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Abstract

We investigate the relation between the behavior of non-deterministic systems
under fairness constraints, and the behavior of probabilistic systems. To this
end, first a framework based on computable stopping strategies is developed
that provides a common foundation for describing both fair and probabilistic
behavior. On the basis of stopping strategies it is then shown that fair behavior
corresponds in a precise sense to random behavior in the sense of Martin-Lof’s
definition of randomness.

We view probabilistic systems as concrete implementations of more abstract
non-deterministic systems. Under this perspective the question is investigated
what probabilistic properties are needed in such an implementation to guaran-
tee (with probability one) certain required fairness properties in the behavior of
the probabilistic system. Generalizing earlier concepts of e-bounded transition
probabilities, we introduce the notion of divergent probabilistic systems, which
enables an exact characterization of the fairness properties of a probabilistic
implementation. Looking beyond pure fairness properties, we also investigate
what other qualitative system properties are guaranteed by probabilistic im-
plementations of fair non-deterministic behavior. This leads to a completeness
result which generalizes a well-known theorem by Pnueli and Zuck.

Key words: Fairness, Randomness, Probabilistic verification,
Nondeterministic systems, Probabilistic systems.

1. Introduction

The concept of fairness has been introduced in the study of nondetermin-
istic systems as a means to eliminate from the analysis of the system certain
pathological behaviors. Fair behavior of a nondeterministic system is closely
related to the (almost surely) expected behavior of a probabilistic system: if
one replaces the nondeterministic transitions in a nondeterministic system by a
probability distribution over the possible successor states, then one finds that
the resulting probabilistic system will show a fair behavior with probability one
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In fact, right from the beginning, some authors have viewed fairness con-
ditions as a qualitative approximation to probabilistic behavior [2, 3]. De Al-
faro (year?) has proposed to define fairness as a probabilistic concept altogether
(probabilistic fairness).

Goal of this paper is to obtain a better understanding of the exact relation-
ship between nondeterministic systems under fairness constraints, and proba-
bilistic systems. Our first result is of a mostly conceptual, theoretical nature:
we show (Section 2.3) that there exists an exact correspondence between sys-
tem behaviors that satisfy certain fairness conditions, and system behaviors
that are random in the classic sense of Martin-Lof [5, 6, 7). More specifically,
this result shows that for any given set of fairness constraints there exists a
probabilistic system whose behavior will exhibit with probability one exactly
the specified fairness properties. However, in this result the existence of such a
probabilistic system is shown in a non-constructive manner, and therefore pro-
vides little guidance for the practical design of probabilistic systems with the
desired fairness properties. The question of how a probabilistic system has to
be designed in order to implement a given set of fairness conditions is investi-
gated in Section 3. Our main result here establishes a necessary and sufficient
condition for probabilistic implementations of given fairness conditions. Finally
(Section 4), we investigate to what extent the fact that a given probabilistic sys-
tem implements a certain set of fairness conditions is sufficient to ensure that
the probabilistic system will only exhibit properties that are logically implied
by these fairness conditions. Results that establish such a correspondence are
known as completeness results [3, 1], because they show that logical deductive
or model-checking techniques provide complete proof systems for deriving all
probability one properties of a given probabilistic system. Our main result here
is a generic completeness result that generalizes Pnueli and Zuck’s (year?) re-
sult that a-fairness is complete for properties expressible in linear time temporal
logic.

2. Fairness and Randomness

We begin by setting up the formal framework in which we study fairness and
randomness. We require system models for nondeterministic and probabilistic
systems (Section 2.1), and a way to describe fair, respectively random, system
behaviors (Sections 2.2 and 2.3). It can then be shown that fair and random
behavior coincides in a precise way (Theorem 2.13).

2.1. Nondeterministic and Probabilistic Systems

In previous works, concepts of fairness were usually defined with respect to
particular types of (nondeterministic) system models that incorporated some
features of an intended application domain, especially concurrent systems [8, 9,
10]. For the purpose of the present paper we can take a very abstract view, and
use the most basic model of a nondeterministic transition system.



Definition 2.1. A nondeterministic transition system is a triple G = (.5, Sp, t),
where S is a finite set of states, Sy C S is the set of starting states, and
t:8 — 29\ () is a transition relation.

The following notations are used for state sequences of G: w denotes the set
of natural numbers, o,0’,... denote elements from S“, and s,s’,... elements
from S*. The length of s € S* is denoted | s|. The ith component of o € S¥
(resp. s € S* of length at least 7) is denoted o[i] (s[i]). We also use o[i, j] for
the subsequence oli], o[i + 1],...,0[j]. For the prefix o[1,4] we simply write o;.
Run(G) := {o | o[1] € So,0[i + 1] € t(c[i])(i € w)} is the set of infinite runs of
G, and Rungn(G) : {s | s[1] € So, s[i + 1] € t(s[i])(i <|s]|)} is the set of finite
runs of G.

A nondeterministic system G can be transformed into a probabilistic system
by defining for each s € S a probability distribution on #(s). When these proba-
bilities are interpreted as transition probabilities, then we obtain a (stationary)
Markov chain that defines a probability distribution on S“. We will call such a
Markov chain an implementation of G, because it represents one way of turning
the abstract nondeterministic model G into a concrete implementable system.
G can also be implemented by systems other than Markov chains: for example,
one can use time and history dependent transition probabilities, or, on the other
hand, one can implement G using a fixed deterministic transition policy. In all
cases, the implementation defines a probability distribution on Run(G) (in the
case of a deterministic implementation this is a degenerate distribution placing
probability 1 on a single run o € Run(G)). Based on these considerations, we
will in the following identify probabilistic systems (with set of states S) with
probability distributions on S¥.

The following standard definitions and notations pertain to probability dis-
tributions on S¥: for s € S* with | s|= ¢ we denote with [s] the cylinder set {c €
S | o; = s}. This notation is extended to L C S* via [L] := |J{[s] | s € L}.
Let o/ denote the o-algebra generated by the system {[s] | s € S*}. Through-
out, we take (S“, 47 ) to be the underlying probability space, and use pu, p/, . ..
to denote probability measures on (S“, 47 ). Usually, we speak loosely of u as
a probability measure on S“, when formally p is meant to be a measure on
(5¥, o). To simplify notation, we express the probability of a set of sequences
o that satisfy some condition ¢(o) as u(c(o)), rather than p({o | ¢(o)}). All
sets {o | ¢(0)} that we shall encounter can easily be shown to be 47-measurable.

We can now formally state:

Definition 2.2. A probabilistic system over a finite set of states S is a prob-
ability distribution p on (S¥, .7 ). A probabilistic system p is called an imple-
mentation of a nondeterministic system G if p(sss’ | ss) = 0 for all s € S*,
s€ S and s &t(s).

LObviously, only distributions satisfying certain computability conditions represent actu-
ally implementable systems, but we will not make this distinction here.



