Type Extension Trees: a Unified Framework for
Relational Feature Construction

Manfred Jaeger

Institut for Datalogi, Aalborg Universitet, Fredrik Bajers Vej 7E, DK-9220 Aalborg @
jaeger@cs.aau.dk

Abstract. We introduce type extension trees as a formal representation
language for complex combinatorial features of relational data. Based
on a very simple syntax this language provides a unified framework for
expressing features as diverse as embedded subgraphs on the one hand,
and marginal counts of attribute values on the other. We show by various
examples how many existing relational data mining techniques can be
expressed as the problem of constructing a type extension tree and a
discriminant function.

1 Introduction

A key component of relational data mining methods is the construction of rel-
evant features. Whereas in conventional (“propositional”) learning settings the
set of possible features is usually given by the available attributes, one has in
relational learning the ability to construct new features by considering the rela-
tional neighborhood of an entity. Taking into consideration related entities and
their attributes, one obtains a basically unlimited supply of potential features.
The space of features actually explored by specific relational learning methods
is often not very clearly defined and more or less only implicit in the learning
algorithm and its candidate feature generation mechanisms.

In this paper we study relational features in their own right. We propose
type extension trees (TETS) as a very simple, yet general and powerful repre-
sentation language for relational features. We will illustrate the expressiveness
and flexibility of type extension trees by showing how they can represent a great
variety of different types of features used by different kinds of methods in graph
mining, relational learning, and standard propositional learning.

This paper is mostly conceptual. Though intended to be eventually used in
an implemented learning system, we introduce type extension trees in this pa-
per mostly as a basis for an integrated view of existing data mining models
and techniques. TET's provide a unified view along several dimensions: they ac-
commodate relational features as considered in a variety of different disciplines,
ranging from graph mining to statistical relational learning and probabilistic in-
ductive logic programming (ILP); they provide a unified view of features of single
entities, tuples of entities, or whole datasets; they support all levels of separation
or integration of the feature construction and model induction components in a
relational learning procedure.

Type extension trees, thus, provide a common ground from which fundamen-
tal aspects of different data mining techniques can be more clearly elucidated. A
unifying conceptual framework is all but indispensable for a theoretical analysis
of differences and similarities between different data mining techniques, and can
help to translate results and techniques across different areas.

2 Type Extension Trees

In this section we introduce syntax and semantics of type extension trees. Our
definitions are partly motivated by type extension axioms, which play a pivotal
role in finite model theory [4]. Type extension axioms and various generalizations
have been used to characterize the combinatorial structure of large random struc-
tures [5,13,8, 1]. In the finite model theory setting the generating distribution is
given, and one is interested in the asymptotic properties of random structures.
In relational learning the situation is reversed: one observes one randomly gen-
erated structure (the data), and would like to infer a model for the generating
process. A language that has been found to express the characteristic features
of data sampled from known distributions is also a good candidate for speci-
fying those features of data that are important for reconstructing an unknown
generating model.

We now turn to defining type extension trees, starting with definitions relat-
ing to relational structures, which serve as a general, abstract model for struc-
tured data.

R denotes a relational signature (or vocabulary), i.e. a set of relation symbols
(of any arities). We typically use r, s, ¢, . .. to denote symbols from R, and |r]| to
denote the arity of r. Throughout, we denote with u, v, w logical variables, and
with a, b, c, ... constants (representing specific entities in a domain). Tuples of
variables and constants are denoted in bold font: v, a, etc. The length of a tuple
v is denoted |v|. An expression of the form r(u,v),r(a,v), etc. is called an atom.
If all arguments are constants, the atom is ground. A literal is an atom or a
negated atom. A type is a conjunction of literals. Types are denoted 7,0, We
use T to denote an empty conjunction, which is to be interpreted as a tautology.

Definition 1. A relational R-structure M consists of a domain M and an
interpretation function I that assigns truth values to ground R-atoms, i.e.
IM(r(a)) € {true,false} for all r € R and a € MM. The size of M is the
cardinality of M (in this paper always assumed to be finite).

In logic programming terminology, an R-structure is just an interpretation.
An R-structure with only unary and binary relations can be seen as a graph
with colored nodes and edges. From a database perspective, an R-structure is
a relational database with only boolean attributes. Using a boolean encoding
of categorical attributes, one can represent databases with only categorical at-
tributes as relational structures in the sense of definition 1.

