
To appear in Proc. of LICS-98 1Convergence Results for Relational Bayesian NetworksManfred JaegerMax-Planck-Institut f�ur InformatikIm Stadtwald, 66123 Saarbr�uckenjaeger@mpi-sb.mpg.deAbstractRelational Bayesian networks are an extension of themethod of probabilistic model construction by Bayes-ian networks. They de�ne probability distributions on�nite relational structures by conditioning the prob-ability of a ground atom r(a1; : : : ; an) on �rst-orderproperties of a1; : : : ; an that have been established byprevious random decisions. In this paper we investi-gate from a �nite model theory perspective the con-vergence properties of the distributions de�ned in thismanner. A subclass of relational Bayesian networksis identi�ed that de�ne distributions with convergencelaws for �rst-order properties.1 IntroductionRelational Bayesian networks are a framework for de-�ning probability distributions on relational struc-tures, and for e�ectively computing answers toprobability-queries (Jaeger 1997, Jaeger 1998).The original motivation for relational Bayesian net-works derives from an arti�cial intelligence (AI) back-ground, but theoretical investigations into this frame-work soon lead to questions about convergence of prob-abilities that also are interesting from a �nite modeltheory perspective. In this paper we will analyze theconvergence properties of distributions de�ned by re-lational Bayesian networks using techniques adaptedfrom �nite model theory. The results we obtain, inturn, contribute to �nite model theory convergenceresults for a new class of distributions, as well as anew perspective on certain already known convergencelaws.1.1 Background in arti�cial intelligenceReasoning with probabilistic information is one of thecore problems in arti�cial intelligence. What is desiredare formal representation and inference systems forprobabilistic information that are expressive, have a

well-de�ned (and understandable) semantics, and arecomputationally tractable. Favoring the last two ofthese factors in the inevitable tradeo�, Bayesian net-works (Pearl 1988) have emerged as the method ofchoice for the speci�cation of probability distributionsin applications such as fault diagnosis and monitoring.Bayesian networks can be used to de�ne a probabil-ity distribution on a �nite probability space consistingof the possible values for a set of �nite-range randomvariables. Thus, if X1; : : : ; Xn are random variables,Vi is the �nite range of possible values ofXi, this prob-ability space is V = V1 � � � � � Vn: (1)In principle (and in many applications: in practice)we can restrict ourselves to the case where the Xi arepropositional variables, i.e. Vi = ftrue,falseg for all i.The problem with de�ning and manipulating a prob-ability distribution on V lies in the fact that the sizeof V is exponential in n, and n, in useful applications,will become fairly large. Hence, maintaining a proba-bility distribution on V explicitly by listing the prob-ability of each individual member of V is infeasible.Bayesian networks make use of the fact that in distri-butions arising in practice, typically many conditionalindependencies hold between the variables Xi. A dis-tribution for which this is the case can be representedin an economical way by factorizing it into a num-ber of small dimensional conditional probability distri-butions. Such a compact representation formalism iscomplemented in Bayesian networks by inference algo-rithms that, likewise, attempt to utilize the factorizedstructure of the distribution for speedy calculations(this does not always work, though (Cooper 1990)).Inference here essentially means probability retrieval,i.e. computation of probabilities like P (X2 = true;X11 = false).Semantically, a distribution on V characterizes theattributes X1; : : : ; Xn of an individual object or eventrandomly sampled from some domain. For instance,in a fault diagnosis application, we may have vari-



ables X1 = uneven printout; X2 = toner low; : : : . Aprobability distribution for theseXi then characterizesthe attributes of a randomly observed event from thedomain of printer failures. In a monitoring applica-tion there could be variables like X1 = position; X2 =speed; : : : (where the inherently continuous range ofthese variables usually would be discretized into �-nitely many intervals) describing attributes of one spec-imen from a domain of randomly moving objects.The fact that a standard Bayesian network onlyde�nes a distribution over the �xed and simple spaceV makes it unsuitable for the speci�cation of somemore complex probabilistic models. Speci�cally, it isnot possible to describe relations between several ran-dom objects, or events. In our fault diagnosis exam-ple, such a relation could be r = caused by stand-ing for the fact that one failure was caused by an-other. In the monitoring example, it might be im-portant to also evaluate probabilities for relations liker = c o collision, standing for the fact that two of theobjects are on a course of collision.Building on previous work on \knowledge basedmodel construction" (see e.g. (Wellman, Breese &Goldman 1992)), in (Jaeger 1997) relational Bayes-ian networks were introduced as a way to also modelsuch relations between several random objects.In distributions de�ned by relational Bayesian net-works the probability of some proposition of interest,e.g. 9xc o collision(object1; x), where object1 is some(observed) element from the domain D, will often de-pend on the size of D. The exact domain from whichthe observed random objects have been sampled, how-ever, may be very large and hard to determine exactly.In these situations a natural approach is to use thelimiting values for probabilities as the domain size in-creases as an approximation to the \correct" proba-bility value we wish to infer (Bacchus, Grove, Halpern& Koller 1997). Thus, we are faced with the ques-tion: what is the limiting behavior of the probabilitiesP (�(a)) assigned by a relational Bayesian network toproperty � of observed object a 2 D as a function ofthe size of D? Does a limit exist, and if so, what is it?1.2 Background in �nite model theoryFormally, the question we have arrived at by pursu-ing a problem in reasoning under uncertainty for AIapplications is one familiar from �nite model theory.Here the sub�eld of the study of 0-1 laws is concernedwith the question of the convergence of probabilitiesPn(�) (n!1), where Pn is a probability measure onthe set of relational structures (for some �xed, �nitevocabulary) on a domain of size n, and � is a sentence

