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Abstract

We adopt probabilistic decision graphs developed in the field of automated verification as a tool for proba-
bilistic model representation and inference. We show that probabilistic inference has linear time complexity
in the size of the probabilistic decision graph, that the smallest probabilistic decision graph for a given distri-
bution is at most as large as the smallest junction tree for the same distribution, and that in some cases it can
in fact be much smaller. Behind these very promising features of probabilistic decision graphs lies the fact
that they integrate into a single coherent framework a number of representational and algorithmic optimiza-
tions developed for Bayesian networks (use of hidden variables, context-specific independence, structured
representation of conditional probability tables).

1 Introduction

Over the past 15 years Bayesian networks have been de-
veloped in AI as the main representation tool for prob-
ability distributions on finite state spaces. In about the
same period of time, ordered binary decision diagrams
(OBDDs) (Bryant 1986) have emerged in automated ver-
ification as the primary representation tool for Boolean
functions, and have also been adopted for the representa-
tion of arbitrary real-valued functions (Fujita, McGeer &
Yang 1997, Lai & Sastry 1992), and, in particular, prob-
ability distributions (Bozga & Maler 1999).

Bayesian networks and OBDD-based representation
frameworks of probability distributions are developed
with similar goals: to obtain compact representations of
probability distributions on which certain basic opera-
tions can be performed efficiently. The types of oper-
ation one is interested in, however, are somewhat dif-
ferent. A basic problem motivating the whole OBDD
approach, for instance, is equality testing, i.e. checking
whether two OBDDs (or probabilistic versions thereof)
represent the same Boolean function (probability distri-
bution). This question has not attracted much attention
in AI. The probabilistic inference problems considered
in AI, on the other hand, play no prominent role in the
verification literature.

In spite of some references to the use of OBDDs for
some specialized subtasks in probabilistic representation
and inference (Boutilier, Friedman, Goldszmidt & Koller
1996, Nielsen, Wuillemin, Jensen & Kjærulff 2000),
there thus has not been any rigorous appraisal of the mer-
its of (probabilistic) OBDD technology from the AI point
of view. This paper is meant to provide such an appraisal.
To this end we first introduce a generalization of Bozga

and Maler’s (1999) Probabilistic Decision Graphs, and
show how to perform basic probabilistic inference prob-
lems on this representation. As it will turn out that these
inference problems have linear time complexity in the
size the representation, a crucial question will be how
large a representation of a distribution as a probabilistic
decision graph will be in comparison to a representation
as a junction-tree. This question is answered in section 4.
We also discuss the problem of learning probabilistic de-
cision graphs from data, and argue that there can be sub-
stantial benefits in learning a decision graph, rather than
a Bayesian network.

2 Definitions

Throughout the remainder of this paperX =X1; : : : ; Xn denotes a set of random variables. The
range (set of possible values) ofXi is R(Xi) =fxi;1; : : : ; xi;kig. The product setR(X1)� : : :�R(Xn)
is denoted byW . We are interested in representations for
the joint distribution ofX onW .

Definition 2.1 Let T be a tree with nodesfX1; : : : ; Xng and direct successor relationET .
A real function graph (RFG)for X with respect to
the tree orderT is a rooted directed acyclic graphG = (V;E), such that� each node� 2 V is labeled with a variableXi 2X.

A node labeled withXi also is labeled with a vector(p�1 ; : : : ; p�ki) 2 Rki .� For each node� labeled withXi, eachxi;h 2R(Xi), and eachXj 2 X with (Xi; Xj) 2 ET
there exists exactly one edgee (labeled withxi;h)
in E leading from� to a node�0 2 V labeled withXj .
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Figure 1: Probabilistic Decision Graph

A RFGG is called aprobabilistic decision graph (PDG)
if for all nodes� with labelXi it holds thatp�h 2 [0; 1℄
and
Pkih=1 p�h = 1.

We also introduce the following notation: with respect
to the treeT we define forXi 2 X: succT (Xi) :=fXj 2 X j (Xi; Xj) 2 ET g, succ�T (Xi) := fXj 2 X j(Xi; Xj) 2 E�T g, whereE�T is the reflexive and transi-
tive closure ofET . Also we denote withpredT (Xi) the
unique immediate predecessor ofXi in T (predT (Xi) =; if Xi is the root). With respect to a RFGG we letVi
denote the set of all nodes inV labeled withXi. WhenXj 2 succT (Xi), � 2 Vi, and1 � h � ki, then we
denote withsucc(�;Xj ; xi;h) the node�0 2 Vj that is
connected to� via the (unique) edge(�; �0) 2 E labeled
with xi;h. Finally, we use� to denote the root ofG.