By Definitions 2.1 and 2.2 we have introduced extremely basic system mod-
els. As mentioned above, most previous investigations of fairness concepts were
conducted on the basis of more elaborate system models. For the fundamental
questions we are investigating, our simplified models are sufficient, and avoid an
unnecessary burden of notation and detail. We will indicate in Section 5 how
our results can be lifted to some more complex system models.

2.2. Nondeterministic Systems: Fairness

Numerous concepts of fairness have been proposed. These concepts broadly
fall into two different categories. The first type of definition tries to directly
capture the underlying intuition that in a fair computation “if a certain choice
is possible sufficiently often, then it is sufficiently often taken” [11]. Approaches
to formalize this intuition at various levels of generality include [9, 2, 3, 1, 12].

In all these definitions, the set of fair runs of a system is “large” in a topolog-
ical sense. This has led to a second type of fairness definitions, in which fairness
conditions are directly expressed by topological characterizations [13, 14, 15].

Since it is our goal to elucidate the close connection between the two fun-
damental conceptual notions of fairness and randomness, we follow the first
approach to formalizing fairness. Like Baier and Kwiatkowska [1], we intro-
duce a rather general framework for specifying fairness conditions of different
strengths, which includes many previous more specific fairness concepts as spe-
cial instances. Our definition is based on an adaptation of the concept of stop-
ping times as used in the theory of stochastic processes. This approach is aimed
at making transparent the connection with classical formalizations of random-
ness.

Definition 2.3. Let S be a finite set. A stopping strategy for S is a computable
function
T:5" > w

such that 7(s) < 7(s’) when s is a prefix of s’. The ith stopping time 7° is
defined for o € S by

(o) == min(r(ok) > i) €wU {oo},

using the convention min () = oo, i.e. 7¢(c) = oo iff 7(0}) < i for all k. Similarly,
for s € 5*: '
T'(8) == mkin(T(sk) >14)) €{1,...,]|s|}U{o0}.

We denote with 7 (.5) the set of all stopping strategies for S.

The underlying intuition behind the definition of a stopping strategy is that
we read a sequence o from left to right, and at selected positions o[k] increase
an integer counter by some number. This process is equivalently modeled by
7, which gives the current counter value when the prefix s of o has been read,
or by the 7%, which give the position of o at which the counter value exceeds
i. It is not essential that we are able to increase the counter by more than



one at a single step, i.e. for all that follows we might as well have imposed
the additional restriction 7(ss) < 7(s) + 1 for all s € S*,s € S (or equivalently
7i(0) < 00 = 7%(0) # 711 (o) for all o,7). The more general definition is merely
a matter of convenience.

When 7i(0) < oo then o[ri(c)] € S is defined. In the following we simply
write o[7?] for o[r?(c)], and take equations of the form o[r?] = s to stand for the
conjunction “ 7(0) < oo and o[r?] = s”. Similarly, s[r’] = s means “7%(s) <|s|
and s[t'(s)] = s”. In a similar vein, we shortly write {r* < oo} for the set
{o | 7%(0) < o0}.

In connection with stopping times we abbreviate “for infinitely many " with
“.0.” (infinitely often).

Based on the notion of a stopping strategy, we define fairness as follows.

Definition 2.4. Let G be a nondeterministic transition system with states S,
T a stopping strategy for S, o € S¥. We say that o is (7, G)-fair, if for all s € S
and s’ € t(s):

o[r'] =5 io. = o[, 7" +1]=ss i.o. (1)

When T is a family of stopping strategies, we say that o is (T, G)-fair if o is
(1, G)-fair for all 7 € T'.

In the preceding definition the fairness condition (1) is required for all pos-
sible transitions from s. Sometimes one may want to impose such constraints
only on a special subset of transitions. In our framework this corresponds to
specifying for each state s a subset tfq;r(s) C £(s), and requiring (1) only for
s' € tfair(s). Our subsequent results can equally be developed in such a general-
ized setting. For the sake of conceptual and notational simplicity, however, we
will not make such a distinction between t(s) and tfq.r(s).

Example 2.5. (Strong fairness) Let 75(s) :=| s |. Then 7, is the strategy
according to which one stops at every position of o, The left hand side of (1)
simply says that s appears infinitely often in o. Condition (1) for all s, s’ € #(s),
thus, is the condition of strong fairness: every possible transition that is enabled
infinitely often, is taken infinitely often.

Example 2.6. (a-fairness) Let ¢ be a formula in linear time temporal logic
(LTL) over the set S as propositional variables. For s € S* then the decidable
satisfaction relation s |= ¢ is defined, and the stopping strategy 74(s) :=|{j <|
s|| s; = ¢} | expresses the rule that we stop whenever the prefix currently read
satisfies ¢. Let Ty := {7y | ¢ € LTL over S}. Then (T,, G)-fairness is a-fairness
as defined by Pnueli and Zuck (year?) (modulo the translation to our simpler
system model).

Example 2.7. (Regular fairness) Let A be a finite automaton over input al-
phabet S, and L(A) C S* the language recognized by A. In analogy to the
preceding example, define the stopping time 74 by replacing the relation s = ¢
with s € L(A). Let T, be the set of such 74. The resulting concept of (7)., G)-
fairness is called regular fairness.



Example 2.8. (Computable fairness) The strongest possible fairness condition
in our framework is (7(5), G)-fairness, which we also call computable fairness.
This concept of fairness was originally introduced in [16] (in a slightly different
but equivalent way), and can be seen as the saturation of most previous fairness
notions. The intuition behind computable fairness is unpredictability: if a se-
quence does not satisfy (1) for some 7, s, s, then an observer of the sequence can
algorithmically make infinitely often a nontrivial and correct prediction on the
behavior of the system by predicting that the next state will not be s’ whenever
T stops at state s (more precisely, by starting to make these predictions after the
finitely many occurrences of o[r?,7°t1] = ss’ have passed). These predictions
are nontrivial in the sense that they exclude a possible successor state of the
current state. Computable fairness, now is the condition that a sequence is not
algorithmically (partially) predictable in this sense.

Note that (T, G)-fairness of o does not imply that o is actually in Run(G).
Usually, however, we will only be interested in those (7, G)-fair sequences that
are also runs of G, for which we introduce the notation

FairRun(T, G) := {0 € Run(G) | o is (T, G)-fair}.

Depending on what kind of unknown or unspecified process is represented
by the nondeterminism in the system, a more or less comprehensive fairness as-
sumption will be appropriate: if, for instance, the nondeterminism models the
policy of a scheduler that decides which of a number of concurrent processes
is to make the next execution step, then a condition like strong fairness might
be appropriate, as it simply excludes policies in which the execution of some
processes will be stalled. A condition like computable fairness, on the other
hand, would here be unreasonable, as it excludes perfectly sensible policies that
schedule processes in a systematic, and hence predictable, round-robin fashion.
When, in contrast, the nondeterministic system serves as an approximation for a
probabilistic system, then the full condition of computable fairness becomes rea-
sonable under suitable assumptions on the true underlying probabilistic system.
The nature of these assumptions will be studied in Section 3.

