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Abstract. Most approaches to learning from incomplete data are based on the
assumption that unobserved values are missing at random (mar). While the mar
assumption, as such, is not testable, it can become testable in the context of other
distributional assumptions, e.g. the naive Bayes assumption. In this paper we in-
vestigate a method for testing the mar assumption in the presence of other dis-
tributional constraints. We present methods to (approximately) compute a test
statistic consisting of the ratio of two profile likelihood functions. This requires
the optimization of the likelihood under no assumptions on the missingness mech-
anism, for which we use our recently proposed AI & M algorithm. We present
experimental results on synthetic data that show that our approximate test statis-
tic is a good indicator for whether data is mar relative to the given distributional
assumptions.

1 Introduction

Most commonly used statistical learning methods are based on the assumption that
missing values are missing at random (mar) [7]. For many datasets this assumption is
not completely realistic. However, even when there are doubts as to the exact validity
of the mar assumption, pragmatic considerations often lead one to adopt mar-based
techniques like the ubiquitous EM algorithm. To help decide whether a method like
EM should be applied, it would be very valuable to know whether the data at hand is
mar or not. In this paper we investigate a method for performing statistical tests for
mar.

We have to start with a caveat: mar is not testable [2, 6]. The exact technical con-
tent behind this statement has to be interpreted carefully: it only says that the mar-
assumption per se – without any further assumptions about the data – cannot be refuted
from the data. However, in many machine learning scenarios certain distributional as-
sumptions about the data are being made. For example, when learning a Naive Bayes
model, then the specific independence assumptions underlying Naive Bayes are made.
As pointed out in [4], the mar-assumption can become refutable in the context of such
existing assumptions on the underlying complete data distribution.

In this paper we show that a suitably defined likelihood ratio provides a test statistic
that allows us to discriminate between mar and non-mar models relative to restricted
parametric models for the complete data distribution. A crucial component in the com-
putation of the likelihood ratio is the optimization of the likelihood under no assump-
tions on the coarsening mechanism. For this purpose we employ our recently introduced
AI&M procedure [5].



2 The Likelihood Ratio Statistic

We shall work with the coarse data model [3], which allows to consider other forms of
incompleteness than missing values. In the coarse data model the mar-assumption has
its counterpart in the coarsened at random (car) assumption.

Incomplete data is a partial observation of some underlying complete data repre-
sented by a random variable � with values in a finite state space �������	��
��
�
�

������ .� has a distribution ��� for some � in a parameter space � .

The value of
�

is observed only incompletely. In the general coarse data model
such incomplete observations of

�
can be given by any subset of the state space � .

Formally, these observations are the values of a random variable � with state space��� . It is assumed that the observations � always contain the true value of
�

. The joint
distribution of � and � , then can be parameterized by ����� and a parameter vector �
from the parameter space
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The parameter space

 
sat represents the saturated coarsening model, i.e. the one that

does not encode any assumptions on how the data is coarsened. Specific assumptions on
the coarsening mechanism can be made by limiting admissible � -parameters to some
subset of

 
sat. The car assumption corresponds to the subset 

car ! �H�K�<�  sat 4 :LGM:N�	
���O;��G ! � &3( * �J� &QPR( * �$�
When ���  car one can simply write ��* for �'&)( * .

Let ST�U#%G � 
��
�
�

VG�WX+ be a sample of realizations of � . The log-likelihood ratio
based on S for testing the car-assumption against the unrestricted alternative is
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(for convenience we normalize the ratio by the sample size).
The profile log-likelihood (over � ) given a coarsening model

 ?ef 
sat is defined as
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In this paper we will only be concerned with
 �  

sat (no assumptions on the coars-
ening mechanism) and

 �  
car (car assumption). We call the resulting profile likeli-

hoods simply profile(sat)-, respectively profile(car)-likelihood, denoted
gig

sat 
 gig car.
Using profile likelihoods, (1) can be rewritten as

LR #YS<+ ! � BZ # ghg car #�j� 4 S�+ad gig sat # jj� 4 S<+�+[
 (2)



where j� and jj� are the maxima of
ghg

car #�� 4 S<+ , respectively
gig

sat #�� 4 S<+ .
The profile(car) likelihood factors asghg

car #R� 4 S=+i� Lf #%S�+ � gig FV #R� 4 S=+0

where

ghg
FV #R� 4 S=+ ��� W^`_ � log � � # � � G ^ + is the face-value log-likelihood [1], i.e.

