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Abstract

Relational Bayesian networks are an extension of the
method of probabilistic model construction by Bayes-
ian networks. They define probability distributions on
finite relational structures by conditioning the prob-
ability of a ground atom r(a1,...,a,) on first-order
properties of ay,...,a, that have been established by
previous random decisions. In this paper we investi-
gate from a finite model theory perspective the con-
vergence properties of the distributions defined in this
manner. A subclass of relational Bayesian networks
is identified that define distributions with convergence
laws for first-order properties.

1 Introduction

Relational Bayesian networks are a framework for de-
fining probability distributions on relational struc-
tures, and for effectively computing answers to
probability-queries (Jaeger 1997, Jaeger 1998).

The original motivation for relational Bayesian net-
works derives from an artificial intelligence (AI) back-
ground, but theoretical investigations into this frame-
work soon lead to questions about convergence of prob-
abilities that also are interesting from a finite model
theory perspective. In this paper we will analyze the
convergence properties of distributions defined by re-
lational Bayesian networks using techniques adapted
from finite model theory. The results we obtain, in
turn, contribute to finite model theory convergence
results for a new class of distributions, as well as a
new perspective on certain already known convergence
laws.

1.1 Background in artificial intelligence

Reasoning with probabilistic information is one of the
core problems in artificial intelligence. What is desired
are formal representation and inference systems for
probabilistic information that are expressive, have a

well-defined (and understandable) semantics, and are
computationally tractable. Favoring the last two of
these factors in the inevitable tradeoff, Bayesian net-
works (Pearl 1988) have emerged as the method of
choice for the specification of probability distributions
in applications such as fault diagnosis and monitoring.

Bayesian networks can be used to define a probabil-
ity distribution on a finite probability space consisting
of the possible values for a set of finite-range random
variables. Thus, if Xq,..., X, are random variables,
V; is the finite range of possible values of X;, this prob-
ability space is

V=Vx--xV,. (1)

In principle (and in many applications: in practice)
we can restrict ourselves to the case where the X; are
propositional variables, i.e. V; = {true,false} for all i.

The problem with defining and manipulating a prob-
ability distribution on V lies in the fact that the size
of V is exponential in n, and n, in useful applications,
will become fairly large. Hence, maintaining a proba-
bility distribution on V' explicitly by listing the prob-
ability of each individual member of V is infeasible.
Bayesian networks make use of the fact that in distri-
butions arising in practice, typically many conditional
independencies hold between the variables X;. A dis-
tribution for which this is the case can be represented
in an economical way by factorizing it into a num-
ber of small dimensional conditional probability distri-
butions. Such a compact representation formalism is
complemented in Bayesian networks by inference algo-
rithms that, likewise, attempt to utilize the factorized
structure of the distribution for speedy calculations
(this does not always work, though (Cooper 1990)).
Inference here essentially means probability retrieval,
i.e. computation of probabilities like P(Xy = true,
X11 = false).

Semantically, a distribution on V characterizes the
attributes Xy,... , X, of an individual object or event
randomly sampled from some domain. For instance,
in a fault diagnosis application, we may have vari-



ables X; = uneven_printout, Xo = toner_low,.... A
probability distribution for these X; then characterizes
the attributes of a randomly observed event from the
domain of printer failures. In a monitoring applica-
tion there could be variables like X; = position, Xo =
speed, ... (where the inherently continuous range of
these variables usually would be discretized into fi-
nitely many intervals) describing attributes of one spec-
imen from a domain of randomly moving objects.

The fact that a standard Bayesian network only
defines a distribution over the fixed and simple space
V' makes it unsuitable for the specification of some
more complex probabilistic models. Specifically, it is
not possible to describe relations between several ran-
dom objects, or events. In our fault diagnosis exam-
ple, such a relation could be r = caused_by stand-
ing for the fact that one failure was caused by an-
other. In the monitoring example, it might be im-
portant to also evaluate probabilities for relations like
r = c_o_collision, standing for the fact that two of the
objects are on a course of collision.

Building on previous work on “knowledge based
model construction” (see e.g. (Wellman, Breese &
Goldman 1992)), in (Jaeger 1997) relational Bayes-
ian networks were introduced as a way to also model
such relations between several random objects.

In distributions defined by relational Bayesian net-
works the probability of some proposition of interest,
e.g. Jxc_o_collision(objectl, z), where object! is some
(observed) element from the domain D, will often de-
pend on the size of D. The exact domain from which
the observed random objects have been sampled, how-
ever, may be very large and hard to determine exactly.
In these situations a natural approach is to use the
limiting values for probabilities as the domain size in-
creases as an approximation to the “correct” proba-
bility value we wish to infer (Bacchus, Grove, Halpern
& Koller 1997). Thus, we are faced with the ques-
tion: what is the limiting behavior of the probabilities
P(¢(a)) assigned by a relational Bayesian network to
property ¢ of observed object a € D as a function of
the size of D? Does a limit exist, and if so, what is it?

1.2 Background in finite model theory

Formally, the question we have arrived at by pursu-
ing a problem in reasoning under uncertainty for Al
applications is one familiar from finite model theory.
Here the subfield of the study of 0-1 laws is concerned
with the question of the convergence of probabilities
P, (¢) (n — o0), where P, is a probability measure on
the set of relational structures (for some fixed, finite
vocabulary) on a domain of size n, and ¢ is a sentence

in some logic. Of the two parameters that charac-
terize this convergence problem — the sequence (P,),
and the logic needed to express ¢ the latter one has
commanded the most interest. Following the seminal
works of Fagin (1976) and Glebskii et al. (1969), most
efforts have gone into studying the convergence prop-
erties of U,(¢), where U, is the uniform distribution
on structures of size n, and ¢ is a sentence in one or the
other extension of first-order logic (e.g. (Blass, Gure-
vich & Kozen 1985, Kolaitis & M.Y.Vardi 1990, Ko-
laitis & M.Y.Vardi 1992)).

