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Abstract. We introduce a set of transformations on the set of all pridityabis-
tributions over a finite state space, and show that thessftranations are the
only ones that preserve certain elementary probabilistationships. This result
provides a new perspective on a variety of probabilistieiahce problems in
which invariance considerations play a role. Two particalaplications we con-
sider in this paper are the development of an equivariaased approach to the
problem of measure selection, and a new justification fodelia¢’s prior as the
distribution that encodes prior ignorance about the patama a multinomial
distribution.

1 Introduction

Many rationality principles for probabilistic and stattstl inference are based on con-
siderations of indifference and symmetry. An early expis®f such a principle is
Laplace’s principle of insufficient reasof©ne regards two events as equally probable
when one can see no reason that would make one more probavietth other, be-
cause, even though there is an unequal possibility betwessmn,twe know not which
way, and this uncertainty makes us look on each as if it werprabable as the
other”(Laplace, Collected Works vol. VIII, cited after [3]). Pdiples of indifference
only lead to straightforward rules for probability assessits when the task is to assign
probabilities to a finite number of different alternativasne of which is distinguished
from the others by any information we have. In this case adirahtives will have to
be assigned equal probabilities. Such a formalizationdifference by equiprobability
becomes notoriously problematic when from state spacesitélfi many alternatives
we turn to infinite state spaces: on countably infinite setsimiéorm probability dis-
tributions exist, and on uncountably infinite sets the cphed uniformity becomes
ambiguous (as evidenced by the famous Bertrand’s paradd2]p

On (uncountably) infinite state spaces concepts of unifiyroni indifference have
to be formalized on the basis of certain transformationshef gtate space: two sets
of states are to be considered equiprobable, if one can hsftraned into the other
using some natural transformationThis, of course, raises the sticky question what
transformations are to be considered as natural and pidjggtreserving. However,
for a given state space, and a given class of probabilistarénce tasks, it often is
possible to identify natural transformation, so that thkison to the inference tasks
(which, in particular, can be probability assessmentsjukhbe invariant under the



transformations. The widely accepted resolution of Bedia paradox, for example, is
based on such considerations of invariance under certisfiormations.

In this paper we are concerned with probabilistic inferepoeblems that pertain
to probability distributions on finite state spaces, which by far the most widely
used type of distributions used for probabilistic modejlim artificial intelligence.
As indicated above, when dealing with finite state space®ttees not seem to be
any problem of capturing indifference principles with gorabability. However, even
though the underlying space of alternatives may be finiee ofject of our study very
often is the infinite set of probability distributions on tispace, i.e. for the state space
S ={s1,...,s,} the(n — 1)-dimensional probability polytope

A" ={(pr,... ,pn) ER" | pi € [0,1],) pi =1}
i

The objective of this paper now can be formulated as follows:investigate what
natural transformations there exist 4f*, such that inference problems that pertain to
A™ should be solved in a way that is invariant under these taansdtions. In section 2
we identify a unique class of transformations that can bangegd as most natural in that
they alone preserve certain relevant relationships betweints of A™. In sections 3
and 4 we apply this result to the problems of measure sefeatid choice of Bayesian
priors, respectively.

An extended version of this paper containing the proofs ebtems is available as

9.

2 Representation Theorem

The nature of the result we present in this section can beskplained by an analogy:
suppose, for the sake of the argument, that the set of pritgatistributions we are
concerned with is parameterized by the whole Euclideanesfiacrather than the sub-
setA™. Suppose, too, that all inputs and outputs for a given typgefefence problem
consist of objects (e.g. points, convex subsets,) in R”. In most cases, one would
then probably require of a rational solution to the inferepooblem that it does not de-
pend on the choice of the coordinate system; specificalbl] ihputs are transformed
by a translation, i.e. by adding some constant offsetR", then the outputs computed
for the transformed inputs should be just the outputs coetptdr the original inputs,
also translated by:

sol(z + r) = sol(z) + r, 1)

where: stands for the inputs arsbl for the solution of an inference problem. Condition
(1) expresses aaquivariance principlewhen the problem is transformed in a certain
way, then so should be its solution (not to be confused mithriance principlesac-
cording to which certain things should be unaffected by asfarmation).