Definition 2. A type extension tree (TET) over R is a tree whose nodes are
labeled with R-types, and whose edges are labeled with (possibly empty) sets of
variables.

A type extension tree is syntactically closely related to predicate logic formu-
las, with subtrees corresponding to sub-formulas, and edge labels corresponding
to variables that are quantified over. In analogy to standard predicate logic defi-
nitions one defines the free variables of a TET, and the substitution of constants
a for free variables v.

TETSs can be represented graphically as in figure 4 or equation (1). We also
write [, [wy, Th], ..., [Wm,Tw]] for a TET whose root is labeled with 7, and
which has m subtrees T1,...,T,, reached by edges with labels wy,...,w,,. We
write T'(v) for a TET containing free variables v, and T'(a) for the result of
substituting a for v in T.

The semantics of TETs differs from semantics of most formal languages in
that interpretations of TETs do not just return a truth value, but a complex
combinatorial structure. To motivate the following definitions, consider the first-
order sentence 7(a) — Jwo(a,w). Interpreted over a structure M with a C M
this sentence is either true or false. Furthermore, one can replace the existential
quantifier 3 with a counting quantifier like 3210 stipulating the existence of at
least ten w with o(a,w). The interpretation of the new sentence would still be
either true or false. However, instead of specifying exact truth conditions for the
quantifier in front of w, we can also define the interpretation of the formula as
the number of b € M such that o(a,b) is true. This is basically how we will

interpret the TET 7(a) Z o(a,w). For more complex TETSs the interpretations
are not simply numbers, but more complex combinatorial specifications, which
are introduced by the following two definitions.

Definition 3. For a finite set D and k € N define the set of all k-multisets over
D as
multisets(D, k) := {f : D —{0,...,k} | > f(d) =k}

deD

Concrete multisets are written in the notation [d1 +— ki,...,dq — k] (only
listing the d; € D with f(d;) =k; > 0).

Definition 4. The value space V,(T) of a TET T for structures of size n is
inductively defined as follows:

— If T consists of a single node, then V,(T) = {true, false}.
— IfT =[r,[wy, Th], ..., [Wm,Tw]], then

Vo(T) = {true, false} x x'™ multisets(V,, (T}), n1)

Ezample 1. The value space of the TET T'(v) = 7(v) 2 o(v,w) over a structure
M of size n is V(T (v)) = {true, false} x multisets({true, false},n). A tuple
a € MM defines a value V(T(a)) = (I, f) € V,(T(v)), where I € {true, false} is
the truth value of 7(a) in M, and f € multisets({true, false},n) gives the counts

. O—® ,Q\o O e
t // /

—_— al‘: az ® a; @&
i e e L
L4 v—e ‘Q/o O e

Fig. 1. Example 2

of elements b € M for which o(a,b) is true, respectively false. The general
definition of the value of a tuple a in a structure M is given in the following
definition.

Definition 5. Let T(v) be a TET, M an R-structure of size n, and a € MM,
The value of the ground TET T(a) is defined as follows:

= V([r(a)]) = *(7(a))
— V([r(a), w1, Th(a,w1)],..., [wm, Tn(a,w,)]]) =
(IM(1(a)), fla,w1,Ty),..., fla, Wy, Tm)), where

fla,wi, T;) sy = |[{b e MM | V(Ti(a,b)) =7} (v € Vul(T)))

Example 2. Figure 1 shows three different structures for a vocabulary containing
two binary relations s, ¢, and one unary relation r. The relational neighborhoods
of the entities a1, ag, as in the three structures have somewhat similar, yet unique,
properties. Consider the following three TETs:

U, W

Ti(v) : T(v) — s(v,u),t(u,w),r(w)

u w

(v) = s(v,u) — t(u, w), r(w)

w u

T5(v) : T(v) — r(w) — s(v,u)t(u,w)

*1

Tr(v) :

The value space V;(T1(v)) is {t, f}x multisets({t, f},7%). If M is a domain
of seven entities, and a € M, then V(T1(a)) = (¢, [t — [, f — 7% —1]), where [is
the number of distinct tuples (b, c) € M? for which s(a, b) At(b,c) Ar(c) is true.
Thus, T1(a) just gives the counts of paths leading from a via one s() and one
t() relation to an entity with attribute r(). This count is 3 for a1, as, as, so that
V(T1(a1)) = V(T1(az)) = V(Ti(as)).

