
To appear in Proc. of IJCAI-95 1Minimum Cross-Entropy Reasoning: A Statistical Justi�cationManfred JaegerMax-Planck-Institut f�ur InformatikIm Stadtwald66125 Saarbr�uckenGermanyAbstractDegrees of belief are formed using observed ev-idence and statistical background information.In this paper we examine the process of howprior degrees of belief derived from the evidenceare combined with statistical data to formmorespeci�c degrees of belief. A statistical modelfor this process then is shown to vindicate thecross-entropy minimization principle as a rulefor probabilistic default-inference.1 IntroductionA knowledge based system incorporating reasoning withuncertain information gives rise to quantitative state-ments of two di�erent kinds: statements expressing sta-tistical information and statements of degrees of belief.\10% of applicants seeking employment at company Xwho are invited to an interview will get a job there" isa statistical statement. \The likelihood that I will beinvited for an interview if I apply for a job at companyX is about 0.6" expresses a degree of belief.In this paper, both of these kinds of statements areregarded as probabilistic, i.e. the numbers appearingin these statements are assumed to obey the rules ofprobability theory. A degree of belief is viewed as aconstraint on a set of possible (subjective) probabilityvalues.A very expressive extension of the language of �rst-order logic for representing the two types of probabilis-tic information has been de�ned by Halpern [1990] andBacchus [1990]. For the purpose of the present paper,it will be su�cient to restrict attention to a much sim-pler language based on propositional logic. Adaptingthe notation of Halpern and Bacchus, we will considerknowledge bases in an extension of the language L(S)of propositional logic over the propositional variablesS = fV1; : : : ; Vng incorporating expressions of the form[� j  ] � p (1)and prob(�(e) j  (e)) � p; (2)where �;  are formulas in L(S), p is a real number in[0,1], and e is a new symbol not in S.

The intended meaning of such a knowledge base isthat formulas in the underlying propositional languageexpress certain properties that a given object or, in awider sense, a given event may or may not possess. For-mulas of the form (1) make a statement with what sta-tistical probability property in the domain of discourse� holds given that property  holds, and formulas of theform (2) are used to express that for the speci�c evente it is believed that the probability of e having property�, given that e has property  , is � p.Using the propositional variables A (� applicant), I(� interview), and J (� job), the two example sen-tences above may be symbolized by [J j A ^ I] = 0:1 andprob(I(i) j A(i)) 2 [0:55; 0:65], to which the de�niteknowledge :(I^ A)! :J (\no job without an applica-tion and an interview") might be added. (The symbols= and 2 here used are de�nable abbreviations, not anextension of the syntax.)Semantics for this representation language are givenby probability measures on L(S): one probability mea-sure � interprets the statistical expressions (1), and oneprobability measure �e is needed for every event symbole used in the knowledge base to interpret the degree ofbelief expressions (2).A probability measure on L(S) is fully determined bythe probability values of the N := 2n atoms of the lan-guage, i.e. the expressions in the set� := f^ni=1 ~Vi j ~Vi 2 fVi;:Vigg:We denote by �(�) the set of probability measures on�.Usually, the constraints (1) on the statistical measure�, and constraints (2) on the belief measure �e given inthe knowledge base will only lead to reasonably narrowbounds for probabilities on a few formulas, while othersremain largely undetermined. In this situation we will belooking for a rule of probabilistic inference that selectsfrom the multitude of probability measures consistentwith the given constraints the ones that seem to be mostreasonable or plausible.Several types of inference rules here can be distin-guished. First, there are those that only apply to setsof constraints on probabilities of a single kind. Since inmany applications only one kind of probabilistic infor-mation is represented in the knowledge base, this type



