.
Thus, the names in an input messageζ must be
chosen with respect to bothP andQ.

This leads us to define the auxiliary notion ofS-
environment sensitive bisimulation whereS ⊆ N

represents the set of names that input terms may
contain. We show thatS-environment sensitive
bisimilarity may be used to characterize strong
late environment sensitive bisimilarity for a suit-
ably chosenS and subsequently prove thatLM
can be used to characterizeS-environment sensi-
tive bisimilarity using the same technique as in the
proofs of theorems 1 and 2.

6.2.1 The logicLM

In the late logicLM the late inputmodality is the
only modality for input transitions.

φP ::= | 〈τ〉φ | 〈a(u)〉Lφ | 〈ā〉φ | [η = η]φ

6.2.2 S-environment sensitive bisimulation

Definition 11 (S-Environment Sensitive Bisimu-
lation)

9



Let S ⊆ N . A symmetric relationR ⊆ Γ × Γ is
anS-environment sensitive bisimulation if(σP B
P, σQ B Q) ∈ R implies σP ∼e σQ and if
P

α−→ P ′ then

(i) if α = τ then there existsQ′ such thatQ
α−→

Q′ and(σP B P ′, σQ B Q′) ∈ R.

(ii) if α = a(u) anda ∈ A(σP ) then there ex-

istsQ′ such thatQ
a(u)−→ Q′ and for allζ ∈ Υ,

wheree(ζσP ) 6=⊥ and n(ζ)∩(S∪K(σP )) =
∅, (σP [z̃ 7→ n(ζ)] B P ′{e(ζσP )/u}, σQ[z̃ 7→
n(ζ)] B Q′{e(ζσQ)/u}) ∈ R, where z̃ ∩
dom(σP ) = ∅.

(iii) if α = (ν c̃)āM , a ∈ A(σP ), c̃ ⊆ S,
and c̃ ∩ fn(P, σP ) = ∅ then there exist̃d,

N , andQ′ such thatQ
(ν d̃)āN−→ Q′, where

d̃ ⊆ S, d̃ ∩ fn(Q, σQ) = ∅, and (σP [z 7→
M ] B P ′, σQ[z 7→ N ] B Q′) ∈ R, where
z /∈ dom(σP ).

�

Definition 12 The configurationsσP B P and
σQ B Q are S-environment sensitive bisimilar,
writtenσP B P ∼SESB σQ B Q, if there exists an
S-environment sensitive bisimulationR such that
(σP B P, σQ B Q) ∈ R. �

Generally,∼SESB and∼ESB do not coincide.

Example 2. ConsiderP1
def
= (ν n)ān andQ1

def
=

0 and σ1
def
= {a/x}. If S

def
= ∅ we haveσ1 B

P1 ∼SESB σ1 B Q1 but notσ1 B P1 ∼ESB σ1 B

Q1. Next, considerP2
def
= (ν k)(ν m)ā{m}Ek and

Q2
def
= (ν k)ā{k}Ek andσ2

def
= {a/x}. We have

σ2 B P2 ∼ESB σ2 B Q2 but if S
def
= {k} we do

not haveσ2 B P2 ∼SESB σ2 B Q2. �

However, if two configurations are strong late en-
vironment sensitive bisimilar then they are alsoS-
environment sensitive bisimilar for some infinite
setS containing the free names of the two config-
urations. To show this we need the following three
lemmas.

Lemma 2 If P
α−→ P ′ then

• if α = τ then fn(P ′) ⊆ fn(P ).

• if α = a(u) then fn(P ′) ∪ {a} ⊆ fn(P ).

• if α = (ν c̃)āM then fn(P ′)∪{a}∪n(M) ⊆
fn(P ) ∪ c̃.

Lemma 3 Let σN be an injective name substitu-

tion defined asσN
def
= {m̃/ñ, ñ/m̃}. If P

α−→ P ′

thenPσN
ασN−→ P ′σN .

Lemma 4 Let σP B P ∼ESB σQ B Q and let
σN be the injective name substitution defined by

σN
def
= {m̃/ñ, ñ/m̃}. Then(σP B P )σN ∼ESB

(σQ B Q)σN .