The value space V,,(T2) is more complex. Values here not only encode the
number of s — t-paths to an entity with attribute r, but also differentiate with
regard to the number of different intermediate nodes on these paths. The precise
values are (for legibility, multisets here written as column vectors):

V(Tx(a1)) = V(Iz(a2)) = V(Ts(as)) =

JE L)) JOL) -
(1[5 = 7]) s (1[5 =7) s

Thus, T5 distinguishes a; from ag, but not from as. Another variation is provided
by T3(v), which counts the number of distinct endpoints ¢ (but not the number
of distinct mid-points b): V(T3(a1)) = V(T3(as)) # V(T3(az)).

In the preceding example we found that type extension trees T5, T3 provided
somewhat more information than 73. This is formally captured in the following
definition, which provides a refinement concept related to those used in ILP-
based learning methods.

Definition 6. Let T'(v),T'(v) be type extension trees. T' is called a refinement
of T if there exist functions

Ly Vo(T') = Vo (T) (n€N),
such that for all structures M of size n, and all a € MM :
V(T'(a)) =~ — V(T(a)) = Tn(y).

Here we have defined refinement on a semantic basis. One can easily define
several syntactic operations on TETs that produce refinements (e.g. adding a
new subtree to an existing TET).

Values V(T'(a)) provide a very detailed quantitative picture of the “relational
neighborhood” of tuple a in structure M. For all but the simplest TETSs, the full
value will be too complex to handle by a model induction algorithm. The complex
feature value V(T'(a)), therefore, may need to be reduced or summarized.

Definition 7. A discriminant function for a TET T is a function
d: Unzlvn(T) — R.

Discriminant functions can be employed in different ways. For example, a
0,1-valued discriminant function turns 7" into a boolean feature. A collection of
TETs, each equipped with a boolean discriminant function, then defines a set
of boolean features that can be used by standard propositional model induction
algorithms. However, discriminant functions can also represent the final model
itself. For example, a discriminant function on 7'(v) with values in {1, 2, 3} could
represent a predictive model for a three-state class variable ¢(v).

3 Examples

In this section we show how several quite distinct relational data mining tasks
can be represented as the problem of finding a TET and a discriminant function.

3.1 Frequent subgraphs

A key task in graph-based data mining is finding frequent subgraphs (see e.g. [19]).
Consider, for example, a relational alphabet R = {r(-),¢(-,-)}. Figure 2 shows a
two node graph G over this vocabulary.

0
¢ 9\@ ® 0

Fig. 2. A two node subgraph

Now consider the TET

T, w) = r(v) & —r(w) & —tv,0) > tw,w) > tw,w) & ~tw,v) (1)

The value space V,,(Tg (v, w)) is equivalent to the 6-fold product of { true, false}
(independent of n). For any two entities a, b, the value V(T¢(a,b)) determines
the truth value of all the ground atoms r(a),r(b), ..., t(b,a), and thus represents
the subgraph induced by a, b.

Now let d. be the discriminant function on V(T¢) that counts the number
of false components in V(T¢g). For any a,b, then d.(V(Tg(a,b))) is the edit
distance between the subgraph induced by a,b and G.

Suppose, now, we want to determine whether our data M contains at least
k occurrences of 2-node subgraphs whose edit distance to G is at most [. This
becomes an evaluation of a TET-discriminant function by defining on the TET

TL=T = Tg(v,w) (2)

the discriminant function dy; defined by

S f(e), Talw)() >k
dk,l(v(—l—)v f((U, w)’ Te (Uv w)) = YEV(Ta(v,w)):de(v)<l
0 else

Finally, the problem of finding all subgraphs G’ that are “approximately
frequent” (in the sense that graphs with edit distance to G’ at most | occur at
least k times) now becomes the problem of finding all TETs T of the structure
T 2 Ta(v) with dy (V(Ter)) = 1.

This example shows how TETs and discriminant functions capture operations
at all stages of feature construction and model induction: a TET of the form (1)
together with the discriminant function d. is just a boolean feature that could
be used by any model induction algorithm. However, full model induction tasks
can also be expressed as a search for TETs and discriminant functions.