As already mentioned, one important motivation for our specific formal-
ization of fairness is to enable the comparison with the classical concept of
randomness [5]. This comparison is facilitated by focusing on a special type of
stopping strategies, which we now introduce.

The idea underlying the following definition is quite simple: given a stopping
strategy 7, we can construct a new stopping strategy by picking some k €
w,s,s’ € S and proceed as follows: read o until the first & occurrences of
subsequences of the form o[r?, 7 4 1] = ss’ have appeared, then stop whenever
7 stops at the state s, but only until a further occurrence of o[r¢, 7* + 1] = ss’
appears. The definition of the resulting new stopping strategy 7 s (S) as a
function on s € S* then is given as the number of times j that one has stopped
when reading s. The precise definition of the resulting stopping strategy 7% s,s
is as follows.



Definition 2.9. Let T be a stopping strategy, k € w, s,s’ € S. The (k,s,s’)-
transform of T is the stopping strategy 7 s o+ defined as follows: 73 5 s/ (s) is the
largest j € w such that there exist ig,7; € w with

(a) [{i<io|s[rl, 7"+ 1] =ss'}|=k
(b) [{io <i<i1]|s[r']=s}t=3
(c) Vi:iig<i<iy—1:s[rh,70+1]#ss

A set T C T(S) is said to be closed under 1y s s -transforms, it 7 € T implies
T,s,s» € T for all k,s,s’.

Stopping strategies of the form 7 s s+ have some special properties that we
will exploit in the following sections. Since 74 5, only stops at state s, one
obtains as an immediate consequence of our definitions:

U[Tli,s,s’ = S] A Tli,s,s’ (U) < 00. (2)

Another immediate consequence from the definitions is that for all o, G, and all
k,s,s' with s' € t(s):

0 is (Th,s,s, G)-fair & o € N2 {7} , , < oo} (3)

The following lemma, which again follows directly from the definitions, shows
that k, s, s’-transforms are in a sense sufficient.

Lemma 2.10. Let G be a nondeterministic transition system with states S,
T€T(Y), o€ S¥ The following are equivalent:

(i) o is (1, G)-fair
(ii) o is (15,5, G)-fair for allk € w, s € S, s’ € t(s).

Lemma 2.10 permits us to restrict attention to stopping strategies of the
form 73 s whenever we are dealing with a family T C 7(S) that is closed
under k, s, s’-transforms. Most natural families have this property: for example,
To, T, and 7 (S) (cf. Examples 2.6-2.8) can be shown to be closed under k, s, s'-

transforms.

2.8. Probabilistic systems: Randomness and Fairness

The problem of how to distinguish random from non-random sequences has
a long history. Von Mises [17] was the first to propose a formal definition of
randomness, which, however, was not fully consistent. Capturing the underlying
intuition of von Mises’s approach, Martin-Lof’s (year?) provided a now classi-
cal definition of randomness. For related, alternative, definitions see e.g. [6, 18],
and [19] for an overview.

The basic idea behind this definition is that a sequence o is random (with
regard to a given probability distribution p) if o does not belong to an “excep-
tional” set C' with u(C) = 0. This idea cannot be directly used as a formal



definition, because typically one has u({o}) = 0 for all o € 5%, so that no
random sequences would exist. For this reason, Martin-Lof restricts the sets
C under consideration to those for which membership ¢ € C is testable by
an effectively computable sequential statistical test. Such tests can be defined
in several equivalent ways. In the following we give a definition in terms of
stopping strategies in the sense of Definition 2.3.

Definition 2.11. Let u be a probability measure on S“. A stopping strategy
7 is called a test for p if p(N2;{r* < co}) = 0. A sequence o € S¥ is called
(7, u)-random, if 7 is not a test for u, or o € N2, {r* < co}. If T is a family of
stopping strategies, then o is called (T, p)-random if ¢ is (7, u)-random for all
TeT.

Example 2.12. Let S = {0,1}, and u be the uniform distribution on S“ (i.e.
u([s]) = 1/2M for all s € S*). Let € > 0, and

i

rels) =i <lsl| 3 3 sl > 5 +eb.

Jj=1

Thus, 7.(s) counts how often the mean value of the states in s exceeds 1/2 +e.
By the strong law of large numbers we have

1< 1
M 00—~ g 1=5)=1,
w(lim, 2 alj] 2)

which means that
(w13 olil > L+ i fnite) = 1
icwl=) o = + €} is finite ) = 1.
. i =7y
Since finiteness of {i € w | %Z;:l olj] > 1 + €} is equivalent to o & N2 {7/ <
oo}, one obtains that 7. is a test for p (for any € > 0).

The notion of (7 (S), u)-randomness as given by Definition 2.11 is equivalent
to Martin-Lof’s definition of randomness, modulo the following two changes: in
order to obtain Martin-Lo6f’s original concept, one would have to restrict Def-
inition 2.11 to computable p, and replace the condition u(N2, {7 < oco}) = 0
(which is equivalent to u(7? < oo0) — 0 for i — oo) with the stronger condi-
tion u(r? < 00) < 1/2% (i € w). Both these modifications are instrumental
for the construction of a universal test of randomness, one of the main goals
of Martin-Lo6f’s work. From the point of view of providing a natural definition
of randomness, however, the more general notion of a test as given in Defini-
tion 2.11 seems to be rather more appropriate than the one used by Martin-Lof;
it has previously also been adopted by Gaifman and Snir (year?).

On the basis of the common foundation in terms of stopping strategies for
fairness and randomness, we can now establish an exact correspondence between
these two notions.



Theorem 2.13. Let G be a nondeterministic transition system with states S;
let T'C T(S). There exists a probability measure fi such that for all o € S¥: o
is (T, G)-fair iff o is (T (S), ft)-random.

Proof: Define M := {u | p((T, G)-fair) = 1}. A stopping strategy 7 is called a
test for M, if 7 is a test for all 4 € M. Let 71,72, ... be the (finite or countably
infinite) set of stopping strategies in 7" that are not tests for M. For each j € w
let 11 € M be such that 1;(N2, {7} < oo}) > 0, and define ji = Py 1/29 ;.
The constructed i has the following property: a stopping strategy 7 is a test
for M iff 7 is a test for f.

Now consider o € S, and assume that o is (7 (5), fi)-random. To show that
o is (T, G)-fair it is sufficient to show that o & N2, {7}, , , < oo} for any k, s, s'-
transform of any 7 € T' (Lemma 2.10 and (3)). Let 7, k, s, s’ be given. For any
1 € M, by definition of M and Lemma 2.10, then pu((7g, s+, G)-fair) = 1, and
hence (N2, {7} , , < 00}) = 0. Then also 4(N2, {74 , . < 00}) =0, i.e. Th s
is a test for fi. (7(S),i)-randomness of o now implies o ¢ N2, {7} , , < oo},
as required.