of inference is the one most frequently encountered. En-tropy maximization is the most common rule of this type.A second type of probabilistic inference is given by therandom worlds formalism of Bacchus et al. [1992]. Hereconstraints on statistical probabilities are used to de-rive degrees of belief. In [Bacchus et al., 1994] it is alsoshown how this method can be extended to make theresulting subjective probabilities also depend on givenprior degrees of belief. It is this third kind of probabilis-tic inference, where information about both statisticaland subjective probabilities are used to complete the setof degrees of belief, that we, too, are concerned with inthis paper.That statistical information is relevant for the forma-tion of degrees of belief appears to be obvious: given thestatements of the introductory example { and no fur-ther information whether I'm either more or less likelythan everybody else to get a job after an interview { Iwill conclude that my chances for �nding employment atcompany X are approximately 0.06.This form of reasoning has been called default reason-ing about probabilities in [Jaeger, 1994a], because, justas in logical default reasoning, information about whatis generally true in the domain of discourse is used toderive conclusions about speci�c objects not strictly im-plied by the knowledge base. In this example the defaultinference only consisted of (a slightly generalized formof) direct inference ([Carnap, 1950]), which is not appli-cable in more general cases. In [Jaeger, 1994b] it wastherefore proposed to use cross-entropy minimization asa generalization of direct inference that is applicable un-der much more general circumstances. This was moti-vated mainly by the logical properties that the resultinginference rule possesses { properties that are intuitivelyreasonable. In the present paper we are taking a morefundamental approach to the issue: �rst, it is undertakento provide a precise epistemological analysis of the prin-ciples that underly default reasoning about probabilities.From this analysis a concrete statistical model for the in-terpretation of the probabilistic information will be de-rived. It then turns out that this model validates thecross-entropy minimization principle for default reason-ing about probabilities.2 The Formation of Beliefs: anInterpretationIn this section we will derive an analysis of the principlesunderlying default reasoning about probabilities. Twoexamples will serve as a guide towards this analysis.Example 2.1 I'm playing a game of dice with a friendwho just has made the roll of the die that will decidethe game: if she rolls a four or better, she wins; if athree or less turns up, I win. The die has come to restout of my sight, but the outcome has been observed bymy friend. By the somewhat satis�ed expression on herface I gather that I will less likely have won than lostthis game. \Less likely" I'm here willing to quantify bya probability of 0.3, so that my degree of belief in thecurrent toss t having the property � :� R1 _ R2 _ R3with Ri :� \ i has turned up" is given by the subjective

probability 0.3.Example 2.2 Scanning channels on TV we tune in toa mystery �lm f . We just catch the last part of a spec-tacular car chase, apparently taking place in a Europeancity. These two observations induce us to believe that the�lm has been an expensive production with probability� 0:7, and is of American origin only with probability� 0:5.The two uncertain events described in these examplesare of a somewhat di�erent nature: the �rst one is aproduct of what can only be understood as a randomprocess. The uncertain event in the second example,however, is not random in the classical sense that a tossof a die, or the drawing of a card from a shu�ed deckis random. The �lm, a fragment of which we have hap-pened to see on TV, is not broadcast at that time as aresult of being drawn from a gigantic urn containing allmystery �lms. Given that we are partially ignorant ofthe deterministic chain of events that led to the screeningof that particular �lm at that particular time, however,for us endows this events with all the features of ran-domness. Some partial knowledge we may possess of theactual chain of events causing the given observation, andthe ignorance about some other of it's parts, combinesto the imperfect perception of that chain of events as arandom mechanism.Interpreting an observed uncertain event e as a real-ization of some randommechanism, provides a means forde�ning one's degrees of belief: based on our model of arandom mechanism, we can consider a long (hypotheti-cal) sequence of events that are independent