The question we now address is the following: what simplapoécal transforma-
tions of the setA™ exist, so that for inference problems whose inputs and dsitpre
objects inA™ one would require an equivariance property analogous ®lityitively,



we are looking for transformations af” that can be seen as merely a change of co-
ordinate system, and that leave all relevant geometricttres intact. The following
definition collects some key concepts we will use.

Definition 1. Atransformatiorof a setS is any bijective mappingof S onto itself. We
often writets rather thant(s). For a probability distributionp = (p1,... ,p,) € A"
the set{i € {1,... ,n} | p; > 0} is called theset of supporbf p, denotedsupportp).
A transformatiort of A” is said to

— preserve cardinalities of suppdirfor all p: | supportp) |=| supporttp) |
— preserve sets of suppaftor all p: supportp) = supportip).

A distributionp is called amixture of p’ andp” if there exists\ € [0, 1] such that
p = Ap’ + (1 — X\)p” (in other words,p is a convex combination gf' andp”). A
transformationt is said to

— preserve mixturetf for all p,p',p": if p is a mixture ofp’ andp”, thentp is a
mixture oftp’ andip”.

The set of support of a distributiop € A™ can be seen as its most fundamen-
tal feature: it identifies the subset of states that are todmsidered as possible at all,
and thus identifies the relevant state space (as opposee torinal state spac#,
which may contain states that are effectively ruled out by with p; = 0). When
the association of the components of a distributipwith the elements of the state
spaceS = {s1,...,s,} Is fixed, thenp andp’ with different sets of support repre-
sent completely incompatible probabilistic models thatildanot be transformed into
one another by a natural transformation. In this case, thexeone would require a
transformation to preserve sets of support.

A permutationof A" is a transformation that mag®:, ... ,pn) t0 (pr(1),---
Px(n)), Wheren is a permutation off1,... ,n}. Permutations preserve cardinalities
of support, but not sets of support. Permutations\éf are transformations that are
required to preserve the semantics of the element$"oéfter a reordering of the state
spaces: if S is reordered according to a permutationthenp andzp are the same
probability distribution onS. Apart from this particular need for permutations, they do
not seem to have any role as a meaningful transformatiatfof

That a distributiorp is a mixture ofp’ andp” is an elementary probabilistic rela-
tion between the three distributions. It expresses thetffettthe probabilistic moded
can arise as an approximation to a finer model that wouldrdjetsh the two distinct
distributionsp’ andp’ on S, each of which is appropriate in a separate context. For
instancep’ andp” might be the distributions of = {jam, heavy trafficlight traffic}
that represent the travel conditions on weekdays and welskesspectively. A mixture
of the two then will represent the probabilities of travehddions when no distinction
is made between the different days of the week.

That a transformation preserves mixtures, thus, is a Nategairement that it does
not destroy elementary probabilistic relationships. @bgly, preservation of mixtures
immediately implies preservation of convexity, i.ezipreserves mixtures and is a
convex subset ofA\”, thent A also is convex.

We now introduce the class of transformations that we wiltbecerned with in the
rest of this paper. We denote wiltl™ the set of positive real numbers.



Definition 2. Letr = (ry,... ,r,) € (R™)". Define forp = (py, ... ,p,) € A"
tr(p) := (r1p1, ... 7Tnpn)/zripi-
i=1

Also letT,, := {t. | r € (RT)"}.

Note that we have, = t,. if r' is obtained from by multiplying each component
with a constant > 0. We can now formulate our main result.

Theorem 1. Letn > 3 andt be a transformation ofA\”,

(i) t preserves sets of support and mixtures éf 7,.
(i) t preserves cardinalities of support and mixtures i ¢' o w for some permutation
m and some’ € T,,.

The statements (i) and (ii) do not hold far= 2: A? is just the intervalo, 1], and
every monotone bijection db, 1] satisfies (i) and (ii). A weaker form of this theorem
was already reported in [8]. The proof of the theorem closellpws the proof of the
related representation theorem for collineations in mije geometry. The following
example illustrates how transformations 7, can arise in practice.