Works that focus on variations of (P,), mostly have
considered random graphs only (i.e. relational struc-
tures with a single binary, symmetric and antireflexive
relation). Here a complete picture has been obtained
for the convergence of first-order and £%_ - properties
with respect to probability distributions determined
by edge probabilities n=™* (a > 0) (Lynch 1997). A
convergence result for a method of generating ran-
dom graphs in which edges between different pairs
of vertices are not stochastically independent is pre-
sented in (McColm 1996). Finally, the study of con-
vergence of conditional probabilities U, (¢ | ¢) (as
in (Oberschelp 1982) and (Bacchus et al. 1997)) fits
our general description by taking P, to be the (non-
uniform) measures UY defined as being uniform on
models of 1, and vanishing on models of —).

On this background, we can view relational Bayes-
ian networks as a new class of (sequences of) non-
uniform probability measures (P, ), on structures for
arbitrary vocabularies. Study of convergence proper-
ties of these sequences, thus, is a natural extension of
previous work in finite model theory.

2 Relational Bayesian networks

In this section the basic definitions for relational Bayes-
ian networks, as introduced in (Jaeger 1997), are re-
viewed.

First, some general notational conventions need to
be introduced. We use rq,79,... to designate relation
symbols. The arity of r is denoted |r|. Tuples of
variables v, vs, ... or constants a, as, ... are denoted
by boldface letters a,v, ... . The length of a tuple v
is denoted |v|. We also view a tuple loosely as the set
of its components, so that expressions like v € v or
v C w make sense.

When S = {ry,...,r} (|ri] > 1) is a finite re-
lational vocabulary, we denote by Mod,(S) the set
of all S-structures over domain n = {0,...,n — 1}.
Script characters . are used to denote individual S-
structures.



We use delimiters },{ to denote multisets, i.e. sets
whose members ¢; are assigned a multiplicity A;. Spe-
cific multisets can be represented in the form
{or + A5 5qm 2 Aml, or {g; | i@ € I}. Through-
out this paper the only multisets we will encounter
are finite multisets of probability values ¢; € [0, 1].

Given a vocabulary S, it is now our aim to define a
sequence of probability measures (P,)new, such that
P, is a measure on Mod, (S). We follow the Bayesian
network paradigm by defining measures on

Mod,(S) = Mod,,(r1) X ... x Mod,(r)

in a piecemeal fashion: first the marginal distribution
on Mod,(r1) is defined. Then, for each j = 2,... |k,

and all possible interpretations I(r1),...,I(r;j_1),
I(rj) of ri,...,rj_1,r; in n we define
Po(I(rj) [ 1(r1), ... I(rj-1)). (2)

In the following, we abbreviate (I(r1),... ,I(r;_1)) €
Mody(r1,... ,7j—1) by #;—1. Conditional probabil-
ities (2) are defined by specifying for each a € nl"s!

the probability
Po(a € I(rj) | Aj-1). (3)
Once (3) is defined, by equating (2) with

II Pulaciey)| .4 1)

a€l(r;)

II O-Piaci()|#-1).
adl(r;)

a distribution on Mod,,(S) is defined.

Relational Bayesian networks, now, essentially pro-
vide a formal framework for defining functional ex-
pressions, called probability formulas, that determine
conditional probabilities of the form (3).

Centerpiece of probability formulas are combination
functions. A combination function is any function that
maps finite multisets over [0,1] into [0,1]. Important
examples of combination functions are

noisy-or:  mn-o{q; | i € I} =1 [Lie,(1—q)
mazimum : maz{q; | i € I} = maz{q; | i€ I}
mean : mean{q; | i € I} = ﬁ Yicr i

In the following definition the term equality con-
straint is used to denote a boolean combination of
equality expressions v; = v;.

Definition 2.1 The class of probability formulas over
the relational vocabulary S is inductively defined as
follows.

(i) (Constants) Each ¢ € [0,1] is a probability for-
mula.

(ii) (Indicator functions) For each r € S, and every
| r |-tuple v of variables, r(v) is a probability for-
mula.

(iii) (Convex combinations) When F, Fy, F3 are prob-
ability formulas, then so is Fy Fy + (1 — F})F3.

(iv) (Combination functions) When Fy,..., F} are
probability formulas, comb is any combination
function, v,w are tuples of variables, and e(v, w)
is an equality constraint, then

comb{F,...,F | w;e(v,w)}

is a probability formula.

For a probability formula F'(v), a structure .# €
Mod,,(S), and a tuple a € n!?! it is straightforward
to define a value F'(a)[.#] € [0, 1] as the interpretation
of F(v) in .# under the variable assignment v — a. A
full inductive definition can be found in (Jaeger 1998).
Here we only illustrate the general definition by an
example.

Example 2.2 Let S = {r,s}, with unary r and bi-
nary s; let

F(v) = n-0{0.3r(w)s(v,w),0.6r(v) | w;w # v}.

Let .# € Modyo(S), a = 0. In order to determine
F(0)[#], we first generate the list of elements b < 20
with .# = b # 0, which yields the list 1,...,19.
For each b € {1,...,19} we then recursively evalu-
ate 0.3r(0)s(0,w)[b][.#] and 0.6r(0)[b][.#]. Assum-
ing that .# |= r(0), and # |= s(0,b) A r(b) ex-
actly for b = 1,...,10, we obtain the results 0.3 for
b=1,...,10 and O for b= 11,... ,19 in the recursive
evaluation of the first subformula, and the result 0.6
for each b = 1,...,19 in the second. The value of
F(0)[.#] then is computed as n-0{0.3 : 10;0 : 9;0.6 :
19} =1 -0.7'90.4'9.

