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Abstract. We introduce a set of transformations on the set of all probability dis-
tributions over a finite state space, and show that these transformations are the
only ones that preserve certain elementary probabilistic relationships. This result
provides a new perspective on a variety of probabilistic inference problems in
which invariance considerations play a role. Two particular applications we con-
sider in this paper are the development of an equivariance-based approach to the
problem of measure selection, and a new justification for Haldane’s prior as the
distribution that encodes prior ignorance about the parameter of a multinomial
distribution.

1 Introduction

Many rationality principles for probabilistic and statistical inference are based on con-
siderations of indifference and symmetry. An early expression of such a principle is
Laplace’s principle of insufficient reason:“One regards two events as equally probable
when one can see no reason that would make one more probable than the other, be-
cause, even though there is an unequal possibility between them, we know not which
way, and this uncertainty makes us look on each as if it were asprobable as the
other”(Laplace, Collected Works vol. VIII, cited after [3]). Principles of indifference
only lead to straightforward rules for probability assessments when the task is to assign
probabilities to a finite number of different alternatives,none of which is distinguished
from the others by any information we have. In this case all alternatives will have to
be assigned equal probabilities. Such a formalization of indifference by equiprobability
becomes notoriously problematic when from state spaces of finitely many alternatives
we turn to infinite state spaces: on countably infinite sets nouniform probability dis-
tributions exist, and on uncountably infinite sets the concept of uniformity becomes
ambiguous (as evidenced by the famous Bertrand’s paradox [6, 19]).

On (uncountably) infinite state spaces concepts of uniformity or indifference have
to be formalized on the basis of certain transformations of the state space: two sets
of states are to be considered equiprobable, if one can be transformed into the other
using some natural transformationt. This, of course, raises the sticky question what
transformations are to be considered as natural and probability-preserving. However,
for a given state space, and a given class of probabilistic inference tasks, it often is
possible to identify natural transformation, so that the solution to the inference tasks
(which, in particular, can be probability assessments) should be invariant under the



transformations. The widely accepted resolution of Bertrand’s paradox, for example, is
based on such considerations of invariance under certain transformations.

In this paper we are concerned with probabilistic inferenceproblems that pertain
to probability distributions on finite state spaces, which are by far the most widely
used type of distributions used for probabilistic modelling in artificial intelligence.
As indicated above, when dealing with finite state spaces there does not seem to be
any problem of capturing indifference principles with equiprobability. However, even
though the underlying space of alternatives may be finite, the object of our study very
often is the infinite set of probability distributions on that space, i.e. for the state spaceS = fs1; : : : ; sng the(n� 1)-dimensional probability polytope�n = f(p1; : : : ; pn) 2 Rn j pi 2 [0; 1℄;Xi pi = 1g:
The objective of this paper now can be formulated as follows:we investigate what
natural transformations there exist of�n, such that inference problems that pertain to�n should be solved in a way that is invariant under these transformations. In section 2
we identify a unique class of transformations that can be regarded as most natural in that
they alone preserve certain relevant relationships between points of�n. In sections 3
and 4 we apply this result to the problems of measure selection and choice of Bayesian
priors, respectively.

An extended version of this paper containing the proofs of theorems is available as
[9].

2 Representation Theorem

The nature of the result we present in this section can best beexplained by an analogy:
suppose, for the sake of the argument, that the set of probability distributions we are
concerned with is parameterized by the whole Euclidean spaceRn , rather than the sub-
set�n. Suppose, too, that all inputs and outputs for a given type ofinference problem
consist of objects (e.g. points, convex subsets,: : : ) in Rn . In most cases, one would
then probably require of a rational solution to the inference problem that it does not de-
pend on the choice of the coordinate system; specifically, ifall inputs are transformed
by a translation, i.e. by adding some constant offsetr 2 Rn , then the outputs computed
for the transformed inputs should be just the outputs computed for the original inputs,
also translated byr:

sol(i+ r) = sol(i) + r; (1)

wherei stands for the inputs andsol for the solution of an inference problem. Condition
(1) expresses anequivariance principle: when the problem is transformed in a certain
way, then so should be its solution (not to be confused withinvariance principlesac-
cording to which certain things should be unaffected by a transformation).

