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Abstract

Degrees of belief are formed using observed ev-
idence and statistical background information.
In this paper we examine the process of how
prior degrees of belief derived from the evidence
are combined with statistical data to form more
specific degrees of belief. A statistical model
for this process then is shown to vindicate the
cross-entropy minimization principle as a rule
for probabilistic default-inference.

1 Introduction

A knowledge based system incorporating reasoning with
uncertain information gives rise to quantitative state-
ments of two different kinds: statements expressing sta-
tistical information and statements of degrees of belief.
“10% of applicants seeking employment at company X
who are invited to an interview will get a job there” is
a statistical statement. “The likelihood that I will be
invited for an interview if I apply for a job at company
X is about 0.6” expresses a degree of belief.

In this paper, both of these kinds of statements are
regarded as probabilistic, i.e. the numbers appearing
in these statements are assumed to obey the rules of
probability theory. A degree of belief is viewed as a
constraint on a set of possible (subjective) probability
values.

A very expressive extension of the language of first-
order logic for representing the two types of probabilis-
tic information has been defined by Halpern [1990] and
Bacchus [1990]. For the purpose of the present paper,
it will be sufficient to restrict attention to a much sim-
pler language based on propositional logic. Adapting
the notation of Halpern and Bacchus, we will consider
knowledge bases in an extension of the language L(S)
of propositional logic over the propositional variables

S ={Vy,..., V,} incorporating expressions of the form
[¢1¢]>p (1)

and
prob(¢(e) | ¥(e)) > p, (2)

where ¢, are formulas in L(S), p is a real number in
[0,1], and e is a new symbol not in S.

The intended meaning of such a knowledge base is
that formulas in the underlying propositional language
express certain properties that a given object or, in a
wider sense, a given event may or may not possess. For-
mulas of the form (1) make a statement with what sta-
tistical probability property in the domain of discourse
¢ holds given that property ¥ holds, and formulas of the
form (2) are used to express that for the specific event
e 1t is believed that the probability of e having property
@, given that e has property ¢, is > p.

Using the propositional variables A (= applicant), |
(=~ interview), and J (= job), the two example sen-
tences above may be symbolized by [J| AA I = 0.1 and
prob(l(¢) | A(¢)) € [0.55,0.65], to which the definite
knowledge —(I A A) = —J (“no job without an applica-
tion and an interview”) might be added. (The symbols
= and € here used are definable abbreviations, not an
extension of the syntax.)

Semantics for this representation language are given
by probability measures on L(S): one probability mea-
sure y interprets the statistical expressions (1), and one
probability measure v, is needed for every event symbol
e used in the knowledge base to interpret the degree of
belief expressions (2).

A probability measure on L(S) is fully determined by
the probability values of the N := 2" atoms of the lan-
guage, i.e. the expressions in the set

[ = {A Vi |V € {Vi,=Vi} )

We denote by A(T') the set of probability measures on
I.

Usually, the constraints (1) on the statistical measure
i, and constraints (2) on the belief measure v, given in
the knowledge base will only lead to reasonably narrow
bounds for probabilities on a few formulas, while others
remain largely undetermined. In this situation we will be
looking for a rule of probabilistic inference that selects
from the multitude of probability measures consistent
with the given constraints the ones that seem to be most
reasonable or plausible.

Several types of inference rules here can be distin-
guished. First, there are those that only apply to sets
of constraints on probabilities of a single kind. Since in
many applications only one kind of probabilistic infor-
mation is represented in the knowledge base, this type



of inference is the one most frequently encountered. En-
tropy maximization is the most common rule of this type.
A second type of probabilistic inference is given by the
random worlds formalism of Bacchus et al. [1992]. Here
constraints on statistical probabilities are used to de-
rive degrees of belief. In [Bacchus et al., 1994] it is also
shown how this method can be extended to make the
resulting subjective probabilities also depend on given
prior degrees of belief. It is this third kind of probabilis-
tic inference, where information about both statistical
and subjective probabilities are used to complete the set
of degrees of belief, that we, too, are concerned with in
this paper.

