L earning Probabilistic Decision Graphs

Manfred JaegerJens D. Nielseh Tomi SilandeP

a|nstitut for Datalogi

Aalborg Universitet

Fredrik Bajers Vej 7,
9220 Aalborg @, Denmark

bComplex Systems Computation Group
Helsinki Institute for Information Technology
P.0.Box 9800,
FIN-02015 HUT, Finland

Abstract

Probabilistic decision graphs (PDGs) are a representititguage for probability distribu-
tions based on binary decision diagrams. PDGs can encodextapecific) independence
relations that cannot be captured in a Bayesian networktste, and can sometimes pro-
vide computationally more efficient representations thagd3ian networks. In this paper
we present an algorithm for learning PDGs from data. Firpeexrnents show that the al-
gorithm is capable of learning optimal PDG representationsome cases, and that the
computational efficiency of PDG models learned from rdal-tiata is very close to the
computational efficiency of Bayesian network models.

Key words: Probabilistic models, Learning

1 Introduction

Probabilistic decision graphs (PDGSs) [1,2] are a graphigatesentation language
for probability distributions that is based on the représton paradigm of ordered
binary decision diagrams [3]. PDGs were originally conediyor applications in
automated verification of probabilistic systems [1]. Artiadistudy of their poten-
tial strengths as a representation language also for Aiagmns was conducted
in [2]. The main result of that study was that from a compotai complexity

Email addresseg: aeger @s. aau. dk (Manfred Jaegeryal gaard@s. aau. dk
(Jens D. Nielsen),si | ander @i i t. fi (Tomi Silander).

Preprint submitted to Elsevier Science 30 August 2005

point of view, PDGs are always as efficient for probabiligtierence as Bayesian
networks, and for some types of probability distributiomsyt are more efficient.

These theoretical results leave the question open, how Rpf&sentations of a
given probabilistic domain can be found in practice; in atar, whether PDGs
can be learned automatically from data. This question isrtakp in the present
paper. We describe two approaches for learning PDGs froa @he first approach
is a score-based learning procedure that constructs a PRGdartly randomized)
search in the space of PDG structures. The second approadiykwid approach,
in which we first learn a Bayesian network, compute its juorctree, then compile
the junction tree into a PDG, and finally apply learning teghes to optimize the
constructed PDG.

For both approaches we compare the PDG models with Bayestaorks learned
from the same datasets. The basis for the comparison is ficeerety/accuracy
trade-off of probabilistic inference in the learned models

A comparison of learned probabilistic models in differeapresentation frame-
works raises some methodological questions. Often scoretiins like BIC or
MDL score are used as quality measures for learned modelslp#yever, neither
does it seem safe to use such functions as a basis for compagsoss different
representation languages, nor would we want to commit topamticular score
function. For this reason, we base our comparison on Sikelibbod curves that
represent the available range of possible efficiency/aoyurade-offs in the mod-
els from the different languages.

In the following section we briefly introduce the languageP®@Gs, and review
some of their essential properties. Section 3 describesetirodological approach
of SL-curves, and its relation to ROC analysis for classgiEnformance. Section 4
describes our pure learning algorithm for PDGs, and expartal results compar-
ing the learned models with learned Bayesian network mo8elstion 5 describes
our hybrid approach for PDG learning, and presents expetahessults.

2 Probabilistic Decision Graphs

In this section we briefly review by an example the basic d&dims and properties
of PDGs. Formal definitions can be found in [2,5].

Like a Bayesian network, a PDG is a graphical representafianoint distribution

for a set of discrete random variables. Figure 1 shows orighéan example PDG
defining a distribution for binary random variabl&s= X, ..., Xs. The graphical
structure of the PDG is defined in two stages: first, one definiesest (a set of
trees) over a set of nodes labeled with the given randomhlagaThis forest is

Variable-forest

Fig. 1. Probabilistic Decision Graph with underlying fdremnd nodes reached by
(1,0,1,1,0,0)

shown in the left part of Figure 1. Then, each nddean the forest is expanded into
a setl; of nodes, and a nodec V; is connected as follows: for each successor
of X; in the variable tree containing;, and each possible value &f, there exists
exactly one outgoing edge ofleading to a node’ € V;. We denote byuce(X;)
the set of variables that are (direct) successor& ofand bydesc(X;) the set of
descendants oX;. The resulting structure is a rooted directed acyclic gi@agag)
for every tree in the original variable-forest. In our exdenll variables arg0, 1}-
valued, so that each nodecontains two outgoing edges for each successor variable
in the variable-forest structure. Edges correspondingatoev/O here are indicated
by dotted lines, edges corresponding to value 1 by soliglikénally, a PDG is
obtained by annotating each nodec V; with a probability distribution over the
possible values ok;.

Each joint instantiation of the variables determines aguaph in the PDG that is a
forest of the same structure as the underlying variablestoin figure 1 the nodes
of the forest corresponding to the instantiatisin = 1, X, = 0, X5 = 1, X, =
1, X5 = 0, X¢g = 0 are shaded. We say that these nodegeaehedby the given
instantiation. The PDG now defines the probability of théansation as the prod-
uct of all the probability assignments to the values of tleantiation according to
the distributions at the nodes reached by the instantiaioour example:

P((X1,...,Xg) = (1,0,1,1,0,0)) = .7-.8-.6-.9-.1-.8 = 0.024192.

