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Abstract. We introduce a framework for an empirical evaluation of probabilistic logic languages and
systems.

1 Introduction

The field of probabilistic logic languages for knowledge representation and learning (also known as statis-
tical relational learning) is developing fast, and an increasing number of languages supported by prototype
implementations is being proposed. In order to obtain a better understanding of the common nature of these
languages, as well as of salient differences that can make one language preferable over another for a spe-
cific application, it is desirable to establish a platform on which languages can be compared with regard
to their expressivity, complexity, and learnability. First steps towards a theoretical framework for such a
comparative analysis have already been taken [1, 4]. With this paper we introduce a platform for a practi-
cal, experimental comparison of systems that implement a variety of different pl-languages. It is important
to emphasize that even though we would like to compare languages (or better still, basic representation
paradigms that are more or less purely represented by some concrete pl-language), we only can compare
systems. The implemented systems often represent a mixture of the pure underlying language design and
pragmatic implementation solutions. The goal of this comparison is to evaluate the suitability and perfor-
mance of different systems on a suite of challenge problems. The first step towards this goal is to identify a
general form of ’problems’ for pl-systems (Section 2).

We then formulate four concrete challenge problems (Section 3), and investigate how four different pl-
systems handle these problems: the Alchemy system4, implementing Markov Logic Networks (MLNs) [6];
the Balios system 5, implementing Bayesian Logic Programs (BLPs) [5], the Primula system 6, implement-
ing Relational Bayesian Networks (RBNs) [2], and the Prism system7 [7]). The selection of these systems
for an initial study is based on the relatively large overlap of their representation and inference capabili-
ties. In further investigations, also somewhat less closely related systems like IBAL8 and BLOG9 should be
included in the comparison.

In this initial report we are not able to give detailed, quantitative results on the performance of the
different systems. We only give some general findings on the main issues and problems encountered so far.
Main purpose of this paper is to introduce our platform for comparison, and to invite contributions from
expert users and developers of the four systems considered here, as well as any other pl-system. To this
end we have established a web-site (www.cs.aau.dk/∼jaeger/plsystems) where challenge problems can be
posed, and solution models can be presented.

4 alchemy.cs.washington.edu/
5 www.informatik.uni-freiburg.de/∼kersting/profile/
6 www.cs.aau.dk/∼jaeger/Primula/
7 sato-www.cs.titech.ac.jp/prism/
8 www.eecs.harvard.edu/ avi/IBAL/
9 people.csail.mit.edu/milch/blog/



2 Establishing a Common Framework

A key prerequisite for a comparison of pl-languages is a common semantic framework that allows us to
decide whether two models represented in different languages are equivalent. We use the framework in-
troduced in [4] as the basis for our comparison. Central to this framework is the idea that a pl-model is
composed of an intensional, and an extensional part. The intensional part contains the generic, high-level
probabilistic model (e.g. general rules for the propagation of genetic traits), whereas the extensional part
contains the specification of a concrete domain to which the model is applied (e.g. a specific set of indi-
viduals with their family relationships). A general, abstract model for such concrete domains are relational
structures: a set of entities on which certain relations (possibly multi-valued) are defined. The pl-model then
defines random attributes and relations on the set of domain entities (e.g. the random attribute “bloodtype”
on the individuals of the input domain), i.e. it defines a probability distribution over relational structures
again.
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Fig. 1. PL models

The separation into intensional and extensional part is more or less clearly reflected in the syntax of the
different languages we investigate. It is made most clearly in the RBN language. BLPs, too, make an explicit
distinction between (logical) input relations, and probabilistic (output) relations. For Prism and MLNs there
is no explicit syntactic separation, and it may therefore not always be possible to divide any given Prism
or MLN model into an intensional and extensional part. However, conversely, given a pl-model which is
language-independently defined in terms of intensional and extensional components, one will always find
encodings of this model in Prism or MLN that in a modular way separately represent the intensional and
extensional parts. In particular, for Prism and MLNs, too, it is easy to replace the specification of the input
domain, without changing the underlying probabilistic model.

Finding equivalent models is the first step in a comparison of systems. A challenge problem also consists
of the specification of inference and learning tasks that the models should support.

When we investigate complexity of probabilistic inference in the different systems, we focus mainly
on scalability in terms of the size of the input domain. In order to compare efficiency, we have to encode
equivalent models in the different languages, which, in particular, means to encode the same (potentially
large) input domains as extensional parts in different languages. In order to facillitate the translation of these
extensional parts, we have defined a general XML format for the representation of relational structures, and
implemented a translator that takes an XML specification of an input domain, and translates it into an
extensional model part in any of the four target languages. Since data, too, is given by relational structures,
the same XML format is also used to represent data for learning, and our translator can also transform an
XML specification into the data format required by the different systems.



3 Four Challenge Problems

To compare the systems we select a number of “challenge problems”. Each challenge problem consists of
a model that has been given as an example for one of the systems. The original example model serves as
the reference model, and the goal is to find an equivalent representation in other languages. In all cases we
require models that support the inference task of computing posterior marginals for unobserved variables,
given instantiations of arbitrary observed variables. The following challenge problems are selected to be
rather simple examples for fundamental modeling tasks. The scope of challenge problems to be considered
will eventually be enlarged to also include e.g. probabilistic context-free grammars.