That statistical information is relevant for the forma-
tion of degrees of belief appears to be obvious: given the
statements of the introductory example — and no fur-
ther information whether I’'m either more or less likely
than everybody else to get a job after an interview — I
will conclude that my chances for finding employment at
company X are approximately 0.06.

This form of reasoning has been called default reason-
ing about probabilities in [Jaeger, 1994a), because, just
as in logical default reasoning, information about what
is generally true in the domain of discourse is used to
derive conclusions about specific objects not strictly im-
plied by the knowledge base. In this example the default
inference only consisted of (a slightly generalized form
of) direct inference ([Carnap, 1950]), which is not appli-
cable in more general cases. In [Jaeger, 1994b] it was
therefore proposed to use cross-entropy minimization as
a generalization of direct inference that is applicable un-
der much more general circumstances. This was moti-
vated mainly by the logical properties that the resulting
inference rule possesses — properties that are intuitively
reasonable. In the present paper we are taking a more
fundamental approach to the issue: first, it is undertaken
to provide a precise epistemological analysis of the prin-
ciples that underly default reasoning about probabilities.
From this analysis a concrete statistical model for the in-
terpretation of the probabilistic information will be de-
rived. It then turns out that this model validates the
cross-entropy minimization principle for default reason-
ing about probabilities.

2 The Formation of Beliefs: an
Interpretation

In this section we will derive an analysis of the principles
underlying default reasoning about probabilities. Two
examples will serve as a guide towards this analysis.

Example 2.1 I'm playing a game of dice with a friend
who just has made the roll of the die that will decide
the game: if she rolls a four or better, she wins; if a
three or less turns up, I win. The die has come to rest
out of my sight, but the outcome has been observed by
my friend. By the somewhat satisfied expression on her
face T gather that I will less likely have won than lost
this game. “Less likely” I’'m here willing to quantify by
a probability of 0.3, so that my degree of belief in the
current toss ¢ having the property p := Ry V Rz VR3
with R; := “ ¢ has turned up” is given by the subjective

probability 0.3.

Example 2.2 Scanning channels on TV we tune in to
a mystery film f. We just catch the last part of a spec-
tacular car chase, apparently taking place in a European
city. These two observations induce us to believe that the
film has been an expensive production with probability
> 0.7, and is of American origin only with probability
<0.5.

The two uncertain events described in these examples
are of a somewhat different nature: the first one is a
product of what can only be understood as a random
process. The uncertain event in the second example,
however, is not random in the classical sense that a toss
of a die, or the drawing of a card from a shuffled deck
is random. The film, a fragment of which we have hap-
pened to see on TV, is not broadcast at that time as a
result of being drawn from a gigantic urn containing all
mystery films. Given that we are partially ignorant of
the deterministic chain of events that led to the screening
of that particular film at that particular time, however,
for us endows this events with all the features of ran-
domness. Some partial knowledge we may possess of the
actual chain of events causing the given observation, and
the ignorance about some other of it’s parts, combines
to the imperfect perception of that chain of events as a
random mechanism.

Interpreting an observed uncertain event e as a real-
ization of some random mechanism, provides a means for
defining one’s degrees of belief: based on our model of a
random mechanism, we can consider a long (hypotheti-
cal) sequence of events that are independent realizations
of the same random mechanism. Moreover, we can imag-
ine all the elements of the sequence to provide us with
the same evidence as e. Such an imaginary sequence of
events we call a thought experiment. Our degree of be-
lief (point- or multi-valued) that e has property ¢ now
can be defined as a bound on the relative frequency with
which we imagine events in the thought experiment to
have ¢.

This interpretation of degrees of belief is the content
of the following postulate.