The question we now address is the following: what simple, canonical transforma-
tions of the set�n exist, so that for inference problems whose inputs and outputs are
objects in�n one would require an equivariance property analogous to (1)? Intuitively,



we are looking for transformations of�n that can be seen as merely a change of co-
ordinate system, and that leave all relevant geometric structures intact. The following
definition collects some key concepts we will use.

Definition 1. A transformationof a setS is any bijective mappingt ofS onto itself. We
often writets rather thant(s). For a probability distributionp = (p1; : : : ; pn) 2 �n
the setfi 2 f1; : : : ; ng j pi > 0g is called theset of supportof p, denotedsupport(p).
A transformationt of�n is said to

– preserve cardinalities of supportif for all p: jsupport(p) j=jsupport(tp) j
– preserve sets of supportif for all p: support(p) = support(tp).

A distributionp is called amixture of p0 andp00 if there exists� 2 [0; 1℄ such thatp = �p0 + (1 � �)p00 (in other words,p is a convex combination ofp0 andp00). A
transformationt is said to

– preserve mixturesif for all p;p0;p00: if p is a mixture ofp0 andp00, thentp is a
mixture oftp0 andtp00.
The set of support of a distributionp 2 �n can be seen as its most fundamen-

tal feature: it identifies the subset of states that are to be considered as possible at all,
and thus identifies the relevant state space (as opposed to the formal state spaceS,
which may contain statessi that are effectively ruled out byp with pi = 0). When
the association of the components of a distributionp with the elements of the state
spaceS = fs1; : : : ; sng is fixed, thenp andp0 with different sets of support repre-
sent completely incompatible probabilistic models that would not be transformed into
one another by a natural transformation. In this case, therefore, one would require a
transformation to preserve sets of support.

A permutationof �n is a transformation that maps(p1; : : : ; pn) to (p�(1); : : : ;p�(n)), where� is a permutation off1; : : : ; ng. Permutations preserve cardinalities
of support, but not sets of support. Permutations of�n are transformations that are
required to preserve the semantics of the elements of�n after a reordering of the state
spaceS: if S is reordered according to a permutation�, thenp and�p are the same
probability distribution onS. Apart from this particular need for permutations, they do
not seem to have any role as a meaningful transformation of�n.

That a distributionp is a mixture ofp0 andp00 is an elementary probabilistic rela-
tion between the three distributions. It expresses the factthat the probabilistic modelp
can arise as an approximation to a finer model that would distinguish the two distinct
distributionsp0 andp00 on S, each of which is appropriate in a separate context. For
instance,p0 andp00 might be the distributions onS = fjam; heavy traffic; light trafficg
that represent the travel conditions on weekdays and weekends, respectively. A mixture
of the two then will represent the probabilities of travel conditions when no distinction
is made between the different days of the week.

That a transformation preserves mixtures, thus, is a natural requirement that it does
not destroy elementary probabilistic relationships. Obviously, preservation of mixtures
immediately implies preservation of convexity, i.e. ift preserves mixtures andA is a
convex subset of�n, thentA also is convex.

We now introduce the class of transformations that we will beconcerned with in the
rest of this paper. We denote withR+ the set of positive real numbers.



Definition 2. Letr = (r1; : : : ; rn) 2 (R+ )n. Define forp = (p1; : : : ; pn) 2 �ntr(p) := (r1p1; : : : ; rnpn)= nXi=1 ripi:
Also letTn := ftr j r 2 (R+ )ng.

Note that we havetr = tr0 if r0 is obtained fromr by multiplying each component
with a constanta > 0. We can now formulate our main result.

Theorem 1. Letn � 3 andt be a transformation of�n.

(i) t preserves sets of support and mixtures ifft 2 Tn.
(ii) t preserves cardinalities of support and mixtures ifft = t0 Æ� for some permutation� and somet0 2 Tn.

The statements (i) and (ii) do not hold forn = 2: �2 is just the interval[0; 1℄, and
every monotone bijection of[0; 1℄ satisfies (i) and (ii). A weaker form of this theorem
was already reported in [8]. The proof of the theorem closelyfollows the proof of the
related representation theorem for collineations in projective geometry. The following
example illustrates how transformationst 2 Tn can arise in practice.