realizationsof the same randommechanism. Moreover, we can imag-ine all the elements of the sequence to provide us withthe same evidence as e. Such an imaginary sequence ofevents we call a thought experiment. Our degree of be-lief (point- or multi-valued) that e has property � nowcan be de�ned as a bound on the relative frequency withwhich we imagine events in the thought experiment tohave �.This interpretation of degrees of belief is the contentof the following postulate.Postulate 1: The degree of belief that an uncertainevent e has property � is the predicted bound on therelative frequency of � in a long (imaginary) sequenceof events, each of which is a realization of the randommechanism modeling the chain of events that produced e,and each of which provides the same evidence that hasbeen observed in e.Speaking of a \long sequence of events" here is a some-what sloppy terminology. In principle, a thought ex-periment must be considered as an in�nite sequence ofevents; degrees of belief are de�ned by a prediction ofthe limiting relative frequencies in initial segments of in-creasing length from this sequence.By this postulate it is not claimed that we are al-ways able to precisely specify a random mechanism cor-responding to the observed event in the sense of reducingit, for example, to the random draw from a set of well-de�ned alternatives according to well-de�ned chances.2



Our image of the random mechanism may well containunknown parameters.For an illustration of this, consider a variation of ex-ample 2.1: suppose that I have a vague suspicion thatmy friend has a loaded die up her sleeve that enables herto roll a six at will, and that she occasionally will use thisdie instead of the fair one. Finding myself in the samesituation as described previously, I will now have to in-corporate into my model of the random mechanism thatproduced the crucial toss of the die the possibility thatin that toss the loaded die was in fact supplanted for thefair one. The result might be a model of a randommech-anism consisting of �rst a random draw of one of eithera fair or a loaded die, and a subsequent toss of that die.However, feeling unable to evaluate the likelihood for myfriend to have cheated at the observed toss, I am unableto specify the respective probabilities for the two dice tobe drawn. This makes my thought experiment dependon an unknown parameter. Depending on it's value, thepredicted frequency of � will have any value between 0(always a loaded die is being tossed), and 0.3 (only thefair die is being used). Consequently, my degree of beliefin �(t) now will be the interval [0,0.3].In our interpretation, then, the vagueness of a degreeof belief in part is caused by an uncertainty about theparameters of the thought experiment.Postulate 1 gives a semantic interpretation of themeaning of a degree of belief, but does not attemptto give a rule for their computation. Particularly, thequestion of how to construct a random mechanism forthe thought experiment, and how to translate the evi-dence into a predicted bias for the outcome of realiza-tions of the random mechanism, are outside the scopeof the statement made in that postulate. They, too, areoutside the scope of this paper, where our immediateconcern is with interpreting knowledge bases includingstatements of degrees of belief, but not containing theprimary evidence which initiated these degrees of belief.The interpretation of degrees of belief here given, how-ever, does provide guidance for �nding a speci�c ruleby which degrees of belief stated in the knowledge baseshould be combined with statistical information.Example 2.1 (continued): What, in the situationdescribed previously, will be my degree of belief in theproposition Ri(t) (i = 1; 2; 3)? The observation I havemade only provides evidence that bears on the probabil-ity of �(t), but does allow me to discriminate betweenthe three alternatives R1(t);R2(t);R3(t). However, I dohave the information that the statistical probability ofeach of the Ri in tosses of a fair die is 1/6. Speci�cally,this means that each of the Ri has an equal statisti-cal probability. This statistical knowledge determinesmy prediction of the outcome of the thought experimentassociated with the present event t: I will expect thathere, too, each of the three alternatives R1;R2;R3 willappear with equal frequency 0.3/3 = 0.1. Similarly, fori = 4; 5; 6, a degree of belief 0.7/3 will be assigned toRi(t).