Postulate 1: The degree of belief that an uncertain
event e has property ¢ is the predicted bound on the
relative frequency of ¢ in a long (imaginary) sequence
of events, each of which is a realization of the random
mechanism modeling the chain of events that produced e,
and each of which provides the same evidence that has
been observed wn e.

Speaking of a “long sequence of events” here is a some-
what sloppy terminology. In principle, a thought ex-
periment must be considered as an infinite sequence of
events; degrees of belief are defined by a prediction of
the limiting relative frequencies in initial segments of in-
creasing length from this sequence.

By this postulate it is not claimed that we are al-
ways able to precisely specify a random mechanism cor-
responding to the observed event in the sense of reducing
it, for example, to the random draw from a set of well-
defined alternatives according to well-defined chances.



Our image of the random mechanism may well contain
unknown parameters.

For an illustration of this, consider a variation of ex-
ample 2.1: suppose that I have a vague suspicion that
my friend has a loaded die up her sleeve that enables her
to roll a six at will, and that she occasionally will use this
die instead of the fair one. Finding myself in the same
situation as described previously, I will now have to in-
corporate into my model of the random mechanism that
produced the crucial toss of the die the possibility that
in that toss the loaded die was in fact supplanted for the
fair one. The result might be a model of a random mech-
anism consisting of first a random draw of one of either
a fair or a loaded die, and a subsequent toss of that die.
However, feeling unable to evaluate the likelihood for my
friend to have cheated at the observed toss, I am unable
to specify the respective probabilities for the two dice to
be drawn. This makes my thought experiment depend
on an unknown parameter. Depending on it’s value, the
predicted frequency of p will have any value between 0
(always a loaded die is being tossed), and 0.3 (only the
fair die is being used). Consequently, my degree of belief
in p(t) now will be the interval [0,0.3].

In our interpretation, then, the vagueness of a degree
of belief in part is caused by an uncertainty about the
parameters of the thought experiment.

Postulate 1 gives a semantic interpretation of the
meaning of a degree of belief, but does not attempt
to give a rule for their computation. Particularly, the
question of how to construct a random mechanism for
the thought experiment, and how to translate the evi-
dence into a predicted bias for the outcome of realiza-
tions of the random mechanism, are outside the scope
of the statement made in that postulate. They, too, are
outside the scope of this paper, where our immediate
concern is with interpreting knowledge bases including
statements of degrees of belief, but not containing the
primary evidence which initiated these degrees of belief.

The interpretation of degrees of belief here given, how-
ever, does provide guidance for finding a specific rule
by which degrees of belief stated in the knowledge base
should be combined with statistical information.

Example 2.1 (continued): What, in the situation
described previously, will be my degree of belief in the
proposition R;(¢) (¢ = 1,2,3)I" The observation I have
made only provides evidence that bears on the probabil-
ity of p(t), but does allow me to discriminate between
the three alternatives Ry(t), R2(?), Rs(t). However, T do
have the information that the statistical probability of
each of the R; in tosses of a fair die is 1/6. Specifically,
this means that each of the R; has an equal statisti-
cal probability. This statistical knowledge determines
my prediction of the outcome of the thought experiment
associated with the present event ¢: I will expect that
here, too, each of the three alternatives Ry, Ry, R3 will
appear with equal frequency 0.3/3 = 0.1. Similarly, for
i = 4,5,6, a degree of belief 0.7/3 will be assigned to
R; (t).

Example 2.2 (continued): While a commercial
break has stopped the flow of useful information, we have
time to make up our mind whether we want to continue
watching that mystery film. Having a preference for films
with a happy end, we first attempt to estimate the like-
lihood for this film to have one. None of the evidence
provided in the short scene we have seen directly suggests
either a happy or an unhappy ending. Fortunately, how-
ever, we do have recourse to statistical information with
what relative frequency happy endings have occurred in
the great number of mystery films (distinguished by their
having combinations of the properties A (& American)
and E (~ expensive)) shown on television in the last few
years. Using our syntax for the representation of statis-
tical probabilities, let this information consist of

[HE|AAE]=0.9 [HE|AA—E]=0.7
[HE | -AAE] =0.7 [HE|-AA-E]=05

Here it is far from obvious what prediction for the rel-
ative frequency of happy endings in the thought experi-
ment we should derive from these statistics and our prior
predictions about the frequencies of A and E. It is easy,
though, to obtain some bounds for the plausible values
of this frequency.

