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2Abstra
tIn this paper we demonstrate that some results on the 
omplete-ness of P-de�ning theories published earlier are in
orre
t. We pointout that by restri
ting the original propositions to well-founded theo-ries results somewhat weaker than the origninal ones 
an be retained.We also we present a theorem that provides some insight into therelation between 
ompleteness and redu
ibility and helps to identifythe theories whose minimal models 
an be adequately handled with
ir
ums
ription.



31 Introdu
tionThe 
on
ept of P-minimal models of �rst-order senten
es was introdu
ed as aformalization of nonmonotoni
 reasoning in [7℄. There are several approa
hesto 
apturing P-minimality synta
ti
ally. Usually either a se
ond-order for-mula axiomatizing minimality, or a �rst-order senten
e s
hema, yielding anessentially weaker des
ription of minimality, are used.While in the �rst 
ase the question arises whether the se
ond-order 
ir-
ums
ription formula is equivalent to some �rst-order formula, one has to
ontend with the problem of 
ompleteness in the se
ond 
ase. Informallyspeaking, a �rst-order senten
e T is said to be 
omplete if the senten
es that
an be dedu
ed from the 
ir
ums
ription s
hema of T are pre
isely those thatare true in all minimal models of T. Hen
e it is the 
lass of 
omplete sen-ten
es for whi
h the 
ir
ums
ription s
hema is a fully appropriate means ofdetermining everything one might wish to know about their minimal models.Unfortunately, 
ompleteness seems to be a rather s
ar
e quality among�rst-order formulas. Davis ([3℄) gave a �rst example of a theory that failsto be 
omplete. Perlis and Minker ([8℄) studied the problem of 
ompletenessin some detail, identifying various 
lasses of theories for whi
h 
ompletenessholds. For some of these 
lasses, however, the results stated by Perlis andMinker are in
orre
t.After brie
y reviewing the fundamental de�nitions in se
tion 2, we willdemonstrate this by giving a 
ounterexample in se
tion 3. Se
tion 4 presentsa new theorem providing some insight into the relation between 
ompletenessand redu
ibility.2 FundamentalsWe will be 
on
erned with that version of 
ir
ums
ription that has been
alled variable 
ir
ums
ription in [8℄. The following is a brief summary ofthe fundamental de�nitions.Let T(P,Q) be a �rst-order senten
e in a language 
ontaining the predi-
ate symbols P and Q1; : : : ;Qn (this list will be abbreviated by Q).Let M and N be models of T(P,Q). We say that N P;Q-redu
es M (writ-ing N�P;QM) if the domains of the two models are the same, the extensionsof symbols other than P and Q1; : : : ;Qn are the same in M and N, and N[P℄



4is a proper subset of M[P℄. No restri
tion is imposed upon the extensions ofthe Qi. They may be varied freely in order to minimize the extension of P.A model of T(P,Q) that 
annot be P;Q-redu
ed by any other model ofT(P,Q) is 
alled a P;Q-minimal model of T(P,Q).The 
lass of P;Q-minimal models of T(P,Q) 
an be axiomatized usingthe se
ond-order 
ir
ums
ription formula:Cir
II(T : P;Q) := T(P,Q) ^ 8p;q(T(p;q) ^ p � P! P � p):Here p and q1; : : : ; qn are se
ond-order predi
ate variables of the same arityas P and Q1; : : : ;Qn respe
tively. As a �rst order approximation of thisse
ond-order formula we de�ne a senten
e s
hema of the formT(�;	) ^ � � P! P � �;where � and 	1; : : : ;	n are formulas in the language of T, with a numberof free variables at least as great as the arities of P and Q1; : : : ;Qn respe
-tively. The formula T(�;	) is obtained from T(P,Q) by repla
ing everyexpression Pt1 : : : tk and Qis1 : : : sl by �(t1; : : : ; tk) and 	i(s1; : : : ; sl). Here�(t1; : : : ; tk) is the result of substituting t1; : : : ; tk for the �rst k free variablesof �. Any remaining free variables of � are universally quanti�ed. Similarlyfor 	i(s1; : : : ; sl).The union of T(P,Q) and all instan
es of this s
hema is denoted byCir
(T : P;Q).Cir
(T : P;Q) expresses the minimality of models of T(P,Q) in regardto de�nable subsets. More pre
isely: A model M of T(P,Q) is a model ofCir
(T : P;Q) i� for all models N that P;Q-redu
e M one of the extensionsN[P℄;N[Q1℄; : : : ;N[Qn℄ is not de�nable in M.It is noteworthy, that Cir
(T : P;Q) does not ne
essarily yield the bestpossible �rst-order des
ription of P;Q-minimal models of T(P,Q). There aretheories T(P,Q) for whi
h a suitable �rst-order senten
e fully 
hara
terizesthe 
lass of their P;Q-minimal models, but Cir
(T : P;Q)does not.We are now in a position to de�ne the 
ru
ial notions of minimal entail-ment and 
ir
ums
riptive inferen
e (
f.[7℄): We say that T(P,Q) minimallyentails a �rst order formula � (writing T(P,Q)j=P;Q �) if � holds in all P;Q-minimal models of T(P,Q). � is said to be 
ir
ums
riptively inferable fromT(P,Q) (writing T(P,Q)`P;Q �) if Cir
(T : P;Q) ` �.