in some logic. Of the two parameters that charac-terize this convergence problem { the sequence (Pn)nand the logic needed to express � { the latter one hascommanded the most interest. Following the seminalworks of Fagin (1976) and Glebski�� et al. (1969), moste�orts have gone into studying the convergence prop-erties of Un(�), where Un is the uniform distributionon structures of size n, and � is a sentence in one or theother extension of �rst-order logic (e.g. (Blass, Gure-vich & Kozen 1985, Kolaitis & M.Y.Vardi 1990, Ko-laitis & M.Y.Vardi 1992)).Works that focus on variations of (Pn)n mostly haveconsidered random graphs only (i.e. relational struc-tures with a single binary, symmetric and antire
exiverelation). Here a complete picture has been obtainedfor the convergence of �rst-order andL !1!- propertieswith respect to probability distributions determinedby edge probabilities n�� (� � 0) (Lynch 1997). Aconvergence result for a method of generating ran-dom graphs in which edges between di�erent pairsof vertices are not stochastically independent is pre-sented in (McColm 1996). Finally, the study of con-vergence of conditional probabilities Un(� j  ) (asin (Oberschelp 1982) and (Bacchus et al. 1997)) �tsour general description by taking Pn to be the (non-uniform) measures U n de�ned as being uniform onmodels of  , and vanishing on models of : .On this background, we can view relational Bayes-ian networks as a new class of (sequences of) non-uniform probability measures (Pn)n on structures forarbitrary vocabularies. Study of convergence proper-ties of these sequences, thus, is a natural extension ofprevious work in �nite model theory.2 Relational Bayesian networksIn this section the basic de�nitions for relational Bayes-ian networks, as introduced in (Jaeger 1997), are re-viewed.First, some general notational conventions need tobe introduced. We use r1; r2; : : : to designate relationsymbols. The arity of r is denoted jr j. Tuples ofvariables v1; v2; : : : or constants a1; a2; : : : are denotedby boldface letters a,v, : : : . The length of a tuple vis denoted jv j. We also view a tuple loosely as the setof its components, so that expressions like v 2 v orv � w make sense.When S = fr1; : : : ; rkg (jri j � 1) is a �nite re-lational vocabulary, we denote by Modn(S) the setof all S-structures over domain n = f0; : : : ; n � 1g.Script charactersM are used to denote individual S-structures.2



We use delimiters jg,fj to denote multisets, i.e. setswhose members qi are assigned a multiplicity �i. Spe-ci�c multisets can be represented in the formfjq1 : �1; : : : ; qm : �mjg, or fjqi j i 2 I jg. Through-out this paper the only multisets we will encounterare �nite multisets of probability values qi 2 [0; 1].Given a vocabulary S, it is now our aim to de�ne asequence of probability measures (Pn)n2!, such thatPn is a measure on Modn(S). We follow the Bayesiannetwork paradigm by de�ning measures onModn(S) = Modn(r1)� : : :�Modn(rk)in a piecemeal fashion: �rst the marginal distributionon Modn(r1) is de�ned. Then, for each j = 2; : : : ; k,and all possible interpretations I(r1); : : : ; I(rj�1),I(rj) of r1; : : : ; rj�1; rj in n we de�nePn(I(rj) j I(r1); : : : ; I(rj�1)): (2)In the following, we abbreviate (I(r1); : : : ; I(rj�1)) 2Modn(r1; : : : ; rj�1) by Mj�1. Conditional probabil-ities (2) are de�ned by specifying for each a 2 njrj jthe probability Pn(a 2 I(rj) jMj�1): (3)Once (3) is de�ned, by equating (2) withYa2I(rj)Pn(a 2 I(rj) jMj�1)�Ya62I(rj)(1� Pn(a 2 I(rj) jMj�1)); (4)a distribution on Modn(S) is de�ned.Relational Bayesian networks, now, essentially pro-vide a formal framework for de�ning functional ex-pressions, called probability formulas, that determineconditional probabilities of the form (3).Centerpiece of probability formulas are combinationfunctions. A combination function is any function thatmaps �nite multisets over [0,1] into [0,1]. Importantexamples of combination functions arenoisy-or : n-ofjqi j i 2 I jg := 1�Qi2I (1� qi)maximum : maxfjqi j i 2 I jg := maxfqi j i 2 Igmean : meanfjqi j i 2 I jg := 1jIjPi2I qi:In the following de�nition the term equality con-straint is used to denote a boolean combination ofequality expressions vi = vj .De�nition 2.1 The class of probability formulas overthe relational vocabulary S is inductively de�ned asfollows.

(i) (Constants) Each q 2 [0; 1] is a probability for-mula.(ii) (Indicator functions) For each r 2 S, and everyjr j-tuple v of variables, r(v) is a probability for-mula.(iii) (Convex combinations) When F1; F2; F3 are prob-ability formulas, then so is F1F2 + (1� F1)F3.(iv) (Combination functions) When F1; : : : ; Fk areprobability formulas, comb is any combinationfunction, v,w are tuples of variables, and �(v;w)is an equality constraint, thencombfjF1; : : : ; Fk j w; �(v;w)jgis a probability formula.For a probability formula F (v), a structure M 2Modn(S), and a tuple a 2 njvj it is straightforwardto de�ne a value F (a)[M ] 2 [0; 1] as the interpretationof F (v) inM under the variable assignment v 7! a. Afull inductive de�nition can be found in (Jaeger 1998).Here we only illustrate the general de�nition by anexample.Example 2.2 Let S = fr; sg, with unary r and bi-nary s; letF (v) � n-ofj0:3r(w)s(v; w); 0:6r(v) j w;w 6= vjg:Let M 2 Mod20(S), a = 0. In order to determineF (0)[M ], we �rst generate the list of elements b < 20with M j= b 6= 0, which yields the list 1; : : : ; 19.For each b 2 f1; : : : ; 19g we then recursively evalu-ate 0:3r(0)s(0; w)[b][M ] and 0:6r(0)[b][M ]. Assum-ing that M j= r(0), and M j= s(0; b) ^ r(b) ex-actly for b = 1; : : : ; 10, we obtain the results 0.3 forb = 1; : : : ; 10 and 0 for b = 11; : : : ; 19 in the recursiveevaluation of the �rst subformula, and the result 0.6for each b = 1; : : : ; 19 in the second. The value ofF (0)[M ] then is computed as n-ofj0:3 : 10; 0 : 9; 0:6 :19jg = 1� 0:7100:419.This example illustrates the only non-obvious choicemade in the de�nition of the semantics of F (a)[M ]:subformulas Fi inside probability formulas of the formcombfjF1; : : : ; Fk j w; �(v;w)jg contribute for each bwith �(a; b) a copy of F (a; b)[M ] to the multiset towhich comb then is applied, no matter whether Fi ac-tually contains all the variables w for which the valuesb are substituted. Speci�cally, with the combinationfunctioncount :countfjqi j i 2 I jg := (maxf1; jfi 2 I j qi > 0gjg)�13