Example 1.In a study of commuter habits it is undertaken to estimate therelative use
of buses, private cars and bicycles as a means of transportation. To this end, a group of
research assistants is sent out one day to perform a traffic count on a number of main
roads into the city. They are given count sheets and short written instructions. Two dif-
ferent sets of instructions were produced in the preparation phase of the study: the first
set advised the assistants to make one mark for every bus, car, and bicycle, respectively,
in the appropriate column of the count sheet. The second (more challenging) set of
instructions specified to make as many marks as there are actually people travelling in
(respectively on) the observed vehicles. By accident, someof the assistants were handed
instructions of the first kind, others those of the second kind.

Assume that on all roads being watched in the study, the average number of people
travelling in a bus, car, or on a bicycle is the same, e.g. 10, 1.5, and 1.01, respectively.
Also assume that the number of vehicles observed on each roadis so large, that the
actually observed numbers are very close to these averages.

Suppose, now, that we are more interested in the relative frequency of bus, car
and bicycle use, rather than in absolute counts. Suppose, too, that we prefer the num-
bers that would have been produced by the use of the second setof instructions. If,
then, an assistant hands in counts that were produced using the first set of instruc-
tions, and that show frequenciesf = (f1; f2; f3) 2 �3 for the three modes of trans-
portation, then we obtain the frequencies we really want by applying the transfor-
mation tr with r = (10; 1:5; 1:01). Conversely, if we prefer the first set of instruc-
tions, and are given frequencies generated by the second, wecan transform them usingr0 = (1=10; 1=1:5; 1=1:01).

This example gives rise to a more general interpretation of transformations inTn as
analogues in discrete settings to rescalings, or changes ofunits of measurements, in a
domain of continuous observables.



3 Equivariant Measure Selection

A fundamental probabilistic inference problem is the problem of measure selection:
given some incomplete information about the true distribution p onS, what is the best
rational hypothesis for the precise value ofp? This question takes on somewhat different
aspects, depending on whetherp is a statistical, observable probability, or a subjective
degree of belief. In the first case, the “true”p describes actual long-run frequencies,
which, in principle, given sufficient time and experimentalresources, one could deter-
mine exactly. In the case of subjective probability, the “true” p is a rational belief state
that an ideal intelligent agent would arrive at by properly taking into account all its
actual, incomplete knowledge.

For statistical probabilities the process of measure selection can be seen as a pre-
diction on the outcome of experiments that, for some reason,one is unable to actually
conduct. For subjective probabilities measure selection can be seen as an introspective
process of refining one’s belief state. A first question then is whether the formal rules
for measure selection should be the same in these two different contexts, and to which
of the two scenarios our subsequent considerations pertain.

Following earlier suggestions of a frequentist basis for subjective probability [16,
1], this author holds that subjective probability is ultimately grounded in empirical ob-
servation, hence statistical probability [7]. In particular, in [7] the process of subjective
measure selection is interpreted as a process very similar to statistical measure selec-
tion, namely a prediction on the outcome of hypothetical experiments (which, however,
here even unlimited experimental resources may not permit us to carry out in practice).
From this point of view, then, formal principles of measure selection will have to be
the same for subjective and statistical probabilities, andour subsequent considerations
apply to both cases. We note, however, that Paris [12] holds an opposing view, and sees
no reason why his rationality principles for measure selection, which were developed
for subjective probability, should also apply to statistical probability. On the other hand,
in support of our own position, it may be remarked that the measure selection principles
Shore and Johnson [18] postulate are very similar to those ofParis and Vencovská [15],
but they were formulated with statistical probabilities inmind.

There are several ways how incomplete information aboutp can be represented.
One common way is to identify incomplete information with some subsetA of �n:A is then regarded as the set of probability distributionsp that are to be considered
possible candidates for being the true distribution. OftenA is assumed to be a closed
and convex subset of�n. This, in particular, will be the case when the incomplete
information is given by a set of linear constraints onp. In that case,A is the solution
set of linear constraints, i.e. a polytope.

Example 2.(continuation of example 1) One of the research assistants has lost his count
sheet on his way home. Unwilling to discard the data from the road watched by this
assistant, the project leader tries to extract some information about the counts that the
assistant might remember. The assistant is able to say that he observed at least 10 times
as many cars as buses, and at least 5 times as many cars as busesand bicycles combined.
The only way to enter the observation from this particular road into the study, however,
is in the form of accurate relative frequencies of bus, car, and bicycle use. To this end,



the project leader has to make a best guess of the actual frequencies based on the linear
constraints given to him by the assistant.