5As Cir
(T : P;Q) is intended to be a synta
ti
 representation of P;Q-minimality, the question to address now is: To what extend do the tworelations j=P;Q and `P;Q 
oin
ide?As M
Carthy has shown ([7℄), T`P;Q � always implies Tj=P;Q �, but the
onverse does not hold ([3℄). Theories for whi
h Tj=P;Q � also implies T`P;Q �will be 
alled P;Q-
omplete.3 CompletenessIn this se
tion we will dis
uss some of the results on 
ompleteness presentedin [8℄. It will be shown that the results on expli
itly-P;Q-de�ning theoriespresented in this paper need to be revised.We begin with restating lemma 4.1 of [8℄, a basi
 
riterion for 
omplete-ness.Lemma 3.1 If every model of Cir
(T : P;Q) is P;Q-minimal, then T(P,Q)is P;Q-
omplete.In what follows, Perlis and Minker 
laim that the prerequisite of thislemma is ful�lled by a 
lass of theories we are now to investigate.De�nition 3.2 A theory T is 
alled expli
itly-P;Q-de�ning if there exists aformula � in the language of T without the predi
ate letters P;Q1; : : : ;Qnsu
h that T j= 8x(Px$ �(x)).Obviously, for any expli
itly-P;Q-de�ning theory T every model of T willbe P;Q-minimal, be
ause no minimization whatsoever of P with Q1; : : : ;Qnas variable predi
ates 
an be a
hieved, the extension of P being 
ompletelydetermined by the extensions of symbols other than P;Q1; : : : ;Qn. It ismore interesting therefore, to look at Cir
(T : P;Q) rather than T. Doingso, Perlis and Minker propose the following: If Cir
(T : P;Q) is expli
itly-P;Q-de�ning, then every model of Cir
(T : P;Q) is a P;Q-minimal model ofT. We will now present an example that proves this proposition to be false.The idea is to de�ne a theory T as a disjun
tion of two theories T1 and T2so that the following holds:a) T2 is expli
itly-P;Q-de�ning.



6b) For any model M of T := T1 _ T2: If Mj=Cir
(T : P;Q), then Mj=T2.
) There exists a model M0 of Cir
(T : P;Q) that 
an be P;Q-redu
ed by amodel N0 of T1.a) and b) then show Cir
(T : P;Q) to be expli
itly-P;Q-de�ning, while 
)establishes the existen
e of a model ofCir
(T : P;Q) that is not P;Q-minimal.For the de�nition of T we use two binary predi
ate symbols P and R.Minimization will be with respe
t to P, while R will remain �xed, i.e. thereare no variable predi
ates. T1 is an adaptation of an example �rst used in[3℄. It 
onsists of the following axioms:8x(9�1yPxy ^ 9�1yPyx) (1)8x(9yPyx! 9yPxy) (2)9=1x(9yPxy ^ 8y:Pyx) (3)The quanti�er 9�1 is an abbreviation for 'there exists at most one' whi
h
learly is expressible in �rst-order logi
.P 
an be interpreted as a representation of the su