the likelihood obtained by ignoring the missingness mechanism, and

Lf #YS�+ ! � maxD)-)] car
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We wish to compute LR #%S<+ by computing the three components Lf #YS<+0
 gig FV # j� 4S<+ , and
ghg

sat # jj� 4 S<+�+ . In most cases it will be impossible to obtain exact, closed-form
solutions for any of these three terms. We therefore have to use approximate methods.

Approximating �	� FV To compute
ghg

FV # j� 4 S<+ one has to find j� , i.e. optimize the
face-value likelihood. This can typically be accomplished by some version of the EM
algorithm. In our experiments we use the EM implementation for Bayesian networks
provided by the Hugin system (www.hugin.com). Since we are not guaranteed to find a
global maximum of ghg FV, we obtain only a lower bound on gig FV # j� 4 S<+ .
Approximating Lf 
ES�� To approximate the term B�
 Z Lf #YS<+ in (2) we have to find
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where �S ! ���G � 

���
�

��G � is an enumeration of the distinct G ^ � S , and � #��G � + is
the empirical probability of �G � in S . Thus, computing Lf #%S + is a convex optimization
problem under linear constraints of the form ��*c6H8 and � *@1 &)-$* �N*f� B . However,
since there is one constraint of the latter form for each ���=� , the number of constraints
is manageable only for very small state spaces � .

As a first simplification of the problem, we observe that since the objective function
only depends on ���* for �G�� �S , we can restrict the optimization problem to these ���*
under the linear constraints
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An optimal solution j� for # ���*"! 
��
���

 ���*$# + can be extended to an optimal solution j�A� 
car by setting j�&% &�' ! �"Bhd � �*,- �� 1 &)- �* j���* for all ���<� with ���L�)(�*�S , and j� * ! �J8

for all other G+(�,�S .
The optimization problem now is reduced to a manageable number of parameters. In

order to also obtain a manageable number of constraints, we perform the optimization
of (4) only under a subset

� #R�@�
+[

���
�

 � #R�.-X+ of the constraints (5), which is obtained



by randomly sampling � ^ � � . Since we are thus relaxing the feasible region, we
obtain an over-estimate of (4). In our experiments we found that it is sufficient to sample
approximately � � ��� constraints, i.e. adding more constraints tended not to change
the computed maximum (4) significantly.

Once a set of constraints has been generated we employ the standard Lagrange mul-
tiplier approach to perform the optimization. For the unconstrained optimization of the
dual function the PAL Java package is used (http://ftp.cse.sc.edu/bioinformatics/PAL/pal-
1.4/).

Approximating �	� sat To compute
ghg

sat # jj� 4 S<+E+ we have to maximize the profile(sat)-
likelihood. For this we use the AI&M procedure as introduced in [5]. AI&M resembles
the EM procedure for maximizing

gig
FV. Like EM, AI&M is a generic method that

has to be implemented by concrete computational procedures for specific types of para-
metric models. In our experiments we use the AI&M implementation for Bayesian net-
works as described in [5]. The AI&M procedure will usually not find a global maximum
of
gig

sat, so that as for
ghg

FV we obtain a lower bound on the correct value.
Combining our approximations for the components of (2), we obtain an approxi-

mation �LR #%S + of LR #%S<+ . Since we over-estimate Lf #YS<+ , and under-estimate
gig

FV andghg
sat, one cannot say whether �LR #%S<+ will over- or under-estimate LR #YS<+ . However,

when our approximation for
ghg

FV is better than our approximation for
ghg

sat (as can be
expected), then we will obtain an over-estimate of LR #%S<+ .
3 Generating Non-car Data

In our experiments we want to investigate how effective our computed �LR #YS<+ is for
testing car. To this end we generate incomplete data from Bayesian network models
following the general procedure described in [5]: to a Bayesian network with nodes� �3