For the converse direction, assume that o is (T, G)-fair. Let €, denote the
point mass on o, i.e. the probability distribution that assigns probability 1 to
every set that contains o. Then e, € M. Let 7 € 7(S) be a test for . Then
7 also is a test for M, and hence for €,, so that €,(N2, {7 < co}) = 0. By
definition of €,, now, o € N2, {r! < 0o}, i.e. o is (7(S), i)-random.

O

It is important to note that the equivalence in Theorem 2.13 is between
(T, G)-fairness and (7 (S), u)-randomness, and not between (T, G)-fairness and
(T, p)-randomness. Thus, fairness is shown to be equivalent to randomness in
the full sense of Martin-Lof (year?), and not only equivalent to a weakened form
of randomness, determined by only the subset T of stopping strategies. The class
T of stopping strategies defining the fairness concept under consideration only
influences the construction of the probability measure f.

3. Probabilistic Fairness Guarantees

Probabilistic implementations of a nondeterministic system will typically
possess quite general fairness guarantees. This has especially been noted for
Markov chain implementations [1]. Theorem 2.13 establishes an exact corre-
spondence between fairness and probabilistic behavior. In particular, the theo-
rem shows that for every fairness concept T there exists a probabilistic imple-
mentation i that guarantees (T, G)-fairness with probability one. However, [i
is obtained in a non-constructive manner in the proof of Theorem 2.13, and is
not even guaranteed to be computable. In this section we take a more construc-
tive approach to the question of how to obtain probabilistic implementations
of certain fairness properties (or, conversely, what fairness properties will be
guaranteed by a given implementation). Our interest in this section is mostly
with probabilistic systems that are not Markov chains, and therefore may not



readily be seen to possess the required fairness properties. The main probabilis-
tic concept needed in the investigation of such systems is given in the following
definition.

Definition 3.1. Let G be a nondeterministic transition system, 7 a stopping
strategy, and p a probability measure on S¥. We say that u is (7, G)-divergent,
if for all s € S and §' € t(s):

pofrl=sio)>0 = Y polr+1]=5|o[r']=5) =0 (4

i;l
w(o[r*]=5)>0

(note that u(o[r'] = s i.0.) > 0 implies that u(o[r?] = s) > 0 for infinitely many
i, but not vice versa). If T' is a family of stopping strategies, then y is called

(T, G)-divergent if p is (7, G)-divergent for all 7 € T'.

Lemma 3.2. Let G be a nondeterministic transition system, s,s’ € S with
s’ e€t(s). Let 7 € T(S) and k € w. Then

w(Tr,s,57, G)-fair) = 1 < p is (T s, 5, G)-divergent. (5)
Proof: For 7, s s+ we have by (2) and (3)
0 is (T,s,s, G)-fair < not o7}, , ] = s i.0.

The left to right direction of the theorem directly follows, because p((7% 5,57, G)-fair) =

1 makes (4) vacuously true with /,L(O'[T]i,sys,] =5i0.)=0forall 5€ 5.
For the}converse direction, assume that (4) holds for Th,s,s'- We need to show
that p(o[r; ;o] = s i.0.) = 0. Assume otherwise, i.e. u(o[ry , s]=sio0.)=7r>

0. This implies u(o[r} , ] = s) > r for all i. With {’7’;:;15, <oo} C{Tf, o <
oo}t N {T]:::ls/ = s'}¢, and using (2), it follows that

H(U[Tli7s,s’ + 1] = S/ | U[T]i7s,s’] = S) S :U’(T]ij;,ls/ =00 | Tli,&s’ < OO)
/J,(T]i,sys, < 0077—,?5,15, = 0) M(T]i’s,s/ < oo,T,ijrs)ls, = 0)
:U(Tli,&s’ < OO) o r '

Summing over all 4, we obtain oo on the left hand side and (1 — r)/r on the
right hand side, a contradiction. O

The following example shows that (5) does not hold for arbitrary stopping
strategies 7.

Example 3.3. Let G be a nondeterministic coin-tossing model: G = ({H, T},
{H, T}, ¢) with t(H) = ¢(T) = {H, T}. Consider the following probabilistic imple-
mentations of G: p1, the point mass on H (modeling a bogus coin with heads on
both sides), p2, the uniform distribution on {H, T}* (modeling a fair coin), and
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p:=1/2(p1 + p2), a mixture of g and po. Define 7(s) :=|{i <|s|| s[i]] = H}|,
i.e. T stops at every occurrence of H. Then p is (7, G)-divergent, because for all
i: p(o[r’] =H) =1,

uo[r™H =T |olr'] =H) =
1/2(u (o7 = T) + pa(o[r™1] = T)) = 1/2(0+ 1/2),

and p(o[r] =H|o[r'] =H) =1/2(1+ 1/2).
On the other hand, we have that

p((, G)-fair) = 1/2(p1 ((1, G)-fair) + p2((7, G)-fair)) = 1/2(0+ 1) = 1/2.
Hence (5) does not hold for T' = {7}.

Even though (5) does not hold “pointwise” for arbitrary 7, we show by the
following theorem that this equivalence can be extended to most relevant classes
of stopping strategies.

Theorem 3.4. Let T C T(S) be closed under k, s, s'-transforms. Then
w((T,G)-fair) =1 4ff pis (T, G)-divergent.

Proof: “«<”: Since T is countable, we have that u((T, G)-fair) = 1 is equivalent
to p((r,G)-fair) = 1 for all 7 € T. By Lemma 2.10 the latter is equivalent
1((Tw,s,s7, G)-fair) = 1 for all k, s, s’-transforms of 7 € T'. Using Lemma 3.2 and
the closure of T under k, s, s’-transforms, this is implied by the (T, G)-divergence
of .

“=”: Assume that p is not (T, G)-divergent, i.e. there exists 7 € T with
plolr] = sio) =7 > 0and S u(ofrt +1] = s’ | ofr'] = s) < . As
plo[rt, 8+ 1] = ss') < p(ofrt + 1] = s’ | o[r'] = s), we have by the first Borel-
Cantelli lemma (e.g. [20, Theorem 4.3]) that u(o[r?, 7" + 1] = ss’ i.0.) = 0.
Thus 1 — r > u((1, G)-fair) > u((T, G)-fair) O

When g is an implementation of G with u((T, G)-fair) = 1, then we also say
that p is a (T, G)-fair implementation of G.

Theorem 3.4 provides an exact characterization of (T, G)-fair implementa-
tions of G, provided T has the required closure property. For T not closed
under k, s, s’-transforms, still the left-to-right implication of Theorem 3.4 holds,
i.e. one obtains a necessary probabilistic condition for u being a (T, G)-fair im-
plementations of G. As Example 3.3 illustrates, it may then not be a sufficient
one. This limitation of Theorem 3.4 does not appear to be a very serious one,
as closure under k, s, s’-transforms is a rather natural property for classes of
stopping strategies.

