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Abstract

In this paper we demonstrate that some results on the complete-
ness of P-defining theories published earlier are incorrect. We point
out that by restricting the original propositions to well-founded theo-
ries results somewhat weaker than the origninal ones can be retained.
We also we present a theorem that provides some insight into the
relation between completeness and reducibility and helps to identify
the theories whose minimal models can be adequately handled with
circumscription.



1 Introduction

The concept of P-minimal models of first-order sentences was introduced as a
formalization of nonmonotonic reasoning in [7]. There are several approaches
to capturing P-minimality syntactically. Usually either a second-order for-
mula axiomatizing minimality, or a first-order sentence schema, yielding an
essentially weaker description of minimality, are used.

While in the first case the question arises whether the second-order cir-
cumscription formula is equivalent to some first-order formula, one has to
contend with the problem of completeness in the second case. Informally
speaking, a first-order sentence T is said to be complete if the sentences that
can be deduced from the circumscription schema of T are precisely those that
are true in all minimal models of T. Hence it is the class of complete sen-
tences for which the circumscription schema is a fully appropriate means of
determining everything one might wish to know about their minimal models.

Unfortunately, completeness seems to be a rather scarce quality among
first-order formulas. Davis ([3]) gave a first example of a theory that fails
to be complete. Perlis and Minker ([8]) studied the problem of completeness
in some detail, identifying various classes of theories for which completeness
holds. For some of these classes, however, the results stated by Perlis and
Minker are incorrect.

After briefly reviewing the fundamental definitions in section 2, we will
demonstrate this by giving a counterexample in section 3. Section 4 presents
a new theorem providing some insight into the relation between completeness
and reducibility.

2 Fundamentals

We will be concerned with that version of circumscription that has been
called variable circumscription in [8]. The following is a brief summary of
the fundamental definitions.

Let T(P,Q) be a first-order sentence in a language containing the predi-
cate symbols P and Qq, ..., Q,, (this list will be abbreviated by Q).

Let M and N be models of T(P,Q). We say that N P;Q-reduces M (writ-
ing N<p.qM) if the domains of the two models are the same, the extensions
of symbols other than P and Qy,...,Q,, are the same in M and N, and N[P]



is a proper subset of M[P]. No restriction is imposed upon the extensions of
the Q;. They may be varied freely in order to minimize the extension of P.
A model of T(P,Q) that cannot be P;Q-reduced by any other model of
T(P,Q) is called a P;Q-minimal model of T(P,Q).
The class of P;Q-minimal models of T(P,Q) can be axiomatized using
the second-order circumscription formula:

Ciren(T : P;Q) := T(P,Q) AVp,q(T(p,q) Ap CP =P Cp).

Here p and qy,...,q, are second-order predicate variables of the same arity
as P and Q,...,Q, respectively. As a first order approximation of this
second-order formula we define a sentence schema of the form

T(®, )N ®CP P C®,

where ® and ¥,,..., ¥, are formulas in the language of T, with a number
of free variables at least as great as the arities of P and Q,...,Q,, respec-
tively. The formula T(®, ¥) is obtained from T(P,Q) by replacing every
expression Pt;...t, and Q;sy...s; by ®(ty,...,t,) and ¥,(sy,...,s;). Here
®(ty,...,t,) is the result of substituting ti, ..., t, for the first k free variables
of ®. Any remaining free variables of & are universally quantified. Similarly
for W;(s1,...,s))-

The union of T(P,Q) and all instances of this schema is denoted by
Circ(T : P;Q).

Circ(T : P;Q) expresses the minimality of models of T(P,Q) in regard
to definable subsets. More precisely: A model M of T(P,Q) is a model of
Cire(T : P;Q) iff for all models N that P;Q-reduce M one of the extensions
N[P],N[Q1],...,N[Q,] is not definable in M.

It is noteworthy, that Circ(T : P;Q) does not necessarily yield the best
possible first-order description of P;Q-minimal models of T(P,Q). There are
theories T(P,Q) for which a suitable first-order sentence fully characterizes
the class of their P;Q-minimal models, but Circ(T : P;Q)does not.

We are now in a position to define the crucial notions of minimal entail-
ment and circumscriptive inference (cf.[7]): We say that T(P,Q) minimally
entails a first order formula ¢ (writing T(P,Q)=p.q ¢) if ¢ holds in all P;Q-
minimal models of T(P,Q). ¢ is said to be circumscriptively inferable from
T(P,Q) (writing T(P,Q)tFp.q ¢) if Circ(T : P;Q) F ¢.