that basically counts the number of nonzero elementsin a multiset (and then inverts the result in order tosatisfy the requirement to return values in [0,1]), andthe probability formulaF � countfj1 j w;w = wjgwe get F [M ] = 1=n for everyM 2 Modn(S).The following lemma, whose easy proof is containedin (Jaeger 1997), shows that in a probability formulawe can not only, via indicator functions, access thetruth value inM of atomic sentences, but, via suitableprobability formulas, also the truth value of arbitrary�rst-order formulas.Lemma 2.3 Let �(v) be a �rst-order formula overS. Then there exists a probability formula F�(v) overS that uses max as the only combination function,s.t. for every M 2 Modn(S), and every a 2 njvj:F�(a)[M ] = 1 i� M j= �(a), and F�(a)[M ] = 0 else.We can now summarize:De�nition 2.4 Let S = fr1; : : : ; rkg. A relationalBayesian network N is a set of probability formulasFr1 ; : : : ; Frk , where Frj (v) is a probability formulaover fr1; : : : ; rj�1g with jv j = jrj j. For each n 2 !the network N de�nes a distribution PNn on Modn(S)by equating (2) with (4), and de�ningPNn (a 2 I(rj) jMj�1) := Frj (a)[Mj�1 ]: (5)Example 2.5 (Random graphs) Let r1; r2 be binaryrelation symbols. De�neFr1(v1; v2) :� 1p2 andFr2(v1; v2) :� maxfjr1(v1; v2); r1(v2; v1) j ;; v1 6= v2jg:Then the network N consisting of Fr1 and Fr2 de�nesdistributions PNn on Modn(r1; r2) whose marginal dis-tribution on Modn(r2) is just the uniform measureon symmetric, antire
exive relations r2, i.e. randomgraphs with edge probability 12 . Note that the samedistributions on Modn(r2) could not be obtained usinga single probability formula Fr2 , because then, accord-ing to (4), r2(a1; a2) and r2(a2; a1) (a1; a2 2 n) wouldbe independent, and symmetry could not be enforced.Extending the method indicated by the foregoingexample, one can show that it is possible to de�ne forevery parametric class (cf. (Oberschelp 1982, Ebbing-haus & Flum 1995)) of S-structures a relational Bayes-ian network N for some S0 � S, such that PNn mar-ginalized on S is the uniform distribution on the givenparametric class.

Example 2.6 (Sparse random graphs) For � � 0 de-�necount� : count�fjqi j i 2 I jg := (countfjqi j i 2 I jg)�with count as in example 2.2. With r1; r2; Fr2 as in ex-ample 2.5, and Fr1 :� count�=2fj1 j w;w = wjg we thenobtain that PNn marginalized on Modn(r2) describesrandom graphs with edge probability n��.Example 2.7 (Discrete approximation of Gilbert ran-dom graphs) Gilbert random graphs for the unit circleand threshold � > 0 are generated by the followingprocedure (cf.(McColm 1996)): on the unit circle inthe plane n points are scattered at random (w.r.t. theuniform distribution). Two points are joined by anedge e i� their distance on the circle is < �. Thedistributions Qn induced by this process on Modn(e)can not be modeled exactly by relational Bayesian net-works. However, we can obtain an approximation toQn as follows. We imagine the unit circle to be parti-tioned intom segments of equal length. Let s1; : : : ; smbe unary relation symbols with the intended meaning:si(v) i� point v lies in the i-th segment of the circle.The random distribution of points on the unit circlethen can be approximated by assigning each point toexactly one of the relations si via the probability for-mulasFsi (v) :� (1� s1(v)) � � � (1� si�1(v)) 1m� i+ 1(i = 1; : : : ;m). Also, we need a formula Fe(v1; v2)that models the (deterministic) connection of pointsv1; v2, depending on whether they are assigned to suf-�ciently closely neighbored segments (in a sense thatapproximates the �-threshold). This can easily bedone in a lengthy, but structurally simple (combina-tion function free), probability formula. The resultingmeasure PNn on Modn(s1; : : : ; sm; e), marginalized toModn(e), then approximates the measure Qn.3 ConvergenceIn practical applications of relational Bayesian net-works we will mostly be interested in probabilities ofa form like PNn (r2(a) ^ r11(b)), where a and b rep-resent tuples of observed random objects or events,which are sampled from a domain that, without lossof generality, we can identify with some n 2 !. Thus,the convergence problem of greatest interest to us isthat regarding the convergence of PNn ( (a)), where  is a quanti�er free �rst-order sentence with constants4