This example illustrates the only non-obvious choice
made in the definition of the semantics of F(a)[.#]:
subformulas Fj; inside probability formulas of the form
comb{Fy,... ,F} | w;e(v,w)} contribute for each b
with €(a,b) a copy of F(a,b)[.#] to the multiset to
which comb then is applied, no matter whether F; ac-
tually contains all the variables w for which the values
b are substituted. Specifically, with the combination
function

count :
count{q; | i € I} := (maz{1,|{i € I |q >0}|})!



that basically counts the number of nonzero elements
in a multiset (and then inverts the result in order to
satisfy the requirement to return values in [0,1]), and
the probability formula

F = count{l | w;w = w}
we get F[.#] = 1/n for every .# € Mod,,(S).

The following lemma, whose easy proof is contained
in (Jaeger 1997), shows that in a probability formula
we can not only, via indicator functions, access the
truth value in .# of atomic sentences, but, via suitable
probability formulas, also the truth value of arbitrary
first-order formulas.

Lemma 2.3 Let ¢(v) be a first-order formula over
S. Then there exists a probability formula Fy(v) over
S that uses maz as the only combination function,
s.t. for every .# € Mod,(S), and every a € nl®l:
Fy(a)[ A4 =1iff # = ¢(a), and Fy(a)[.#] =0 else.

We can now summarize:

Definition 2.4 Let S = {ry,...,r}. A relational
Bayesian network N is a set of probability formulas
F..,... F,,, where F, (v) is a probability formula
over {ri,...,rj—1} with |v| = |r;|. For each n € w
the network N defines a distribution P¥ on Mod,,(S)
by equating (2) with (4), and defining

PN(a e I(r)) | My ) = Fr (@[] (5)

Example 2.5 (Random graphs) Let r1,rs be binary
relation symbols. Define

E. (v1,v9) := % and

F,,(v1,v9) := maz{ri(v1,v2),r1(va,v1) | B;01 # va}.

Then the network IV consisting of F,., and F,, defines
distributions P on Mod,,(r1,r2) whose marginal dis-
tribution on Mod,,(r2) is just the uniform measure
on symmetric, antireflexive relations ry, i.e. random
graphs with edge probability ]3 Note that the same
distributions on Mod,,(r2) could not be obtained using
a single probability formula F;.,, because then, accord-
ing to (4), ra(a1,a2) and r2(az, a1) (a1, a2 € n) would
be independent, and symmetry could not be enforced.

Extending the method indicated by the foregoing
example, one can show that it is possible to define for
every parametric class (cf. (Oberschelp 1982, Ebbing-
haus & Flum 1995)) of S-structures a relational Bayes-
ian network N for some S’ D S, such that P} mar-
ginalized on S is the uniform distribution on the given
parametric class.

Example 2.6 (Sparse random graphs) For a > 0 de-
fine

count® :  count™{q; | i € I} := (count{q; | i € I})”
with count as in example 2.2. With rq, 79, F., as in ex-
ample 2.5, and F,, := count®/*{1 | w;w = w} we then
obtain that PN marginalized on Mod,,(r2) describes
random graphs with edge probability n=¢.

Example 2.7 (Discrete approximation of Gilbert ran-
dom graphs) Gilbert random graphs for the unit circle
and threshold § > 0 are generated by the following
procedure (cf.(McColm 1996)): on the unit circle in
the plane n points are scattered at random (w.r.t. the
uniform distribution). Two points are joined by an
edge e iff their distance on the circle is < §. The
distributions @,, induced by this process on Mod,,(e)
can not be modeled exactly by relational Bayesian net-
works. However, we can obtain an approximation to
@, as follows. We imagine the unit circle to be parti-
tioned into m segments of equal length. Let s1,... , sy,
be unary relation symbols with the intended meaning;:
s;(v) iff point v lies in the i-th segment of the circle.
The random distribution of points on the unit circle
then can be approximated by assigning each point to
exactly one of the relations s; via the probability for-
mulas

1
Fu(®)i= (1= 510) -+ (1= 51 (0) ———
(1t = 1,...,m). Also, we need a formula F,(v;,vs)
that models the (deterministic) connection of points
v1, Vs, depending on whether they are assigned to suf-
ficiently closely neighbored segments (in a sense that
approximates the d-threshold). This can easily be
done in a lengthy, but structurally simple (combina-
tion function free), probability formula. The resulting
measure PN on Mod,,(s1, ... ,8m,¢e), marginalized to
Mod, (e), then approximates the measure Q,,.

3 Convergence

In practical applications of relational Bayesian net-
works we will mostly be interested in probabilities of
a form like PN(ry(a) A r11(b)), where a and b rep-
resent tuples of observed random objects or events,
which are sampled from a domain that, without loss
of generality, we can identify with some n € w. Thus,
the convergence problem of greatest interest to us is
that regarding the convergence of PN (¢)(a)), where 1)
is a quantifier free first-order sentence with constants



a C w. These constants are interpreted deterministi-
cally, i.e. they are not subject to random interpreta-
tion in the domain: the constant a € w is interpreted
by a in structures over a domain n > a. Sentences that
contain a we do not interpret over domains n < a.

It follows from lemma 2.3 that the convergence prob-
lem for quantifier free ¢)(a) already is equivalent to the
convergence problem for arbitrary first-order ¢(a): for
a given network N over S, and an S-formula ¢(v) we
can choose a new relation symbol r4 with |74 | = |v],
and define a network N' over S U {rs} by adding
to N the probability formula Fy for ry as given by
lemma 2.3. Then

PN (vo(4(v) ¢ r(v))) =1,
and hence for all a

PN (p(a)) = PV (4(a)) = PY (r4(a)).

3.1 Proportional extension axioms

Probabilities of the form PN (r(a)) are essentially given
by the expected size of the interpretation of 7 in a ran-
dom structure .#,,. We therefore now introduce the
necessary tools to investigate the behavior of the size
of interpretations, and, more generally, of types, in
random structures.