As Cire(T : P;Q) is intended to be a syntactic representation of P;Q-
minimality, the question to address now is: To what extend do the two
relations |=p.q and bp.q coincide?

As McCarthy has shown ([7]), Tkp.q ¢ always implies T}=p.q ¢, but the
converse does not hold ([3]). Theories for which T'=p.q ¢ also implies Ttp.q ¢
will be called P;Q-complete.

3 Completeness

In this section we will discuss some of the results on completeness presented
in [8]. It will be shown that the results on explicitly-P;Q-defining theories
presented in this paper need to be revised.

We begin with restating lemma 4.1 of [8], a basic criterion for complete-
ness.

Lemma 3.1 If every model of Circ(T : P;Q) is P;Q-minimal, then T(P,Q)
is P;Q-complete.

In what follows, Perlis and Minker claim that the prerequisite of this
lemma is fulfilled by a class of theories we are now to investigate.

Definition 3.2 A theory T is called explicitly-P;Q-defining if there exists a
formula @ in the language of T without the predicate letters P,Qq,...,Q,
such that T = Vx(Px « ®(x)).

Obviously, for any explicitly-P;Q-defining theory T every model of T will
be P;Q-minimal, because no minimization whatsoever of P with Q,...,Q,
as variable predicates can be achieved, the extension of P being completely
determined by the extensions of symbols other than P,Q,...,Q,. It is
more interesting therefore, to look at Circ(T : P;Q) rather than T. Doing
so, Perlis and Minker propose the following: If Circ(T : P;Q) is explicitly-
P;Q-defining, then every model of Cire(T : P;Q) is a P;Q-minimal model of
T.

We will now present an example that proves this proposition to be false.
The idea is to define a theory T as a disjunction of two theories T; and T,
so that the following holds:

a) Ty is explicitly-P;Q-defining.



b) For any model M of T := Ty V Ty: If M= Cire(T : P;Q), then M[=T,.

c¢) There exists a model My of Circ(T : P;Q) that can be P;Q-reduced by a
model NO of Tl-

a) and b) then show Circ(T : P;Q) to be explicitly-P;Q-defining, while c)
establishes the existence of a model of Cire(T : P;Q) that is not P;Q-minimal.

For the definition of T we use two binary predicate symbols P and R.
Minimization will be with respect to P, while R will remain fixed, i.e. there
are no variable predicates. T; is an adaptation of an example first used in
[3]. Tt consists of the following axioms:

Vz(3='yPzy A 3='yPyx) (1)
Ve (IyPyr — JyPry) (2)
37'2(3yPry A Vy—Pyz) (3)

The quantifier 3<! is an abbreviation for 'there exists at most one’ which
clearly is expressible in first-order logic.

P can be interpreted as a representation of the successor function in the
natural numbers. As is shown in [3] and [4], there are no P-minimal models
of T;.

The theory T, describes binary trees. To facilitate matters, we use the
abbreviation 'z € Field(P)’ for the formula Jy(Pzy V Pyz). The first three
axioms of Ty then are:

Vo (z € Field(P) — 3=*yPay) (1)
Vz(z € Field(P) — 35'yPyz) (2)
37 'z(z € Field(P) A Vy—-Pyxz) (3)

The quantifiers 3% and 3=! have the obvious meaning. Finally, we make
Ty explicitly-P-defining by adding the axiom

Vzy(Pzy + Razxy). (4)

It remains to show that T := T; V Ty has the properties b) and c).
b) is easy to see: Let M be a model of T;. In this case M[P] contains
a sequence of the form (ag,a1), (a1, as), (az, as), ..., where aq is the unique



element in the field of M[P] with no P-predecessor. By removing (ag, a;)
from M[P] we can P-reduce M. As the set M[P]\{(ag, a;)} is definable in M,
we conclude that M is not a model of Circ(T : P).

To prove c¢) consider a model My of Ty with

Mg[P] = My[R] = {(r, a1), (a1, a2), (az, a3), ... (r,b1), (b1, bs), (ba, bs),...},

where all elements r, aq, by, as, by, ... are distinct.
My is not a P-minimal model of T: We can choose any one element from
a, by, ag, bo, ..., e.g. a;, and define

NU[P] = {(ai’ ai+1)a (ai+1a ai+2)a - '}a

thereby obtaining a model Ny of T; that P-reduces M.

It is quite evident, and can be established by a somewhat involved techni-
cal proof, that none of these extensions of P in P-reductions of My is definable
in My, hence My |= Cire(T : P).

To complete the discussion of our example, we may observe that T is
indeed incomplete: No model of T; is P-minimal, neither is any binary tree
that contains an infinite branch which could be used to construct a model
of T;. Hence the P-minimal models of T are exactly the models of Ty with
finite extensions of P, particularly

T =p dz(z € Field(P) A —3yPzy).