Figure 1 illustrates the definitions given so far.
It shows a PDG for four binary random variablesX1; : : : ; X4. The underlying treeT is given by the
edgesET = f(X1; X2); (X1; X3); (X3; X4)g. The la-
bels of the edges inE are represented by their style:
dotted forxi;1 = 0, solid for xi;2 = 1. The labeling
of the nodes with elements fromX is represented by
the setsVi. In this examplesucc(�1; X2; 0) = �3, and
succ(�4; X4; 1) = succ(�5; X4; 1) = �6.

We now turn to the semantics of a RFG, which essen-
tially consists of a real-valued function onW . This is
defined recursively via a definition of a functionf�G for
each node�.

Definition 2.2 Let G = (V;E) be a RFG w.r.t.T , � 2Vi. Let succT (Xi) = fY1; : : : ; Ylg � X. A real-valued
functionf�G is defined on�Xj2succ�T (Xi)R(Xj) byf�G(xi;h; z1; : : : ; zl) := p�h lY�=1 f succ(�;Y�;xi;h)G (z�)

(1)(xi;h 2 R(Xi); z� 2 �Z2succ�T (Y�)R(Z)). The functionf�G onW defined for the root� of G is simply denoted

by fG. WhenG is a PDG, thenfG defines a probability
distribution onW , which we denote withPG.

Note that for leaf nodes� the right hand side of (1)
reduces top�h, so that the recursive definition is well-
founded.

For the PDG in Figure 1 we obtain, for instance,f�5(X3 = 1; X4 = 0) = 0:6 � 0:1, and f�1(X1 =1; X2 = 0; X3 = 1; X4 = 0) = 0:7 � 0:8 � 0:6 � 0:1.
Like Bayesian networks, PDGs encode by their struc-

ture certain conditional independence relations. These
independence relations, however, are not expressible by
equations of the formP (Xi j X1; : : : ; Xi�1) = P (Xi j
Pa(Xi)), wherePa(Xi) � fX1; : : : ; Xi�1g is a set of
random variables, but in terms of equalities between con-
ditional distributions given partitions of the state space:P (Xi j X1; : : : ; Xi�1) = P (Xi j Ai), whereAi is a
partition ofW that is definable byX1; : : : ; Xi�1 (see
(Billingsley 1986, Section 33) for the basic notion of
a conditional distribution given a partition of the state
space). In the PDG of Figure 1, for example, we haveP (X4 j X1; X2; X3) = P (X4 j A4), whereA4 =ffX3 = 1g; fX1 = 1; X3 = 0g; fX1 = 0; X3 = 0gg.
The general form of the factorization by a PDG structure
then is PG = nYi=1PG(Xi j Ai); (2)

wherejAi j = jVi j.
From this basic factorization further conditional inde-

pendence relations inPG can be deduced by a PDG-
analogon of the d-separation condition. These derived
conditional independencies, again, are in terms of par-
titions rather than variables, and take the general formPG(Xi j B;C) = PG(Xi j B) for certain partitionsB;C. Independence structures captured by Bayesian
networks and by PDGs are different: conditional inde-
pendence relations expressed by PDGs in general cannot
be expressed by Bayesian network structures, and vice
versa. We defer a more detailed analysis of this topic to
an extended version of this paper.

3 Probabilistic Inference

We now turn to the question of how to compute posterior
probabilities from PDG representations. Central to the
solution of this problem are the concepts of thein-flow
andout-flowof a node.

Definition 3.1 Let G = (V;E) be an RFG forX with
respect toT . Let � 2 Vi. The out-flow of� is defined as

ofl(�) := Xz2�Xj2succ�T (Xi)R(Xj ) f�G(z):



Thus, the outflow of� is just the sum of all values off�G.
The definition of the in-flow of a node is slightly more

involved, and we first have to provide some terminology
for paths inG. Let Y be a subset ofX that is upward
closed inT , i.e. Xi 2 Y and(Xj ; Xi) 2 ET impliesXj 2 Y . Let Y + := Y [ fXi j predT (Xi) 2 Y g.
Any instantiationy 2 �Y 2Y R(Y ) defines a subtree ofG with root � that contains exactly one node from eachVi with Xi 2 Y +. We refer to such an instantiation as a
path in G. In Figure 1, for instance, forY = fX1g we
obtainY + = fX1; X2; X3g, and the instantiation, or
path,X1 = 1 defines the subtree consisting of the nodes�1; �2; �5.