���
�[
 ��� Boolean observation nodes obs

� ��

�
���

 obs
���

are added. The observation
nodes are randomly connected with the original nodes and among themselves. The con-
ditional probability tables for the observation nodes are randomly filled in by indepen-
dently sampling the rows from a Beta distribution with mean � and variance � . Then
complete instantiations of the extended network are sampled, giving an incomplete ob-
servations of � �3

���
�

 ��� by omitting the values for which obs

� ^ � false.
This general procedure allows us to control in various ways how non-car the gen-

erated data will be. The first way is by setting the variance � of the Beta distribution:
�c�U8 means that all rows in all conditional probability tables will be identical, and
so the obs

� ^
nodes become actually independent of their parents, meaning that the data

becomes car (indeed, missing completely at random). Large values of � lead to nearly
deterministic, complex dependency patterns of the obs

� ^
variables on their parents,

which allows for highly non-car mechanisms.
A second way of controlling car is by taking mixtures of several coarsening mecha-

nisms: to generate a sample of size
Z

, �,6cB different coarsening models are generated
by our standard method, and from each a sample of size

Z 
�� is generated. By the fol-
lowing theorem, the data thus generated becomes car for �
	�� .



Theorem 1. Let � be a probability distribution on
 

sat such that
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There exists �
	 �  car such that for � � 
V� . 

�
��� �  sat iid sampled according to � :� � # lim ��� 	=B 
�
 � �^`_ � � ^ � ��	 +i�CB . Furthermore, for fixed � �<� :� � # lim ��� 	=B 
�
 � �^`_ � � �
( D �,� � �
( D�� +h�CB .
The proof of the theorem is almost immediate by an appeal to the strong laws of

large numbers. The theorem is of some independent interest in that it says that random
mixtures of coarsening mechanisms tend to become car. This is relevant for real-life
datasets, which often can be assumed to be produced by mixtures of coarsening mech-
anisms (for example, different employees entering customer’s records into a database
may exhibit different data coarsening mechanisms). However, one must also take into
account that the symmetry condition (6) is satisfied for mathematically natural sampling
distributions like Lebesgue measure, but not for most real-life sampling distributions
over coarsening mechanisms.

Since our random construction of coarsening mechanisms is completely symmetric
with respect to different values of the random variables, the symmetry condition (6) is
satisfied, and our data becomes car for � 	�� .

4 Experiments

In all our experiments we first select a Bayesian network from which incomplete data
then is generated as described in the preceding section. In all experiments the structure
of the network used for generating the data also defines the parametric model � used in
computing �LR #%S<+ . Thus, in our experiments the assumptions made for the underlying
complete data distribution are actually correct. Most of our experiments are based on the
standard benchmark ’Asia’ and ’Alarm’ Bayesian networks. Asia has 8 nodes, defining
a state space � of size 256. Alarm has 37 nodes with 4 � 4 �CB���� �3BQ8 ��� .

As a reference point for further experiments we use the following base experi-
ment: using Asia as the underlying complete data model, 100 incomplete datasets are
generated from 100 different coarsening models. Each dataset is of size 5000, and
the parameters of the Beta distribution used in constructing the coarsening model are
�<� 8 �`B)
 � � 8 � 8�� . This setting gives a distribution over parameters that is quite highly
concentrated near extreme values 0 and 1, leading to an incomplete data distribution
that is strongly non-car according to our heuristic described in Section 3.

Figure 1 a) shows the distribution over computed �LR #%S<+ values for the differ-
ent datasets. The variance in the results is due to variations at three different levels:
first, the different randomly generated coarsening models lead to a different expected
value �

�
LR #%S�+�� ; second, the value LR #%S<+ for the actually sampled dataset varies from