Example 3.5. (Markov chains) Let G be a nondeterministic transition system.
Define a Markov chain on G by assigning to every s € Sy a starting probability
po(s), and to every pair s, s’ with s’ € ¢(s) a transition probability p(s,s’) > 0,
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such that Zs,et(s) p(s,s’) = 1. Let pu be the probability distribution defined by
the Markov chain on §¥. Then u is (7(5), G)-divergent. A slight generalization
is obtained by allowing non-stationary Markov chains with e-bounded transition
probabilities: here the transition probabilities are defined separately in the form
pi(s,s") for each time point 7 € w. If the p;(s,s’) satisfy a global lower bound
pi(s,8") > € > 0, then the induced distribution p is (7(S), G)-divergent, and
hence p((7,G)-fair) = 1 for all 7. This is essentially Theorem 1 of Baier and
Kwiatkowska (year?) (with the difference that Baier and Kwiatkowska consid-
ered e-bounds for transitions in a stationary infinite state Markov chain, whereas
here we consider non-stationary finite state Markov chains).

Finally, one can even omit the condition that transition probabilities are
Markovian, and define for each s € Rung,(G) ending with s, and s’ € t(s)
transition probabilities p(s,s’). If all these transition probabilities satisfy a
global lower bound p(s, s’) > ¢, then the induced distribution u still is (7 (S), G)-
divergent.

Example 3.6. Let G, and 7 be as in Example 3.3. Let T be the closure of {7}
under k, s, s'-transforms. Then p is not (T, G)-divergent. To see this, consider
the stopping strategy 7 := 7o, 7. This strategy consists of stopping at every H
until the first T appears.

We then have o[7!] = H infinitely often iff ¢ = H*, and hence u(co[7%] =
Hi.o.) = 1/2. Also, for every i € w: pu(o[7¥] = H) > 0 and

po[FH] =T o7 =H) = pu(o[7H] =T | 7 < 00) =

_m(o[f ] =T, 7 <o00) + pa(o[f ] =T, 7" < o0)
w1 (7 < 00) + pa (7" < 00)

S (1/2)1+1

_ 0+ (/2!
14 (1/2)°

Thus, the defining condition (4) of (, G)-divergence does not hold for 7,s = H,
and s’ =T.

The following more elaborate example gives an application of Theorem 3.4
in a situation where no global e-bound on transition probabilities can be given.

Example 3.7. Consider a salesclerk who has to serve customers arriving at
two different counters ¢, ¢’. The salesclerk needs a constant time unit to serve
one customer. While serving a customer, new customers arrive randomly and
independently at the two counters. Assume that the number of customers ar-
riving at counters ¢, ¢’ during the ith time unit is given by random variables
n;,n;, whose distributions v, do not depend on i. Let 0 < A\, < oo be the
expected values of v, respectively v’.

Assume that the salesclerk uses a randomized strategy to decide which
counter to serve in the next time unit: if p,p’ denote, respectively, the num-
ber of people currently waiting at counters c, ¢/, then the clerk will next serve
counter ¢ with probability p/(p + p’). One can easily see that in an idealized,
deterministic version of this scenario, this will be the strategy that ensures that
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customers arriving in the same time unit will have to wait approximately equally
long. For our probabilistic model, we would like to prove a much weaker fair-
ness property, namely, that with probability one all customers arriving at either
of the two counters will be served eventually. The intuitive reason why this is
the case is the following: disregarding for a moment that customers also leave
the queues after being served, we obtain from the strong law of large numbers
that with probability one the number of people waiting at the two counters will
show an approximately linear growth with linear coefficients A\, \’. This means
that the probability that ¢ will be served next is approximately A/(A + \') at
every point in time, and thus, with probability one, ¢ will be chosen infinitely
often. Taking the departure of customers into account, we obtain as a lower
bound for the number of customers waiting at ¢ a linear growth with coefficient
max{0, A\ — 1} (note that A — 1 is the growth rate at counter c if ¢ is always cho-
sen for service). Assuming that A > 1, we still obtain a nonzero constant lower
bound (A—1)/(A—1+4 X)) for the selection probability of ¢. In the following, we
will use Theorem 3.4 to turn this intuitive reasoning for the case A > 1, A\ > 1
into a rigorous proof.

Our scenario is naturally modeled as a Markov chain over state space ST =
{¢,d} x w x w, where (¢, k, k") represents the state that in the current time
unit counter ¢ is being served, and at the end of the current time unit & and &’
customers are waiting at counters c, respectively ¢’. The transition probability
frome.g. (¢, k, k') to (¢/,1,1') then is given by k' /(k+k")v(I—k)v' (I'—k'+1). Let
p denote the probability distribution on (S1)“ induced by this Markov chain.
Since we are here dealing with an infinite state Markov chain whose transition
probabilities are not e-bounded in the sense of Example 3.5, none of our results
so far directly apply. However, for the analysis of our fairness condition we
are only interested in the question whether a state sequence generated by the
Markov chain will contain both infinitely many states of the form (c,-,-) and
(c/,-,-). Relevant to our question, thus, is the marginal distribution induced by
& on sequences over S = {¢,c'}. We denote this distribution by f. Formally,
for any finite sequence (c1,...,c¢,) € S*:

ﬂ(clw"acn) = Z /J,((C]_,k]_,kll),...,(Cn,kn,k;’)).
Fe1 ki Kl €
The precise question, now, is whether G((Tstrong, G)-fair) = 1, where G is
the transition system over S with t(c) = ¢(¢’) = {¢,'}. We will actually show
the much stronger result that a((7(S), G)-fair) = 1. Since 7 (.5) is closed under
k, s, s’-transforms, we obtain this result by showing that (4) holds for &, s, s'-
transforms in 7(.5).

Let N; := 335  nj, Nj = Z;Zl n’; be the random variables representing
the total number of customers that have arrived at the two counters up to
and including time unit 7. At time step ¢ the underlying Markov chain then
is in state (-, k, k'), where k (k') is N; (N/) minus the number of times ¢ (¢’)
was served. By the strong law of large numbers we have that for every € > 0:
w(lim;N; /i € [N — e, A + €]) = 1, and similarly for N/ (note that the N; can

13



be retrieved from the state sequence in S, so that u really specifies these
probabilities). Choose e >0 with A—1—€e>0and N —1—¢> 0.