Example 2.2 (continued): While a commercialbreak has stopped the 
ow of useful information, we havetime to make up our mind whether we want to continuewatching that mystery �lm. Having a preference for �lmswith a happy end, we �rst attempt to estimate the like-lihood for this �lm to have one. None of the evidenceprovided in the short scene we have seen directly suggestseither a happy or an unhappy ending. Fortunately, how-ever, we do have recourse to statistical information withwhat relative frequency happy endings have occurred inthe great number of mystery �lms (distinguished by theirhaving combinations of the properties A (� American)and E (� expensive)) shown on television in the last fewyears. Using our syntax for the representation of statis-tical probabilities, let this information consist of[HE j A ^ E] = 0:9 [HE j A ^ :E] = 0:7[HE j :A ^ E] = 0:7 [HE j :A ^ :E] = 0:5Here it is far from obvious what prediction for the rel-ative frequency of happy endings in the thought experi-ment we should derive from these statistics and our priorpredictions about the frequencies of A and E. It is easy,though, to obtain some bounds for the plausible valuesof this frequency.For an upper bound we may suppose that in the hypo-thetical sequence of mystery �lms the relative frequencyof those of the four properties A ^ E; : : : ;:A^ :E is max-imal (within the given bounds that the relative frequencyof property A is at most 0.5, and that of E at least 0.7)for which the conditional statistical probability [HE j �]has the greatest values. This is achieved by assuming anoutcome of the thought experiment in which both therelative frequency of A ^ E and :A ^ E are 0.5, i.e. every�lm in fact turns out to be expensive, and the numberof American �lms is maximal. For such a sequence thena relative frequency[HE j A ^ E] � 0:5+ [HE j :A^ E] � 0:5 = 0:45+ 0:35 = 0:8of happy endings should be predicted.Similarly, by considering an outcome of the thoughtexperiment in which the number of expensive or Amer-ican �lms is minimal, a lower bound of 0.64 is obtainedfor the expected frequency of HE.What is the rationale for using statistical information,in the way described by these examples, for the predic-tion of the outcome of a thought experiment? Clearly,here a close connection between the random mechanism,realizations of which constitute our thought experiment,and the statistical probability distribution (partially) de-scribed by the statistical data must be assumed: ourunderstanding of the random mechanism producing thetoss of the die in example 2.1 is characterized by the as-sumption that we observed an unmanipulated toss of afair die. In the �lm-example the screening of that �lm atthat time is perceived to be a random draw from the setof all screenings of mystery �lms by arbitrary networksat arbitrary times.Thus, in both examples the random mechanism usedas an explanation of the chain of events producing theobserved event is equivalent to the statistical distribution3



{ equivalent in the sense that when we consider an ar-bitrary series of realizations of the random mechanism,i.e. one in which it is not supposed that each realizationsupplies us with some speci�c evidence, then we wouldpredict that the relative frequencies in this series agreewith the statistical data.Postulate 2: Default reasoning about probabilities restson the assumption that the observed event e is a realiza-tion of a random mechanism equivalent to the statisticalprobability distribution.Postulate 2 only describes a precondition that mustbe ful�lled in order to combine degrees of belief withstatistical information. It gives no hint whatsoever bywhat operational rule this combination will actually beperformed.A key observation that will be instrumental for aderivation of a speci�c analytical rule for this combina-tion can be made by reconsidering the arguments usedabove in deriving bounds on R1(t) and HE(f): in bothcases, the predictions for the relative frequencies of theseproperties in the thought experiments as, respectively,0.1 and [0.64,0.8] were obtained by only arguing fromthe prior beliefs derived from the evidence, and from thestatistical data, but were completely independent of theevidence itself.When from a prior subjective probability of 0.3 for�(t), and the statistical data available for tosses of fairdice, a degree of belief of 0.1 is derived for R1(t), this isdone by simply considering a random sample of tossesof a die, in which the relative frequency of the property� happens