The structure of a PDG encodes certain (conditional) indeéeece relations: first,
the joint distribution of the variables contained in onetoéthe underlying variable-
forest is independent from the joint distribution of theightes in another tree. The
structure of a single rdag encodes conditional indeperedeglations among the
variables contained in the tree for this rdag. These inddgece relations are not
characterized as for Bayesian networks in terms of sub$egsiables, but in terms
of partitionsof the state space: each nodelgalefines a partition of the state space
(the set of all complete instantiations) into the sets ofan8ations that reach the
same node ifv;. In our example, the nodé§ partition the state space into the sets
of instantiationg X5 = 1}, {X; = 0, X5 = 0} and{X; = 1, X5 = 0}. Like in this
example, the partition correspondingifcalways is determined by the values of the

ancestors ofX; in the variable tree oX;. The conditional independence relations
encoded by a PDG now are:

P(X; | X\ {Xi, desc(Xi)}) = P(X; | Vi) (1)

Such partition-based independence relations can comddpaontext-specific in-
dependencies in the sense of [6]. In our example, for instathe independence
relation (1) applied taX; = X, essentially means thaf, is independent o,
given thatX; = 1 (because independent of the value’of, instantiations with
X3 = 1 will reach nodeyg in V). However, there is no exact match between our
partition-based independence relations and contextfgpawependencies. Fur-
thermore, it can be shown that the class of independendsoredghat can be en-
coded with PDGs is incomparable to the class of independetetéons that can be
encoded with Bayesian networks, i.e. each of these two septation languages
can encode independence relations that cannot be encodbd bther language.
For more detailed information on independence relatioroéad by PDGs the
reader is referred to [5].

Based on a PDG representation some key probabilistic inderproblems are solv-
able in linear time. This includes the computation of pastemarginal distribu-
tions for all random variables given an instantiation of sashthe variables in the
PDG, and the computation of the most probable explanatierthie most probable
full instantiation given a partial instantiation. WhenngiBN representations, the
complexity of these inference tasks is linear in the sizehefjtinction tree con-
structed from the BN (see e.g. [7] for probabilistic infezerusing junction trees).
Since in this paper we are looking at graphical represeamtatof probability dis-
tributions mostly as computational data structures fogneice (as opposed to e.g.
causal models), we shall identify BNs essentially with t@nction trees.

It was shown in [2, Theorem 4.1] that there is a linear trams&gion from junction
trees into equivalent PDGs. On the other hand, there e)stilalitions for which
a compact PDG representation, but no compact junction é@esentation exists.
An example for such a distribution is the joint distributiofv: + 1 binary random
variablesy of which are independently and uniformly distributed, amel(t: 4 1)st
represents arity bit that is deterministically defined by the other variabées
Xn1 = 21, X;mod 2. For this distribution PDG representations of §iZe) can
be constructed, but all junction tree representationsxgerential inn. When the
set of variables is fixed, thus, PDGs are a more efficient sgmtation language
than junction trees. For the parity distribution one caro alsnstruct linear size
junction tree representations by introducing suitablatautthl (hidden) variables.
This is true in general: using suitable augmenting setsdifdmn variables, one can
always also define a linear transformation from PDGs to jondtees [2, Theorem
4.3].

In some sense, then, PDGs and junction trees, and hencei@ayesworks, pro-
vide computationally equally efficient representationgfbability distributions.

However, the necessary introduction of hidden variableskea major obstacle
for obtaining efficient Bayesian network representatiomemvthe model is to be
learned from data, since, so far, no reasonably general ffextiee ways of au-
tomatically learning hidden variables are known. This atgbcates the challenge
posed by learning PDGs: learning optimal PDGs patrtiallyssutes the problem
of learning hidden variables.

3 Method of Comparison

It is our goal to compare the computational efficiency anduesty of PDG and
BN representations when models are learned from real datathis one has to
specify what kind of inference tasks a model is expected fipsrt. Our com-
parison is based on the assumption that the probabilistaemaill be needed to
support the exact computation of arbitrary posterior maaigi, i.e. we will want to
enter evidencds; = eq,..., E, = e, (abbreviatedEE = e) for arbitrary subsets
{E1,...,Ex} C {Xy,...,X,} of observed variables, and then compute the pos-
terior marginal of an unobserved variabte. This is the classic inference task for
Bayesian networks. However, there are also more spedaiasks one can use a
Bayesian network for (e.g. classification tasks, where ywadl but one variable

are observed), or one can perform approximate inferenaeh Bwre specialized

tasks would require a different method of comparison froendhe we here pursue.

As explained in the previous section, computational efficyeof BNs and PDGs
can be measured by the size of the BN’s junction tree, relspécthe size of the

PDG. Ideally, one would for BNs always consider the smaljesttion tree for

any given BN. Since itis computationally infeasible to cartga minimal junction

tree, we base our comparisons on the size of the junctios geeerated by the
B-course system [8], which implements the junction treestarction described
in [9].

Measuring the accuracy of a model is more difficult. For algimgference, we can
measure the accuracy by the discrepancy between the catrgmgterior marginal
for X, given E = e, and the true posterior marginal in the underlying distiiou
P.If PM denotes the distribution defined by modé| and we follow the common
approach of measuring discrepancy by cross-entrGgy, (then the in-accuracy of
a computed posterior is given ISE(P(X; | E = e),PM(X; | E = e)). The
expected discrepancy, given that we observe variabldben is

> P(E =¢e)CE(P(X; | E=¢e),PM(X; | E=e)). (2)
It follows from well-known properties o E that C E(P, PM) is an upper bound

for (2) (e.g. [10, Theorem 2.5.3]). ThuSE(P, PM) is a uniform upper bound for
the expected discrepancy between computed and actualipostarginal, inde-

pendent of the set of observed variables. When learning femhdataD the true
underlying distributionP is not known. We therefore have to use the empirical dis-
tribution PP defined byD (or, more often, defined by a subsetdfreserved for
valuation purposes) as an approximationfrOne can easily derive that

CE(PP,PY) = —H(P") - (1/|D|)L(M, D), 3)

where H (PP) is the entropy ofP” and L(M, D) is the log-likelihood ofD un-

der PM. Seeing thatC E(PP, PM) is an (approximate) upper bound on expected
inference in-accuracy, and the right-hand side of (3) ddpem A/ only through
L(M, D), we obtain thatl.(M, D) can be interpreted as a measure for expected
accuracy for inference based on modél

Model size and accuracy can be combined into an overall maxtek. Popular
scores like MDL or BIC scores are just weighted combinatiohsize and log-

likelihood measures (though the underlying philosophytd@ing size into account
is usually not based on measuring inference efficiency)ekample, the BIC score
of a model M relative to dataD is given by (1 — X)L(M, D) — AM|, where

A=log|D| /(2+ | D).