Common formulations of the measure selection problem now are: define a selection
functionsel that maps closed and convex subsetsA of �n (or, alternatively: polytopes
in �n; or: sets of linear constraints onp) to distributionssel(A) 2 A.

The most widely favored solution to the measure selection problem is theentropy
maximizationrule: defineselme(A) to be the distributionp in A that has maximal en-
tropy (for closed and convexA this is well-defined). Axiomatic justifications for this
selection rule are given in [18, 15]. Both these works postulate a number of formal
principles that a selection rule should obey, and then proceed to show that entropy max-
imization is the only rule satisfying all the principles. Paris [13] argues that all these
principles in essence are just expressions of one more general underlying principle,
which is expressed by an informal statement (or slogan) by van Fraassen [19]:Essen-
tially similar problems should have essentially similar solutions.

In spite of its mathematical sound derivation, entropy maximization does exhibit
some behaviors that appear counterintuitive to many (see [8] for two illustrative exam-
ples). Often this counterintuitive behavior is due to the fact that the maximum entropy
rule has a strong bias towards the uniform distributionu = (1=n; : : : ; 1=n). As u is
the element in�n with globally maximal entropy,u will be selected wheneveru 2 A.
Consider, for example, figure 1 (i) and (ii). Shown are two different subsetsA andA0
of �3. Both containu, and thereforeselme(A) = selme(A0) = u. While none of Paris’
rationality principles explicitly demands thatu should be selected whenever possible,
there is one principle that directly implies the following for the sets depicted in figure 1:
assuming thatsel(A) = u, and realizing thatA0 is a subset ofA, one should also have
sel(A0) = u. This is an instance of what Paris [14] calls theobstinacy principle: for
anyA;A0 with A0 � A andsel(A) 2 A0 it is required thatsel(A0) = sel(A). The
intuitive justification for this is that additional information (i.e. information that lim-
its the previously considered distributionA to A0) that is consistent with the previous
default selection (i.e.sel(A) 2 A0) should not lead us to revise this default selection.
While quite convincing from a default reasoning perspective (in fact, it is a version of
Gabbay’s [2]restricted monotonicityprinciple), it is not entirely clear that this principle
is an expression of the van Fraassen slogan. Indeed, at leastfrom a geometric point of
view, there does seem to exist little similarity between thetwo problems given byA andA0, and thus the requirement that they should have similar solutions (or even the same
solution) hardly seems a necessary consequence of the van Fraassen slogan.

An alternative selection rule that avoids some of the shortcomings ofselme is the
center of massselection ruleselcm: selcm(A) is defined as the center of mass ofA. With
selcm one avoids the bias towardsu, and, more generally, the bias ofselme towards
points on the boundary of the input setA is reversed towards an exclusive preference
for points in the interior ofA. A great part of the intuitive appeal ofselcm is probably
owed to the fact that it satisfies (1), i.e. it is translation-equivariant.

Arguing that translations are not the right transformations to consider for�n, how-
ever, we would prefer selection rules that areTn-equivariant, i.e. for allA for whichsel
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Fig. 1. Maximum Entropy andTn- equivariant selection

is to be defined, and alltr 2 Tn:

sel(trA) = trsel(A): (2)

This, we would claim, is the pertinent (and succinct) formalization of the van Fraassen
slogan for the measure selection problem. In fact, van Fraassen [19], after giving the
informal slogan, proceeds to explain it further as a generalequivariance principle of
the form (1) and (2). The question, thus, is not so much whether this slogan is best
captured as an equivariance requirement, but with which class of transformations the
equivariance principle is to be instantiated. Interpreting theorem 1 as an identification
of the transformations inTn as the most “similarity preserving” transformations of�n,
we arrive at our answer thatTn-equivariance is the principle we require.

Figure 1 (iii)-(v) illustrates theTn-equivariance principle: shown are three different
transformationsA1; A2; A3 of a polytope defined by three linear constraints, and the
corresponding transformationsp1;p2;p3 of one distinguished element inside theAi.Tn-equivariance now demands thatsel(A1) = p1 , sel(A2) = p2 , sel(A3) = p3.

Example 3.(continuation of example 2) Assume that the unlucky assistant in example 2
was given instructions of the first type, and that he collected his data accordingly. If,
instead, he had been given instructions of the second type, then the frequencies on
the lost count sheet would have been frequenciesf 0 = trf , wheref are the actual
frequencies on the lost sheet, andtr is as in example 1. The partial information he
would then have been able to give also would have taken a different form. For instance,
he might then have stated that he observed at least 6 times as many cars as buses, and
at least 4.5 times as many cars as buses and bicycles combined.