to be 0.3. For this imaginary sample it isno longer necessary to assume that each of it's elementsoccurs in a setting analogous to the one of the originaltoss. Similarly in the �lm example: assume that thescene we have seen does not provide any more relevantinformation with respect to the actual �lm f having anyof the properties A, E or HE. Then, in order to predictthe relative frequency of HE in the thought experimentassociated with f , an arbitrary sample of mystery �lmswith less than one half American and more than 70%expensive productions will be considered. If the original�lm happens to be black and white, and we have nostatistical information referring to the property of beingblack and white, then we will not assume that every�lm in the random sample is black and white too, thisproperty being recognized as irrelevant.To obtain a more precise notion of what it means thatthe given evidence does not provide any more relevantinformation, we say that a set 	 of degrees of belief ex-hausts the evidence with respect to L(S) if, based on theevidence alone, and without any statistical information,we are unable to assign degrees of belief to propertiesde�nable in L(S) any more speci�c than the ones in 	.The way in which statistical data is used to de�ne de-grees of belief now is described in a third postulate.Postulate 3: If 	 is a set of degrees of belief exhaust-ing the evidence obtained about an event e with respect toL(S), then the predicted frequency of a property � 2 L(S)

in the thought experiment associated with e is calculatedas the expected relative frequency of the property � in alarge random sample of events, given that the relative fre-quencies of properties  2 L(S) in that sample is withinthe bounds prescribed by 	.As before in postulate 1, it was here preferred to usethe imprecise term \large sample", when, in fact, weshould more accurately speak about limiting frequenciesas the sample size tends towards in�nity.3 The Statistical ModelTo implement the rule for the derivation of degrees of be-lief formulated in postulate 3 in a mathematical model,the concepts of a random sample and relative frequencyof a property in such a sample, which, as yet, have onlybeen used intuitively, must be formalized.The mathematical model for a random observation ofa single event is provided by a random variable: a func-tion de�ned on some probability space 
 equipped witha probability measure P, taking values in the set of pos-sible events. Since we distinguish di�erent events onlywith respect to properties de�nable in L(S), we may usethe simpler model of a random variable taking values in� (this being the set of equivalence classes of events withregard to these properties). Such a random variable Xnow is a model of a randomly sampled event, if it's dis-tribution is equal to the statistical probability measure� on �, i.e.PX (�) := P(f! 2 
 j X(!) = �g) = �(�) (� 2 �):The model of a sequence of random events, initial seg-ments of which constitute random samples of increasingsize, is an in�nite sequence X1; X2; : : : of independent�-valued random variables, all distributed according to�.For every n, the �rst n elements of this sequence de�nea new random variable PXn on 
 with values in �(�),their empirical distribution:PXn (�) := 1n nXi=1 1�(Xi) (� 2 �);with 1� the indicator variable of �, i.e. 1�(Xi(!)) = 1if Xi(!) = �, and 0 else.PXn (�) thus describes the relative frequency of � in asample of size n. What we have to investigate now is thelimiting value we should expect for PXn (�) as n ! 1,given that PXn approaches a limit consistent with 	.The set 	, primarily regarded as a collection of state-ments of degrees of belief, by a slight abuse of notation,may also be regarded as a subset of �(�): the subset ofprobability measures satisfying the constraints stated in	. We can then de�ne for � � 0:	(�) := f� 2 �(�) j 9� 0 2 	 j� � � 0 j� �gwith j� � � 0 j the Euclidean distance of � and � 0.We now have assembled the mathematical counter-parts of most of the informal concepts of postulate 3.What still remains unexplained is the notion of an \ex-pected frequency". Theorem 3.1 will show that, in our4