�
�
LR #%S<+�� ; third, our approximation �LR #%S<+ varies from LR #YS�+ . Figure 1 b) shows the

result of sampling 100 different datasets each from only three different coarsening mod-
els. This clearly indicates that the primary source of variance in a) is the difference in
the coarsening models (of course, this can change for smaller sample-sizes). Finally,
for the model inducing the leftmost cluster in b), and one dataset sampled from that
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Fig. 1. Likelihood ratio distribution

model, the computation of LR #YS�+ was repeated 100 times. Figure 1 c) shows the result
(black histogram), and, for comparison the result from 100 different datasets (light gray
histogram – this is the same as in b)). From this we infer that the variance observed
in b) for fixed models is mostly due to the sample variance of the datasets, and less to
the variance in the randomized computation of �LR #YS<+ . The bi-modality observed in the
black histogram in c) can be traced back to the computation of

ghg
FV # j�$S<+ , i.e. there

appear to have been (at least) two different convergence points of EM.
In summary, the results shown in Figure 1 show that our computed �LR #%S<+ measure

actual properties of the given model and data, and is not dominated by noise in the
computation. We can now proceed to investigate how good an indicator for car-ness this
value is. To this end we now vary the coarse data generation of the base experiment in
two ways: in one experiment we use smaller variance parameters �=� 8 � 8 � and �<�J8 in
the Beta distribution. In a second experiment we leave the Beta distribution unchanged,
but create mixtures with �X� � and � � BQ8 components. Figure 2 shows the results.
The left histograms in both rows are just the results from the base experiment again.
As we move from left to right (in both rows), the data becomes more car according
to our heuristic car-measures � and � (it is truly car in the �C� 8 experiment). The
corresponding increasing concentration of �LR #YS<+ near 0 shows that it can indeed serve
as statistic for discriminating between car and non-car models.

Due to its quite small state space, models based on the Asia network do not pose the
full computational challenge of computing �LR #%S<+ . An experiment with two different
variance settings has also been conducted for the Alarm network. Figure 3 shows the
result. We observe that here the computed �LR #YS�+ values are all positive. Since the
actual LR #%S<+ values must be � 8 , this means that the over-estimate of Lf #YS<+ , combined
with the under-estimate of

ghg
sat here lead to a significant over-estimate of LR #%S�+ .

Nevertheless, the computed �LR #%S<+ discriminates quite successfully between the car
and non-car models.

As a final test for the �LR #%S + computation we use data from three different arti-
ficially constructed Bayesian networks: all networks contain seven binary nodes. The
first network (’simple’) contains no edges; the second network (’medium’) contains
14 randomly inserted edges, and the third (’dense’) is a fully connected network (21
edges). The conditional probability tables are randomly generated. The three models
represent decreasingly restrictive distributional assumptions, with the dense network
not encoding any restrictions. We again sample 100 datasets from 100 different random
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Fig. 2. Computed likelihood ratios and heuristic car-measures (Asia)

coarsening models (sample-size 5000, � � 8'� B , �7�F8 � 8�� ). Figure 4 shows the result.
As required by the fact that car is not testable without any restrictive assumptions on
the full data model, we observe that the �LR #YS<+ -values for the dense network show no
indication that the data is not car. The more restricted the model, the easier it becomes
to refute the car-assumption based on �LR #%S<+ .
5 Conclusion

Utilizing our recently introduced AI&M procedure for optimizing the profile(sat)-likeli-
hood, we have shown how to compute an approximate likelihood-ratio statistic for test-
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Fig. 3. Computed likelihood ratios and heuristic car-measures (Alarm)
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ing the car assumption in the context of distributional constraints on the underlying
complete data distribution. Initial experiments show that we obtain a quite effective
measure for discriminating between car and non-car incomplete data distributions.

To obtain a practical test for a particular dataset under consideration, one will also
need a way to specify a critical value � , so that the car hypothesis will be accepted iff
�LR #%S�+�6�� . At this point there exist no general, theoretically well-founded rules for

setting � . The best way to proceed, therefore, is to empirically determine for a given
state space � and a parametric model � , the sampling distribution of �LR #YS<+ under the
car assumption, and to set � according to the observed empirical distribution and the
desired confidence level.

Tests for car can also play a role in model selection: when car is rejected relative
to a current parametric complete data model � , one may either retain � and employ
techniques not relying on car, or one can relax the parametric model, thus hoping to
make it consistent with car (which ultimately it will, as illustrated in Figure 4).
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