For the purpose of our comparative study, there is no goasbreto commit to
one particular overall score function. Instead we reportresults in the form of
Size-Likelihood (SL) - curvelat show what range of possible size/likelihood com-
binations are obtainable by models from the different dasf¥hese SL-curves are
similar to ROC-curves [11] that are often used to report tadgsmance of classi-
fiers by plotting the combinations of true positive rates faise positive rates that
are obtainable for a classifier through different settinigsome tuning parameter.
A ROC curve describes the performance of a classifier witboatmitting in the
evaluation to any particular gain/loss structure of thegifecation problem (which
amounts to assigning different weights to true and falséigesates).

Figure 2 shows a somewhat idealized example of an SL-curve.sblid curve
shows the range of size/likelihood values that are obtdenlay a class of models
for a fixed data set, which, when the models are generateddsriaihg procedure,
would be the training data. However, complex models thaial# high likelihood
score on the training data will tend to overfit the trainingagdand hence obtain
a lower likelihood score on test data. The dashed curve stimsvgossible devel-
opment of the likelihood score of models of increasing sibemvevaluated over a
separate test set.

In the context of ROC analysis, one obtains that, given aipewost function,
all classifiers obtaining equal expected lddge on on a straight line, and lines
corresponding to different expected losses are paralleghldgously, we have for
SL analysis that constant BIC or MDL scores correspond talfghistraight lines
in SL-space. Figure 2 indicates three of such equi-scoes fior some such a score
that is a weighted combination of size and likelihood. HoareBIC/MDL type

scores may not always be the most appropriate. Considexx&onple, the situation
where the model is needed for a resource-bounded or tirtieat@pplication. In
that case there might be a strict upper bound on the modelsizenodels within
these bounds would be scored only according to their acguiae there is no
bonus for staying below the upper size bound). Models oistgiaqual score in
such a setting are characterized by horizontal lines in&lces that extend to the
maximally allowed size.

The relevant part of SL-space is effectively bounded by twineene points: the
independence modetodels all random variables as independent. This model has
minimal size (in basically every conceivable represeatatframework it will re-
quire for its specificatiom parameters, assuming the state space is generated by
binary variables), and likelihood scofg Mi.qep, D). Models with lower likelihood
score could obviously be constructed, but they would handlye to be considered

in practice. At the other extreme, one can construct a moderepresents the em-
pirical distribution of the data precisely. In most casas tdannot be done except
by an explicit enumeration of the probabilities of afl states, which thus gives
us a modelMenm, of size2™ (again, this would be the same in all representation
frameworks).

L(Memp D)
.~ Equi-score lines:

~" .BIC/MDL type score
~
S
S
£ |
2
.q'l" .
&
~ Equi—score lines:

Resource bound score
L(Mingep, D) +-HH-H-H-HHHHHHHHHHHHHHHHHHHHHHHHH .
n Size 2

Fig. 2. SL-curves

4 Learning PDGs

4.1 The Algorithm

We use ascore-basedpproach to learning PDGs from data using the generic score
function:

Sx\(M) := (L = A)L(M, D) — A| M| (4)
By varying A we learn models that yield different points in SL-space.lEseatting
of A corresponds to the slope of the parallel, linear equi-siioes in SL-space.

Procedure Lear n(D) Procedure Lear nFor est (D, t)
1. F := (0 % Population of forest structuregsl: X :=vari abl es from D
2: G := () % Population of PDGs 2. F:=0
3: for each testlevel t do: 3: H :=DepG aph(X,t,0)
4: F:=FuU{LearnForest(D,t)} | 4: for each Ce CC(H) do:
5. for Ain Mz, Apin do: 5: X; :=rndVar (C)
6: for each FeF do: 6: Vi =A{v}
7: G:=GU{LearnPDG F,\) } | 7: desc(X;) := C\ {X;}
8: collect Fy fromF 8: T, :=tree w. V; as root
9: F:=F\{Fy,} 9: F:=FuU{T}}
10: out put argmazgec(Sr(G)) 10: repeat:
11:. G:=0 11: G ow(T;,t)
12: Lear nPDE F, \jaz)
13: wuntil T; is full-grown
14: return F
Procedure Lear nPDG(F),) Procedure Gr ow(7', t)
1: G:=mnimal PDG for F 1: for each leaf V; of T do:
2: repeat for all trees in G: 2: H :=DepG aph(desc(X;),t,V;)
3 split nodes t op-down 3 for each Ce CC(H) do:
4: merge nodes bottom up 4: X, :=rndVvar (C)
5 redirect edges bottom up 5: Vi ={v;}
6: until S)(G) did not change 6: attach v; below V;
7 desc(V;) := C\ {X;}

Table 1
PDG learning procedures

Optimizing S, for large A is easier than optimizing for small as the strong bias
towards smaller models reduces the effective size of thelsespace.