We use the following standard terminology: An S-
type in the variables v = vg,... ,v, is a maximally
consistent conjunction 7(v) of S-literals in the vari-
ables v. A type 7(v) is called proper if it contains all
the formulas v; # v; (vi,v; € v,i # j). A type o(v, w)
extends the type 7(v), written 7 C o, if every conjunct
of 7 is a conjunct of o.

To express quantitative properties of random struc-
tures, we use a part of an extension of first-order logic
that was developed by Bacchus (1990) and Grove et
al. (1992) for reasoning about statistical information.

Definition 3.1 Let o(v,w) be a proper type. The
expression | o (v, w) |y is called a proportion term. For
p € [0,1] and s € (0,1) the expression | o(v, w) |w=
(1L s)p is called a proportion equation. We define
satisfaction of proportion equations by .# € Mod,,(S)
and variable assignment v — a:

AMvfal = Jo(v,w)|w= (1+s5)p
iff
{6 | A[v/a,w/b] = o(v, w)}|

nlwl

€ [(1—s)p, (1+ s)p].

(6)

Thus, A[v/a] = |o(v, w) |w= (1 % s)p if the pro-
portion of tuples b that satisfy o(a, b), among all |w]|-
tuples, is (approximately) p. We also allow the degen-
erate case w = (). The term on the left hand side of
(6) then is interpreted as 1 if #[v/a] = o(v), and
else as 0.

The semantics of proportion equations is extended
canonically to first-order formulas containing propor-
tion equations as atomic formulas. In particular those
of the following form.

Definition 3.2 Let 7(v) C o(v, w) be proper types.
Let p € [0,1],s € (0,1). The formula

pea(T,0.p, s) 1=
Vo(r(v) =|o(v,w)|w= (1£s)p) (7)

is called a proportional extension azxiom. The pair
(t7(v),o(v,w)) alone is called a proportional extension
axiom schema.

Our plan, now, is to identify a certain subclass of
relational Bayesian networks IV, so that the following
holds for (PN),: for every pair 7(v) C o(v,w) of
proper types there exists p € [0, 1], so that for every
s€(0,1)

Prjlv(pea(r, o,p,s)) > 1 (n— o0). (8)

3.2 Convergence results

We use an inductive approach to prove that (8) holds
whenever N only contains probability formulas that
satisfy certain conditions. In every induction step we
assume that (8) holds for {rq,...,r;_1}-types 7,0.
Then admissible probability formulas F,, (v) are lim-
ited to those for which F,, (a,)[.#,] converges (suf-
ficiently fast), given that (.#,), is a sequence that
satisfies certain proportional extension axioms. From
the convergence of F,,(a,)[#,] we then derive the
new extension axioms for {ry,... ,r;}-types 7,0.

We will need the following standard concepts relat-
ing to rates of convergence: when (a,)new and (by)new
are sequences of real numbers, we write a, = o(by)
iff lim,— o | an/bn, |= 0. Of particular interest to
us is the case where a, = p + o(c") for some p and
¢ € (0,1), i.e. when (a,), converges exponentially
fast to p. Throughout we assume ¢ in the expression
o(c™) to be instantiated by some ¢ € (0,1) that is
appropriately chosen in the given context. In other
words, the statement a, = p + o(c"), without fur-
ther qualifications, means “there exists ¢ € (0,1) s.t.
an = p+ o(c™)”, or more loosely, “(a,) converges ex-
ponentially fast to p”.



The class of relational Bayesian networks for which
we will obtain convergence results is characterized by
a restriction on the combination functions that may
be used in these networks. The following definitions
characterize these admissible combination functions.

Definition 3.3 Let k£ € w, and for j = 1,... )k let
pj,q; € [0,1];1; € w\ 0, mj € w. A sequence A, =
{pn | i € I} (n € w) of finite multisets is called
convergence testing (with parameters (pj,q;j,lj,m;);)
iff there exist e € (0,1), and a sequence s, — 0 such
that for each n

(i) Foralli e I,: py;€ U?Z] [pj —e",p; +e"].

(i) For j=1,...,k:|{i|pni € [p; — €™, p; +€"]}|
€ [(1- Sn)anlj +mj, (1+ Sn)anlj + mj].

Roughly speaking, (A,), is convergence testing, if
the A,, contain polynomially growing numbers of ele-
ments that are clustered in intervals around the p; of
exponentially decreasing length.

Definition 3.4 A combination function comb is called
exponentially convergent iff for every set of parameters
(pj,qj.lj,m;j)j=1,.. r there exists r € [0, 1], so that for
every sequence (A,), of multisets that is convergence
testing with parameters (p;, q;,1;,m;);, we have that

combAy, =1+ o(c"). (9)

Lemma 3.5 mazimum and noisy-or are exponentially
convergent.

Proof: The statement for mazimum is obvious. To
prove the statement for noisy-or, let (A,), be a con-
vergent testing sequence of multisets. It is sufficient to
consider the case where k = 1, i.e. (4,), has param-
eters (p,q,l,m), because after proving the lemma for
this case, the general result follows from the fact that
exponential convergence is preserved under products
of k factors.

If ¢ = 0, then the number of elements in A4, is
constant, and the result follows again from the fact
that a product of a constant number of exponentially
convergent factors is exponentially convergent.