a � !. These constants are interpreted deterministi-cally, i.e. they are not subject to random interpreta-tion in the domain: the constant a 2 ! is interpretedby a in structures over a domain n > a. Sentences thatcontain a we do not interpret over domains n � a.It follows from lemma 2.3 that the convergence prob-lem for quanti�er free  (a) already is equivalent to theconvergence problem for arbitrary �rst-order �(a): fora given network N over S, and an S-formula �(v) wecan choose a new relation symbol r� with jr� j = jv j,and de�ne a network N 0 over S [ fr�g by addingto N the probability formula F� for r� as given bylemma 2.3. ThenPN 0n (8v(�(v)$ r�(v))) = 1;and hence for all aPNn (�(a)) = PN 0n (�(a)) = PN 0n (r�(a)):3.1 Proportional extension axiomsProbabilities of the form PNn (r(a)) are essentially givenby the expected size of the interpretation of r in a ran-dom structure Mn. We therefore now introduce thenecessary tools to investigate the behavior of the sizeof interpretations, and, more generally, of types, inrandom structures.We use the following standard terminology: An S-type in the variables v = v0; : : : ; vn is a maximallyconsistent conjunction �(v) of S-literals in the vari-ables v. A type �(v) is called proper if it contains allthe formulas vi 6= vj (vi; vj 2 v; i 6= j). A type �(v; w)extends the type �(v), written � � �, if every conjunctof � is a conjunct of �.To express quantitative properties of random struc-tures, we use a part of an extension of �rst-order logicthat was developed by Bacchus (1990) and Grove etal. (1992) for reasoning about statistical information.De�nition 3.1 Let �(v;w) be a proper type. Theexpression j�(v;w) jw is called a proportion term. Forp 2 [0; 1] and s 2 (0; 1) the expression j �(v;w) jw=(1� s)p is called a proportion equation. We de�nesatisfaction of proportion equations byM 2 Modn(S)and variable assignment v 7! a:M [v=a] j= j�(v;w) jw= (1� s)pi�jfb jM [v=a;w=b] j= �(v;w)gjnjw j 2 [(1� s)p; (1 + s)p]:(6)

Thus, M [v=a] j= j�(v;w) jw= (1� s)p if the pro-portion of tuples b that satisfy �(a; b), among all jw j-tuples, is (approximately) p. We also allow the degen-erate case w = ;. The term on the left hand side of(6) then is interpreted as 1 if M [v=a] j= �(v), andelse as 0.The semantics of proportion equations is extendedcanonically to �rst-order formulas containing propor-tion equations as atomic formulas. In particular thoseof the following form.De�nition 3.2 Let �(v) � �(v;w) be proper types.Let p 2 [0; 1]; s 2 (0; 1). The formulapea(�; �;p; s) :=8v(�(v)!j�(v;w) jw= (1� s)p) (7)is called a proportional extension axiom. The pair(�(v); �(v;w)) alone is called a proportional extensionaxiom schema.Our plan, now, is to identify a certain subclass ofrelational Bayesian networks N , so that the followingholds for (PNn )n: for every pair �(v) � �(v;w) ofproper types there exists p 2 [0; 1], so that for everys 2 (0; 1)PNn (pea(�; �; p; s))! 1 (n!1): (8)3.2 Convergence resultsWe use an inductive approach to prove that (8) holdswhenever N only contains probability formulas thatsatisfy certain conditions. In every induction step weassume that (8) holds for fr1; : : : ; ri�1g-types �; �.Then admissible probability formulas Fri(v) are lim-ited to those for which Fri(an)[Mn] converges (suf-�ciently fast), given that (Mn)n is a sequence thatsatis�es certain proportional extension axioms. Fromthe convergence of Fri(an)[Mn] we then derive thenew extension axioms for fr1; : : : ; rig-types �; �.We will need the following standard concepts relat-ing to rates of convergence: when (an)n2! and (bn)n2!are sequences of real numbers, we write an = o(bn)i� limn!1 j an=bn j= 0. Of particular interest tous is the case where an = p + o(cn) for some p andc 2 (0; 1), i.e. when (an)n converges exponentiallyfast to p. Throughout we assume c in the expressiono(cn) to be instantiated by some c 2 (0; 1) that isappropriately chosen in the given context. In otherwords, the statement an = p + o(cn), without fur-ther quali�cations, means \there exists c 2 (0; 1) s.t.an = p+ o(cn)", or more loosely, \(an) converges ex-ponentially fast to p".5



The class of relational Bayesian networks for whichwe will obtain convergence results is characterized bya restriction on the combination functions that maybe used in these networks. The following de�nitionscharacterize these admissible combination functions.De�nition 3.3 Let k 2 !, and for j = 1; : : : ; k letpj ; qj 2 [0; 1]; lj 2 ! n 0, mj 2 !. A sequence An =fjpn;i j i 2 Injg (n 2 !) of �nite multisets is calledconvergence testing (with parameters (pj ; qj ; lj ;mj)j)i� there exist e 2 (0; 1), and a sequence sn ! 0 suchthat for each n(i) For all i 2 In: pn;i 2 [kj=1[pj � en; pj + en].(ii) For j = 1; : : : ; k : j fi j pn;i 2 [pj � en; pj + en]g j2 [(1� sn)qjnlj +mj ; (1 + sn)qjnlj +mj ]:Roughly speaking, (An)n is convergence testing, ifthe An contain polynomially growing numbers of ele-ments that are clustered in intervals around the pj ofexponentially decreasing length.De�nition 3.4 A combination function comb is calledexponentially convergent i� for every set of parameters(pj ; qj ; lj ;mj)j=1;::: ;k there exists r 2 [0; 1], so that forevery sequence (An)n of multisets that is convergencetesting with parameters (pj ; qj ; lj ;mj)j , we have thatcombAn = r + o(cn): (9)Lemma 3.5 maximum and noisy-or are exponentiallyconvergent.Proof: The statement for maximum is obvious. Toprove the statement for noisy-or, let (An)n be a con-vergent testing sequence of multisets. It is su�cient toconsider the case where k = 1, i.e. (An)n has param-eters (p; q; l;m), because after proving the lemma forthis case, the general result follows from the fact thatexponential convergence is preserved under productsof k factors.If q = 0, then the number of elements in An isconstant, and the result follows again from the factthat a product of a constant number of exponentiallyconvergent factors is exponentially convergent.Assume, then, that q > 0. If p > 0 we getn-oAn � 1� (1� p+ en)(1�sn)qnl = 1� o(cn);because (1� p+ en)(1�sn)q < d for some d < 1 and allsu�ciently large n.When p = 0, we haven-oAn � 1� (1� en)(1+sn)qnl :