model, we can give a very strong formal meaning to thisnotion of expectation; it also provides an explicit de-scription of the frequencies to be expected.To prepare the theorem, we now give a brief reminderof the essential de�nitions regarding cross-entropy min-imization.For � = (�1; : : : ; �N) with �k > 0 (k = 1; : : : ; N ) and� = (�1; : : : ; �N ) 2 �(�), the cross-entropy of � withrespect to � is de�ned byCE(�; �) := Xi2f1;:::;Ng�i>0 �iln �i�i :To treat the general case, without the restriction to mea-sures � with only strictly positive components, the de�-nition of CE must be extended in a way which makes italso attain the value 1, and some additional considera-tions for the cases when this happens have to be added.CE(�; �) is a strictly convex function, so that for everyclosed and convex J � �(�) there exists a unique �0 2 Jwith CE(�0; �) < CE(�; �) for all � 2 J; � 6= �0. This�0 is denoted �J(�).In the statement of theorem 3.1, for sequences(�n); (�0n) of real numbers, we use the intuitive notation(�n) � (�0n) to signify that �n � �0n for all n, and (�n)& 0to say that �n � 0 for all n, and limn!1�n = 0.Theorem 3.1 Let X1; X2; : : : be a sequence of indepen-dent random variables taking values in � = f�1; : : : ; �Ngwith distribution � 2 �(�) (�k > 0; k = 1; : : : ; N ).Let 	 � �(�) be closed and convex. Let �0 := �	(�).Then there exists a sequence (�n)& 0, such that for all(�0n) � (�n) with (�0n) & 0, there exists (�n) & 0, suchthatlimn!1P( jPXn � �0 j� �n j PXn 2 	(�0n)) = 1: (3)In a version of this theorem also allowing for measures� with 0-components, the additional assumption mustbe made that CE(�; �) < 1 for at least on � 2 	.The proof of this theorem is essentially an applicationof the Sanov-theorem for multinomially distributed ran-dom variables (see e.g. [Bahadur, 1971]), and, in broadoutline, is similar to the proof of a related result in [vanCampenhout and Cover, 1981]. The details will be givenin [Jaeger, ?].A few comments may be useful to better understandthe role that in theorem 3.1 is played by the sequence(�n). When 	 has interior points, then the theorem actu-ally is true for (�n) = 0, i.e. the whole process of approx-imating 	 by the sequence 	(�0n) can be done without.On the other hand, consider 	 := f� 2 �(�) j �1 = rgwhere r is some irrational number. Then PXn can nevertake a value in 	, each component of PXn being of theform q=n for some q 2 N. Hence, conditioning onfPXn 2 	g in (3) would mean to condition on the emptyset, and the conditional probability in (3) would be un-de�ned for every n. Moreover, for each n, PXn can onlytake on �nitely many values, so that for su�ciently fastdecreasing sequences (�n) > 0, even fPXn 2 	(�n)g willbe empty for all n. Thus, the condition of (�0n) \slowly"tending to 0 in theorem 3.1 makes sure that su�cientlymany possible values of PXn are in 	(�0n).

Theorem 3.1 provides a clear answer to what frequencyof � 2 L(S) we should expect in the random samples de-scribed by postulate 3, provided 	 is closed and convex,as is the case when 	 is de�ned by a set of sentences (2):when looking at su�ciently large samples, with a proba-bility arbitrarily close to certainty, this relative frequencywill be arbitrarily close to �	(�)(�).For the die-example, the minimum cross-entropy so-lution for the given constraints and statistical distribu-tion is (0:1; : : : ; 0:1; 0:7=3; : : : ; 0:7=3). The upper boundof 0.8 derived for prob(HE(f)) in the �lm- example cor-responds to the minimum cross-entropy measure withrespect to the statistical distribution � with �(E) = 1and �(A j E) = 0:5. The lower bound derives from sta-tistical measures � with �(A) = 0 and �(E) � 0:7. Theminimum cross-entropy measure � for other statisticalmeasures � satisfying the statistical constraints of exam-ple 2.2 will yield values �(HE) in between 0.64 and 0.8.(All these results are derivable from elementary proper-ties of cross-entropy minimization, e.g. the axioms givenin [Shore and Johnson, 1980].)By the epistemic analysis of section 2, we obtain agood insight under what conditions (an ideal agent's) de-fault reasoning about probabilities, when reconstructedfrom information given in a formal knowledge base, is ad-equately modeled by cross-entropy minimization: �rst,we must make the assumption of postulate 2, i.e. thatthe agent who's degrees of belief are encoded in theknowledge base considers the random mechanism he orshe associates with the event e to be equivalent to thestatistical probabilities stated in the knowledge base.Second, it must be assumed that the given degrees ofbelief exhaust the evidence, i.e. that the knowledge basere