This sentence however, does not hold in My, and is therefore not circum-
scriptively inferable from T.

Recall from [6] and [4] that a theory T(P,Q) is called well-founded with
respect to P;Q iff for every model M of T that is not P;Q-minimal itself,
there exists a P;Q-minimal model N with N<p.qM.

Confining the original proposition of Perlis and Minker to well-founded
theories yields the following theorem. *

Theorem 3.3 If T(P,Q) is well-founded with respect to P;Q, and
Cire(T : P;Q) is explicitly-P;Q-defining, then every model of Circ(T : P;Q)
is P;Q-minimal.

1 As an anonymous referee pointed out, this theorem in its present form has already been
given in [1]. P.Besnard quotes the Perlis and Minker-Paper as his source for the theorem
but does not comment on the significance of the discrepancy between the theorem as given
by him and as found in [§]



Proof: Let M = Circ(T : P;Q). Assume that there exists a model Ng of
T with No<p.qM.

From the well-foundedness of T we know that either Ny is already P;Q-
minimal itself, or there exists a P;Q-minimal model N; with N;<p.qNy. In
both cases we conclude that N<p.qM for some P;Q-minimal model N. As N is
also a model of Circ(T : P;Q), and Cire(T : P;Q) is explicitly-P;Q-defining,
this leads to a contradiction: In both M and N the sentence Vx(Px < ®(x))
holds, with a formula ® that does not contain P,Qq,...,Q,. Consequently,
the extension of P is the same in M and N, a contradiction to N<p.qM.
Hence there is no model that P;Q-reduces M, i.e. M is P;Q-minimal.

Note that the theory Qb A Vz(Qz — Pz) which Perlis and Minker used
to illustrate their theorem is well-founded with respect to P, and therefore is
indeed P-complete.

Perlis and Minker further present a generalization of their theorem on
explicitly-P;Q-defining theories to a class of theories called disjunctively-P;Q-
defining. This generalization naturally is also prey to our counterexample,
but adding the condition of well-foundedness here too is sufficient to restore
the theorem.

4 Completeness and Reducibility

Ciren(T : P;Q) is called reducible if there is a first-order sentence ¢ such that
Cireri(T : P;Q) and ¢ are equivalent, i.e. have the same models. Reducibility
and Completeness have generally been treated as two quite seperate prob-
lems. It is an interesting phenomenon however, that in many cases these two
notions coincide: For many theories T that can be shown to be complete
Cireri(T : P;Q) is reducible and vice versa. As an example we mention the
class of theories for which Rabinov proves reducibility in [9]. The theories in
this class are identified by a syntactic structure generalized from the sepera-
ble formulas of [5]. It is not difficult to prove that these theories also satisfy
the condition of lemma 3.1, which then establishes their completeness.

To shed some more light on the relation between completeness and re-
ducibility we propose the following:

Theorem 4.1 The following are equivalent:



(i) Every model of Circ(T : P;Q) is P;Q-minimal.
(ii) T is P;Q-complete and Cirey (T : P;Q) is reducible.

Proof: The implication (ii)=-(i) is easy to prove: As Circy(T : P;Q)
is reducible, there is a first-order sentence ¢ such that a model M of T is
P;Q-minimal iff M= ¢. In particular TEp.q ¢.

Let M= Cire(T : P;Q). From P;Q-completeness of T and Tkp.q ¢ fol-
lows Cire(T : P;Q)F ¢, hence M= ¢, and M is P;Q-minimal.

For the implication (i)=-(ii) it remains to show that (i) implies reducibil-
ity. This follows easily with the following lemma.

Lemma 4.2 If every model of Circ(T : P;Q) is P;Q-minimal, then there
exists a finite subset © of Circ(T : P;Q) that is equivalent to Circ(T : P;Q).

Informally speaking, lemma 4.2 states that whenever (i) holds Circ(T : P;Q)
contains only a finite amount of information.

Now suppose (i) holds for T(P,Q), and © C Cire(T : P;Q) as provided
by lemma 4.2. We receive the following list of equivalences:

M ‘: CiTCII(T : P,Q)
iff M is P;Q — minimal
iff M= Cire(T:P;Q) (by (1))
if ME=6

Hence Ciren(T : P;Q) can be reduced to the conjunction of the sentences in

.

The proof of lemma 4.2 relies on an ultraproduct construction. We give a
very brief summary of this method here. A good introduction to this subject
can be found in section 4.1 of [2].