To conclude the proof, it is therefore su�cient to showthat for e 2 (0; 1), l 2 ! n 0(1� en)nl = 1� o(cn): (10)To prove (10), we write its left hand side asnlXi=0(�1)i�nli �ein = 1� nlen + : : :+ (�1)nlennl :(11)Since � nli+1�e(i+1)n�nli �ein = nl � ii+ 1 en < 1for i = 1; : : : ; nl when n is su�ciently large, we �ndthat the absolute values of the terms in (11) are mono-tonically decreasing in i, for all n greater than somen0. Hence, for all such n1 � (1� en)nl � 1� nlnlen = 1� o(cn): 2The other combination functions we have met {mean and count { clearly are not exponentially con-vergent.The following theorem constitutes the �rst impor-tant part of our convergence results. It links the con-vergence of F (an)[Mn] to exponential convergence ofcombination functions and the validity in Mn of pro-portional extension axioms. The theorem also con-tains an assertion about computability. Here and inthe following we tacitly assume that statements aboutcomputability are quali�ed by the obvious conditions,like that probability formulas do not contain any non-recursive reals; the values of combination functions arecomputable for arguments provided in a suitable �niterepresentation, and limits r in (9) are computable fromthe parameters (pj ; qj ; lj ;mj).Theorem 3.6 Let F (v) be a probability formula thatonly contains exponentially convergent combinationfunctions. There exists a �nite setAx := f(�i(vi); �i(vi;wi)) j 1 � i �Mgof proportional extension axiom schemas such that forall sequences of setsAx(q; sn) := fpea(�i; �i; qi; sn) j 1 � i �Mg (n 2 !);of proportional extension axioms obtained by instan-tiating the schemas in Ax with parameters qi 2 [0; 1],6



sn 2 (0; 1) with sn ! 0, and for every S-type �(v),there exists p 2 [0; 1], such that the following holds:whenever for each n 2 ! we haveMn 2 Modn(S) andan 2 njv j withMn j= Ax(q; sn) ^ �(an);then F (an)[Mn] = p+ o(cn): (12)Given F we can e�ectively determine Ax. Given Axand q we can compute p.Proof: The idea of the proof can be summarizedvery brie
y: We simply enforce with the axioms inAx(q; sn) that the combination functions contained inF are applied to convergence testing sequences of mul-tisets. By the assumption that the combination func-tions are exponentially convergent, this forces the con-vergence of F (an)[Mn].For a formal proof, we proceed by induction on thestructure of F . The case F � q is trivial. Suppose,next, that F (v) � r(v). Let Mn 2 Modn(S), andan 2 njvj with Mn j= �(an). If �(an) j= r(an) thenF (an)[Mn] = 1; if �(an) j= :r(an) then F (an)[Mn] =0. Hence, the theorem holds with Ax = ;, and the ap-propriate p 2 f0; 1g.In the case F � F1F2 + (1 � F1)F3 the result fol-lows from the fact that exponential convergence is pre-served under sums and products.We now turn to the caseF � combfjfF1(v;w); : : : ; FL(v;w) j w; �(v;w)jgwith comb an exponentially convergent combinationfunction. For j = 1; : : : ; L letAxj = f(�ji; �ji) j 1 � i �Mjgbe the sets of proportional extension axiom schemasas given by the induction hypothesis that the theoremholds for the Fj . We now proceed as follows: we de�nea new set Ax of proportional extension axiom schemas,such that for all instantiations Ax(q; sn) of Ax, and all(Mn)n, (an)n as in the theorem, we have that(An(Mn;an))n2! (13)withAn(Mn;an) := fjF1(an; b)[Mn]; : : : ;Fl(an; b)[Mn] j b;Mn j= �(an; b)jgis a convergence testing sequence of multisets. Then(12) immediately follows from (9). The new set Ax will

consist of the union of the Axj and some new schemasAxnew. The old Axj will ensure condition (i) of def-inition 3.3, whereas Axnew will provide for condition(ii).Let �(v) be some given S-type. We determine aset Axnew(�) such that (13) is a convergence testingsequence of multisets whenMn j= ^jAxj(qj ; sn) ^ Axnew(�)(q; sn) ^ �(an)for some qj ; q; sn. The set Axnew then will just be theunion of the Axnew(�) over all S-types � for v.First, consider the case that �(v) j= :�(v;w). Inthat case An(Mn;an) = ; whenever Mn j= �(an).We can de�ne Axnew(�) = ;, and obtain (12) withp = comb ;.Assume, then, that �(v) 6j= :�(v;w). Let �1(v;w);: : : ; �K(v;w) be the S-types for (v;w) that extend�(v) and are consistent with �(v;w). By inductionhypothesis, for each 1 � h � K, each 1 � j � L, andeach sequence (Mn; (an; bn))n withMn j= Axj(qj ; sn) ^ �h(an; bn)we have thatFj(an; bn)[Mn] = pjh + o(cn) (14)for some pjh 2 [0; 1]. Thus, we see that according tothe induction hypothesis the An(Mn;an), satisfy con-dition (i) of de�nition 3.3. In order to make sure thatthe An(Mn;an) also satisfy condition (ii), we enforcevia instantiations of suitable proportional extensionaxiom schemas thatjfbn jMn j= �h(anbn)gj2 [(1� sn)qnl +m; (1 + sn)qnl +m] (15)for some parameters l;m; q; sn. This, of course, isessentially what we can stipulate directly by a pro-portional extension axiom. There is a small technicalproblem that we need to deal with, though: propor-tional extension axioms (axiom schemas) only werede�ned for proper types. Here we can assume neitherfor � nor for �h that it is a proper type.Particularly, there is the degenerate case to be ac-counted for where for each w 2 w there exists v 2 vwith �h j= w = v. In that case the left hand side of(15) equals 1 for allMn and all an withMn j= �(an).With q = 0, m = 1 then (15) is satis�ed.Next, consider the case where �h j= ^v2vw 6= v forat least one w 2 w. Without loss of generality, assumethat this is the case exactly for h = 1; : : : ;K 0 (K 0 <K). We then de�ne the \proper parts" ~�(~v); ~�h(~v; ~w)7