Student Professor Journal
__p Success y,n 4 ~fame: y,n impact: y,n
- intelligence: y,n funding: y,n
advisor: e— editor: e

Fig. 3. A simple PRM

3.2 Probabilistic Relational Models

In this section we consider probabilistic relational models (PRMs) in the sense
of [17,6]. PRMs in their simplest form (there exist various extensions) are a
probabilistic model for attribute values in a relational database. Figure 3 illus-
trates a simple example PRM based on [17]. It consists of a database schema
consisting of three tables ’student’, 'professor’ and ’journal’. All tables have one
or two boolean attributes. The student table also has a reference attribute ad-
visor, which points to entries in the professor table, and the professor table has
a reference attribute editor pointing to the journal table. The dashed arrows in
figure 3 indicates that the PRM provides a probabilistic model for the success
attribute in the student table, and that according to this model the probability
for student.success values depends on the values of the intelligence attribute for
the given student, and on the value of the fame attribute of the student’s advisor.
The complete specification of the PRM furthermore will contain the quantita-
tive specification of the conditional distribution for student.success, which is not
shown here.

Generally, the probabilities for attributes can be defined conditional on at-
tribute values at any other table entries that can be reached by following a
sequence of references. References can also be followed in inverse order: for ex-
ample, by first following the advisor reference from a student entry s, one finds
an entry p in the professor table; by then following the inverse of the advisor
reference from p, one finds all entries in the student table that have the same
advisor as s. Similarly, the student.success attribute could also be defined con-
ditional on the impact of journals for which the student’s advisor is an editor.
Friedman et al. [6] call any such sequence of references a slot chain.

Slot chains essentially define the features used in a probabilistic relational
model. When the slot chain also contains one-to-many relationships, then aggre-
gation operators will also be needed to define a feature. Features definable by
slot chains can be represented as linear TETSs:

Ti(v): T z advisor(v, w) ? fame(w) (3)

w u 0
To(v) : T — advisor(v,w) — advisor(u,w),u # w — success(u) (4)

T} (v) counts how many famous and how many non-famous advisors entity v
has. Tz(v) counts how many successful and non-successful entities v exist that
have the same advisor as v.

3.3 Relational Bayesian Networks

Relational Bayesian networks (RBNs) [7,9] are related both to PRMs and to
probabilistic modeling languages based on logic programming (e.g. [18,11]).
RBNs also specify probability distributions over probabilistic relations on a given
domain. The representation language is quite different, however: an RBN repre-
sentation is given by the specification of one probability formula for each proba-
bilistic relation. A simple RBN encoding for the domain described in the previous
section could be given by assigning to the probabilistic relation success(v) the
probability formula

F(v) = noisy-or{(fame(w) : 0.8,0.5) | w : advisor(v, w)}.

This formula can be read as a procedural computation rule for computing the
probability of a ground atom success(a) as follows: determine all objects w for
which advisor(a,w) is true (which may or may not be exactly one); each such
w contributes a value of 0.8 if fame(w) is true, and a value of 0.5 if fame(w) is
false to a multiset of probabilities; finally, compute a single probability value by
combining all the probabilities in the multiset with a noisy-or.

The reader is referred to [7,9] for details on syntax and semantics of prob-
ability formulas. The preceding small example should be sufficient, however, to
illustrate the connection between RBNs and TETs: for the evaluation of the given
probability formula for success(a) it is sufficient to know the value of T1(a) with
T; as in (3). More refined probability formulas could be constructed that define
the probability of success(a) also dependent on the feature Th(a). Generally,
one can show that for each probability formula F(v) one can (automatically)
construct a TET T'(v), such that the evaluation of the probability formula for
some objects @ only depends on the value V(T'(a)). On the other hand, the
probability formula computes a probability value for each possible value of the
TET. Thus, a probability formula is both an (implicit) definition of a TET, and
a specification of a discriminant function on that TET.

3.4 Relational Decision Trees

Several approaches exist for adapting decision trees to relational settings [2, 12,
15]. Internal nodes in such a decision tree are labeled by relational features,
which can be expressed e.g. in a logical [2,15] or graphical [12] notation.
Figure 4 shows a relational decision tree described in [15]. This is a decision
tree for a domain of web-pages with attributes like isStudent,isFaculty,isCourse
describing the nature of a web page (student, faculty, course homepage etc.).
Another attribute, path, describes whether or not the URL of a page contains a
directory path (i.e. pages for which path=false are top-level pages in a domain).