Assume, then, that ¢ > 0. If p > 0 we get

noA,>1—-(1-p+ e”)(]*s")q”l =1-o(c"),

because (1 —p+e”)(!=5)9 < d for some d < 1 and all
sufficiently large n.
When p = 0, we have

n-0A, <1—(1- en)(1+sn)qnl'

To conclude the proof, it is therefore sufficient to show
that for e € (0,1), 1l € w\ 0

(1—em)™ =1- o(c"). (10)

To prove (10), we write its left hand side as

s : nl : 1 1 1
SN e =1—nle" 44 (-1 e

i=0
(11)
Since l
(i11)€(2+])n . nt—i
— = - e" <1
(e i+ 1
for i = 1,...,n' when n is sufficiently large, we find

that the absolute values of the terms in (11) are mono-
tonically decreasing in i, for all n greater than some
ng. Hence, for all such n

1>(1- e")"l >1-n'nle” =1 o(c").

The other combination functions we have met
mean and count clearly are not exponentially con-
vergent.

The following theorem constitutes the first impor-
tant part of our convergence results. It links the con-
vergence of F(a,)[-#,] to exponential convergence of
combination functions and the validity in .4, of pro-
portional extension axioms. The theorem also con-
tains an assertion about computability. Here and in
the following we tacitly assume that statements about
computability are qualified by the obvious conditions,
like that probability formulas do not contain any non-
recursive reals; the values of combination functions are
computable for arguments provided in a suitable finite
representation, and limits 7 in (9) are computable from
the parameters (p;, q;,1;,m;).

Theorem 3.6 Let F'(v) be a probability formula that
only contains exponentially convergent combination
functions. There exists a finite set

Ax = {(Ti(’l),j),(fi(’l)i,w,j)) ‘ 1 S i S M}

of proportional extension axiom schemas such that for
all sequences of sets

AX(q: Sn) = {pea(Ti7Uz‘7Qi73n) | 1 S t S M} (n S w):
of proportional extension axioms obtained by instan-
tiating the schemas in Ax with parameters ¢; € [0, 1]

3



sn € (0,1) with s, — 0, and for every S-type 7(v),
there exists p € [0, 1], such that the following holds:
whenever for each n € w we have ., € Mod,(S) and
a, € n'?!l with

%’n |: AX((L Sn) A T(a’ﬂ)z
then
F(ay)[#,) =p+ o(c"). (12)

Given F' we can effectively determine Ax. Given Ax
and g we can compute p.

Proof: The idea of the proof can be summarized
very briefly: We simply enforce with the axioms in
Ax(g, s5) that the combination functions contained in
F are applied to convergence testing sequences of mul-
tisets. By the assumption that the combination func-
tions are exponentially convergent, this forces the con-
vergence of F(a,)[#y).

For a formal proof, we proceed by induction on the
structure of F'. The case F = ¢ is trivial. Suppose,
next, that F(v) = r(v). Let .#, € Mod,(S), and
a, € % with 4, = 1(a,). If 7(a,) = r(a,) then
F(ap)[ A, = 1;if m(a,) = —r(ay) then F(ay,)[#,] =
0. Hence, the theorem holds with Ax = ), and the ap-
propriate p € {0, 1}.

In the case F' = F1 Fy + (1 — Fy)F3 the result fol-
lows from the fact that exponential convergence is pre-
served under sums and products.

We now turn to the case

F = comb{{F(v,w),...,F(v,w) | w;e(v,w)}

with comb an exponentially convergent combination
function. For j =1,...,L let

Ax; = {(7ji,04:) | 1 <i < My}

be the sets of proportional extension axiom schemas
as given by the induction hypothesis that the theorem
holds for the F;;. We now proceed as follows: we define
a new set Ax of proportional extension axiom schemas,
such that for all instantiations Ax(q, s,,) of Ax, and all
(M0, (ar)n as in the theorem, we have that

(An(%n;an))n@u (13)
with

A, (M, ay) = {F1(an, b)[A,], ...,
Fi(ay, b)[Ay) | b, M, = e(a,,b)}

is a convergence testing sequence of multisets. Then
(12) immediately follows from (9). The new set Ax will

consist of the union of the Ax; and some new schemas
Axpew. The old Ax; will ensure condition (i) of def-
inition 3.3, whereas Axpew Will provide for condition
(ii).

Let 7(v) be some given S-type. We determine a
set Axnew(7) such that (13) is a convergence testing
sequence of multisets when

M = NjAX; (G5 50) A Axnew(T)(q, $0) A T(0n)

for some q;, q, sn. The set Axpew then will just be the
union of the Axyew(7) over all S-types 7 for v.

First, consider the case that 7(v) | —e(v,w). In
that case A, (A, a,) = 0 whenever A, = 7(ay).
We can define Axpew(7) = 0, and obtain (12) with
p = comb ).

Assume, then, that 7(v) E —e(v, w). Let o1 (v, w),

., 0k (v,w) be the S-types for (v, w) that extend
7(v) and are consistent with e(v,w). By induction
hypothesis, for each 1 < h < K, each 1 < j < L, and
each sequence (A, (a,,by)), with

My = AXj(q;,50) Non(an, by)
we have that
Fi(an, by)[ 4] = pjn + o(c") (14)

for some p;p, € [0,1]. Thus, we see that according to
the induction hypothesis the A, (.#,, a,), satisfy con-
dition (i) of definition 3.3. In order to make sure that
the A, (A#,,a,) also satisfy condition (ii), we enforce
via instantiations of suitable proportional extension
axiom schemas that

[{bn | A = on(anby)}]
€ [(1—sn)gn' +m, (14 s,)gn' +m] (15)

for some parameters I,m,q,s,. This, of course, is
essentially what we can stipulate directly by a pro-
portional extension axiom. There is a small technical
problem that we need to deal with, though: propor-
tional extension axioms (axiom schemas) only were
defined for proper types. Here we can assume neither
for 7 nor for o, that it is a proper type.

Particularly, there is the degenerate case to be ac-
counted for where for each w € w there exists v € v
with o, = w = v. In that case the left hand side of
(15) equals 1 for all 4, and all a,, with .#,, = 7(a,).
With ¢ = 0, m = 1 then (15) is satisfied.