The structure search for PDGs decomposes into two partsetweh for a vari-
able forest, and the search for the exact PDG structure lmas#uhat variable for-
est. One may expect that when we obtain a high scoring PDGofoes value,
then the variable forest underlying this PDG will also suppagh scoring PDGs
for other \-values (this expectation has been corroborated with nupatifica-
tions in our experiments). Together with the observaticovalihat it is much eas-
ier to learn PDGs when scoring with largevalues, this leads us to the follow-
ing population-based approach to learning (cf. procetde@r n of table 1): first

a population of candidate variable forests is createzh¢ n, lines 3-4). Starting
with the largest\ in a set of \-parameters, each variable forest is refined into an
actual PDG using theear nPDG sub-routine, which optimizeS,. ForestsF for
which Lear nPDE F, \) yields a PDG achieving poor score are collected in set
F,,., and removed from the population (lines 8-9). The subroutea@r nFor est
generates the initial forests bycanstraint-base@pproach that builds a forest en-
coding certain conditional independence relations we finithié data. We now de-
scribe the two key subroutinéear nPDGandLear nFor est in greater detail.
Lear nPDE F, \) traverses the space of different PDGs over the foFest the

search for an optimal PDG, w.r.t scasg. Three different local operators define the
traversalsplit, mergeandredirect

The split-operator takes a node with > 1 incoming edges, and replaces it with
n nodes, one for each incoming edge. The outgoing edges ofeailvenndes are
directed into the original successors of the eliminatecendtie selection of nodes
for splitting is randomized, but biased towards those ndoleg/hich the result of
splitting will lead to several new nodes that are all reachga@ significant num-
ber of data items. Splitting nodes with this property affotble highest potential
increase in likelihood score.

The mergeoperator takes two nodes all of whose outgoing edges aeetdd to
the same successor nodes, and replaces them with a singleat®a having these
same successors. From the number of data items reachingigheabtwo nodes,
and their local distributions, one can compute the distigioufor the new node and
the exact score gain obtained by the merge operation. A ntikeegefore always is
executed iff the score gain is positive.

The redirectoperator is the computationally most expensive oper#toests for
every node’ in the PDG, and each of its outgoing edges leading into sdraeV/;,
whether the likelihood score can be improved by redirecting edge into some
otherv” € V;. This is tested by computing the likelihood score of the dfmiams
reachingv under the two marginal distributions defined idyandv” for the vari-
ables contained in the subtree rootedain the variable forest.

ThelLear nFor est procedure constructs a variable forest incrementally.athe
stage, some of the variables have been built into a variapést. Each of the re-
maining variables is assigned to the descendantdast:(X;)) of some leafX; of

an existing tree - they will be built into a subtree rootedtas teaf. Moreover,
using theLear nPDG procedure, the partially constructed variable forest has a
ready been expanded into a small PDG. Figure 3(a) showsitihaien with three
variablesX,, X, X already built into a tree, all remaining variables assigteed
desc(X,) of leaf X, of this tree, and a small PDG for the first three variables al-
ready constructed. In tH& owsubroutine we first call the subroutiDepG aph.

A call to DepGr aph(X, t,V;) returns a dependency graph over variableXin
Dependency tests are made conditional on the partitionetefigV;. The param-
etert is a significance level for the independence tests. The uskffefent val-
ues fort promotes diversity in the structureskh(Lear n, lines 3-4). Figure 3(b)
shows the result of callin@epG aph({ X1, X35, X5, X7}, ¢, Vy) . Edges between
variables indicate dependence between the variables. ¢&astected component
of the resulting graph becomes a separate sub-tree underidgieal leaf. CC'(H)
denotes the set of connected components in gidpfihe gr ow subroutine fin-
ishes by randomly selecting from each connected componsrdeaas the root for
these new subtree&(ow, line 4), and assigning the remaining variables from the
connected component to this new le&k 6w, lines 5-7, figure 3(c)). One iteration

4
eYo L 1e;

00D EOTO

(@) (b)

Fig. 3. Snapshots of the procedure for growing PDGs

of theLear nFor est procedure then is completed by callihgar nPDGwith a
large parametek . to refine the expanded forest into a small PDG, figure 3(d).
Lear nFor est terminates when all leaves of all trees have empty succes$®r
We then say they are full-grown.

We have implemented our PDG learning procedure in Java. TBKA\package
(http://www.cs.waikato.ac.nziml/weka) was used for basic data-handling rou-
tines.

As a first test of our learning algorithm we have applied it tdadaset sampled
from theparity distribution described in section 2 with= 7. The algorithm was
run with a set of eight different-values. Figure 4(a)-(c) shows the PDGs learned
for three decreasingvalues. For the middla-value the learned PDG (figure 4(b))
is almost the optimal PDG for the underlying distributiom éptimal PDG would
be obtained by merging the nodes 8 and 9. By avoiding this entrg algorithm
here slightly overfits the data. For the smallastalue (figure 4(c)) the overfit-
ting is much stronger. The ability to learn the structuretfor parity distribution
demonstrates the potential of the split, merge and redigetations for an effec-
tive PDG-structure search. The construction of the undeglyariable forest here
is not such a difficult problem, as any forest consisting ahgle, linear tree can
be used in an optimal PDG for thparity distribution.

4.2 Learning results: PDG vs. Bayesian networks

We applied our learning algorithm to several real-worldagats, and compared
the resulting PDGs with the junction trees constructed fidayesian networks

learned from the same data. We evaluate the results usirqiSes, as described
in Section 3. All datasets were split into a training set (/e data) and a test set
(1/3 of the data). We consider SL-curves both for likelih@odres obtained over
the training data and over the test data.