Example 1.In a study of commuter habits it is undertaken to estimatedlaive use
of buses, private cars and bicycles as a means of transportd@o this end, a group of
research assistants is sent out one day to perform a traffict@m a number of main
roads into the city. They are given count sheets and shottenrinstructions. Two dif-
ferent sets of instructions were produced in the prepargtiase of the study: the first
set advised the assistants to make one mark for every busnchbicycle, respectively,
in the appropriate column of the count sheet. The secondgroballenging) set of
instructions specified to make as many marks as there arallggbeople travelling in
(respectively on) the observed vehicles. By accident, soiitiee assistants were handed
instructions of the first kind, others those of the secondikin

Assume that on all roads being watched in the study, the geeramber of people
travelling in a bus, car, or on a bicycle is the same, e.g. 18),dnd 1.01, respectively.
Also assume that the number of vehicles observed on eachiscaallarge, that the
actually observed numbers are very close to these averages.

Suppose, now, that we are more interested in the relativguémecy of bus, car
and bicycle use, rather than in absolute counts. Supposethat we prefer the num-
bers that would have been produced by the use of the secord sedttructions. If,
then, an assistant hands in counts that were produced usinfirst set of instruc-
tions, and that show frequencigs= (fi, f2, f3) € A? for the three modes of trans-
portation, then we obtain the frequencies we really want pyhydng the transfor-
mationt, with » = (10,1.5,1.01). Conversely, if we prefer the first set of instruc-
tions, and are given frequencies generated by the seconchnvigansform them using
r' = (1/10,1/1.5,1/1.01).

This example gives rise to a more general interpretatioreofsformations irf;,, as
analogues in discrete settings to rescalings, or changesitsf of measurements, in a
domain of continuous observables.



3 Equivariant Measure Selection

A fundamental probabilistic inference problem is the pewblof measure selection
given some incomplete information about the true distidoup on S, what is the best
rational hypothesis for the precise valuepg®This question takes on somewhat different
aspects, depending on whetheis a statistical, observable probability, or a subjective
degree of belief. In the first case, the “trup"describes actual long-run frequencies,
which, in principle, given sufficient time and experimemndources, one could deter-
mine exactly. In the case of subjective probability, thei&ftp is a rational belief state
that an ideal intelligent agent would arrive at by propedyihg into account all its
actual, incomplete knowledge.

For statistical probabilities the process of measure sielecan be seen as a pre-
diction on the outcome of experiments that, for some reasoe,is unable to actually
conduct. For subjective probabilities measure selectonhbe seen as an introspective
process of refining one’s belief state. A first question trewlhether the formal rules
for measure selection should be the same in these two diffeomtexts, and to which
of the two scenarios our subsequent considerations pertain

Following earlier suggestions of a frequentist basis fdsjective probability [16,
1], this author holds that subjective probability is ultilg grounded in empirical ob-
servation, hence statistical probability [7]. In partiylin [7] the process of subjective
measure selection is interpreted as a process very sirilstatistical measure selec-
tion, namely a prediction on the outcome of hypotheticakgipents (which, however,
here even unlimited experimental resources may not pesrtit garry out in practice).
From this point of view, then, formal principles of measuedestion will have to be
the same for subjective and statistical probabilities, amdsubsequent considerations
apply to both cases. We note, however, that Paris [12] haladgaosing view, and sees
no reason why his rationality principles for measure s@ectwhich were developed
for subjective probability, should also apply to statiatiprobability. On the other hand,
in support of our own position, it may be remarked that the sneaselection principles
Shore and Johnson [18] postulate are very similar to tho&an$ and Vencovska [15],
but they were formulated with statistical probabilitiesiind.

There are several ways how incomplete information algpatin be represented.
One common way is to identify incomplete information withvs® subsetd of A™:

A is then regarded as the set of probability distributipnthat are to be considered
possible candidates for being the true distribution. Ofteis assumed to be a closed
and convex subset a\”. This, in particular, will be the case when the incomplete
information is given by a set of linear constraintspnin that caseA is the solution
set of linear constraints, i.e. a polytope.

Example 2.(continuation of example 1) One of the research assistastkolst his count
sheet on his way home. Unwilling to discard the data from tredrwatched by this
assistant, the project leader tries to extract some infdamabout the counts that the
assistant might remember. The assistant is able to saydtaiderved at least 10 times
as many cars as buses, and at least 5 times as many cars aaralib&ycles combined.
The only way to enter the observation from this particulacrinto the study, however,
is in the form of accurate relative frequencies of bus, cad, licycle use. To this end,



the project leader has to make a best guess of the actuakfremps based on the linear
constraints given to him by the assistant.