Next, consider the case where o), = Aycpw # v for
at least one w € w. Without loss of generality, assume
that this is the case exactly for h =1,... | K' (K' <
K). We then define the “proper parts” 7(), & (9, W)



of 7,0y as follows: first, 7(v) is chosen as the restric-
tion of 7(v) to a maximal subset © C v of variables
such that 7 = v # o' for all v,v" € 9. Subsequently,
ar(0, W) is chosen as the restriction of o(v,w) to a
maximal subset ® U@ C v U w such that oy = u # o'
for all u,u’ € ® Uw. Now define

Axnew (7) 1= {(7(®), 54 (0,@)) | h=1,...,K'}. (16)

It now follows directly from the definitions that when-
ever M, = pea(T,dh,q, sn) for some g, we have that
(15) is satisfied with parameters ¢,1 = |w]|,m = 0.
To conclude the proof, it only remains to note that
when p;p, = pjpe for two (or more) pairs of indices 1 <
j,j' < L,1<h,h <K, the total number of elements
in the interval p;, + o(c¢") is bounded by (1+s,)qn’ +
m+(1+s')g'n" +m’' (or longer sums of similar terms),
which, in turn, can be bounded by expressions (1 =+
s:l)q*nl* + m* for suitable parameters I*,m*, ¢*, s..
O

To prepare the proof of our main theorem, we first
formulate a special version in a family of theorems
that are collectively known as Chernoff bounds (see
(Hagerup & Riib 1990) for a useful overview).

Theorem 3.7 Let p,g > 0, s, > 0 (n € w) with
$n — 0. For each n € w let

k(n) € [(1— sa)qn, (1 + s,)qn].

and let
X"lrl=... 7X,?(n)

be 0,1-valued, mutually independent random variables
with
P(X?=1) €[p—an,p+an]

for some a, € [0,1] (i = 1,...,k(n);n € w). Let

Sp = Zfﬁq) X'

If p > 0 and a,, = o(1), or if p = 0 and a, = o(c"),
then for all e € (0, 1)

P(| S, — gnp| > eqnp) = o(c"). (17)

Proof: It is clearly sufficient to prove the theorem for
the case k(n) = n, i.e. ¢ =1, s, = 0. Also, we can
assume that the sequence a,, is decreasing in n. Let
€ (0,1) be fixed.
First consider the case p > 0. For n € w define

1n
n = — P(X!"=1).
p n;(z )

Then p,, € [p—ay, p+a,]. From a version of Chernoff’s
theorem given in (Hagerup & Riib 1990), we get that
for every e > 0

P(|Sy — npp| > €'npn) = o(c"). (18)

There exists ng € w such that for all m > ng

1
| pm —p|< S¢p- (19)

Since p > 0, then e’ := %eerinO € (0,1), and we

obtain for all m > ng:
| S; — mp |>emp =
| S — mpp, | > emp — %emp

= lemp
=e'm(p+ an,)
> e'mpy,.

Hence (18) implies (17).

In the case p = 0 the left hand side of (17) becomes

P(S, > 0). Under the assumption that a, = o(c"),
we obtain

P(S,>0)<1-(1=ay)" = o(c")

as in the proof of lemma 3.5 O

We are now ready to formulate and prove the main
technical result.

Theorem 3.8 Let N be a relational Bayesian net-
work for S that only contains exponentially conver-
gent combination functions. Let 7(v) C o(v,w) be
proper S-types. Then there exists p € [0, 1] such that
for all s € (0,1)

PN(pea(t,0,p,5)) = 1 (n = ). (20)
Given N, 7, and ¢ we can compute p.

Proof: First we observe that it is sufficient to prove
the theorem for the special case |w| = 1. To see why
this is the case, consider types 7(v) C o1 (v,w;) C
o9(v, w1, ws). Let s be given, and assume that p1, po
are such that (20) holds for pea(r,01,p1,s) and
pea(o1,09,ps,s). With
Pg(pe(l(T, 01,P1, S) A pea(”l ,02,P2, S)) Z
1 —(1—P,llv(pea(7',a]7p]7s)))
7(]‘ - Priv(pea(ala(T?:pQ: S)))

and

‘: pea(T: O1,D1, S) A pea(gl , 02,D2, S) —
pea(T, 02,P1P2; 25)



it follows that (20) holds for pea(r, o2, p1p2,2s). The
argument obviously can be extended for |w| > 2.

We now prove the theorem for 7(v),o(v,w) by in-
duction on the size of S. As the base case, take S = ().
Then Mod,(S) contains the single structure n; N is
the empty network, and PN (n) = 1. The proper S-
types 7 and o are

T(v) = /\1),; #vj, o(v,w)= /\m # v A /\w # w,

where the conjunctions range over all pairs of distinct
variables. Then,

n = pea(r, 0,1, |v|/n) (21)

for all n, and therefore P (pea(t,0,1,5)) — 1 for all
5> 0.

Now, let Ny be a relational Bayesian network for
Sk ={r1,...,ri}, and assume that the theorem holds
for all networks for Sy_1 = {r1,... ,7,—1}. In partic-
ular, it holds for the network N;_; obtained from Ny
by removing the probability formula F,, for ry. For
the record, we note that, naturally, the marginal dis-
tribution of PN* on Mod,,(Sk_1) is just P,]lv’“’l.

We partition 7(v) and o (v, w) into two, respectively
four, conjuncts:

75k (v) AT (V)

7oK1 (v) AT (V)

/\US’“*l’w(v,w) Ao (v, w)

A
=
[

2
=

g
i

where 791 contains all conjuncts of 7 that are Sj,_1-
literals (including the (in-)equality formulas), 77 con-
tains all rg-literals of T, o5e-1% contains all Sp_q-
literals of o that contain the variable w, and o"*%
contains all ry-literals of o containing w. We also use
the following abbreviations:

oS t(w,w) = T (v) A oTkrY (v, w)

oV (v,w) = oTr(v,w) Ae"™" (v, w).
We prove the theorem by showing that
PN (pea(T5+-1,0%,p,s)) = 1 (22)

for some p. This then proves PN*(pea(7,5,p,s)) —
1 for every Si-type 7 for v that is consistent with
75%-1(v), and the corresponding extension & by %,
including, of course, the original 7,0 we started out
with.