Instead of using real-world data, one might also considelgusynthetic data sam-

10

o
B
°
g

& o
& o
Glo Gl
IS DS S
GO RICISIOIOIONG
O IR GIGIGIGIE
B [E
s L

(@) (b) (c)

19

19:1110:119:19:1931(05110)
(o
1O
61

Fig. 4. Learned PDGs from parity data

pled from some distributior. This approach avoids the difficulty of having to
approximate the true distributia with an empirical distribution””, and the ac-
curacy of a modelM can be evaluated directly vi@ E(PY, P). However, this
approach is problematic in our context, where we aim to camgdferent repre-
sentation frameworks: the representation used for thergiéneg distribution” can
easily bias the results of the comparison in favor of thateggntation framework
which is more closely related to the generating model. fgiample, we generate
data with a Bayesian network, then the data can be expecteghtain indepen-
dence structures that are more easily expressible withday@etworks than with
PDGs. The converse holds if we sample data from a PDG.

By optimizing (4) we attempt to learn models that yield oglrsize/likelihood
trade-offs, i.e. models that are not dominated in SL-spagcanly other models of
the same representation language (one model dominatdseanotSL-space, if
its SL-coordinates are to the left and above the other m®debrdinates). When
we compare the achieved SL-values for different types ofetxpdhen two major
factors will influence our results: the first factor is thest&hce of small, accu-
rate models for the given real-world distributions in thepective representation
frameworks; the second factor is our ability to find the bexgtsible models with
our learning methods. Ideally, one would investigate these different factors
separately. On the one hand, one would determine the Slesulefined by the op-
timal models available in different representations. Qndther hand, one would
have to investigate how close to optimal the models are tleabltain from our
learning methods. In our experiments, we cannot separage tlivo issues. From
a practical point of view, however, one can argue that theene&istence of effi-

11

Data #variables size Description Source

Adult 15 45.222 Census data. ucCl
Letter 17 20000 Recognition of handwritten letters. ucCl
Hall of fame 17 1320 Major League Baseball hall of fame data. StatLib
Yeast 9 1446 Prediction of Cellular Localization Sites aftBins. ucl
Supreme 8 4052 Prediction of action taken based on supremredata from legal StatlLib
cases.
Table 2

Datasets used. Sources are the UCI-reposituitp:(/kdd.ics.uci.edy/and the StatLib site
(http:/lib.stat.cmu.edy/

cient models in a given representation language is of htlee if we are unable
to learn these models from data. The ’practical efficiendya cepresentation lan-
guage, then, would be measured in the size and accuracy @lswwd are actually
able to learn from data — which is what we do in our experiments

For Bayesian network learning we use the B-course algor@jnThis is a score-
based learning algorithm that performs structure seardbda} arc insertion, dele-
tion and reversal operations. We use it with the genericestorction (4) and vari-
ous\-values. The search in B-course continues to explore faebetodels until a
timeout, always memorizing the best model found so far. Inesperiments we set
the timeout to 1 hour for everyvalue. Bayesian networks were learned for 6-8 dif-
ferent\-values, giving a total runtime for B-course of approxinia&8 hours per
dataset. The search in our PDG learner, on the other handngges when no score
improvement has been found within a certain number of it@mat The total run-
time of the PDG learner proved to be highly dependent on tteecfithe datasets,
because the local structure changing operations requite fjaquent parameter
re-estimations, and hence expensive data-reads. To leadelsnfor all the given
A-values our algorithm needed in between 15 minutes for thallest datasets,
and 12 hours for the Adult dataset. To reduce overfittingy lbedrning procedures
apply parameter smoothing methods to the model learneddpimization ofS),.

The data used for the experiments are displayed in table & piéprocessing for
all datasets consisted of removing cases with missing sadud discretization of
continuous variables into uniform intervals. Figure 5 shoe SL-curves obtained
by the BN and PDG learners on our five datasets. The figureiosriath the SL-
curves obtained on the training data (lower row) and thos¢h® test data (upper
row). Recall that for Bayesian networks, the reported szbat of the generated
junction tree. The likelihood scores are per-instanceegeal toL (M, D)/ | D|.

As expected, the curves for the training data are monottyioareasing. On most
datasets we obtain with PDGs a somewhat higher likelihoodeswith models of
the same or smaller size than with BNs. However, when we tuthd SL-curves
for the test data we find that PDG models suffer to a greatenektom overfitting,
so that the SL-curves here tend to decrease after attaimmaxanum. This effect
can also be observed on some datasets for the BN modelslévasity for the

12

(@) (b) (©

Fig. 5. SL-curves for PDGs and BNs learned from the datasé#ble 2. Upper plots shows
performance on test data and lower plots shows performaméining data. Plots are for
the following data: yeast and supreme (@), adult and haluwief (b) and letter (c).

Supreme data), but here is not nearly as strong. The reasprihighoverfitting
effect is stronger for PDGs appears to be the following: wiverhave learned a
PDG of size 1000, for example, then we will fit in the paramégarning phase 500
free parameters (assuming all variables are binary). Atlamtree of size 1000,
on the other hand, would have been induced by a Bayesian riethvat contains
only a much smaller number of free parameters. Since thenes learning is
done on the Bayesian network, not the junction tree, we haviewer parameters
to fit, and hence are less liable to overfit the training data.