of �; �h as follows: �rst, ~� (~v) is chosen as the restric-tion of �(v) to a maximal subset ~v � v of variablessuch that � j= v 6= v0 for all v; v0 2 ~v. Subsequently,~�h(~v; ~w) is chosen as the restriction of �(v;w) to amaximal subset ~v [ ~w � v[w such that �h j= u 6= u0for all u; u0 2 ~v [ ~w. Now de�neAxnew(�) := f(~� (~v); ~�h(~v; ~w)) j h = 1; : : : ;K 0g: (16)It now follows directly from the de�nitions that when-ever Mn j= pea(~� ; ~�h; q; sn) for some q, we have that(15) is satis�ed with parameters q; l = j ~w j;m = 0.To conclude the proof, it only remains to note thatwhen pjh = pj0h0 for two (or more) pairs of indices 1 �j; j0 � L, 1 � h; h0 � K, the total number of elementsin the interval pjh+o(cn) is bounded by (1�sn)qnl+m+(1�s0n)q0nl0+m0 (or longer sums of similar terms),which, in turn, can be bounded by expressions (1 �s�n)q�nl� +m� for suitable parameters l�;m�; q�; s�n.2To prepare the proof of our main theorem, we �rstformulate a special version in a family of theoremsthat are collectively known as Cherno� bounds (see(Hagerup & R�ub 1990) for a useful overview).Theorem 3.7 Let p; q > 0, sn > 0 (n 2 !) withsn ! 0. For each n 2 ! letk(n) 2 [(1� sn)qn; (1 + sn)qn];and let Xn1 ; : : : ; Xnk(n)be 0,1-valued, mutually independent random variableswith P (Xni = 1) 2 [p� an; p+ an]for some an 2 [0; 1] (i = 1; : : : ; k(n);n 2 !). LetSn :=Pk(n)i=1 Xni .If p > 0 and an = o(1), or if p = 0 and an = o(cn),then for all e 2 (0; 1)P (jSn � qnp j > eqnp) = o(cn): (17)Proof: It is clearly su�cient to prove the theorem forthe case k(n) = n, i.e. q = 1, sn = 0. Also, we canassume that the sequence an is decreasing in n. Lete 2 (0; 1) be �xed.First consider the case p > 0. For n 2 ! de�nepn := 1n nXi=1 P (Xni = 1):

Then pn 2 [p�an; p+an]. From a version of Cherno�'stheorem given in (Hagerup & R�ub 1990), we get thatfor every e0 > 0P (jSn � npn j > e0npn) = o(cn): (18)There exists n0 2 ! such that for all m � n0j pm � p j< 12ep: (19)Since p > 0, then e0 := 12e pp+an0 2 (0; 1), and weobtain for all m � n0:j Sm �mp j>emp)j Sm �mpm j > emp� 12emp= 12emp= e0m(p+ an0)� e0mpm:Hence (18) implies (17).In the case p = 0 the left hand side of (17) becomesP (Sn > 0). Under the assumption that an = o(cn),we obtainP (Sn > 0) � 1� (1� an)n = o(cn)as in the proof of lemma 3.5 2We are now ready to formulate and prove the maintechnical result.Theorem 3.8 Let N be a relational Bayesian net-work for S that only contains exponentially conver-gent combination functions. Let �(v) � �(v;w) beproper S-types. Then there exists p 2 [0; 1] such thatfor all s 2 (0; 1)PNn (pea(�; �; p; s))! 1 (n!1): (20)Given N; � , and � we can compute p.Proof: First we observe that it is su�cient to provethe theorem for the special case jw j = 1. To see whythis is the case, consider types �(v) � �1(v; w1) ��2(v; w1; w2). Let s be given, and assume that p1; p2are such that (20) holds for pea(�; �1; p1; s) andpea(�1; �2; p2; s). WithPNn (pea(�; �1; p1; s) ^ pea(�1; �2; p2; s)) �1 �(1� PNn (pea(�; �1; p1; s)))�(1� PNn (pea(�1; �2; p2; s)))and j= pea(�; �1; p1; s) ^ pea(�1; �2; p2; s)!pea(�; �2; p1p2; 2s)8