Bloodtype model: A simple genetic model for the inheritance of bloodtypes in a pedigree. Input domains
consist of pedigrees with individuals and a “father” and “mother” relation. The reference model comes from
Balios.

University model: A model for the adviser relation between students and professors. Input domains
consist of a number of students and professors. This model is representative for undirected models given by
feature-induced potentials, rather than conditional probabilities. The reference model comes from Alchemy.

HMM model: A standard HMM model. Input domains just consist of the number of time slices over
which the model is to be developed (this need not necessarily be explicitly specified as an extensional
model part). We use several variants of an HMM model that differ in the number of states of the hidden
variable, and investigate how this affects the representability of this model in languages that only permit
binary variables (Primula and Alchemy).

Noisy-or model: A very basic model that uses the noisy-or function for combining several causal inputs.
Input structures are directed acyclic graphs on which a random unary attribute is propagated from the roots
downward. Reference model comes from Primula.

We have experimented with representations of these four models in the four systems under investigation.
The results we obtained are too preliminary and inconclusive to already permit a detailed, quantitative
comparison of the systems. Moreover, it has become quite clear that such a comparison will require input
from expert users and developers of the various systems, because the performance of an encoding of a
challenge problem can vary substantially according to the sophistication of the encoding. However, our
experience so far allows us to identify a number of points that seem to be characteristic for the different
systems. First, it proved rather difficult to represent some of our challenge problems in Alchemy. To some
extent this is to be expected, as all except the University model are directed probabilistic models, whereas
Alchemy most naturally represents undirected models. This should not be a fundamental problem, however,
as it is known how to represent directed models as MLNs [6]. The main reason for the difficulties is the
fact that Alchemy does not implement the full MLN language, but only its “clausal fragment”, and direct
representations of all of our models require non-clausal first-order formulas. Prism, too, is a system which
is not ideally tailored for the type of problems we considered. The main problem for Prism was that the
system does not have the built-in functionality to support the type of queries we were interested in, i.e.,
computation of posterior marginals given arbitrary instantiations of some variables as evidence. Support for
such queries must be explicitly programmed into the Prism model. Generally, Prism more than the other
systems, is a programming language that requires a procedural model representation, whereas Alchemy,
Balios and Primula all are essentially declarative knowledge representation languages. However, efficient
model representation in these languages too, requires some knowledge of the procedural aspects of the
system’s inference procedures.

When evaluating inference efficiency and accuracy, we found that both in Balios and in Alchemy the
obtained inference results sometimes depended strongly on the option settings for inference. For example,
Gibbs and rejection sampling (in Balios), or Gibbs sampling and MC-SAT (in Alchemy) sometimes gave
widely differing results, possibly due to insufficient mixing of the Markov chains.

4 Binarization

One issue we investigated in greater depth was the problem of representing multi-valued relations in a
language that only allows Boolean relations (RBNs, MLNs). We studied this problem using variations of



the HMM model with hidden state variables ranging from 8 to 64 states. It is most commonly suggested
to binarize a multi-valued relation like hidden(t) = si (i = 1, . . . , n) by turning the relation value into
an additional argument (hidden(t, si) = true) [3, 6]. However, this approach requires to also encode in
the model the constraint that for each argument t the relation hidden(t, si) is true for exactly one si. This
induces a mutual dependency of the variables hidden(t, si), which will typically lead to an exponential
behavior in inference.

A more efficient way of binarization of multi-valued relations is to identify the set of n possible val-
ues with bitstrings of length dlog

2
ne, and to introduce for each bit in the bitstring one boolean predicate.

Assuming, for example, that n = 64, we introduce predicates hidden bit1(t), . . . , hidden bit6(t). Each in-
stantiation of these boolean predicates identifies one possible state (when n is not a power of 2, one may
take some bitstrings to represent dummy states of zero probability). Using these bitstring predicates, we
have implemented the HMM model with n = 8, 16, 32, 64 in Primula, and found that (exact) inference
exhibited behavior consistent with O(n2) complexity, which is to be expected, as we are essentially dealing
with transition matrices of size n2.

While computationally feasible, the boolean bitstring representation is somewhat hard to code man-
ually. In order to make general use of it in the context of more complex models than HMM, one would
need to automate the compilation process of multi-valued predicate representations into purely boolean
representations.

5 Conclusion

We have established a platform for comparison and benchmarking of pl-systems, and reported some very
preliminary findings on the performance of four different systems on four different challenge problems.
With this paper we hope to stimulate the participation of other researchers in this empirical evaluation. To
facillitate the exchange of problems and solutions, we have created an XML file format for the exchange of
relational structures and relational data, and implemented a utility program for translating specifications in
this format into the formats used by various systems. These resources, exact challenge problem specifica-
tions, and solution models are provided on a web-site (www.cs.aau.dk/∼jaeger/plsystems), which is meant
to become an open platform for the exchange of challenge problems and solutions.
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