essor fun
tion in thenatural numbers. As is shown in [3℄ and [4℄, there are no P-minimal modelsof T1.The theory T2 des
ribes binary trees. To fa
ilitate matters, we use theabbreviation 'x 2Field(P)' for the formula 9y(Pxy _ Pyx). The �rst threeaxioms of T2 then are: 8x(x 2Field(P)! 9�2yPxy) (1)8x(x 2Field(P)! 9�1yPyx) (2)9=1x(x 2Field(P) ^ 8y:Pyx) (3)The quanti�ers 9�2 and 9=1 have the obvious meaning. Finally, we makeT2 expli
itly-P-de�ning by adding the axiom8xy(Pxy $ Rxy): (4)It remains to show that T := T1 _ T2 has the properties b) and 
).b) is easy to see: Let M be a model of T1. In this 
ase M[P℄ 
ontainsa sequen
e of the form (a0; a1); (a1; a2); (a2; a3); : : :, where a0 is the unique



7element in the �eld of M[P℄ with no P-prede
essor. By removing (a0; a1)from M[P℄ we 
an P-redu
e M. As the set M[P℄nf(a0; a1)g is de�nable in M,we 
on
lude that M is not a model of Cir
(T : P).To prove 
) 
onsider a model M0 of T2 withM0[P℄ = M0[R℄ = f(r; a1); (a1; a2); (a2; a3); : : : (r; b1); (b1; b2); (b2; b3); : : :g;where all elements r; a1; b1; a2; b2; : : : are distin
t.M0 is not a P-minimal model of T: We 
an 
hoose any one element froma1; b1; a2; b2; : : :, e.g. ai, and de�neN0[P℄ := f(ai; ai+1); (ai+1; ai+2); : : :g;thereby obtaining a model N0 of T1 that P-redu
es M0.It is quite evident, and 
an be established by a somewhat involved te
hni-
al proof, that none of these extensions of P in P-redu
tions of M0 is de�nablein M0, hen
e M0 j= Cir
(T : P).To 
omplete the dis
ussion of our example, we may observe that T isindeed in
omplete: No model of T1 is P-minimal, neither is any binary treethat 
ontains an in�nite bran
h whi
h 
ould be used to 
onstru
t a modelof T1. Hen
e the P-minimal models of T are exa
tly the models of T2 with�nite extensions of P, parti
ularlyT j=P 9x(x 2Field(P) ^ :9yPxy):This senten
e however, does not hold in M0, and is therefore not 
ir
um-s
riptively inferable from T.Re
all from [6℄ and [4℄ that a theory T(P,Q) is 
alled well-founded withrespe
t to P;Q i� for every model M of T that is not P;Q-minimal itself,there exists a P;Q-minimal model N with N�P;QM.Con�ning the original proposition of Perlis and Minker to well-foundedtheories yields the following theorem. 1Theorem 3.3 If T(P,Q) is well-founded with respe
t to P;Q, andCir
(T : P;Q) is expli
itly-P;Q-de�ning, then every model of Cir
(T : P;Q)is P;Q-minimal.1As an anonymous referee pointed out, this theorem in its present form has already beengiven in [1℄. P.Besnard quotes the Perlis and Minker-Paper as his sour
e for the theorembut does not 
omment on the signi�
an
e of the dis
repan
y between the theorem as givenby him and as found in [8℄