For an upper bound we may suppose that in the hypo-
thetical sequence of mystery films the relative frequency
of those of the four properties AAE, ..., —A A =E is max-
imal (within the given bounds that the relative frequency
of property A is at most 0.5, and that of E at least 0.7)
for which the conditional statistical probability [HE | -]
has the greatest values. This is achieved by assuming an
outcome of the thought experiment in which both the
relative frequency of A A E and —A A E are 0.5, i.e. every
film in fact turns out to be expensive, and the number
of American films is maximal. For such a sequence then
a relative frequency

[HE | AAE]-0.5+[HE | ~AAE]-0.5 = 0.45+0.35 = 0.8

of happy endings should be predicted.

Similarly, by considering an outcome of the thought
experiment in which the number of expensive or Amer-
ican films is minimal, a lower bound of 0.64 is obtained
for the expected frequency of HE.

What is the rationale for using statistical information,
in the way described by these examples, for the predic-
tion of the outcome of a thought experimentl’ Clearly,
here a close connection between the random mechanism,
realizations of which constitute our thought experiment,
and the statistical probability distribution (partially) de-
scribed by the statistical data must be assumed: our
understanding of the random mechanism producing the
toss of the die in example 2.1 is characterized by the as-
sumption that we observed an unmanipulated toss of a
fair die. In the film-example the screening of that film at
that time is perceived to be a random draw from the set
of all screenings of mystery films by arbitrary networks
at arbitrary times.

Thus, in both examples the random mechanism used
as an explanation of the chain of events producing the
observed event is equivalent to the statistical distribution



— equivalent in the sense that when we consider an ar-
bitrary series of realizations of the random mechanism,
i.e. one in which it is not supposed that each realization
supplies us with some specific evidence, then we would
predict that the relative frequencies in this series agree
with the statistical data.

Postulate 2: Default reasoning about probabilities rests
on the assumption that the observed event e is a realiza-
tion of a random mechanism equivalent to the statistical
probability distribution.

Postulate 2 only describes a precondition that must
be fulfilled in order to combine degrees of belief with
statistical information. It gives no hint whatsoever by
what operational rule this combination will actually be
performed.

A key observation that will be instrumental for a
derivation of a specific analytical rule for this combina-
tion can be made by reconsidering the arguments used
above in deriving bounds on Ry(¢) and HE(f): in both
cases, the predictions for the relative frequencies of these
properties in the thought experiments as, respectively,
0.1 and [0.64,0.8] were obtained by only arguing from
the prior beliefs derived from the evidence, and from the
statistical data, but were completely independent of the
evidence itself.

When from a prior subjective probability of 0.3 for
p(t), and the statistical data available for tosses of fair
dice, a degree of belief of 0.1 is derived for Ry (), this is
done by simply considering a random sample of tosses
of a die, in which the relative frequency of the property
p happens to be 0.3. For this imaginary sample it is
no longer necessary to assume that each of it’s elements
occurs in a setting analogous to the one of the original
toss. Similarly in the film example: assume that the
scene we have seen does not provide any more relevant
information with respect to the actual film f having any
of the properties A, E or HE. Then, in order to predict
the relative frequency of HE in the thought experiment
associated with f, an arbitrary sample of mystery films
with less than one half American and more than 70%
expensive productions will be considered. If the original
film happens to be black and white, and we have no
statistical information referring to the property of being
black and white, then we will not assume that every
film in the random sample is black and white too, this
property being recognized as irrelevant.