it follows that (20) holds for pea(�; �2; p1p2; 2s). Theargument obviously can be extended for jw j > 2.We now prove the theorem for �(v); �(v; w) by in-duction on the size of S. As the base case, take S = ;.Then Modn(S) contains the single structure n; N isthe empty network, and PNn (n) = 1. The proper S-types � and � are�(v) �^ vi 6= vj ; �(v; w) �^ vi 6= vj ^^ vi 6= w;where the conjunctions range over all pairs of distinctvariables. Then,n j= pea(�; �; 1; jv j=n) (21)for all n, and therefore PNn (pea(�; �; 1; s)) ! 1 for alls > 0.Now, let Nk be a relational Bayesian network forSk = fr1; : : : ; rkg, and assume that the theorem holdsfor all networks for Sk�1 = fr1; : : : ; rk�1g. In partic-ular, it holds for the network Nk�1 obtained from Nkby removing the probability formula Frk for rk. Forthe record, we note that, naturally, the marginal dis-tribution of PNkn on Modn(Sk�1) is just PNk�1n .We partition �(v) and �(v; w) into two, respectivelyfour, conjuncts:�(v) � �Sk�1(v) ^ �rk (v)�(v; w) � �Sk�1(v) ^ �rk (v)^�Sk�1;w(v; w) ^ �rk;w(v; w)where �Sk�1 contains all conjuncts of � that are Sk�1-literals (including the (in-)equality formulas), �rk con-tains all rk-literals of � , �Sk�1;w contains all Sk�1-literals of � that contain the variable w, and �rk;wcontains all rk-literals of � containing w. We also usethe following abbreviations:�Sk�1(v; w) :� �Sk�1(v) ^ �Sk�1;w(v; w)�w(v; w) :� �Sk�1;w(v; w) ^ �rk;w(v; w):We prove the theorem by showing thatPNkn (pea(�Sk�1 ; �w; p; s))! 1 (22)for some p. This then proves PNkn (pea(~� ; ~�; p; s)) !1 for every Sk-type ~� for v that is consistent with�Sk�1(v), and the corresponding extension ~� by �w,including, of course, the original �; � we started outwith.By our induction hypothesis there exists q 2 [0; 1]and a sequence (sn)n � [0; 1] with sn ! 0, s.t.PNk�1n (pea(�Sk�1 ; �Sk�1 ; q; sn))! 1 (23)

If q = 0 then (22) holds with p = 0, and we are done.Suppose, then, that q > 0. Consider some �xedMn 2 Modn(Sk�1) and a 2 njvj withMn j= pea(�Sk�1 ; �Sk�1 ; q; sn) ^ �Sk�1(a):Then j fb jMn j=�Sk�1;w(a; b)g j2 [(1� sn)qn; (1 + sn)qn]: (24)Consider a given b 2 n with Mn j= �Sk�1;w(a; b).The literals in �rk;w(a; b) are of the form rk(c) and:rk(c) where c varies over all tuples of length jrk jwith elements from a and b that contain b at leastonce. Denote by C+ the set of all such c that appear ina positive literal r(c), and by C� those c that appearin a literal :r(c). Then, by de�nition,PNkn (�rk ;w(a; b) jMn) =Yc2C+ Frk (c)[Mn] Yc2C�(1� Frk (c)[Mn]): (25)On the left hand side of (25) we viewMn as a subset ofModn(Sk): the set of all Sk-structurese whose Sk�1-reduct is Mn.Since the c all contain at least one b, for b 6= b0the events �rk ;w(a; b) and �rk;w(a; b0) are condition-ally independent, givenMn.Next, we will show that the probability (25) is closeto a constant value q0 that is independent of the par-ticular choice of Mn;an, and b. Then, using, theindependence of the �rk;w(a; b), we obtain that withhigh probability the number of elements b, that satisfy�w(a; b) is very near qq0n.With the assumptions made so far we cannot yetbound the probability (25). In order to do this withthe aid of theorem 3.6, we need to exploit our induc-tion hypothesis some more.Let Ax be the set of M proportional extension ax-iom schemas as given by theorem 3.6 for Frk . Byour induction hypothesis, there exist parameters q =(q1; : : : ; qM ) withPNk�1n (Ax(q; sn))! 1 (26)(for convenience we may here assume the same se-quence (sn)n as appears in (23)).Now consider a factor Frk (c)[Mn] in (25). By the-orem 3.6 we haveFrk (c)[Mn] = ~q + o(cn) (27)for Mn j= Ax(q; sn), with ~q only depending on theSk�1-type of c. When in (25) we vary n, Mn, a,9



and b, only requiring that Mn j= �Sk�1(a; b), then ineach case the right hand side of (25) contains the samenumber of factors Frk (c)[Mn] and (1 � Frk (c)[Mn])for each possible Sk�1-type of c. Hence, from (27) itfollows that for suchMn;a; b with Mn j= Ax(q; sn)PNkn (�rk;w(a; b) jMn) = q0 + o(cn) (28)for some q0 2 [0; 1].Now let s > 0 be given. For this s and p = qq0 wewant to prove (22). LetMn j= pea(�Sk�1 ; �Sk�1 ; q; sn) ^ Ax(q; sn) ^ �Sk�1(a):From the independence of the events �rk ;w(a; b) fordi�erent b, applying theorem 3.7, we obtainPNkn (j �rk ;w(a; w) jw= (1� s)q0q jMn) = 1� o(cn)Then, for everyMn j= pea(�Sk�1 ; �Sk�1 ; q; sn) ^ Ax(q; sn)we getPNkn (8v(�Sk�1 (v)!j �rk;w(v; w) jw= (1� s)qq0) jMn)= PNkn ( \a2njvjMnj=�Sk�1(a)j �rk;w(a; w) jw= (1� s)qq0) jMn)� 1� njvj � o(cn)= 1� o(cn);Finally, with (23) and (26) we obtain (22).At �rst glance it may appear as though we hadproved not only the convergence stated in (8), buteven exponential convergence. This is not the case,however, because the claim to exponential convergencegets lost when for (23) and (26) we translate conver-gence for every s 2 (0; 1) into convergence for somesequence sn ! 0.The proof of (8) gives rise to a recursive procedurefor the computation of p: we have p = qq0 with q de-termined by (23), and q0 determined by several factors~q as provided by (27). The computation of q is accom-plished by recursion that is grounded on the case of;-types solved by (21). The computation of ~q is ac-complished by computing the parameters q in (26) byfurther recursive calls, and by using theorem 3.6 tocompute ~q from Ax and q. 2With theorem 3.8 it now is not di�cult to provethe following result.