One can show [8] that under very natural modelling assumptions, there corresponds
to the transformationtr on �n a dual transformation�tr on the space of linear con-
straints, such that stating a constraint
 for p corresponds to stating the constraint�tr

for trp. The crucial assumption isconsistency preservation, which, in our example,
means that a constraint
 the research assistant will state when the frequencies on the



lost count sheet aref is consistent forf (i.e. satisfied byf ) iff the constraint
0 he
would give for frequenciesf 0 is consistent forf 0. The transformation�tr can also be
characterized by the condition: for all sets of constraints


Sol(�tr
) = trSol(
);
whereSoldenotes the solution set.

When the project leader uses aTn-equivariant selection rule for reconstructing the
true frequencies from the information he is given, then the following two approaches
will lead to the same solution, whatever set of instructionsthis particular assistant was
using: 1: first infer the actual frequencies observed by the assistant by applying the
selection rule to the given constraints, and then transformto the preferred type of fre-
quencies. 2: first transform the given constraints so as to have them refer to the preferred
type of frequencies (knowing that this should be done by applying the�tr transformation
), and then apply the selection rule.Tn-equivariance imposes no restriction on whatsel(Ai) should be for any singleAi
in figure 1. It only determines how the selections for the differentAi should be related. It
thus is far from providing a unique selection rule, like the rationality principles of Paris
and Vencovská [15]. On the other hand, we have not yet shown that Tn-equivariant
selection rules even exist. In the remainder of this sectionwe investigate the feasibility
of definingTn-equivariant selection rules, without making any attemptsto find the best
or most rational ones.

From (2) one immediately derives a limitation of possibleTn-equivariant selection
rules: letA = �n in (2). ThentrA = A for everytr 2 Tn, and equivariance demands
thattrsel(A) = sel(A) for all tr, i.e. sel(A) has to be a fixpoint under all transforma-
tions. The only elements of�n that have this property are then verticesv1; : : : ;vn,
wherevi is the distribution that assigns unit probability tosi 2 S. Clearly a rule with
sel(�n) = vi for any particulari would be completely arbitrary, and could not be ar-
gued to follow any rationality principles (more technically, such a rule would not be
permutation equivariant, which is another equivariance property one would demand in
order to deal appropriately with reorderings of the state space, as discussed in section 2).

Similar problems arise wheneversel is to be applied to someA � �n that is in-
variant under some transformations ofTn. To evade these difficulties, we focus in the
following on sets that are not fixpoints under any transformations tr (this restriction
can be lifted by allowing selection rules that may also return subsets ofA, rather than
unique points inA). Let A denote the class of allA � �n with trA 6= A for alltr 2 Tn. One can show thatA contains (among many others) all closed setsA that
lie in the interior of�n, i.e. support(p) = f1; : : : ; ng for all p 2 A. In the follow-
ing example aTn-equivariant selection rule is constructed for all convexA 2 A. This
particular rule may not be a serious candidate for a best or most rational equivariant
selection rule. However, it does have some intuitive appeal, and the method by which it
is constructed illustrates a general strategy by whichTn-equivariant selection rules can
be constructed.

Example 4.LetA
 denote the set of all convexA 2 A. OnA
 an equivalence relation� is defined by A � A0 , 9tr 2 Tn : A0 = trA:



The equivalence classorb(A) := fA0 j A0 � Ag (= ftrA j tr 2 Tng) is called
theorbit of A (these are standard definitions). It is easy to verify that for A 2 A also
orb(A) � A, and that for everyA0 2 orb(A) there is a uniquetr 2 Tn with A0 = trA
(here transformations are unique, but as observed above, this does not imply that the
parameterr representing the transformation is unique).

Suppose thatsel(A) = p = (p1; : : : ; pn). With r = (1=p1; : : : ; 1=pn) thentrp =u, and by equivariancesel(trA) = u. It follows that in every orbit there must be
some setA0 with sel(A0) = u. On the other hand, ifsel(A0) = u, then this uniquely
definessel(A) for all A in the orbit ofA0: sel(A) = p, wherep = tru with tr the
unique transformation withtrA0 = A. One thus sees that the definition of an equivariant
selection rule is equivalent to choosing for each orbit inA
 a representativeA0 for which
sel(A0) = u shall hold.