Theorem 3 LetS ⊆ N be an infinite set. IfσP B
P ∼ESB σQ B Q and fn(P,Q, σP , σQ) ⊆ S, then
σP B P ∼SESB σQ B Q.

PROOF: The relationR defined byR
def
= {(σP B

P, σQ B Q) | σP B P ∼ESB σQ B
Q , fn(P,Q, σP , σQ) ⊆ S ∪ K(σP )} is an S-
environment sensitive bisimulation. That transi-
tions can be matched follows from Lemmas 2,3
and 4 �

If two configurations areS-environment sensitive
bisimilar for some infinite and co-infinite setS ⊆
N containing the free names of the two configu-
rations then they are also strong late environment
sensitive bisimilar.

Theorem 4 Let S ⊆ N andσP B P, σQ B Q ∈
Γ such that fn(P,Q, σP , σQ) ⊆ S, σP B P ∼SESB
σQ B Q, andS andN \ S are both infinite. Then
σP B P ∼ESB σQ B Q.

PROOF: The relationR
def
= {(σP B P, σQ B

Q) | ∃S ⊆ N . (σP B P ∼SESB σQ B Q ∧
fn(P,Q, σP , σQ) ⊆ S∧|S| =∞∧|N \S| =∞)}
is a strong late environment sensitive bisimulation.
�
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6.2.3 Characterization of∼SESB and∼ESB

We now characterize∼SESB and consequently also
∼ESB by the logicLM. To do this, we introduce a
S-satisfaction relation between configurations and
formulae ofLM as given in Table 6. Here, the
quantification over names for the late input modal-
ity must be found amongS.

Next, we define a logical process equivalence
for our logic with respect to anS ⊆ N .

Definition 13 Let ∆ be a subset ofLM and let
S ⊆ N . Then ∆S(σ B P )

def
= {φ ∈ ∆ |

σ B P �S φ} and the relation=∆S is defined

by =∆S
def
= {(σP B P, σQ B Q) | ∆S(σP B P ) =

∆S(σQ B Q)}. �

Theorem 5 σP B P =LMS σQ B Q if and only
if σP B P ∼SESB σQ B Q.

PROOF: We will first prove thatσP B P ∼SESB
σQ B Q impliesσP B P =LMS σQ B Q. As-
sumeσP B P ∼SESB σQ B Q andσP B P �S φ.
We must show thatσQ B Q �S φ. The proof
will be by structural induction onφ. Finally, we
prove thatσP B P =LMS σQ B Q implies
σP B P ∼SESB σQ B Q. We do this by show-
ing that the relationR defined by

R
def
= {(σP B P, σQ B Q) | σP B P =LMS σQ B Q}

is anS-environment sensitive bisimulation. �

We therefore have that strong late environment
sensitive bisimilarity can be characterized by the
logicLM.

Corollary 1 Let =LM
def
= {(σP B P, σQ B Q) |

∃S ⊆ N .(σP B P =LMS σQ B Q ∧
fn(P,Q, σP , σQ) ⊆ S∧|S| =∞∧|N \S| =∞)}.
Then σP B P =LM σQ B Q if and only if
σP B P ∼ESB σQ B Q.

�

7 An application

In this section we describe a simplified, flawed ver-
sion of the Wide-Mouthed Frog protocol where the
session key is revealed by the server. This flawed
protocol should not be equivalent to the correct
protocol. We demonstrate this by presenting a dis-
tinguishing modal formula.

In the correct version of the Wide-Mouthed Frog
protocol the principalsA andB share the keyskAS
andkBS , respectively, with a serverS. BeforeA
sends a secret messageM to B, it first creates a
new key,kAB, and sends it to the server encrypted
with the keykAS . The server then decryptsM and
sendskAB toB encrypted with keykBS . Now,A
can send its secret messageM toB encrypted with
the keykAB. This protocol can be expressed in the
spi calculus as follows.

A(M)
def
= (ν kAB)cAS{kAB}EkAS .cAB{M}

E
kAB

B
def
= cSB(u).cAB(v).F ({v}D{u}DkBS

)

S
def
= cAS(u).cSB{{u}DkAS}

E
kBS

P (N)
def
= (ν kAS)(ν kBS)(A(N) | B | S),

HereF (M) is an agent representing the behaviour
of B upon reception ofM .