Jw(l(w,v) A IZ M ul(w, w)) T(v)

Fig. 4. Relational Decision Tree and Feature TET

The decision tree of figure 4 estimates the probability that a web-page v belongs
to the isStudent class. For this it tests (at most) three different relational fea-
tures: at the root node it is tested whether the page v is linked from another
page w which has at least 111 outgoing links (indicating, perhaps, a student
directory). The second node tests the feature whether v is linked from a page
without a directory path in the URL. The third node tests whether the average
number of outgoing links from pages w that also contain a link to v is at least
21.

The TET shown on the right of figure 4 represents the combinatorial prop-
erties that determine the truth value of the three features tested in the decision
tree: for each web page v, the truth value of a feature is a function of V(7'(v))
(where, in fact, for the truth values of the first and third feature only the value
of the left branch is relevant, and for the truth value of the second feature only
the right branch is relevant). Furthermore, the probability estimates computed
by the decision tree can be defined by a discriminant function on 7.

3.5 From Features to Statistics

In standard “propositional” learning settings there is a clear distinction between
a data item and a data set. The latter is a collection of the former, and, moreover,
the data items are typically assumed to be independent samples from some
common underlying distribution (iid). The distinction between data item and
data set gives rise to the distinction between a feature and a statistic: the former
describes a property of an individual data item, the latter a property of a data
set as a whole.

It is well-known that this “iid” model of data is often inappropriate in the
context of relational data (see e.g. [10]). Specifically, one can not regard the
entities in a relational structure as independent data items.

C(v) C(v) C(v)
0 0 0
Ai(v) Az(v) Az(v)

Fig. 5. Naive Bayes Sufficient Statistics

Seeing that in relational data there is no clear dividing line between data
items and data sets, there can also not be a clear distinction between a feature
and a statistic. Type extension trees provide a clear perspective on both the
common nature and the remaining distinction between feature and statistic: a
statistic is basically a feature expressed by a TET without free variables. Such
a TET represents a global property of a relational structure, without reference
to any particular entities in the structure

The following example illustrates the use of TETSs to represent global statis-
tics, and how standard propositional data can be treated as a special case of
relational structures.

Ezxample 3. Assume a relational signature R containing four unary relation sym-
bols C, A1, As, As. A relational structure for R just consists of a collection of
entities, and the relations can be read as attributes in the conventional way, i.e.
an R-structure can also be seen as a standard propositional dataset.

Consider the TET T, of figure 5. This is a TET without free variables. Its
values represent the 2-way marginal counts of attribute pairs C, 4; (i =1,2,3).
Thus, the value of Ty, for a given R-structure is just the minimal sufficient
statistic for learning a naive Bayes classifier for C' given the A;. Compare this to

Tow =T 2 C0) A1(0) & As(v) L As(w)

Values of T,; are the full joint counts of C, A1, ..., A3, and, thus, are sufficient for
learning a saturated model, i.e. without any constraints on the joint distribution
of the O,Al, . ,Ag.

4 Discussion and Related Work

In the previous sections we have introduced type extension trees as a language for
specifying relational features. We have seen that the language is very expressive,
and can represent different types of features that have been used within a wide
spectrum of different relational learning tasks.

One should compare TETSs to two different classes of alternatives. First, we
may consider logics, database query or programming languages, which are not
specifically designed to specify relational features, but can be employed for that
purpose. The advantage of TETs over existing predicate logics is the former’s

ability to represent quantitative, combinatorial properties, whereas the latter
only define Boolean features. Database query languages like SQL can also re-
trieve quite complex combinatorial information about the relational neighbor-
hood of an entity. There are several advantages of the TET language over SQL,
however: most importantly, the syntax of SQL is much more complex than the
syntax of TETSs, and does not possess a similarly clearly defined semantics. For
example, it is not clear how to distinguish SQL queries that refer to properties
of single entities, from queries that refer to entity pairs, entity triples, etc. In
TETs this distinction is clearly made by the number of free variables.

Second, TETSs need to be compared to specific feature specification languages
used in existing learning frameworks. Such specification languages have been
defined in terms of e.g. fragments of first-order logic [3], graph fragments [14],
and aggregation operators [16]. Most similar in spirit to TETs are perhaps the
selection graphs of [12]. However, the latter are much more limited in only being
able to express boolean features of single entities. A key advantage of TETs over
selection graphs and many other feature languages is their clear parsimonious
syntax, coupled with a precise formal semantics.