One can show that for eachA 2 A
 there exists exactly oneA0 2 orb(A) for whichu is the center of mass ofA0. Combining the intuitive center-of-mass selection rule
with the principle ofTn-equivariance, we thus arrive at theTn-equivariant center-of-
mass selection rule:selequiv-cm(A) = p iff A = trA0, u is the center of mass ofA0, andp = tru.

4 Noninformative Priors

Bayesian statistical inference requires that a prior probability distribution is specified
on the set of parameters that determines a particular probability model. Herein lies the
advantage of Bayesian methods, because this prior can encode domain knowledge that
one has obtained before any data was observed. Often, however, one would like to
choose a prior distribution that represents the absence of any knowledge: an ignorant or
noninformative prior. The set�n is the parameter set for the multinomial probability
model (assuming some sample sizeN to be given). The question of what distribution
on�n represents a state of ignorance about this model has received much attention, but
no conclusive answer seems to exist.

Three possible solutions that most often are considered are: the uniform distribu-
tion, i.e. the distribution that has a constant density
 with respect to Lebesgue measure,
Jeffreys’ prior, which is given by the density
Qi p�1=2i (where
 is a suitable normaliz-
ing constant), and Haldane’s prior, given by density

Qi p�1i . Haldane’s prior (so named
because it seems to have first been suggested in [4]) is an improper prior, i.e. it has an
infinite integral over�n. All three distributions are Dirichlet distributions withparam-
eters(1; : : : ; 1); (1=2; : : : ; 1=2), and(0; : : : ; 0), respectively (in the case of Haldane’s
distribution, the usual definition of a Dirichlet distribution has to be extended so as to
allow the parameters(0; : : : ; 0)). Schafer [17] considers all Dirichlet distributions with
parameters(�; : : : ; �) for 0 � � � 1 as possible candidates for a noninformative prior.

The justifications for identifying any particular distribution as the appropriate non-
informative prior are typically based on invariance arguments: generally speaking, ig-
norance is argued to be invariant under certain problem transformations, and so the
noninformative prior should be invariant under such problem transformations. There are
different types of problem transformations one can consider, each leading to a differ-
ent concept of invariance, and often leading to different results as to what constitutes a



noninformative prior (see [5] for a systematic overview). In particular, there exist strong
invariance-based arguments both for Jeffreys’ prior [11],and for Haldane’s prior [10,
20]. In the following, we present additional arguments in support of Haldane’s prior.

Example 5.(continuation of example 3) Assume that the true, long-termrelative fre-
quencies of bus, car, and bicycle use are the same on all roadsat which the traffic count
is conducted (under both counting methods). Then the countsobtained in the study are
multinomial samples determined by a parameterf�1 2 �3 if the first set of instructions
is used, andf�2 2 �3 if the second set of instructions is used. Suppose the project
leader, before seeing any counts, feels completely unable to make any predictions on
the results of the counts, i.e. he is completely ignorant about the parametersf�i .

When the samples are large (i.e. a great number of vehicles are observed on every
road), then the observed frequenciesf obtained using instructions of typei are expected
to be very close to the true parameterf�i . The prior probabilityPr assigned to a subsetA � �n then can be identified with a prior expectation of finding in the actual counts
relative frequenciesf 2 A. If this prior expectation is to express complete ignorance,
then it must be the same for both sampling methods: being toldby the first assistant
returning with his counts that he had been using instructions of type 2 will have no in-
fluence on the project leader’s expectations regarding the frequencies on this assistant’s
count sheet. In particular, merely seeing the counts handedin by this assistant will give
the project leader no clue as to which instructions were usedby this assistant.

The parametersf�i are related byf�2 = trf�1, wheretr is as in example 1. Hav-
ing the same prior belief aboutf�2 as aboutf�1 means that for everyA � �3 one has
Pr(A) = Pr(trA). A noninformative prior, thus, should be invariant under the trans-
formationtr. As the relation betweenf�1 andf�2 might also be given by some other
transformation inTn, this invariance should actually hold for all these transformations.

This example shows that invariance underTn-transformations is a natural require-
ment for a noninformative prior. The next theorem states that this invariance property
only holds for Haldane’s prior. In the formulation of the theorem a little care has to be
taken in dealing with the boundary of�n, where the density of Haldane’s prior is not
defined. We therefore restrict the statement of the theorem to the prior on the interior of�n, denotedint�n.