Now let 7 be a k, s, s'-transforms in 7(S). For concreteness’ sake, assume
that 7 has the form 7y . To show (4) assume that p(o[r’] = cio.) =7 >0
(otherwise we are done). This implies u(o[7?] = ¢) > r for all i. Now:

p(o[r' + 1] =¢ |o[r'] =¢) >
plo[r* +1]=¢ | o[r’] = ¢,| N /T8 = A< e, |N;i/7'i - N|<e)
(| Ny /T8 = N< 6| N J78 = N|< e| o[t =¢) (6)

First consider the first factor on the right hand side of (6). | N,: /78 — A|< €
and | N/, /7" — X |< € imply that the Markov chain at time 7° is in a state
(c,k, k'), where k' > N/, =7 > (N =1 —¢)7", and k < N.i —1 < (A + €)',
Then k' /(k+ k) > (N —1—¢)/(N =1+ A). Since ' — 1 — € > 0 this gives a
strictly positive lower bound for the first factor. Turning to the second factor,
we obtain from 7% > i that

{|Ni /7" = A< & | NLi J7" = N |< €} D Misi{| Nk — A< ¢, | N Jk — X |< €}

For i — oo the probability of the intersection on the right converges to 1, and,
hence, so does the probability of the set on the left. Because of the uniform
lower bound r for p(o[r!] = ¢), we obtain that the second factor in (6) converges
to 1 as ¢ — oo. Combining the result for the two factors, we obtain that the
right hand side of (6) is bounded from below by a strictly positive constant as
1 — 00, and hence gives co when summed over all 7.

4. Completeness

In the previous sections we have investigated under what conditions a prob-
abilistic system will satisfy certain fairness conditions. However, fairness condi-
tions are usually not the final goal, but only a means to establish the properties
of ultimate interest, e.g. program termination [9]. Termination can be repre-
sented in our simplified system model by a designated goal state g € S, i.e. a
run o € S¥ is terminating iff o[i] = g for some . Thus, we can define the set of
all terminating runs of system G:

Cierm = {0 € Run(GQ) | Ji : o[i] = g}.

The question of whether a certain fairness assumption 7' C 7(S) guarantees
termination for G then is the question of whether the inclusion

FairRun(T,G) C Clerm (7)
is valid. When p is a probabilistic implementation of G with

w(FairRun(T,G)) = 1, (8)
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then (7) implies
#(Crerm) = 1. (9)

Conversely, (8) and (9) together will, in general, not imply (7), because (9) may
hold only because of some special features of the probabilistic system p. For
some other (T, G)-fair implementation of G then perhaps i(Cterm) # 1, which,
in particular, precludes FairRun(T,G) C Cierm.

A problem of considerable interest, now, is to identify certain classes of
properties C, fairness conditions T, and (7, G)-fair implementations p of G,
such that, in fact

w(C)=1 <& FairRun(T,G) C C. (10)

When this equivalence holds, then logic-based and probabilistic methods for
verification can be used interchangeably for property C: the inclusion on the
right-hand side of (10) represents a verification problem for the nondeterministic
system G, which would usually be solved by theorem proving or model checking
techniques. When p is a (T, G)-fair implementation of G for which (10) holds,
then one can alternatively use probabilistic methods to show that u(C) = 1.
Conversely, when we are given a probabilistic system g, then the left-hand side
of (10) expresses a probabilistic verification problem for . When p is known
to be a (T, G)-fair implementation of G, such that (10) holds, then logic-based
methods can be used to solve the probabilistic verification problem. Because of
this latter perspective, an equivalence of the form (10) is called a completeness
result [3, 1] (logic-based methods are complete for probabilistic verification).

Our goal is to identify classes of probabilistic systems M, classes of properties
C C 25, and fairness conditions T C 7 (), such that (10) holds for all u € M,
C € C, and T. The classical result of this type is Pnueli and Zuck’s (year?)
theorem that (10) holds when C is the class of all LTL-definable properties, M
is the class of Markov chains on G (cf. Example 3.5), and T is the condition
of a-fairness (cf. Example 2.6) (again adapting Pnueli and Zuck’s result to our
simpler system models).

Observe that when (10) can be shown to hold for all 4 from a certain class
M, then this also entails an important robustness property of C: since p does
not appear on the right-hand side of (10), one obtains that u(C) = 1 holds
either for all € M, or for no u € M.

Let us denote by

Meprr,a) = {p | p(FairRun(T, G))) = 1}

the set of (T, G)-fair implementations of G. When y1 € M pr(r,¢), then the right-
to-left implication of (10) is trivial. Furthermore, when FairRun(T,G) € C, then
(10) can only hold when yu € Mpg(r,c). In the previous sections we obtained
tools for deciding whether a given y is a member of M pgr(r ). In the present
section, therefore, we will focus on classes M C M pg(r,g), and the left-to-right
implication of (10), the converse then being trivial. Furthermore, our main
result will refer to finite automata both for the definition of the class C, and
for the fairness condition 7. In the following subsection we summarize some
well-known facts about infinitary languages C defined by finite automata.

15



4.1. Infinitary Languages

We write A = (5,7, 20,7, Zace) for a deterministic finite automaton with
input alphabet S, set of states Z , initial state zg, transition function r, and set
of accepting states Z,.. C Z. We assume that r is deterministic, but possibly
incomplete, i.e. it is a partial function from Z x S to Z. We refer to an
automaton with input alphabet S as an S-automaton.

An infinite input string ¢ € S“ induces a finite or infinite state sequence
¢ € Z*UZ¥, depending on whether o leads to a transition not defined by r. We
denote with inf, (o) C Z the (possibly empty) set of states that occur infinitely
often in (.

A finite automaton is turned into a Muller automaton by replacing Z,..
with a set Z C 24. A sequence o € S¥ is accepted by the Muller automaton if
infa(o) € Z.

When A, Ay are two S-automata, then their product A; x As is defined
as usual. When in the sequel we speak of a class A of automata, it is always
taken for granted that A is defined by conditions on the set of states Z and
the transition function r only, i.e. it is closed under redefinitions of the set of
accepting states.

From any finitary language L C S* an infinitary language T is obtained by

L= {c€8¥|o;€Lio.}.

When A is a class of finite automata that is closed under products, then the
following are equivalent for 3 C S (cf.[21, Lemma 4.3]):

(a) X is accepted by some A € A with a Muller acceptance condition.
(b) X is a Boolean combination of sets of the form L(A) with A € A.

(c) ¥ =Uk | (L(A;)NS¥\ L(B;)) for some k € w, and A;, B; € A.

Finally, we associate with a nondeterministic transition system G with state
set S the finite automaton Ag = (5, S U {start}, start,r, S), where start is a
state not in S, and r(s,s’) = s’ if either s = start and s’ € Sy, or s € S and
s’ € t(s). Then Ag accepts Runsi,(G). Replacing S with Z := 29\ () yields a
Muller automaton that accepts Run(G).

4.2. Main Result

Suppose we are given a class of properties C, and a fairness condition 7', and
now want to determine as large as possible a class M C M pr(r,q), such that
(10) holds for all ;n € M. As the following example shows, it is in general not
possible to obtain (10) for all u € M pr(r,q)-

Example 4.1. Let S, G be as in Example 3.3. Let T be the condition of regular
fairness (Example 2.7), and C the class of w-regular properties (i.e. both T and
C are defined by the class of all finite automata). FairRun(T, G) contains both
sequences starting with H and sequences starting with T. Let o € FairRun(T, G)
with o[1] = H. Let e, be the unit probability point mass on o. Then €, €
Mgy, and for C = HSY € C: €,(C) = 1, but FairRun(T,G)  C.
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The probabilistic system ¢, in the preceding example did not satisfy (10)
because it possessed some very specific properties not shared by other (7', G)-
fair implementations of G. These specific properties here derived from the fact
that €, is a measure that is highly concentrated on a small subset (indeed a
singleton) of runs. This motivates the following definition, which allows us to
exclude such highly concentrated measures.