Common formulations of the measure selection problem newdsfine a selection
functionselthat maps closed and convex subsétsf A™ (or, alternatively: polytopes
in A™; or: sets of linear constraints @ to distributionsse(4) € A.

The most widely favored solution to the measure selectiablem is theentropy
maximizatiorrule: definesel,(A) to be the distributiorp in A that has maximal en-
tropy (for closed and conveA this is well-defined). Axiomatic justifications for this
selection rule are given in [18, 15]. Both these works pe@geub number of formal
principles that a selection rule should obey, and then o te show that entropy max-
imization is the only rule satisfying all the principles.rBaq13] argues that all these
principles in essence are just expressions of one more gleaederlying principle,
which is expressed by an informal statement (or slogan) loyRraassen [19Essen-
tially similar problems should have essentially similaigimns

In spite of its mathematical sound derivation, entropy mazation does exhibit
some behaviors that appear counterintuitive to many (Sfe{8wo illustrative exam-
ples). Often this counterintuitive behavior is due to thet that the maximum entropy
rule has a strong bias towards the uniform distribution= (1/n,...,1/n). Asu is
the element imA™ with globally maximal entropyw will be selected whenever € A.
Consider, for example, figure 1 (i) and (ii). Shown are twdatiént subsets! and A’
of A%, Both containu, and thereforsele(A) = sehe(A’) = u. While none of Paris’
rationality principles explicitly demands thatshould be selected whenever possible,
there is one principle that directly implies the followingy the sets depicted in figure 1:
assuming thasel A) = u, and realizing thatl’ is a subset ofi, one should also have
selA") = w. This is an instance of what Paris [14] calls thlestinacy principlefor
any A, A" with A’ C A andsel(A) € A’ itis required thatse(4') = sel(A). The
intuitive justification for this is that additional inforrtian (i.e. information that lim-
its the previously considered distributiohto A’) that is consistent with the previous
default selection (i.ese A) € A’) should not lead us to revise this default selection.
While quite convincing from a default reasoning perspex(in fact, it is a version of
Gabbay’s [2]restricted monotonicitprinciple), it is not entirely clear that this principle
is an expression of the van Fraassen slogan. Indeed, afieast geometric point of
view, there does seem to exist little similarity betweentthe problems given byl and
A’, and thus the requirement that they should have similatisolsi (or even the same
solution) hardly seems a necessary consequence of the &asden slogan.

An alternative selection rule that avoids some of the slooniags ofsek, is the
center of masselection ruleseln: sekm(A4) is defined as the center of massAfWwith
sekm one avoids the bias towards and, more generally, the bias sél,e towards
points on the boundary of the input sétis reversed towards an exclusive preference
for points in the interior ofd. A great part of the intuitive appeal stL, is probably
owed to the fact that it satisfies (1), i.e. it is translatequivariant.

Arguing that translations are not the right transformagitmconsider forA™, how-
ever, we would prefer selection rules that &ieequivariant, i.e. for ald for which sel
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Fig. 1. Maximum Entropy and’, - equivariant selection

is to be defined, and al). € T),:
selt, A) = t.selA). (2)

This, we would claim, is the pertinent (and succinct) forixetion of the van Fraassen
slogan for the measure selection problem. In fact, van Bexagl9], after giving the
informal slogan, proceeds to explain it further as a genegalivariance principle of
the form (1) and (2). The question, thus, is not so much widtiie slogan is best
captured as an equivariance requirement, but with whicksatd transformations the
equivariance principle is to be instantiated. Interprgtimeorem 1 as an identification
of the transformations iff;, as the most “similarity preserving” transformations4t,
we arrive at our answer thdt,-equivariance is the principle we require.

Figure 1 (iii)-(v) illustrates thd’, -equivariance principle: shown are three different
transformationsd;, A», A3 of a polytope defined by three linear constraints, and the
corresponding transformations , p,, p; of one distinguished element inside tHe.
T,,-equivariance now demands tfsat( A;) = p, < sel4,) = p, < selA;3) = p;.