Theorem 2. Let Prbe a measure onint�n with Pr(int�n) > 0 andPr(A) <1 for all
compact subsetsA of int�n. Pr is invariant under all transformationstr 2 Tn iff Pr
has a density with respect to Lebesgue measure of the form
Qi p�1i with some constant
 > 0.

It is instructive to compare the justification given to Haldane’s prior by this theorem
with the justification given by Jaynes [10]. Jaynes gives an intuitive interpretation of a
noninformative prior as a distribution of beliefs about thetrue value ofp that one would
find in “a population in a state of total confusion”: an individuali in the population be-
lieves the true value ofp to bepi 2 �n. The mixture of beliefs one finds in a population
whose individuals base their beliefs on “different and conflicting information” corre-
sponds to a noninformative prior on�n. Supposing, now, that to all members of this
population a new piece of evidence is given, and each individual changes its belief about



p by conditioning on this new evidence, then a new distribution of beliefs is obtained.
By a suitable formalization of this scenario, Jaynes shows that a single individual’s tran-
sition from an original belief� to the new belief�0 is given by�0 = a�=(1 � � + a�)
(Jaynes only considers the binary case, where� 2 [0; 1℄ takes the role of ourp 2 �n).
This can easily be seen as a transformation from our groupT2. Jaynes’ argument now
is that a collective state of total confusion will remain to be one of total confusion even
after the new evidence has been assimilated by everyone, andso the belief distribution
about� in the population must be invariant under the transformation � 7! �0.

This justification, thus, derives a transformation of�2 in a concrete scenario in
which it seems intuitively reasonable to argue that a noninformative prior should be
invariant under these transformations. This is similar to our argument for the invariance
of a noninformative prior under the transformationtr in example 5. Justifications of
Haldane’s (or any other) prior that are based on such specificscenarios, however, always
leave the possibility open that similarly intuitive scenarios can be constructed which
lead to other types of transformations, and hence to invariance-based justifications for
other priors as noninformative. Theorems 1 and 2 together provide a perhaps more
robust justification of Haldane’s prior: any justification for a different prior which is
based on invariance arguments under transformations of�n must use transformations
that do not have the conservation properties of definition 1,and therefore will tend to
be less natural than the transformations on which the justification of Haldane’s prior is
based.

5 Conclusions

Many probabilistic inference problems that are characterized by a lack of information
have to be solved on the basis of considerations of symmetries and invariances. These
symmetries and invariances, in turn, can be defined in terms of transformations of the
mathematical objects one encounters in the given type of inference problem.

The representation theorem we have derived provides a strong argument that in
inference problems whose objects are elements and subsets of �n, one should pay
particular attention to invariances (and equivariances) under the transformationsTn.
These transformations can be seen as the analogue in the space�n of translations in
the spaceRn .

One should be particularly aware of the fact that it usually does not make sense
to simply restrict symmetry and invariance concepts that are appropriate in the spaceRn to the subset�n. A case in point is the problem of noninformative priors. InRn
Lebesgue measure is the canonical choice for an (improper) noninformative prior, be-
cause its invariance under translations makes it the unique(up to a constant) “uniform”
distribution. Restricted to�n, however, this distinction of Lebesgue measure does not
carry much weight, as translations are not a meaningful transformation of�n. Our re-
sults indicate that the choice of Haldane’s prior for�n is much more in line with the
choice of Lebesgue measure onRn , than the choice of the “uniform” distribution, i.e.
Lebesgue measure restricted to�n.

In a similar vein, we have conjectured in section 3 that some of the intuitive appeal
of the center-of-mass selection rule is its equivariance under translations. Again, how-



ever, translations are not the right transformations to consider in this context, and one
therefore should aim to constructTn-equivariant selection rules, as, for example, theTn-equivariant modification of center-of-mass.

An interesting open question is how many of Paris and Vencovská’s [15] rationality
principles can be reconciled withTn-equivariance. As the combination of all uniquely
identifies maximum entropy selection, there must always be some that are violated byTn-equivariant selection rules. Clearly the obstinacy principle is rather at odds withTn-
equivariance (though it is not immediately obvious that thetwo really are inconsistent).
Can one find selection rules that satisfy most (or all) principles except obstinacy?
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