Apart from being an alternative to existing feature languages, TETs also
provide a solid basis for theoretical analyses of their characteristic properties.
For example, identifying different feature languages with specific sub-classes of
TETs provides a basis for analyzing more clearly what kind of information the
different languages are able to extract.

5 Conclusion

We have introduced TETSs as an expressive and principled framework for de-
scribing features in relational domains. TETs provide a uniform language for
specifying features of single entities, tuples of entities, or a relational dataset
as a whole. By combining TETs with the notion of discriminant functions one
obtains a coherent, integrated view of feature construction and model induction
that can capture diverse data mining tasks such as graph mining and statistical
relational learning.

So far, we have introduced TETs mostly as a conceptual tool. One prereq-
uisite for using TETSs in practice is to complement the language of TETSs with
a formal language for defining discriminant functions. Based on the TET tree
structure it is quite easy to inductively define such languages in a way that is
similarly parsimonious and semantically clear as the TET language itself. One
example of such a language already exists in the language of probability formulas
(section 3.3).

Here we have introduced TETs only for boolean data. However, all our ba-
sic definitions can be directly generalized to non-binary data by only relaxing
the definition of literals to also include equational literals r(v) = A (A a pos-
sible value of categorical attribute r), or s(v) > ¢ (¢ € R a threshold value for
numerical attribute s).

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Blass and Y. Gurevich. Choiceless polynomial time computation and the zero-
one law. In Proc. of CSL 2000, pages 18—40, 2000.

H. Blockeel and L. de Raedt. Top-down induction of first-order logical decision
trees. Artificial Intelligence, (101):285-297, 1998.

C. Cumby and D. Roth. Feature extraction languages for propositionalized rela-
tional learning. In Proc. of the IJCAI-2003 workshop on learning statistical models
from relational data, 2003. http://kdl.cs.umass.edu/sr12003.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical
Logic. Springer Verlag, 1995.

Ronald Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41(1):50—
58, 1976.

N. Friedman, Lise Getoor, D. Koller, and A. Pfeffer. Learning probabilistic re-
lational models. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99), 1999.

M. Jaeger. Relational bayesian networks. In Dan Geiger and Prakash Pundalik
Shenoy, editors, Proceedings of the 13th Conference of Uncertainty in Artificial
Intelligence (UAI-18), pages 266-273, Providence, USA, 1997. Morgan Kaufmann.
M. Jaeger. Convergence results for relational Bayesian networks. In Proceedings
of the 18th Annual IEEE Symposium on Logic in Computer Science (LICS-98),
pages 44-55, IEEE Computer Society Press.

M. Jaeger. Complex probabilistic modeling with recursive relational Bayesian net-
works. Annals of Mathematics and Artificial Intelligence, 32:179-220, 2001.

D. Jensen and J. Neville. Linkage and autocorrelation cause feature selection
bias in relational learning. In Proceedings of the 19th International Conference on
Machine Learning (ICML-2002), pages 259-266, 2002.

K. Kersting and L. De Raedt. Towards combining inductive logic programming
and bayesian networks. In Proceedings of the Eleventh International Conference
on Inductive Logic Programming (ILP-2001), Springer Lecture Notes in AI 2157,
2001.

A. J. Knobbe, A. Siebes, and D. van der Wallen. Multi-relational decision tree
induction. In Proceedings of PKDD-99, pages 378-383, 1999.

Ph. G. Kolaitis and M.Y.Vardi. 0-1 laws and decision problems for fragments of
second-order logic. Information and Computation, 87:302—-338, 1990.

S. Kramer and L. de Raedt. Feature construction with version spaces for biochem-
ical applications. In Proc. of ICML-01, 2001.

J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning relational probability
trees. In Proceedings of SIGKDDD’03, 2003.

C. Perlich and F. Provost. Aggregation-based featrue invention and relational
concept classes. In Proc. of SIGKDD’03, 2003.

A. Pfeffer. Probabilistic Reasoning for Complex Systems. PhD thesis, Stanford
University, 2000.

T. Sato. A statistical learning method for logic programs with distribution seman-
tics. In Proceedings of the 12th International Conference on Logic Programming
(ICLP’95), pages T15-729, 1995.

Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining.
SIGKDD Ezplor. Newsl., 5(1):59-68, 2003.