By our induction hypothesis there exists ¢ € [0, 1]
and a sequence (sp), C [0, 1] with s, — 0, s.t.

P,’lv’“*l(pea(TS’“*,US’“*l,q,sn)) -1 (23)

If ¢ = 0 then (22) holds with p = 0, and we are done.
Suppose, then, that ¢ > 0. Consider some fixed
My, € Mod,,(S_1) and a € n!?! with

My = pea(TS’“*l,US’“*l,q,sn) A TS’“*l(a).
Then

b A oS a,)} |
€[(1=swan, (L+ gl (24)

Consider a given b € n with ., = o%-1"(a,b).
The literals in ¢""(a,b) are of the form rg(c) and
—r(e) where ¢ varies over all tuples of length |ry |
with elements from a and b that contain b at least
once. Denote by C™T the set of all such ¢ that appear in
a positive literal r(¢), and by C~ those ¢ that appear
in a literal —r(c). Then, by definition,

P (0™ (a,b) | M) =
[I Bl T] O - Fo(e)l ). (25)

ceC+ ceC—

On the left hand side of (25) we view .4, as a subset of
Mod,,(Sg): the set of all Sg-structurese whose Si_1-
reduct is A,.

Since the ¢ all contain at least one b, for b # ¥’
the events o™ " (a,b) and o™ (a,b’) are condition-
ally independent, given .Z,.

Next, we will show that the probability (25) is close
to a constant value ¢’ that is independent of the par-
ticular choice of 4,,a,, and b. Then, using, the
independence of the o"*(a,b), we obtain that with
high probability the number of elements b, that satisfy
o (a,b) is very near q¢'n.

With the assumptions made so far we cannot yet
bound the probability (25). In order to do this with
the aid of theorem 3.6, we need to exploit our induc-
tion hypothesis some more.

Let Ax be the set of M proportional extension ax-
iom schemas as given by theorem 3.6 for F,,. By
our induction hypothesis, there exist parameters q =
(q1,--.,qm) with

PNe-1(Ax(g, sn)) = 1 (26)

(for convenience we may here assume the same se-
quence (sp), as appears in (23)).

Now consider a factor F, (¢)[.#,] in (25). By the-
orem 3.6 we have

Fo(e)[ ] = g+ o(c") (27)

for A, = Ax(qg,s,), with ¢ only depending on the

Sk—1-type of e¢. When in (25) we vary n, #,, a,



and b, only requiring that .#, = 0>+ 1(a,b), then in
each case the right hand side of (25) contains the same
number of factors F,, (e)[4,] and (1 — F,, (c)[#,))
for each possible Si_1-type of ¢. Hence, from (27) it
follows that for such .#,,,a,b with .4, = Ax(q, s»)
P (o™ (a,b) | Mn) = q' +o(c")  (28)

for some ¢' € [0,1].
Now let s > 0 be given. For this s and p = g¢' we
want to prove (22). Let

%n |: pea(TSk71 ) USk71 4, Sn) A Ax(q: Sn) A TSk71 (a)

From the independence of the events o™ *(a,b) for
different b, applying theorem 3.7, we obtain

Py (| o™ (a,w) lw= (1 £ 8)d'q | M) = 1= o(c")
Then, for every
My = pea(T51 0% g, 5,) A Ax(q, 5,)
we get

Pf,,v’“ (V’U(TS"”1 (v) =
o™ (v, w) lw= (14 5)qq") | M)
=P () L™ (a,w) [w= (1% 5)qq") | )

aEn‘v‘
My l=75k=1(a)
>1—nl. o)
=1- O(Cn)a

Finally, with (23) and (26) we obtain (22).

At first glance it may appear as though we had
proved not only the convergence stated in (8), but
even exponential convergence. This is not the case,
however, because the claim to exponential convergence
gets lost when for (23) and (26) we translate conver-
gence for every s € (0,1) into convergence for some
sequence s, — 0.

The proof of (8) gives rise to a recursive procedure
for the computation of p: we have p = qq¢' with ¢ de-
termined by (23), and ¢’ determined by several factors
G as provided by (27). The computation of ¢ is accom-
plished by recursion that is grounded on the case of
(-types solved by (21). The computation of g is ac-
complished by computing the parameters g in (26) by
further recursive calls, and by using theorem 3.6 to
compute ¢ from Ax and q. O

With theorem 3.8 it now is not difficult to prove
the following result.
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Theorem 3.9 Let N be a relational Bayesian net-
work that only contains exponentially convergent com-
bination functions. Let ¢(v) be a first-order formula,
and a C w. Then there exists p € [0, 1], s.t.

PY(¢(a)) = p (n— o).

Proof: According to our observations at the begin-
ning of this section, we may confine ourselves to the
case ¢(v) = r(v) for some r € S. Since r(v) is equiva-
lent to a finite disjunction of mutually exclusive proper
types, it furthermore is sufficient to consider the case
¢(v) = 7(v) for some proper type 7.

Let

K,=n(n-1)---(n—|v]|+1).
We partition Mod, (S) into subsets
M,... My,
such that
HeM; & |{d|A=1()} =]

Then

(29)

K,
PY(r(a)) =Y PN(r(a) | My)PY(M;).
j=1
Using that PY(r(a) | M;) = PN(r(a') | M;) for all
tuples a,a’ of distinct elements, it follows that

PY(r(a) | M;) =

n

J
o (30)

By theorem 3.8 there exists p € [0, 1] such that for all
s>0

J
ool €

Py ({M; | [(1=s)p, (1 +s)p]}) = 1.