We obtain the following general picture: on all datasetsShecurves of PDGs and
BNs show a surprisingly similar behavior. One might haveeetgd that for some
datasets one representation framework would clearly oiatpe the other, because
of independence structures in the data that are more eagihgssed in one of
the two frameworks. However, no really big discrepancietheresults have been
found !. The results for PDGs tend to be better than the results fatijon trees
when the evaluation is over the training data. PDGs hergvatdit the empirical
distribution closely using smaller models than the junctitees generated from
BNs. However, the models for which this difference beconmesipunced overfit

I To obtain a better intuition for the magnitude in likelihodifferences, consider the fol-
lowing: suppose that the test data defines a distributionimaryp variablesXy, ..., X, 11
such that variable,, , ; is deterministically determined by the valuesXyf, . .., X,,. Con-
sider two modeld\f;, M, for the data that agree with respect to the marginal digtdhu
of Xy,..., Xy, but M7 correctly identifies the functional dependenceXaf,;, whereas
M, modelsX,, 1 as independent from the other variables, with probabilig/far both its
values. Then the difference in per-instance log-likelth@core for these two models will
be equal to 1.

13

(@) (b) ()

Fig. 6. The first steps in thieybrid-procedure. (a) shows a junction tree and (b) shows the
PDG that result from compilation of the junction tree. Nodath zero data-support are
shaded light-gray. By garbage-collection we get the PDGvshim (c) - garbage nodes
shaded dark-gray.

the data, so that the PDGs advantage is canceled, or evesedye/hen evaluated
over the test data.

5 Hybrid learning: combining BN and PDG-learning

As previously stated, there exists a linear transformaiiom junction trees into
equivalent PDGs [5]. This naturally suggests another walgaiing PDGs: one
can first learn a Bayesian network from data, and then contgijenction tree into
a PDG. The PDG so constructed can then be used as a startimigrpour PDG

learning procedure. A potential advantage of this appraadhat the Bayesian
network learning methods might be more successful in ifigntj independence
relations among the variables, which would then be reflectete tree structure
of the compiled PDG. Thus, we would mainly hope to optimize ldarned PDG
forest structure by using this approach.

Figure 6 (a) shows a simple junction tree , and (b) the regudbmpiling it into a
PDG using the method described in [5]. The compiled PDG ispmzsed of several
complete binary trees (in the case of binary variables). MWhe junction tree was
learned from data, then it will typically contain in its alig potential tables many
zero entries, corresponding to combinations of valueswieat not encountered in
the data. In the compiled PDG these configurations with zata dupport corre-
spond to PDG nodes that are not reached by any data itemsyuineFs (b) these
zero-nodes are indicated by a grey shading. A first way to cessthe size of the
PDG representation without any loss of likelihood scorelannderlying training
data, is to eliminate the zero nodes.

14

We perform this elimination by collapsing all zero nodes inale setV; into a
single “garbage-node”. Such garbage nodes are then cashtcform for each
branch of the variable tree a garbage-path, and are isg@liwith parameters of
uniform distribution. Figure 6 (c) shows the result of thfgeeation with the new
garbage nodes indicated by a dark shading.

The example illustrated in figure 6 does not show any gaie gduction) from this
garbage-collection. However, in our experiments we tylpicgain a considerable
size reduction in this way. Starting with the PDG obtainexrfrcompilation and
garbage collection, we then perform a seriesefgeoperations to further reduce
the size. The rationale behind focusing on merge operaisahsit besides the zero
nodes, the compiled PDG may also contain numerous equivaterizero nodes
that may be merged without any likelihood loss. Specificalbntext-specific in-
dependencies [6] in the underlying distribution would léathe existence of such
equivalent, mergeable nodes. For the merge operation wih@seerge subroutine
from our general learning procedure. This merge operati@arameterized with
the \ parameter of our generic score function, and, depending®h value, will
also merge nodes that are only approximately equivalerd.higher the\-value,
the more merge operations will be performed, leading to lemahd less accurate
models. Apart froommergeoperations one might also transform the initial PDG us-
ing thesplit andredirectoperations of_.ear nPDG. However, since the initial PDG
obtained from a junction tree tends to be rather large ajte®ael currently only use
the size reducingnergeoperation.

Figure 7 contains plots showing the performance oftodorid procedure for learn-
ing PDGs. The procedure was invoked on all the junction tadained from the
BN learning as described in section 4.2. The solid linesate¢pe SL-curves of the
initial junction trees; they are exactly the same as thesfimt junction trees pre-
sented in figure 5 with the exception that in figure 7 we use aritilgnic scale for
size. Each execution of the hybrid procedure gives us a segud PDGs obtained
by iterated merge operations with increasixxgarameter. The dotted lines in the
plots are the SL-curves obtained for the models in one ekmtaf the hybrid pro-
cedure. The temporal direction of the dotted lines are frghtrto left, i.e. from
large towards smaller models. The first (rightmost) pointiog dotted line repre-
sents the PDG that is obtained after compilation and elitrinaf zero nodes. The
rest of the points each corresponds to additionatgeoperations with increased
A-value.

Looking at the bottom plots of figure 7, depicting performarmm training data,
the first observation that can be made is that PDGs geneeghgsent the empir-
ical distribution with the same or better accuracy as therBddel, while using
fewer parameters. Secondly, we observe that the junceéecwmpilation does not
always produce a PDG with exactly the same likelihood as tiggnal BN. The
reason for this is the same as we already encountered ilos&cH: the likelihood
scores reported for the junction trees are those that asnalot by the underly-

15

(@) (b) (©

Fig. 7. Performance plots of the hybrid-procedure. Sotiddidepicts SL-curves of junction
trees, and dotted lines depicts SL-curves obtained by ubmgunction trees as starting
point for the hybrid procedure. Plots are for yeast (a)eldth) and hall of fame (c) datasets.
Performance on test data are displayed in the upper plotsratrdining data below. Please
note that the X-axis (Size) is logarithmic.

ing Bayesian network model, because parameters are fitteladbrmodel. The
Bayesian network model usually dictates a stricter inddpeoe model than the
generated junction tree (which manifests itself in a smallenber of free param-
eters). The independence model represented by the PDGettiom compiling
the junction tree (before eliminating zero nodes) is theesasithe independence
model of the junction tree, and so it, too, imposes fewer petelence constraints
than the original Bayesian network. When we relearn pararsdor the PDG-
structure retrieved from the junction tree, we potentiabkyploit some additional
degrees of freedom offered by the PDG-structure. This effedearly visible for
the hall of fame data (c), and can also be noticed to a lesggeedor the other
datasets.