To obtain a more precise notion of what it means that
the given evidence does not provide any more relevant
information, we say that a set ¥ of degrees of belief ez-
hausts the evidence with respect to L(S) if, based on the
evidence alone, and without any statistical information,
we are unable to assign degrees of belief to properties
definable in L(S) any more specific than the ones in .
The way in which statistical data is used to define de-
grees of belief now is described in a third postulate.

Postulate 3: If ¥ is a set of degrees of belief exhaust-
ing the evidence obtained about an event e with respect to
L(S), then the predicted frequency of a property ¢ € L(S)

i the thought experiment assoctated with e 1s calculated
as the expected relative frequency of the property ¢ in a
large random sample of events, given that the relative fre-
quencies of properties ¢ € L(S) in that sample is within
the bounds prescribed by W.

As before in postulate 1, it was here preferred to use
the imprecise term “large sample”, when, in fact, we
should more accurately speak about limiting frequencies
as the sample size tends towards infinity.

3 The Statistical Model

To implement the rule for the derivation of degrees of be-
lief formulated in postulate 3 in a mathematical model,
the concepts of a random sample and relative frequency
of a property in such a sample, which, as yet, have only
been used intuitively, must be formalized.

The mathematical model for a random observation of
a single event is provided by a random variable: a func-
tion defined on some probability space Q equipped with
a probability measure P, taking values in the set of pos-
sible events. Since we distinguish different events only
with respect to properties definable in L(S), we may use
the simpler model of a random variable taking values in
T' (this being the set of equivalence classes of events with
regard to these properties). Such a random variable X
now is a model of a randomly sampled event, if it’s dis-
tribution is equal to the statistical probability measure
pon I ie.

P¥(a) i= P({ € Q| X() = a}) = (a) (a € T).

The model of a sequence of random events, initial seg-
ments of which constitute random samples of increasing
size, is an infinite sequence X7, Xo,... of independent
I-valued random variables, all distributed according to
1.

For every n, the first n elements of this sequence define
a new random variable PX on Q with values in A(T),
their emperical distribution:

PX(a)i= 2 D 1a(X) (aeT),

with 1, the indicator variable of «, i.e. 14(X;(w)) =1
if X;(w) = «, and 0 else.

PX () thus describes the relative frequency of a in a
sample of size n. What we have to investigate now is the
limiting value we should expect for PX(a) as n — oo,
given that P approaches a limit consistent with W.

The set ¥, primarily regarded as a collection of state-
ments of degrees of belief, by a slight abuse of notation,
may also be regarded as a subset of A(T): the subset of
probability measures satisfying the constraints stated in
¥. We can then define for 6 > 0:

U():={reAD) | W eV |v-1 <5}

with |v — v'| the Euclidean distance of v and v'.

We now have assembled the mathematical counter-
parts of most of the informal concepts of postulate 3.
What still remains unexplained is the notion of an “ex-
pected frequency”. Theorem 3.1 will show that, in our



model, we can give a very strong formal meaning to this
notion of expectation; it also provides an explicit de-
scription of the frequencies to be expected.

To prepare the theorem, we now give a brief reminder
of the essential definitions regarding cross-entropy min-
imization.

For p = (g1, ..., pn) with p >0 (k=1,...,N) and
v = (v1,...,vn) € A(T), the cross-entropy of v with
respect to p is defined by
CE(v,p) := Z I/Z'lnﬁ.
Hi
1€{1,...,N}
v;>0

To treat the general case, without the restriction to mea-
sures y with only strictly positive components, the defi-
nition of C'E must be extended in a way which makes it
also attain the value co, and some additional considera-
tions for the cases when this happens have to be added.
CE(-, p) is a strictly convex function, so that for every
closed and convex J C A(T") there exists a unique vg € J
with CE(vo, p) < CE(v, p) for all v € J, v # vo. This
v is denoted ().