Since nl?l/K, — 1 for n — oo, this means that also
J
PYUM; | 2 € (0= s)p, (1 + s)pl)) = 1.
This, together with (29) and (30) then shows that
PN (r(@) > p.
O

Theorem 3.9 contains several previous convergence
results as special cases. First, it is obviously possible
to define the uniform distribution U, on Mod,, (S) by a
combination function free relational Bayesian network



(with F,, = 1/2 for all r; € S). Hence, theorem 3.9
is applicable and yields the original 0-1-law for first-
order logic in the form proved by Glebskii et al. (1969)
(i.e. for a language with constants).

The networks defining uniform distributions on
parametric classes, which were mentioned in the re-
mark following example 2.5, only use the combination
function maz. Hence, theorem 3.9 again is applicable,
and we gain the conditional convergence laws for para-
metric conditions, as originally shown by Oberschelp
(1982).

Convergence laws for sparse random graphs, on the
other hand, do not follow from our result, because
count®™ is not exponentially convergent. For complete-
ness’ sake, we also mention that convergence holds,
again, for the approximation to Gilbert random graphs
described in example 2.7.

When we apply theorem 3.8 to the network defin-
ing the uniform distributions U,,, we will get (20) with
p > 0 for all types 7,0 (more precisely, we will obtain
that p is 1/m with m the number of possible exten-
sions of 7 for w). Thus, theorem 3.8 implies the orig-
inal result by Fagin (1976) that every extension ax-
iom is satisfied by almost all structures. Kolaitis and
Vardi (1990) strengthened this to the statement that
the number of elements that realize a given type ex-
tension, almost surely, is at least \/n. This statement,
in turn, is strengthened by theorem 3.8 by showing
linear growth of the number of realizing tuples.

From the AT point of view, theorem 3.9 is not com-
pletely satisfying: in practical applications of rela-
tional Bayesian networks we will almost always be in-
terested in conditional probabilities PN (¢(a) | ¥(a)),
rather than unconditional ones. It is well known that
even in the special case where PN = U,, and ¢,
are first-order sentences, the conditional probability
Un(é | ¢) need not converge (Fagin 1976). Fortu-
nately, this negative result does not affect us as much
as it does classical finite model theory. There the focus
is on languages without constants, whose probabilities
then can only converge to either 0 or 1. For condi-
tional probabilities U,(¢ | ¢) of interest (i.e. with
1) being some non-trivial condition) it then will be
the case that U,(¢)) — 0, which is a necessary con-
dition for the non-convergence of U,(¢ | ¢). The
conditioning events v (a) interesting for practical ap-
plications, in contrast, may very well have a positive
limiting probability, in which case the convergence of
PN(¢(a) | Y(a)) is ensured. As a matter of fact, one
may argue that in cases where 1(a) represents some
observed evidence (which is the standard case), the

3

positivity of lim, PN (y(a)) is a necessary condition
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for the limiting behavior of PN (¢(a) | ¢(a)) to carry
meaningful information, since otherwise we would de-
rive our inferences in a model that tells us that the
observed evidence was a virtual impossibility  which
should cast some doubt on the adequacy of our prob-
abilistic model for the situation at hand in the first
place.

In a companion paper (Jaeger 1998) it is shown that
relational Bayesian networks (again under suitable re-
strictions imposed on the combination functions) also
define a distribution PN on Mod,, (S), the set of S-
structures over w. It is shown that in analogy to re-
sults in classical finite model theory there exists an
isomorphism class M C Mod,,(S) with PN (M) = 1.
The class M is axiomatized by a set of non-standard
extension axioms that for pairs 7(v) C o(v,w) of
types either say that there exist infinitely many tu-
ples realizing the extension, or that there are no re-
alizations of the extension. When a network N only
contains combination functions that are exponentially
convergent, and are suitable for defining PN (this in-
cludes maz and noisy-or), then we furthermore get

limnoo PY (6(a)) = P (¢(a)).

4 Conclusion

Relational Bayesian networks are a method for defin-
ing probability distributions on finite relational struc-
tures. We here have shown that for a subclass of rela-
tional Bayesian networks, characterized by a condition
on the convergence properties of admissible combina-
tion functions, the distributions defined are asymptot-
ically convergent.

The condition of exponential convergence we here
imposed on combination functions certainly is very re-
strictive, even though it is satisfied by noisy-or, which
is the combination function most frequently used in
practical applications. In theorem 3.8 we have estab-
lished a very strong sufficient condition for the conver-
gence of PN (¢(a)) for first-order ¢. This condition is
by no means a necessary one, and one might hope to
obtain alternative convergence results via completely
different arguments, and for classes of relational Bayes-
ian networks characterized by conditions quite differ-
ent from the ones introduced here. Counterexamples
in (Shelah & Spencer 1988), in conjunction with ex-
ample 2.6, however, caution us that even with quite
simple relational Bayesian networks we can produce
non-convergent probability measures.

From a finite model-theory perspective, another
interesting issue is whether theorem 3.9 can be ex-
tended to non first-order properties ¢(a). Seeing



that previous convergence results for extensions of
first-order logic and the uniform distributions (Blass
et al. 1985, Kolaitis & M.Y.Vardi 1990, Kolaitis &
M.Y . Vardi 1992), like the original 0-1 laws for first-
order logic, are essentially based on the existence of
a suitable, almost sure “extension theory”, in light of
theorem 3.8, one may conjecture that similar proofs
go through for the measures PY. From the artificial
intelligence perspective, however, results for extended
logics are of limited relevance, because there we are
mostly interested in the convergence behavior of those
properties that are expressible in the query language
provided for relational Bayesian networks, which is es-
sentially quantifier free first-order logic.
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