8Proof: Let M j= Cir
(T : P;Q). Assume that there exists a model N0 ofT with N0�P;QM.From the well-foundedness of T we know that either N0 is already P;Q-minimal itself, or there exists a P;Q-minimal model N1 with N1�P;QN0. Inboth 
ases we 
on
lude that N�P;QM for some P;Q-minimal model N. As N isalso a model of Cir
(T : P;Q), and Cir
(T : P;Q) is expli
itly-P;Q-de�ning,this leads to a 
ontradi
tion: In both M and N the senten
e 8x(Px$ �(x))holds, with a formula � that does not 
ontain P;Q1; : : : ;Qn. Consequently,the extension of P is the same in M and N, a 
ontradi
tion to N�P;QM.Hen
e there is no model that P;Q-redu
es M, i.e. M is P;Q-minimal.Note that the theory Qb ^ 8x(Qx! Px) whi
h Perlis and Minker usedto illustrate their theorem is well-founded with respe
t to P, and therefore isindeed P-
omplete.Perlis and Minker further present a generalization of their theorem onexpli
itly-P;Q-de�ning theories to a 
lass of theories 
alled disjun
tively-P;Q-de�ning. This generalization naturally is also prey to our 
ounterexample,but adding the 
ondition of well-foundedness here too is suÆ
ient to restorethe theorem.4 Completeness and Redu
ibilityCir
II(T : P;Q) is 
alled redu
ible if there is a �rst-order senten
e � su
h thatCir
II(T : P;Q) and � are equivalent, i.e. have the same models. Redu
ibilityand Completeness have generally been treated as two quite seperate prob-lems. It is an interesting phenomenon however, that in many 
ases these twonotions 
oin
ide: For many theories T that 
an be shown to be 
ompleteCir
II(T : P;Q) is redu
ible and vi
e versa. As an example we mention the
lass of theories for whi
h Rabinov proves redu
ibility in [9℄. The theories inthis 
lass are identi�ed by a synta
ti
 stru
ture generalized from the sepera-ble formulas of [5℄. It is not diÆ
ult to prove that these theories also satisfythe 
ondition of lemma 3.1, whi
h then establishes their 
ompleteness.To shed some more light on the relation between 
ompleteness and re-du
ibility we propose the following:Theorem 4.1 The following are equivalent:



9(i) Every model of Cir
(T : P;Q) is P;Q-minimal.(ii) T is P;Q-
omplete and Cir
II(T : P;Q) is redu
ible.Proof: The impli
ation (ii))(i) is easy to prove: As Cir
II(T : P;Q)is redu
ible, there is a �rst-order senten
e � su
h that a model M of T isP;Q-minimal i� Mj= �. In parti
ular Tj=P;Q �.Let Mj= Cir
(T : P;Q). From P;Q-
ompleteness of T and Tj=P;Q � fol-lows Cir
(T : P;Q)` �, hen
e Mj= �, and M is P;Q-minimal.For the impli
ation (i))(ii) it remains to show that (i) implies redu
ibil-ity. This follows easily with the following lemma.Lemma 4.2 If every model of Cir
(T : P;Q) is P;Q-minimal, then thereexists a �nite subset � of Cir
(T : P;Q) that is equivalent to Cir
(T : P;Q).Informally speaking, lemma 4.2 states that whenever (i) holdsCir
(T : P;Q)
ontains only a �nite amount of information.Now suppose (i) holds for T(P,Q), and � � Cir
(T : P;Q) as providedby lemma 4.2. We re
eive the following list of equivalen
es:M j= Cir
II(T : P;Q)i� M is P;Q�minimali� M j= Cir
(T : P;Q) (by (i))i� M j= �Hen
e Cir
II(T : P;Q) 
an be redu
ed to the 
onjun
tion of the senten
es in�. The proof of lemma 4.2 relies on an ultraprodu
t 
onstru
tion. We give avery brief summary of this method here. A good introdu
tion to this subje
t
an be found in se
tion 4.1 of [2℄.The ultraprodu
t 
onstru
tion is an important method of 
onstru
tingnew models from a given (usually in�nite) set fMi j i 2 Ig of models for alanguage L. It relies 
ru
ially on the 
on
ept of ultra�lters whi
h is de�nedas follows.Given some set I a subset D of 2I is 
alled an ultra�lter over I i�(i) ; 62 D (ii) If x2D and x�y then y2D(iii) For all x,y2D: x\y2D (iv) For all x 2 2I: x2D or I n x 2 D.