The flawed protocol, whereS accidentally re-
veals the session key, can be expressed as follows.

S′
def
= cAS(u).cSB{u}DkAS .0

P ′(N)
def
= (ν kAS)(ν kBS)(A(N) | B | S′)

The two configurationsσ B P (a) and σ B

P ′(a), whereσ
def
= {cAS/x1, cAB/x2, cSB/x3},

are not strong early environment sensitive bisim-
ilar; the correct version will never, in the course of
its 3 steps, allow the environment to obtain knowl-
edge of any ciphertext{a}E

k̃
. This can be ex-

pressed by the following distinguishing formula:

φa
def
=

3∧
i=0

[α]i¬

 ∨
x∈Z,k̃⊆N

x 7→ {a}E
k̃

 ,
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σ B P �S ¬φ if σ B P 2S φ
σ B P �S

∧
i∈I φi if σ B P �S φi for all i ∈ I

σ B P �S 〈τ〉φ if there existsP ′ such thatP
τ−→ P ′ andσ B P ′ �S φ

σ B P �S 〈a(u)〉Lφ if a ∈ A(σ) and there existsP ′ such thatP
a(u)−→ P ′ and

for all ζ ∈ Υ with n(ζ) ∩ (S ∪ K(σ)) = ∅ ande(ζσ) 6=⊥ ,
σ[z̃ 7→ n(ζ)] B P ′{e(ζσ)/u} �S φ{T (σ[z̃ 7→ n(ζ)], ζ)/u}

σ B P �S 〈ā〉φ if a ∈ A(σ) and there exist̃b,M, x, andP ′ such that

x /∈ dom(σ), b̃ ∩ fn(P, σ) = ∅, b̃ ⊆ S, P (ν b̃)āM−→ P ′, and
σ[x 7→M ] B P ′ �S φ

σ B P �S [η1 = η2]φ if e′([η1 = η2]σ) = tt impliesσ B P �S φ
σ B P �S # = n if |dom(σ)| = n

σ B P �S x 7→ {a}Ek̃ if σ(x) = {a}E
k̃

andk̃ ⊆ K(σ)
σ B P �S x 7→ {?}Ek̃ if σ(x) = {core(σ, σ(x))}E

k̃
, core(σ, σ(x)) /∈ N , and

k̃ ⊆ K(σ)
σ B P �S core(x) = core(z) if core(σ, σ(x)) = core(σ, σ(z))

Table 6: TheS-satisfaction relation relating configurations and formulae ofLM

where[α]φ
def
= [τ ]φ∧

∧
a∈N ,ζ∈Υ[aζ]φ∧

∧
a∈N [a]φ

and the iterated modality[α]iψ is defined as ex-
pected by

[α]0ψ = ψ

[α]i+1ψ = [α][α]iψ

8 Conclusions and further work

We have presented three modal logics which char-
acterize early and late versions of the environment
sensitive bisimilarity of [4]. The logics allow us
to describe properties of the behaviour of a pro-
cess via the use of Hennessy-Milner-style modal-
ities and the knowledge of the environment using
atomic formulae describing the bindings of an en-
vironment.

To overcome the obstacles of the definition of
late bisimilarity we introduced the notion ofS-
environment sensitive bisimilarity whereS is any
set of names and a corresponding interpretation of
the modal logic considered.

Although our modal logics characterize versions
of environment sensitive bisimilarity they suffer
from the fact we need infinite conjunction to de-
scribe an unbounded number of protocol runs. To
overcome this, one can extend the logic with a
fixed-point operator, obtaining aµ-calculus [7, 13].

As our results show inequivalent configurations
can be distinguished by a formula in the appro-
priate logic. Another direction for further work
is therefore to devise an algorithm for finding the
simplest such distinguishing formula.

The equivalences studied in this paper are all
strong. An obvious next step is therefore to devise
logics that correspond to the weak,τ -abstracting
notions of environment-sensitive bisimilarity [4].
We expect this extension to be straightforward.
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