Theorem 3.9 Let N be a relational Bayesian net-work that only contains exponentially convergent com-bination functions. Let �(v) be a �rst-order formula,and a � !. Then there exists p 2 [0; 1], s.t.PNn (�(a))! p (n!1):Proof: According to our observations at the begin-ning of this section, we may con�ne ourselves to thecase �(v) = r(v) for some r 2 S. Since r(v) is equiva-lent to a �nite disjunction of mutually exclusive propertypes, it furthermore is su�cient to consider the case�(v) = �(v) for some proper type � .Let Kn = n(n� 1) � � � (n� jv j+ 1):We partition Modn(S) into subsetsM1; : : : ;MKnsuch thatM 2Mj , jfa0 jM j= �(a0)gj = j:ThenPNn (�(a)) = KnXj=1 PNn (�(a) jMj)PNn (Mj): (29)Using that PNn (�(a) j Mj) = PNn (�(a0) j Mj) for alltuples a;a0 of distinct elements, it follows thatPNn (�(a) jMj) = jKn : (30)By theorem 3.8 there exists p 2 [0; 1] such that for alls > 0PNn (fMj j jnjvj 2 [(1� s)p; (1 + s)p]g)! 1:Since njv j=Kn ! 1 for n!1, this means that alsoPNn (fMj j jKn 2 [(1� s)p; (1 + s)p]g)! 1:This, together with (29) and (30) then shows thatPNn (�(a))! p: 2Theorem 3.9 contains several previous convergenceresults as special cases. First, it is obviously possibleto de�ne the uniform distribution Un on Modn(S) by acombination function free relational Bayesian network10



(with Fri = 1=2 for all ri 2 S). Hence, theorem 3.9is applicable and yields the original 0-1-law for �rst-order logic in the form proved by Glebski�� et al. (1969)(i.e. for a language with constants).The networks de�ning uniform distributions onparametric classes, which were mentioned in the re-mark following example 2.5, only use the combinationfunction max. Hence, theorem 3.9 again is applicable,and we gain the conditional convergence laws for para-metric conditions, as originally shown by Oberschelp(1982).Convergence laws for sparse random graphs, on theother hand, do not follow from our result, becausecount� is not exponentially convergent. For complete-ness' sake, we also mention that convergence holds,again, for the approximation to Gilbert random graphsdescribed in example 2.7.When we apply theorem 3.8 to the network de�n-ing the uniform distributions Un, we will get (20) withp > 0 for all types �; � (more precisely, we will obtainthat p is 1=m with m the number of possible exten-sions of � for w). Thus, theorem 3.8 implies the orig-inal result by Fagin (1976) that every extension ax-iom is satis�ed by almost all structures. Kolaitis andVardi (1990) strengthened this to the statement thatthe number of elements that realize a given type ex-tension, almost surely, is at least pn. This statement,in turn, is strengthened by theorem 3.8 by showinglinear growth of the number of realizing tuples.From the AI point of view, theorem 3.9 is not com-pletely satisfying: in practical applications of rela-tional Bayesian networks we will almost always be in-terested in conditional probabilities PNn (�(a) j  (a)),rather than unconditional ones. It is well known thateven in the special case where PNn = Un, and �;  are �rst-order sentences, the conditional probabilityUn(� j  ) need not converge (Fagin 1976). Fortu-nately, this negative result does not a�ect us as muchas it does classical �nite model theory. There the focusis on languages without constants, whose probabilitiesthen can only converge to either 0 or 1. For condi-tional probabilities Un(� j  ) of interest (i.e. with being some non-trivial condition) it then will bethe case that Un( ) ! 0, which is a necessary con-dition for the non-convergence of Un(� j  ). Theconditioning events  (a) interesting for practical ap-plications, in contrast, may very well have a positivelimiting probability, in which case the convergence ofPNn (�(a) j  (a)) is ensured. As a matter of fact, onemay argue that in cases where  (a) represents someobserved evidence (which is the standard case), thepositivity of limnPNn ( (a)) is a necessary condition

for the limiting behavior of PNn (�(a) j  (a)) to carrymeaningful information, since otherwise we would de-rive our inferences in a model that tells us that theobserved evidence was a virtual impossibility { whichshould cast some doubt on the adequacy of our prob-abilistic model for the situation at hand in the �rstplace.In a companion paper (Jaeger 1998) it is shown thatrelational Bayesian networks (again under suitable re-strictions imposed on the combination functions) alsode�ne a distribution PN! on Mod!(S), the set of S-structures over !. It is shown that in analogy to re-sults in classical �nite model theory there exists anisomorphism class M � Mod!(S) with PN! (M) = 1.The class M is axiomatized by a set of non-standardextension axioms that for pairs �(v) � �(v;w) oftypes either say that there exist in�nitely many tu-ples realizing the extension, or that there are no re-alizations of the extension. When a network N onlycontains combination functions that are exponentiallyconvergent, and are suitable for de�ning PN! (this in-cludes max and noisy-or), then we furthermore getlimn!1PNn (�(a)) = PN! (�(a)).4 ConclusionRelational Bayesian networks are a method for de�n-ing probability distributions on �nite relational struc-tures. We here have shown that for a subclass of rela-tional Bayesian networks, characterized by a conditionon the convergence properties of admissible combina-tion functions, the distributions de�ned are asymptot-ically convergent.The condition of exponential convergence we hereimposed on combination functions certainly is very re-strictive, even though it is satis�ed by noisy-or, whichis the combination function most frequently used inpractical applications. In theorem 3.8 we have estab-lished a very strong su�cient condition for the conver-gence of PNn (�(a)) for �rst-order �. This condition isby no means a necessary one, and one might hope toobtain alternative convergence results via completelydi�erent arguments, and for classes of relational Bayes-ian networks characterized by conditions quite di�er-ent from the ones introduced here. Counterexamplesin (Shelah & Spencer 1988), in conjunction with ex-ample 2.6, however, caution us that even with quitesimple relational Bayesian networks we can producenon-convergent probability measures.From a �nite model-theory perspective, anotherinteresting issue is whether theorem 3.9 can be ex-tended to non �rst-order properties �(a). Seeing11
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