Turning to the upper plots of figure 7, depicting the perfonoceaon test data, we see
that for the yeast and letter data (a,b) the behavior is aifor the test data as for
the training data: the initial compilation and the first oméveo steps of the merge
procedure produce models that have nearly the same likeliboore as the initial
junction tree, but with a size reduced by about a factor 2. rElselts for the two
remaining datasets from table 2 (Adult and Supreme) ardagitai the results for
yeast and letter, and are here omitted. For the Hall of fan&sda (c) the results
look somewhat different. Here we clearly over-fit the traghidata also with our
hybrid procedure, just like the overfitting problem was athg most pronounced
for this dataset in Figure 5 (not surprisingly: this datasettains a relatively small
number of cases, but has a relatively large state space Witariables). The gainin
likelihood score on the training data, thus correspondsléssin likelihood score

16

on the test data. The SL-curves for the Hall of fame test dats&vsa somewhat
strange, irregular behavior. We do not have a completelgfaatory explanation
for the sudden drop in likelihood score, followed by a pantecovery, that we
here observe as model size decreases. Most likely, thiseigadthe fact that our
parameter smoothing routine may sometimes on larger mbéaismore effective
instrument against overfitting than on somewhat smalleraisod

Comparing the results of the hybrid-procedure to the respiitthe direct PDG

learning algorithm reported in section 4.2 figure 5, we abtabre or less equiv-
alent results in terms of Size/Likelihood trade-off onniag data. For both Yeast
and Hall of fame (Fig. 7(a)-(c)) we get equivalent size of thedels with high-

est likelihood score for the training data, but for smalleydel sizes the hybrid-
procedure outperforms direct learning. For Letter-daig. (Fb)) we do not obtain

quite as good likelihood scores with the larger models ak diitect learning, but

again for smaller models hybrid learning performs better. &l the datasets, we
improve performance on test sets - even for the dataset ochwine experience
over-fitting of training data (Hall of Fame, Fig. 7(c)).

The main lesson to take from these first experiments with gHitk-procedure
is that PDGs can offer a compact representation by comgilingtion trees into
PDGs. The compilation only ensures that the size of the PR#lsn a factor 2 of
the original junction tree [5, Theorem 5.1]. However, thesperiments show that
in practice we can reduce the size of the PDGs considerabdynpyle procedures,
with limited or no loss in accuracy. The factor by which we ganform lossless
compression of the PDG compared to the junction tree in jpeaseems closer to
1/2 than 2.

6 Related Work

A related approach to making representations of probghilistributions more
compact and thereby speeding up probabilistic inferentigeisvork by Darwiche
on arithmetic circuit representations [12,13]. The kejedénce between arithmetic
circuit representations and PDGs is that the former are deti&ated representa-
tion framework for probability distributions, i.e. the stléss of circuits that repre-
sent distributions is not characterized by a simple symaciterion. As a conse-
guence, it would appear very difficult to learn arithmeticuaits directly from data,
as the search space of possible models is not well circubestriConsequently,
Darwiche envisages arithmetic circuits mostly as a seagnagresentation that
has to be obtained by compilation from some primary reptesen (e.g. a poly-
nomial or a junction tree representation). Empirical ressul [13] show that com-
piled circuit representations can be much smaller thartiomtree representations.
The compilation technique of Darwiche is related to the fitsase of our hybrid
learning procedure. Since arithmetic circuits have fewricsural constraints than

17

PDGs, one would, in fact, expect that by pure compilationlEnarithmetic cir-
cuit than PDG representations can be obtained. HoweversRia@& the advantage
that compilation can be combined with parameter re-esttmdtom the data, so
that we can always fit optimal parameters to the structureetompiled model.

Another recent framework related to PDGs and arithmeticudis are thecase-
factor diagramsof Collins et al. [14]. Like PDGs, case-factor diagrams aspired
by binary decision diagrams, and support linear time pradiséib inference. The
learnability of case-factor diagrams has not been invatgyet.

The most closely related work about learning PDG-relatedetsis work on learn-
ing probability estimation trees (PETs)[15] and decisioapips for CPT represen-
tations in a Bayesian network (CPT-DG)[16,17]. Both of théemeworks serve
only for the representation of a distribution of a singleahle, conditional on val-
ues of other variables. In case of PETSs this is the distooutif the class variable
given attribute values; in the case of CPT-DGs this is theidigion of a network
variable conditional on its parents. More fundamental thadifference, however,
is the fact that both PETs and CPT-DGs follow thealti-terminal binary decision
diagram (MTBDD)18] paradigm of function representation: the internal eodf
the representations only serve to determine the argumetitédunction; they do
not as in PDGs already contain numerical information fromclithe function
value (i.e. a probability) is incrementally constructedierlescending through the
tree or graph. As a result, such representations alwaysreegsi many leaves as
there are different function values, whereas in the caseD&$the number of
function values only induces a lower bound on the number digpthrough the
graph.