Definition 4.2. Let G be a transition system, T a set of stopping strategies,
w a probability distribution on S“. We say that u has support FairRun(T,G),
if 4 € Mprer,¢), and p([s]) > 0 for all s € Rung,(G).

We can now formulate our completeness result.

Theorem 4.3. Let A be a class of S-automata that is closed under products,

and contains the automaton Ag for every transition system G with state set S.

Let T ={ra| A€ A}. Let C be the class of all Boolean combinations of sets of
—

the form L(A) with A € A. Then (10) holds for all transition systems G with
state set S, all C' € C, and all p that have support FairRun(T', G).

Before turning to the proof, we point out two interesting special cases of the
theorem: when A is the class of counter free S-automata, then the class C de-
fined in the theorem is just the class of LTL-definable properties (with S as the
set of propositional variables; cf.[22, Theorem 6.7]), and T is the condition of
a-fairness. Thus we regain the completeness result of Pnueli and Zuck (year?).
When A is the class of all finite S-automata, then C is the class of w-regular
properties, and 7' is the condition of regular fairness (Example 2.7).

Proof of Theorem 4.3: The right to left direction of (10) trivially holds by
the condition that p has support FairRun(T,G). For the left to right direction,
let A= (S,Z,z2,r, Z) be the Muller automaton that accepts C. We show that
for o € FairRun(T, Q) then U := inf, (o) has positive probability, i.e.

u({o’ | infa(o”) =U}) > 0. (11)

From p(C) = 1 it then follows that U must be an accepting set of states, and
hence o € C.

To show (11), let GA := A x A be the product of Ag and A. We show that
for a set V' C (S U {start}) x Z of states in GA the following are equivalent:

(1) V = infg4(0) for some o € FairRun(T, G).

(ii) V isa terminal strongly connected component (tscc) in GA that is reachable
from the initial state by some s € Rung,(G).

(iii) p({o’ | infga(a’) = V}) > 0.

(i)=(ii): Let o € FairRun(T,G) with info4(c) = V. V is a strongly con-
nected component of GA by definition, so it only needs to be shown that V is
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terminal. Assume otherwise. Then there exists a state (s, z) in V from which
a state (¢/,2') € V is reachable by a transition labeled with s’. In particular,
then s’ € t(s) in G. Turn GA into a deterministic finite automaton by defining
(s,z) to be its only accepting state. GA belongs to A, and hence 7g4 € T.
Furthermore o[r5 4] = s for infinitely many i, but o[t 4, 7& 4 + 1] = ss’ for at
most finitely many i, a contradiction.

(ii)=-(iii): Let s be as given in (ii). Then

[s]NRun(G) = {o|0#infoa(c) CV} D [s]N FairRun(T,G).

From g having support FairRun(T, G) it follows that u({c | 0 # infea(o) C
V} N FairRun(T,G)) > 0. By the same argument as above, {o | infos(c) C
VN FairRun(T,G) = 0, and (iii) follows.

(ili)=(i): From p(FairRun(T,G)) = 1 it follows that u({o | infoa(o) =
VN FairRun(T,G)) = p({o | infaalo) = V}) > 0, and {o | infga(o) =
V} N FairRun(T, G) is nonempty.

From the implication (i)=-(iii) now (11) follows, because for U = inf,(o)
and V = infg 4 (o) we have {0’ | infs(c’) = U} 2 {0’ | infga(c’) = V}, so that
(11) follows from (iii). O

With the following corollary we extract from the proof of Theorem 4.3 the
automata theoretic method for probabilistic verification [23, 24]. In the for-
mulation of the corollary we use Tga to denote the (finite) set of all stopping
strategies Tg4 that are obtainable from the automaton GA as defined in the
proof of Theorem 4.3 by various choices of accepting sets of states.

Corollary 4.4. Let C C S“ be recognized by a finite automaton A with states
Z and Muller acceptance condition Z. Let u be a probability distribution on S¥
such that the following holds: there exists a nondeterministic transition system
G with states S such that p has support FairRun(Tga, G). Then the following
are equivalent

(a) p(C)=1

(b) For all terminal strongly connected components V in GA that are reachable
from the initial state by some s € Rungy, (G):

{zr€Z|3s€8:(s,2)eV}eZ

Typically, the probabilistic system p for which one wants to check the prop-
erty C' is given as a Markov chain. In this case the transition system G required
by the corollary is simply given by the nonzero transition probabilities. Then
condition (b) is effectively testable by constructing the automaton GA and
checking its tscc’s for membership in Z.

Proof of Corollary 4.4: For fixed C' and p as in the corollary we obtain as in

the proof of Theorem 4.3 the equivalence (ii)<>(iii) (this is because only stop-
ping strategies from Tg 4 are needed in the proof). We have u(C) = 1 iff for all
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UCZ: u({c’ |infa(c’) =U}) > 0 implies U € Z. To obtain the equivalence
(a)<(b) we now only have to note that u({o’ | infs(¢’) = U}) > 0 iff there
exists V. C (S U {start}) x Z with U = {z € Z | Is € S : (s,2) € V} and
p({o’ | infga(c’) =V}) > 0. O

Theorem 4.3 shows that when both stopping strategies, and properties of
sequences are expressed by finite automata, then there exists a natural balance
between the resources used to define a particular concept of fairness 7', and
the richness of the class C for which completeness is obtained. What happens
when one goes beyond finite automata? Especially, what completeness results
do we obtain for computable fairness? This is an interesting and mostly open
problem. We can pose it more pointedly by defining C.4(.S) to be the set of all
C C 5% such that (10) holds for all transition systems G and all 1 with support
FairRun(T (S),G). The question then is for alternative characterizations of
Cc(S). We know from Theorem 4.3 that all w-regular C' C S belong to C4(S).
It is easy to construct C that are not w-regular but also belong to C.¢(S). As the
following example shows, however, there exist limits of context-free languages
which already do not belong to Cc¢(S).

Example 4.5. Let S, G be as in Example 3.3. Define L := {s € {H, T}* || {i |
sli] = H}|=|{i | s[i] = T}|}. L is a context-free language. Let C' := L. Now
consider T'= 7(.5), and the class M of Markov chains on G.