Now let Y � X be upward closed andXi 2 Y +.
Each pathy 2 �Y 2Y R(Y ) then defines the unique� 2Vi contained in the subtree defined byy. We say that�
is reached byy, and define

Path(�;Y ) := fy 2 �Y 2Y R(Y ) j � reached byyg:
For the PDG of Figure 1 we have,
for example: Path(�6; (X1; X3)) =f(0; 1); (1; 1)g, and Path(�6; (X1; X2; X3)) =f(0; 0; 1); (0; 1; 1); (1; 0; 1); (1; 1; 1)g.
Definition 3.2 LetG andT be as in Definition 3.1. Let� 2 Vi, � 6= �, and letG n Xi denote the RFG overX n succ�T (Xi) obtained by removing all nodes labeled
with someXj 2 succ�T (Xi) fromG. The in-flow of� is
defined as

ifl(�) := Xy2Path(�;Xnsucc�T (Xi)) fGnXi(y): (3)

For the root we defineifl(�) := 1.

To provide a better intuition for the quantitiesifl
and ofl, we note that ifl(�) � ofl(�) is equal toPx2Path(�;X) fG(x).

The following lemma is the basis for an efficient com-
putation ofifl andofl for all nodes in a RFG.

Lemma 3.3 (a) Let� 2 Vi. Then

ofl(�) = kiXh=1 p�h YY 2succT (Xi) ofl(succ(�; Y; xi;h)): (4)

(b) Let � 2 Vi, � 6= �. Assume thatpredT (Xi) = Xj .
Then

ifl(�) =kjXh=1 X�02Vj :�=succ(�0;Xi;xj;h)[ifl(�0)p�0h YY 2succT (Xj)nXiofl(succ(�0; Y; xj;h))℄: (5)

Equations (4) and (5) give rise to a simple procedure
for computingifl(�) andofl(�) for all nodes� in time
linear in the size ofG: first ofl(�) is computed in bottom
up pass throughG starting with the leaves, thenifl(�) is
computed in a top down pass starting with the root.

For a PDGG the computations ofifl and ofl serve
to answer simple probabilistic queries. The most ba-
sic probabilistic query one needs to solve is the com-
putation of the probabilityPG(Y = y) of an instan-
tiation of a subset of variablesY � X to the valuesy 2 �Y 2Y R(Y ). This can be done by transformingG
into a RFGGY =y as follows: for allXj 2 Y and all� 2 Vj changep�h to 0 if xj;h is not the value to whichXj is instantiated iny (otherwise leavep�h unchanged).
Forx 2W we then havefGY =y(x) = � fG(x) if x satisfiesY = y0 else:
It follows that the root inGY =y has out-flow equal toPG(Y = y). AsGY =y and the out-flow of its root can
be computed in time linear in the size ofG, we see that
probabilities of events of the formY = y can be com-
puted in linear time based on a PDG representation.

A slightly more complicated probabilistic inference
problem is the computation of a posterior distributionPG(Xj j Y = y) for a variableXj 62 Y given (the “ev-
idence”)Y = y. Of course, this can be reduced to a
number of computations ofPG(Xj = xj;h;Y = y) by
the method already described. However, the posterior
distribution ofXj can also be read off the RFGGY =y
directly, becausePG(Xj = xj;h j Y = y) =1

ofl(�) X�2Vj ifl(�)p�h YY 2succT (Xj)ofl(succ(�; Y; xj;h)) (6)

(whereifl andofl are computed inGY =y).
Instead of computing the posterior distribution of a

variableXj given an instantiationY = y as evidence,
one may also be interested in computing the posterior
distribution ofXj given evidence of a more general form,
e.g. disjunctive evidence likeX3 = x3;2 _ X3 =x3;7. We now show that the approach used to computePG(Xi j Y = y) can be extended in a very coherent way
to compute posterior distributionsPG(Xi j E), whereE
can, in principle, be any subset ofW that is given as ev-
idence. As to be expected, the linear time complexity of
the computation ofPG(Xi j Y = y) can not be main-
tained for general evidence setsE .

The functionfGY =y can also be written as the prod-
uct fG � 1Y =y , where1Y =y is the indicator function ofY = y, i.e. 1Y =y(x) = 1 if x satisfiesY = y, and1Y =y(x) = 0 else. To generalize our approach to the
computation of posterior distributions, it is sufficient to



Algorithm: multiply-rfg(�G; �H : roots of RFGs w.r.t.T )i:= index of variable at the root ofT� := new node labeled withXi;
for h = 1; : : : ; ki dop�h := p�Gh � p�Hh ;

for all Y 2 succT (Xi) do
succ(�; Y; xi;h) :=
multiply-rfg(succ(�G; Y; xi;h); succ(�H ; Y; xi;h));

end
end
return �.