The structure search for good PETs or CPT-DGs on the one laddPDGs on
the other hand, has to focus on somewhat different probleanghe former types
of representations one main question is which variablesdlude in the graph or
tree, so as to obtain an informative case-distinction ferdistribution of the target
variable at the leaves. For PDGs, the set of variables isngiaed the labeling
of nodes in the PDG with variables follows much stricter sulean imposed in
a PET or CPT-DG. Nevertheless, [16] use in the structurecheiamr CPT-DGs
split and merge operations that somewhat resemble oueslimerge operations.
However, Chickering et al. [16] apply their split and merge@tions only at leaf
nodes. Moreover, their application of split and merge ojp@na is purely random,
and not based on any score improvement heuristics as in ganmitaim.

De Campos and Huete [19] describes an algorithm that dyréedirns a junction
tree, rather than a BN, through independence tests. Thik isaelated to ours
in that it allows to score a candidate model directly in tewhds efficiency for
probabilistic inference. No experimental results are regabin [19].

18

7 Conclusion

We have developed and implemented a method for learningapiiidtic decision
graphs from data. The results obtained from applying thehateto theparity
dataset show that our structure search procedure canfideptimal or near op-
timal PDG structures in at least some non-trivial problebsng our method, we
have learned PDG models for a number of real-life datasatsoa the basis of
Size-Likelihood curves compared the learned models witistjon tree represen-
tations obtained from Bayesian network learning. The teswédre indicate a better
ability of the PDGs to fit the training data exactly, which egva higher likelihood
score on the training data, but leads to overfitting. ConmgirBayesian network
learning with the merge-subroutine of PDG learning, we tgyed a hybrid learn-
ing method that improves both on pure BN learning and pure Ra@ing.

At this pointitis still unclear to what extent the results @@ained in PDG learning
were limited by the representation language as such, ee(ribn-)availability of

small, accurate PDG models, or by our learning method, he (lhon-)ability to

find good PDG structures for a given dataset.

Future work should be directed at refining the structureckearethods in PDG
learning, the experimental exploration of further datagebrder to identify types
of distributions for which PDG representations are bestesiliand at adapting
PDGs for more specialized inference tasks like classiticati

References

[1] M. Bozga, O. Maler, On the representation of probale$itover structured domains,
in: Proceedings of CAV-99, no. 1633 in Lecture Notes in Cotap&cience, 1999.

[2] M. Jaeger, Probabilistic decision graphs: Combiningfigtion and Al techniques
for probabilistic inference, in: Proceedings of the firstrégpean Workshop on
Probabilistic Graphical Models (PGM), 2002, pp. 81 — 88.

[3] R. E. Bryant, Graph-based algorithms for boolean fuwrctimanipulation, IEEE
Transactions on Computers 35 (8) (1986) 677—691.

[4] M. I. Jordan (Ed.), Learning in Graphical Models, MIT Bsg 1999.

[5] M. Jaeger, Probabilistic decision graphs - combiningfigation and Al techniques
for probabilistic inference, Int. J. of Uncertainty, Fuzgss and Knowledge-based
Systems 12 (2004) 19-42.

[6] C.Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Ctaxt-specific independence in
Bayesian networks, in: Proceedings of the Twelfth Annuatf€aence on Uncertainty
in Artificial Intelligence (UAI-96), 1996, pp. 115-123.

19

[7] R.G. Cowell, A. P. Dawid, S. L. Lauritzen, D. J. Spiegdtag Probabilistic Networks
and Expert Systems, Springer, 1999.

[8] P. Myllymaki, T. Silander, H. Tirri, P. Uronen, B-coursé& web-based tool for
Bayesian and causal data analysis, International Joumahrtficial Intelligence
Tools 11 (3) (2002) 369-387.

[9] C. Huang, A. Darwiche, Inference in belief networks: Aopedural guide,
International Journal of Approximate Reasoning 15 (19%3-263.

[10] T. M. Cover, J. Thomas, Elements of information thed#ley, 1991.

[11] F. Provost, T. Fawcett, Analysis and visualization dassifier performance:
Comparison under imprecise class and cost distributiorRriaceedings of the Third
International Conference on Knowledge Discovery and Datarlg (KDD-97), 1997,
pp. 43-48.

[12] A. Darwiche, A differential approach to inference in y@sian networks, in:
Proceedings of the Sixteenth Annual Conference on Unogytain Artificial
Intelligence (UAI-2000), 2000, pp. 123-132.

[13] A. Darwiche, A logical approach to factoring belief werks, in: Proceedings of the
Eighth International Conference on Principles and KnogéedRepresentation and
Reasoning (KR-2002), 2002, pp. 409-420.

[14] M. Collins, D. McAllester, F. Pereira, Case-factorgiiams for structured probabilistic
modeling, in: Proceedings of the Twentieth Annual Confeeson Uncertainty in
Artificial Intelligence (UAI-2004), 2004, pp. 382-391.

[15] F. Provost, P. Domingos, Tree induction for probapilised ranking, Machine
Learning 52 (2003) 199-215.

[16] D. M. Chickering, D. Heckerman, C. Meek, A Bayesian ajguh to learning Bayesian
networks with local structure, in: Proceedings of the Hartth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-97), Morgan Kémann Publishers, San
Francisco, CA, 1997, pp. 80-89.

[17] N. Friedman, M. Goldszmidt, Learning bayesian netvgowkith local structure, in:
M. I. Jordan (Ed.), Learning in Graphical Models, MIT Pres399.

[18] M. Fuijita, P. C. McGeer, J.-Y. Yang, Multi-terminal l@iry decision diagrams: an
efficient data structure for matrix representation, ForMathods in System Design
10 (1997) 149-169.

[19] L. M. de Campos, J. F. Huete, Algorithms for learning a@®posable models and
chordal graphs, in: Proceedings of the Thirteenth Annuaif@ence on Uncertainty
in Artificial Intelligence (UAI-97), 1997, pp. 46-53.

20