Example 3.(continuation of example 2) Assume that the unlucky assistcexample 2
was given instructions of the first type, and that he coligdtes data accordingly. If,
instead, he had been given instructions of the second thee, the frequencies on
the lost count sheet would have been frequengies- ¢, f, where f are the actual
frequencies on the lost sheet, ahdis as in example 1. The partial information he
would then have been able to give also would have taken aelifféorm. For instance,
he might then have stated that he observed at least 6 timeamsaars as buses, and
at least 4.5 times as many cars as buses and bicycles combined

One can show [8] that under very natural modelling assumpfithere corresponds
to the transformatior, on A™ a dual transformatiom, on the space of linear con-
straints, such that stating a constrairfor p corresponds to stating the constraip
for ¢,.p. The crucial assumption isonsistency preservatiomvhich, in our example,
means that a constraintthe research assistant will state when the frequencieseon th



lost count sheet ar¢ is consistent forf (i.e. satisfied byf) iff the constraintc’ he
would give for frequencieg’ is consistent forf’. The transformatior, can also be
characterized by the condition: for all sets of constraints

Solt,.¢) = t.Solc),

whereSoldenotes the solution set.

When the project leader usedg-equivariant selection rule for reconstructing the
true frequencies from the information he is given, then thitofving two approaches
will lead to the same solution, whatever set of instructithis particular assistant was
using: 1: first infer the actual frequencies observed by tsstant by applying the
selection rule to the given constraints, and then transforthe preferred type of fre-
qguencies. 2: first transform the given constraints so asue tieem refer to the preferred
type of frequencies (knowing that this should be done byyapgithet, transformation
), and then apply the selection rule.

T,,-equivariance imposes no restriction on week A;) should be for any singld;
in figure 1. It only determines how the selections for theati#htA,; should be related. It
thus is far from providing a unique selection rule, like tagianality principles of Paris
and Vencovska [15]. On the other hand, we have not yet shbatilt,-equivariant
selection rules even exist. In the remainder of this seatierinvestigate the feasibility
of definingT;,-equivariant selection rules, without making any attengtind the best
or most rational ones.

From (2) one immediately derives a limitation of possibleequivariant selection
rules: letA = A™ in (2). Thent,. A = A for everyt,. € T,,, and equivariance demands
thatt,.sel(A) = selA) for all ¢,., i.e.sel A) has to be a fixpoint under all transforma-
tions. The only elements " that have this property are theverticesv, ... ,v,,
wherew; is the distribution that assigns unit probabilitydgpe S. Clearly a rule with
selA™) = v, for any particular would be completely arbitrary, and could not be ar-
gued to follow any rationality principles (more technigalsuch a rule would not be
permutation equivarianwhich is another equivariance property one would demand in
order to deal appropriately with reorderings of the statecspas discussed in section 2).

Similar problems arise whenevselis to be applied to somd C A" that is in-
variant under some transformationstf. To evade these difficulties, we focus in the
following on sets that are not fixpoints under any transfdioms ¢,. (this restriction
can be lifted by allowing selection rules that may also netsubsets ofd, rather than
unique points inA). Let A denote the class of all C A™ with ¢, A4 # A for all
t» € T,. One can show thatl contains (among many others) all closed sétthat
lie in the interior of A", i.e. supportp) = {1,...,n} forall p € A. In the follow-
ing example &, -equivariant selection rule is constructed for all convex A. This
particular rule may not be a serious candidate for a best @t mational equivariant
selection rule. However, it does have some intuitive apeal the method by which it
is constructed illustrates a general strategy by wHigkequivariant selection rules can
be constructed.

Example 4.Let A° denote the set of all convex € A. On A¢ an equivalence relation
~ is defined by

A~A" & F.eT,: A =tA



The equivalence classrb(4) = {A' | A’ ~ A} (= {t,A4 | t, € T,}) is called
the orbit of A (these are standard definitions). It is easy to verify thatfoc A also
orb(A) C A, and that for everyl’ € orb(A) there is a uniqué, € T, with A’ = ¢, A
(here transformations are unique, but as observed abageddles not imply that the
parametey representing the transformation is unique).

Suppose thagelA) = p = (p1,... ,pn). Withr = (1/p1,... ,1/p,) thent,.p =
u, and by equivarianceelt,. A) = w. It follows that in every orbit there must be
some setd’ with seA’) = w. On the other hand, el A’) = wu, then this uniquely
definessel A) for all A in the orbit of A’: se(A) = p, wherep = ¢,u with ¢, the
unique transformation with. A’ = A. One thus sees that the definition of an equivariant
selection rule is equivalent to choosing for each orbidlira representativd’ for which
selA") = w shall hold.