If a completeness held for 7', M, and C, then this, in particular, would
entail the robustness property u(C) =1 < u/(C) =1 for all u, ' € M. This,
however, is not the case, as we have u(C) = 1 for pu defined by transition
probabilities 1/2 for all transitions, whereas p/(C) = 0 for y’ defined e.g. by
transition probabilities p(H, T) = p(T,T) = 1/3, p(H,H) = p(T,H) = 2/3. It
thus follows that the condition of computable fairness is not sufficient to obtain a
completeness result for limits of context-free properties and the class of Markov
chains.

5. Extending the System Model

5.1. Mized Models

Many previous studies considered questions of fairness and its relation to
probabilistic behavior on the basis of system models that combine probabilistic
and nondeterministic behavior [3, 1, 24, 25]. As observed by Vardi (year?),
these models are mostly variants of the classical Markov Decision Process model.
They are appropriate e.g. for modeling the interaction of a probabilistic system
with a nondeterministic environment, or decisions of an agent in a probabilistic
environment,.

One of the simplest and clearest model of this type are Vardi’s (year?) re-
active Markov chains. A reactive Markov chain is a hybrid of a nondeterministic
transition system and a probabilistic system in our sense: it is given by a set
of states S, which is partitioned into a set of nondeterministic states IV, and a
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set of probabilistic states P. With each state s € N is associated a set t(s) C S
of possible successor states, and with each state s € P are associated transition
probabilities p(s, s’) (s’ € S, cf. Example 3.5).

A reactive Markov chain can be interpreted as a model for the interaction of
a non-deterministic and a probabilistic player. There are (at least) two different
perspectives under which one can consider fairness properties of such a system,
depending on whether one wants to investigate fairness of the behavior of the
non-deterministic or the probabilistic player.

If we focus on the non-deterministic player, then the question will be what
kind of global system behavior can be guaranteed by suitable fairness assump-
tions on the non-deterministic player, and how these relate to possible proba-
bilistic implementations also for the non-deterministic player. From the point
of view we have adopted in this paper, a reactive Markov chain then can be seen
as a partial implementation of a fully non-deterministic system. Our definitions
and results can be relativized to such partial implementations: stopping strate-
gies need to be restricted to only stop at non-deterministic states (since they
are needed for specifying fairness conditions for the non-deterministic player).
Probabilistic systems p must be constrained to be consistent with the given
partial implementation, i.e. must satisfy u(sss’ | ss) = p(s,s’) for all s € S*,
s € P, s € S. Our main results Theorems 3.4 and 4.3 can be generalized
to allow for such restrictions on admissible stopping strategies and probabilistic
systems (for the generalization of Theorem 4.3 one will also have to limit the run
properties C' to those properties that only depend on the embedded sequence
of nondeterministic states).

Alternatively, one can also focus on the probabilistic player, treat the non-
deterministic player as completely unknown, and ask, e.g. what kind of sys-
tem properties can be inferred from the fairness properties of the probabilis-
tic player (this is the perspective adopted e.g. in [3]). Each strategy of the
non-deterministic player induces a fully probabilistic system (with 0/1-valued
transition probabilities — possibly history dependent — from non-deterministic
states). Our results can be applied in this setting by restricting admissible
stopping strategies to only stop at probabilistic states, and by considering all
possible probabilistic systems p obtained from possible strategies of the non-
deterministic player.

Many other types of systems proposed in the literature can be reduced to
the reactive Markov chain model. Pnueli & Zuck (year?), for example, use a
system model in which the transition from one system state to the next is com-
posed of three separate moves: first there is a non-deterministic choice of one
of several available transitions (which, here, do not yet determine the successor
state, but can be thought of as a ’transition type’ or ’transition label’), then
there is a probabilistic choice of a mode for the given transition, and finally
another non-deterministic choice of an actual successor state from a set of pos-
sible successors, which is determined by the chosen transition and mode. This
model can be represented as a reactive Markov chain by introducing explicit
state representations for the three component moves of a state transition.
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5.2. Infinite State Systems

While our basic definitions of stopping strategies and fairness could easily
be extended to infinite state spaces, it is rather unclear that for infinite systems
they would still reflect reasonable and relevant conditions on system behavior (in
an infinite state space one may not expect to see any states recurring infinitely
often, so that fairness conditions in the form of (1) would become vacuous).
However, Example 3.7 illustrates how our concepts and results can still be rele-
vant for an infinite state system: for the purpose of a particular analysis one is
often interested in a “finite state abstraction” of an infinite state space, which
is obtained by grouping the infinitely many states into finitely many equiva-
lence classes. For probabilistic systems such an abstraction will usually destroy
Markov properties, i.e. an (infinite state) stationary Markov chain will induce a
probabilistic system on the reduced state space that is neither Markov nor sta-
tionary (as in Example 3.7). It is therefore important to note that our results
also include non-Markovian probabilistic systems: to some extent this makes
them applicable to infinite state systems.

6. Related Work and Conclusion

Connections between our results and those of Baier and Kwiatkowska [1]
have already been pointed out in Section 2.2. Varacca and Volzer [15] define
fairness properties as topologically large sets of runs, and establish for w-regular
properties a correspondence with probabilistically large sets (i.e. sets of prob-
ability 1). As in the work of Baier and Kwiatkowska, the results are obtained
only for e-bounded probabilistic systems. De Alfaro [4], too, mostly considers
probabilistic systems whose fairness properties are determined by a global e-
bound on transition probabilities. Such systems are called probabilistically fair
by de Alfaro, and it is shown that probabilistically fair systems possess some
strong and robust fairness properties (notably invariance of fairness under syn-
chronous composition). These results can be seen as a special instance of the
right to left direction of our Theorem 3.4.

Jurdzinski, Kupferman and Henzinger [26] have investigated connections be-
tween probabilistic and nondeterministic systems from a somewhat different
perspective. Their main goal is to reduce certain decision problems for prob-
abilistic games to decision problems for nondeterministic games. The basic
motivation, thus, is similar to the motivation for our study of completeness in
Section 4. However, the main issue addressed by Jurdzinski et al. [26] is not
simply an elimination of probabilistic components from the system model, but
the elimination of synchronous transitions: the probabilistic games considered
contain simultaneous moves by the two players, and the main problem solved
by Jurdzinski et al. is the reduction to a game structure where two players take
alternating turns.

None of these previous works have investigated the connections between
fairness and the classical definitions of randomness, which is our first main con-
tribution. Furthermore, we have introduced the notion of a (T, G)-divergent
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probabilistic system, which enables us to extend the analysis of fairness proper-
ties of probabilistic systems from previously studied e-bounded systems. Exam-
ple 3.7 illustrates how this generalization can be useful in the analysis of infinite
state systems, where global e-bounds can often be an unrealistic assumption.

Our investigation was based on the simplest possible system models on the
basis of which fundamental questions concerning nondeterministic, probabilistic,
and fair behavior can be studied. Benefiting from the simplicity of these models,
we obtained very succinct proofs for our results. While some additional work is
required to lift these basic results to more complex systems models and apply
them to more specific application problems in system analysis, we believe that
they capture key insights and key arguments, which can be adapted to a wide
variety of more specialized contexts.
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