In the statement of theorem 3.1, for sequences
(0n), (05,) of real numbers, we use the intuitive notation
(0n) > (31,) to signify that 6, > 4/, for all n, and (3,) \y 0
to say that §, > 0 for all n, and lim,_ .9, = 0.

Theorem 3.1 Let X, X5,... be asequence of indepen-
dent random variables taking values in ' = {ay,...,an}
with distribution g € A(T) (up > 0, & = 1,...,N).
Let ¥ C A(T) be closed and convex. Let vg := mg(u).
Then there exists a sequence (d,) N\ 0, such that for all
(0,) > (8,) with (87) N\ 0, there exists (e,) N\ 0, such
that

limp oo P(|PX — 1o|< 0 | PX € W(d)) = 1. (3)

In a version of this theorem also allowing for measures
p with 0-components, the additional assumption must
be made that CFE(v,u) < oo for at least on v € U.
The proof of this theorem is essentially an application
of the Sanov-theorem for multinomially distributed ran-
dom variables (see e.g. [Bahadur, 1971]), and, in broad
outline, is similar to the proof of a related result in [van
Campenhout and Cover, 1981]. The details will be given
in [Jaeger, 1.

A few comments may be useful to better understand
the role that in theorem 3.1 is played by the sequence
(0n). When ¥ has interior points, then the theorem actu-
ally is true for (d,) = 0, i.e. the whole process of approx-
imating ¥ by the sequence ¥(J),) can be done without.
On the other hand, consider ¥ := {v € A(l}p | vi = r}
where r is some irrational number. Then P} can never
take a value in ¥, each component of P} being of the
form ¢/n for some ¢ € N. Hence, conditioning on
{PX € ¥} in (3) would mean to condition on the empty
set, and the conditional probability in (3) would be un-
defined for every n. Moreover, for each n, PX can only
take on finitely many values, so that for sufficiently fast
decreasing sequences (6,) > 0, even {PX € ¥(4,)} will
be empty for all n. Thus, the condition of (4/,) “slowly”
tending to 0 in theorem 3.1 makes sure that sufficiently
many possible values of PX are in W(d/,).

Theorem 3.1 provides a clear answer to what frequency
of ¢ € L(S) we should expect in the random samples de-
scribed by postulate 3, provided ¥ is closed and convex,
as is the case when W is defined by a set of sentences (2):
when looking at sufficiently large samples, with a proba-
bility arbitrarily close to certainty, this relative frequency
will be arbitrarily close to mg (1)(¢).

For the die-example, the minimum cross-entropy so-
lution for the given constraints and statistical distribu-
tion is (0.1,...,0.1,0.7/3,...,0.7/3). The upper bound
of 0.8 derived for prob(HE(f)) in the film- example cor-
responds to the minimum cross-entropy measure with
respect to the statistical distribution g with p(E) = 1
and p(A | E) = 0.5. The lower bound derives from sta-
tistical measures p with p(A) = 0 and p(E) < 0.7. The
minimum cross-entropy measure v for other statistical
measures u satisfying the statistical constraints of exam-
ple 2.2 will yield values v(HE) in between 0.64 and 0.8.
(All these results are derivable from elementary proper-
ties of cross-entropy minimization, e.g. the axioms given
in [Shore and Johnson, 1980].)

By the epistemic analysis of section 2, we obtain a
good insight under what conditions (an ideal agent’s) de-
fault reasoning about probabilities, when reconstructed
from information given in a formal knowledge base, is ad-
equately modeled by cross-entropy minimization: first,
we must make the assumption of postulate 2, i.e. that
the agent who’s degrees of belief are encoded in the
knowledge base considers the random mechanism he or
she associates with the event e to be equivalent to the
statistical probabilities stated in the knowledge base.
Second, it must be assumed that the given degrees of
belief exhaust the evidence, i.e. that the knowledge base
reflects all the relevant information the agent has about
e. Observe that this second condition is a typical ideal-
ization that always has to be made to justify application
of a non-monotonic inference rule (probabilistic or logi-
cal) to a knowledge base.