One can show that for each € .A° there exists exactly oné’ € orb(A) for which
u is the center of mass of’. Combining the intuitive center-of-mass selection rule
with the principle ofT,-equivariance, we thus arrive at tlig-equivariant center-of-
mass selection rulesebquiv-cr{A) = p iff A =t,.A’, uis the center of mass of’, and
p=1tru.

4 Noninformative Priors

Bayesian statistical inference requires that a prior pbdlg distribution is specified
on the set of parameters that determines a particular piiipabodel. Herein lies the
advantage of Bayesian methods, because this prior can eoodain knowledge that
one has obtained before any data was observed. Often, hgveseewould like to
choose a prior distribution that represents the absenceydfrmowledge: an ignorant or
noninformative prior. The sef\” is the parameter set for the multinomial probability
model (assuming some sample si¥eto be given). The question of what distribution
on A™ represents a state of ignorance about this model has relamiveh attention, but
no conclusive answer seems to exist.

Three possible solutions that most often are consideredf@euniform distribu-
tion, i.e. the distribution that has a constant densityjth respect to Lebesgue measure,
Jeffreys’ prior, which is given by the density [, p;] /2 (wherec is a suitable normaliz-
ing constant), and Haldane’s prior, given by denﬂtypjl. Haldane’s prior (so named
because it seems to have first been suggested in [4]) is aofp@pprior, i.e. it has an
infinite integral overA”™. All three distributions are Dirichlet distributions wittaram-
eters(1,...,1),(1/2,...,1/2),and(0,... ,0), respectively (in the case of Haldane’s
distribution, the usual definition of a Dirichlet distriliom has to be extended so as to
allow the parameterd, . .. ,0)). Schafer [17] considers all Dirichlet distributions with
parameteréa, ... ,a) for 0 < a < 1 as possible candidates for a noninformative prior.

The justifications for identifying any particular distriton as the appropriate non-
informative prior are typically based on invariance argmtsegenerally speaking, ig-
norance is argued to be invariant under certain problensfeaimations, and so the
noninformative prior should be invariant under such prabteansformations. There are
different types of problem transformations one can consielech leading to a differ-
ent concept of invariance, and often leading to differestilts as to what constitutes a



noninformative prior (see [5] for a systematic overview)plarticular, there exist strong
invariance-based arguments both for Jeffreys’ prior [Bhjd for Haldane’s prior [10,
20]. In the following, we present additional arguments iport of Haldane’s prior.

Example 5.(continuation of example 3) Assume that the true, long-tezhative fre-
quencies of bus, car, and bicycle use are the same on all abadsch the traffic count
is conducted (under both counting methods). Then the calntésned in the study are
multinomial samples determined by a parametpre A3 if the first set of instructions
is used, andf; € A3 if the second set of instructions is used. Suppose the grojec
leader, before seeing any counts, feels completely unahieske any predictions on
the results of the counts, i.e. he is completely ignorantatie parameterg; .

When the samples are large (i.e. a great number of vehioteskazerved on every
road), then the observed frequencfesbtained using instructions of typare expected
to be very close to the true paramef&r. The prior probabilityPr assigned to a subset
A C A" then can be identified with a prior expectation of finding ie #ctual counts
relative frequencieg € A. If this prior expectation is to express complete ignorance
then it must be the same for both sampling methods: beinghplthe first assistant
returning with his counts that he had been using instrustafrtype 2 will have no in-
fluence on the project leader’s expectations regardingiigiencies on this assistant’s
count sheet. In particular, merely seeing the counts haimdegthis assistant will give
the project leader no clue as to which instructions were bgatiis assistant.

The parameterg; are related byf; = ¢, f7, wheret, is as in example 1. Hav-
ing the same prior belief aboyt; as aboutf; means that for everyt C A2 one has
Pr(A) = Pr(t.A). A noninformative prior, thus, should be invariant undeg thans-
formationt,.. As the relation betweelf; and f5 might also be given by some other
transformation iril’,,, this invariance should actually hold for all these transfations.

This example shows that invariance undgrtransformations is a natural require-
ment for a noninformative prior. The next theorem states thia invariance property
only holds for Haldane’s prior. In the formulation of the tiem a little care has to be
taken in dealing with the boundary &f”, where the density of Haldane’s prior is not
defined. We therefore restrict the statement of the theooeiet prior on the interior of
A", denotedntA™.