10An ultra�lter is 
alled prin
ipal i� there is a x�I su
h that for all y�I:y 2 D i� x � y.Elements of an ultra�lter over I 
an be thought of as 'large' subsets of Ior, somewhat more pre
isely, subsets of I 'in
luding the signi�
ant part of I'.Given a set fMi j i 2 Ig and an ultra�lter D over I the ultraprodu
tQDMi is de�ned as follows:� To obtain the domain of QDMi we de�ne an equivalen
e relation �Don the Cartesian produ
t of the domains of the individual Mi's by(ai)i2I �D (bi)i2I i� fi j ai = big 2 D:The domain of QDMi then is the set of equivalen
e 
lasses with respe
tto this relation.� Let us assume that L 
ontains a relation symbol R of arity one. Wegive the de�nition of QDMi[R℄ as an example for how the extensions ofsymbols in L ar de�ned: The equivalen
e 
lass of (ai)i2I with respe
tto �D is in QDMi[R℄ i� fi j ai 2 Mi[R℄g 2 D.This somewhat tedious set of de�nitions rewards us with the fundamentaltheorem of ultraprodu
ts whi
h, in its essen
e, states that for all �rst-ordersenten
es � in L: YD Mi j= � i� fi j Mi j= �g 2 D:Proof of lemma 4.2:Suppose (i) holds for T(P,Q). If Cir
(T : P;Q) is in
onsistent, then 
om-pa
tness of �rst-order logi
 yields the existen
e of a �nite in
onsistent subset� of Cir
(T : P;Q). Assume therefore that Cir
(T : P;Q) is 
onsistent. As-sume that � 6j= Cir
(T : P;Q) for all �nite � � Cir
(T : P;Q). We thenhave: For all �nite � � Cir
(T : P;Q) there is a model M� and a senten
e � 2 Cir
(T : P;Q) su
h that M� j= � [ f: �g.Let Cir
(T : P;Q)=f�0; �1; �2; : : :g. Without loss of generality we mayassume that �0=T. For m � 0 we de�ne:�m := f�i j i � mg; Mm := M�m and  m :=  �m:



11As Mm j= : m, there is a model M0m of T(P,Q) with M0m�P;QMm for allm � 0. From the models Mm and M0m (m � 0) we 
an now 
onstru
t modelsM and M0 of T(P,Q) with M0�P;QM and Mj=Cir
(T : P;Q), a 
ontradi
tionto (i).To obtain the models M and M0 let D be an arbitrary nonprin
ipal ultra-�lter over the natural numbers. De�neM :=YD Mm and M0 :=YD M0m:M is a model of Cir
(T : P;Q): This follows from the fundamental theoremof ultraprodu
ts and the fa
t that Mm j= �i for all �i 2 Cir
(T : P;Q) andm � i. (Note that fm j m � ig 2 D for all i.) Similarly M0 j= T(P,Q). AsM0m[P ℄ � Mm[P ℄ for all m � 0 we may �nally 
on
lude that M0[P ℄ � M[P ℄.Corollary 4.3 If T(P,Q) is well-founded with respe
t to P;Q, andCir
(T : P;Q) is expli
itly-P;Q-de�ning, then Cir
II(T : P;Q) is redu
ible.Proof: Theorem 3.3 and 4.1.5 Con
lusionWhile 
ir
ums
ription in some 
ases provides a simple and eÆ
ient way ofdes
ribing minimality, there is no getting around the fa
t that it must fail inothers.It is very desirable, therefore, to �nd more pre
ise and meaningful 
har-a
terizations of the 
lasses of theories for whi
h 
ir
ums
ription is suited ornot. Theorem 3.3 gives eviden
e that well-foundedness might be a 
ru
ialproperty that deserves some attention.Theorem 4.1 gives additional signi�
an
e to the 
lass of theories whi
hsatisfy (i). Not only is this property suÆ
ient to grant redu
ibility apart from
ompleteness; it also is a ne
essary one if not at least one of the two mainversions of 
ir
ums
ription, variable- and se
ond-order-
ir
ums
ription, is tofail as a synta
ti
 
ounterpart to minimal entailment.There is another angle under whi
h Theorem 4.1 
an be viewed: It tellsus that while working inside the 
lass given by (i) one does not have to worry,



12in prin
iple, whi
h of the two major versions of 
ir
ums
ription to use. Theyboth perform equally well. (This, of 
ourse, does not say anything aboutwhi
h version to 
hoose in pra
ti
e: For a given theory inside this 
lass itmay still be mu
h easier to 
ompute the �rst-order formula to whi
h se
ond-order 
ir
ums
ription 
an be redu
ed than to �nd a meaningful instan
e ofthe variable-
ir
ums
ription s
hema - or vi
e versa.)Outside this 
lass matters are not that simple. There are theories whi
hare redu
ible but not 
omplete and others that are 
omplete but not re-du
ible. Thus there is no natural preferen
e of one of these two versions of
ir
ums
ription over the other.Referen
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