4 Comparison and Conclusion

Traditionally, the meaning of degrees of belief often is
defined in terms of preferences between acts (e.g. the
acceptance of certain bets), the utility of which will de-
pend on some uncertain proposition. By eliciting from a
person suitable statements of preference, his or her de-
gree of belief about the proposition can be defined by a
unique (subjective) probability value. The most influ-
ential presentation of this approach probably is [Savage,
1954]. This view of degrees of belief is stronger than
the one we used here, in the sense that they are always
defined to be point-valued. Nevertheless, the two def-
initions are not incompatible: the thought experiment
explanation focuses on how an agent arrives at a de-
gree of belief without trying to prescribe a method by
which unique values will always result. The preference-
paradigm concentrates on the measurement of degrees
of belief, which can very well be imagined to have been
formed by a thought experiment.

Shafer and Tversky [1985] speak of “mental experi-
ments” that are performed to obtain probability judg-
ments. Unlike the thought experiments described by



postulate 1, Shafer and Tversky’s mental experiments
are not an abstract epistemic model for the meaning
of degrees of belief, but designate a variety of ways in
which, in concrete situations, specific evidence can be
compared to well-defined chances. Thus, the (mental)
drawing of a random sample of events according to some
known statistics, as described in postulate 3, constitutes
a mental experiment in the sense of Shafer and Tversky.

Paris and Vencovska [1992] have analyzed the problem
of probabilistic inference from the same kind of knowl-
edge bases as considered here. They base their approach
on the semantic interpretation that a subjective proba-
bility represented by prob(¢(e)) in fact describes a sta-
tistical probability [¢ | S¢]: the statistical probability
of ¢ in the ideal reference class S, of elements that are
“similar” to e. As a natural consequence of this view,
there is little room for the distinction of different types
of inference rules made in section 1: since essentially we
are left with only one type of probabilities, there is only
room for inference rules to be applied simultaneously to
degrees of belief and statistics.

Paris and Vencovskd show that when entropy-
maximization is applied to their knowledge bases (which
must also include a clause stating that [S.] is small),
then the effect of the general statistical information on
the inferences made about the specific statistical terms
[¢ | Sc] is defined by cross-entropy minimization. To-
gether with a justification of the maximum entropy
method ([Paris and Vencovska, 1990]), this provides a
justification for minimum cross-entropy inferences. This
derivation of the minimum cross-entropy principle, how-
ever, is of a completely different nature than the one pre-
sented here, because the justification of the maximum-
entropy method is based on logical arguments alone (just
as in the well known work by Shore and Johnson [1980]):
it is shown that if an inference process satisfies certain
logical principles, i.e. behaves adequately when applied
to knowledge bases of certain syntactic structures, then
it will have to be entropy maximization.

An argument of this kind can only be used to show
that cross-entropy minimization is the adequate formal-
ism for default reasoning about probabilities when it is
taken for granted that at least one such formal process
exists — an assumption that in itself is not corroborated
by an axiomatic derivation. It might very well be that
there are other axioms that are intuitively reasonable for
default reasoning about probabilities, but are not satis-
fied by the minimum cross-entropy principle. In that
case we would have to conclude that no completely ade-
quate formal process exists. For this reason it has here
been attempted to elucidate the process of the formation
of degrees of belief based on statistical information in
human reasoning by looking at its epistemic basis rather
than by giving a normative (partial) description of its
behaviour. It was then shown that with the unfolding
interpretation of a degree of belief as a prediction of the
outcome of a thought experiment, the reasoning process
itself can be captured in a statistical model validating
minimum cross-entropy reasoning. Such a derivation of
the minimum cross-entropy principle from a semantic
model provides valuable evidence that it does, in fact,

not have counterintuitive logical properties, since these
would have to correspond to flaws in the semantic model.
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