Theorem 2. LetPrbe a measure omtA™ with Pr(intA™) > 0 andPr(4) < oo for all
compact subsetd of intA™. Pris invariant under all transformations. € T, iff Pr
has a density with respect to Lebesgue measure of thedpfpmp, ! with some constant
c>0.

Itis instructive to compare the justification given to Halé prior by this theorem
with the justification given by Jaynes [10]. Jaynes givesramitive interpretation of a
noninformative prior as a distribution of beliefs about thees value ofp that one would
find in “a population in a state of total confusion”: an indiuili in the population be-
lieves the true value @ to bep, € A™. The mixture of beliefs one finds in a population
whose individuals base their beliefs on “different and detifig information” corre-
sponds to a noninformative prior oAA”. Supposing, now, that to all members of this
population a new piece of evidence is given, and each indalichanges its belief about



p by conditioning on this new evidence, then a new distributib beliefs is obtained.
By a suitable formalization of this scenario, Jaynes shtwasd single individual's tran-
sition from an original belie® to the new belie?’ is given byf' = af/(1 — 6 + ab)
(Jaynes only considers the binary case, wiflege]0, 1] takes the role of oup € A™).
This can easily be seen as a transformation from our gibugaynes’ argument now
is that a collective state of total confusion will remain ®dne of total confusion even
after the new evidence has been assimilated by everyoneagatie belief distribution
aboutd in the population must be invariant under the transformmedie~ 6'.

This justification, thus, derives a transformation#t in a concrete scenario in
which it seems intuitively reasonable to argue that a nammftive prior should be
invariant under these transformations. This is similardoargument for the invariance
of a noninformative prior under the transformatignin example 5. Justifications of
Haldane’s (or any other) prior that are based on such spsciicarios, however, always
leave the possibility open that similarly intuitive sceoarcan be constructed which
lead to other types of transformations, and hence to inmeg@#ased justifications for
other priors as noninformative. Theorems 1 and 2 togethevige a perhaps more
robust justification of Haldane’s prior: any justificatioorfa different prior which is
based on invariance arguments under transformationt’aofmust use transformations
that do not have the conservation properties of definitioant] therefore will tend to
be less natural than the transformations on which the jaatiin of Haldane’s prior is
based.

5 Conclusions

Many probabilistic inference problems that are charazggtiby a lack of information
have to be solved on the basis of considerations of symrsetrid invariances. These
symmetries and invariances, in turn, can be defined in tefrtraiosformations of the
mathematical objects one encounters in the given type efénice problem.

The representation theorem we have derived provides agtogument that in
inference problems whose objects are elements and sulfset§,mne should pay
particular attention to invariances (and equivarianceg)eu the transformations,,.
These transformations can be seen as the analogue in the Apaaf translations in
the spac&R™.

One should be particularly aware of the fact that it usuathgsinot make sense
to simply restrict symmetry and invariance concepts thatappropriate in the space
R" to the subse\™. A case in point is the problem of noninformative priors.Rf
Lebesgue measure is the canonical choice for an (impropaihformative prior, be-
cause its invariance under translations makes it the ur{iguéo a constant) “uniform”
distribution. Restricted ta\", however, this distinction of Lebesgue measure does not
carry much weight, as translations are not a meaningfusfoamation ofA”. Our re-
sults indicate that the choice of Haldane’s prior f&% is much more in line with the
choice of Lebesgue measure &0, than the choice of the “uniform” distribution, i.e.
Lebesgue measure restricted4d.

In a similar vein, we have conjectured in section 3 that sofribeintuitive appeal
of the center-of-mass selection rule is its equivarianadeutranslations. Again, how-



ever, translations are not the right transformations tosaer in this context, and one
therefore should aim to construél,-equivariant selection rules, as, for example, the
T,-equivariant modification of center-of-mass.

An interesting open question is how many of Paris and Verlcs$15] rationality

principles can be reconciled with,-equivariance. As the combination of all uniquely
identifies maximum entropy selection, there must alwaysdeesthat are violated by
T,-equivariant selection rules. Clearly the obstinacy ggleis rather at odds witl#, -
equivariance (though it is not immediately obvious thattthe really are inconsistent).
Can one find selection rules that satisfy most (or all) pples except obstinacy?
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