ects all the relevant information the agent has aboute. Observe that this second condition is a typical ideal-ization that always has to be made to justify applicationof a non-monotonic inference rule (probabilistic or logi-cal) to a knowledge base.4 Comparison and ConclusionTraditionally, the meaning of degrees of belief often isde�ned in terms of preferences between acts (e.g. theacceptance of certain bets), the utility of which will de-pend on some uncertain proposition. By eliciting from aperson suitable statements of preference, his or her de-gree of belief about the proposition can be de�ned by aunique (subjective) probability value. The most in
u-ential presentation of this approach probably is [Savage,1954]. This view of degrees of belief is stronger thanthe one we used here, in the sense that they are alwaysde�ned to be point-valued. Nevertheless, the two def-initions are not incompatible: the thought experimentexplanation focuses on how an agent arrives at a de-gree of belief without trying to prescribe a method bywhich unique values will always result. The preference-paradigm concentrates on the measurement of degreesof belief, which can very well be imagined to have beenformed by a thought experiment.Shafer and Tversky [1985] speak of \mental experi-ments" that are performed to obtain probability judg-ments. Unlike the thought experiments described by5



postulate 1, Shafer and Tversky's mental experimentsare not an abstract epistemic model for the meaningof degrees of belief, but designate a variety of ways inwhich, in concrete situations, speci�c evidence can becompared to well-de�ned chances. Thus, the (mental)drawing of a random sample of events according to someknown statistics, as described in postulate 3, constitutesa mental experiment in the sense of Shafer and Tversky.Paris and Vencovsk�a [1992] have analyzed the problemof probabilistic inference from the same kind of knowl-edge bases as considered here. They base their approachon the semantic interpretation that a subjective proba-bility represented by prob(�(e)) in fact describes a sta-tistical probability [� j Se]: the statistical probabilityof � in the ideal reference class Se of elements that are\similar" to e. As a natural consequence of this view,there is little room for the distinction of di�erent typesof inference rules made in section 1: since essentially weare left with only one type of probabilities, there is onlyroom for inference rules to be applied simultaneously todegrees of belief and statistics.Paris and Vencovsk�a show that when entropy-maximization is applied to their knowledge bases (whichmust also include a clause stating that [Se] is small),then the e�ect of the general statistical information onthe inferences made about the speci�c statistical terms[� j Se] is de�ned by cross-entropy minimization. To-gether with a justi�cation of the maximum entropymethod ([Paris and Vencovsk�a, 1990]), this provides ajusti�cation for minimum cross-entropy inferences. Thisderivation of the minimum cross-entropy principle, how-ever, is of a completely di�erent nature than the one pre-sented here, because the justi�cation of the maximum-entropy method is based on logical arguments alone (justas in the well known work by Shore and Johnson [1980]):it is shown that if an inference process satis�es certainlogical principles, i.e. behaves adequately when appliedto knowledge bases of certain syntactic structures, thenit will have to be entropy maximization.An argument of this kind can only be used to showthat cross-entropy minimization is the adequate formal-ism for default reasoning about probabilities when it istaken for granted that at least one such formal processexists { an assumption that in itself is not corroboratedby an axiomatic derivation. It might very well be thatthere are other axioms that are intuitively reasonable fordefault reasoning about probabilities, but are not satis-�ed by the minimum cross-entropy principle. In thatcase we would have to conclude that no completely ade-quate formal process exists. For this reason it has herebeen attempted to elucidate the process of the formationof degrees of belief based on statistical information inhuman reasoning by looking at its epistemic basis ratherthan by giving a normative (partial) description of itsbehaviour. It was then shown that with the unfoldinginterpretation of a degree of belief as a prediction of theoutcome of a thought experiment, the reasoning processitself can be captured in a statistical model validatingminimum cross-entropy reasoning. Such a derivation ofthe minimum cross-entropy principle from a semanticmodel provides valuable evidence that it does, in fact,
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