The ultraproduct construction is an important method of constructing
new models from a given (usually infinite) set {M; | ¢ € I} of models for a
language L. It relies crucially on the concept of ultrafilters which is defined
as follows.

Given some set I a subset D of 2 is called an ultrafilter over I iff
(i) 0 ¢ D (ii) If x€éD and xCy then yeD
(iii) For all x,yeD: xNyeD  (iv) For all x € 2': xéD or I\ x € D.
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An ultrafilter is called principal iff there is a xCI such that for all yCI:
yeDiff x Cy.

Elements of an ultrafilter over I can be thought of as 'large’ subsets of 1
or, somewhat more precisely, subsets of I ’including the significant part of I'.

Given a set {M; | ¢ € I} and an ultrafilter D over I the ultraproduct
[Ip M; is defined as follows:

e To obtain the domain of [[, M; we define an equivalence relation ~p
on the Cartesian product of the domains of the individual M;’s by

(ai)ier ~p (bs)ier iff {i|a; =b;} € D.

The domain of [T M; then is the set of equivalence classes with respect
to this relation.

e Let us assume that L contains a relation symbol R of arity one. We
give the definition of []p M;[R] as an example for how the extensions of
symbols in L ar defined: The equivalence class of (a;);c; with respect
to ~p isin [Ip M;[R] iff {i|a; € M;[R]} € D.

This somewhat tedious set of definitions rewards us with the fundamental
theorem of ultraproducts which, in its essence, states that for all first-order
sentences ¢ in L:

[IM: = ¢ iff {i|M; = ¢} eD.
D

Proof of lemma 4.2:

Suppose (i) holds for T(P,Q). If Circ(T : P;Q) is inconsistent, then com-
pactness of first-order logic yields the existence of a finite inconsistent subset
© of Circ(T : P;Q). Assume therefore that Circ(T : P;Q) is consistent. As-
sume that © = Circe(T : P;Q) for all finite © C Cire(T : P;Q). We then
have: For all finite © C Circ(T : P;Q) there is a model Mg and a sentence
Yo € Cire(T : P;Q) such that Mg = © U {—9e}.

Let Circ(T : P;Q)={¢o, 1, ¢a,...}. Without loss of generality we may
assume that ¢o=T. For m > 0 we define:

Om = {¢:i | i <m}, My, := Mg, and ¢, := e,
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As M,, = —y,, there is a model M! of T(P,Q) with M/ <p.qM,, for all
m > 0. From the models M,,, and M/, (m > 0) we can now construct models
M and M' of T(P,Q) with M'<p.qM and M=Clirc(T : P;Q), a contradiction
to (i).

To obtain the models M and M’ let D be an arbitrary nonprincipal ultra-
filter over the natural numbers. Define

M .= HMm and M := HM;n
D D

M is a model of Circ(T : P;Q): This follows from the fundamental theorem
of ultraproducts and the fact that M,, | ¢; for all ¢; € Circ(T : P;Q) and
m > i. (Note that {m | m > i} € D for all ¢.) Similarly M’ = T(P,Q). As
M’ [P] C My, [P] for all m > 0 we may finally conclude that M'[P] C M[P].

Corollary 4.3 If T(P,Q) is well-founded with respect to P;Q, and
Circ(T : P;Q) is explicitly-P;Q-defining, then Circy(T : P;Q) is reducible.

Proof: Theorem 3.3 and 4.1.

5 Conclusion

While circumscription in some cases provides a simple and efficient way of
describing minimality, there is no getting around the fact that it must fail in
others.

It is very desirable, therefore, to find more precise and meaningful char-
acterizations of the classes of theories for which circumscription is suited or
not. Theorem 3.3 gives evidence that well-foundedness might be a crucial
property that deserves some attention.

Theorem 4.1 gives additional significance to the class of theories which
satisfy (i). Not only is this property sufficient to grant reducibility apart from
completeness; it also is a necessary one if not at least one of the two main
versions of circumscription, variable- and second-order-circumscription, is to
fail as a syntactic counterpart to minimal entailment.

There is another angle under which Theorem 4.1 can be viewed: It tells
us that while working inside the class given by (i) one does not have to worry,
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in principle, which of the two major versions of circumscription to use. They
both perform equally well. (This, of course, does not say anything about
which version to choose in practice: For a given theory inside this class it
may still be much easier to compute the first-order formula to which second-
order circumscription can be reduced than to find a meaningful instance of
the variable-circumscription schema - or vice versa.)

Outside this class matters are not that simple. There are theories which
are reducible but not complete and others that are complete but not re-
ducible. Thus there is no natural preference of one of these two versions of
circumscription over the other.
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