Table 1: Multiplication algorithm

show how to compute RFGs representing functions of
the formfG � 1E with E �W in general.

We first observe that indicator functions1E also can
be represented by RFGs:

Definition 3.4 A RFG H for X is called anindicator
graph, iff p�h 2 f0; 1g for all �; h. ThenfH(x) 2 f0; 1g
for all x 2 W , andEH := fx j fG(x) = 1g is the event
defined byH .

Indicator graphs, of course, are closely related to OB-
DDs, which are essentially the subclass of indicator
graphs for which the underlyingT is a linear order.

The computation of a RFG representation offG � 1E ,
thus, becomes a special case of the general problem of
computing for two RFGsG andH a RFGG � H rep-
resenting the productfG � fH . We now show how this
can be accomplished in general, in essence by extending
Bryant’s (1986) method for performing Boolean opera-
tions on OBDDs.

Bryant’s algorithm requires OBDD’s with respect to
the same variable order as input. Similarly, our basic
multiplication algorithm requires that the two factors of
the multiplication are RFGs with respect to the same un-
derlying tree structureT .

A high-level description of the algorithm is given in
table 1. In its formulation an RFG is identified with its
root node, and nodes here are also understood to store
the information on their successor nodessucc(�; �; �). To
make the algorithm efficient, it is necessary to do some
bookkeeping in order to avoid evaluating recursive calls
with identical arguments more than once. This can be
done as for Boolean operations on OBDDs, which leads
to the following complexity result.

Theorem 3.5 Let G = (V;EG) andH = (U;EH) be
two RFGs forX w.r.t. the same tree orderT . Then an
RFGG �H representingfG �fH can be computed in timeO(Pni=1 jVi j � jUi j � ki).

Figure 2 shows an indicator graph for the tree structure
of Figure 1 and the instantiationX2 = 1; X3 = 0. As
an indicator graph for an instantiation can be given for
any tree structure, and satisfiesjVi j = 1 for all i, we find
that the general complexity result of Theorem 3.5 gives
the same linear bound on the computation of a represen-
tation forG � 1Y =y as we found before (and, in fact, the
computation ofG � 1Y =y via the general algorithm of
Table 1 reduces to a traversal ofG and the setting to 0 of
parametersp�h when� 2 Vi, andxi;h is inconsistent withY = y).

Not every setE �W can be represented with an indi-
cator graph that has the same tree structureT as a given
PDG. However, it is always possible to representE with a
tree structureT 0 that is a refinement ofT in the sense that
for all Xi; Xj : Xj 2 succ�T (Xi) ) Xj 2 succ�T 0(Xi).
A possible choice forT 0 is a total order consistent with
the partial order ofT , because every indicator function1E can be represented on the basis of suchT 0. For multi-
plication, the PDGG then first has to be transformed into
a PDGG0 with tree structureT 0. While algorithmically
not difficult, this transformation can cause an exponential
blowup in the size of the PDG.
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Figure 2: Indicator graph for partial instantiation

4 PDGs vs. Junction Trees

As probabilistic inference is linear in the size of a PDG,
but NP-hard in the size of a Bayesian network represen-
tation (Cooper 1990), the respective sizes of PDG and
Bayesian network representations are not an appropriate
measure to compare the efficiency of these two frame-
works.

The most popular approach for probabilistic inference
from Bayesian networks is to transform a given Bayesian
network into ajunction treerepresenting the same distri-
bution, and then compute probabilities on the junction
tree representation. The transformation of a Bayesian
network into a junction tree can cause an exponential
blowup, but inference on junction trees then is linear in
the size of the junction tree (see e.g. (Jensen 2001, Cow-
ell, Dawid, Lauritzen & Spiegelhalter 1999)). Other
methods for probabilistic inference from Bayesian net-



works have the same complexity characteristics as the
junction tree approach.

The pertinent comparison we have to make, therefore,
is between the sizes of PDGs and junction tree represen-
tations of a probability distribution.

Theorem 4.1 There exists an effective transformation
that takes a junction treeJ as input, and returns a PDGG representing the same distribution asJ . The size ofG
is linear in the size ofJ .

Proof: (Sketch) LetJ be a junction tree. For a nodeC
of J denote withvar(C) the set of variables fromX that
appear inC. TurnJ into a directed tree by taking an arbi-
trary node as the root and directing all edges away from
the root. With every nodeC of J we can then associate
the setnew(C) � var(C) of variables fromX that are
not contained in the parent nodepredJ(C) ofC. The tree
orderT forG is now obtained from this directed junction
tree by “expanding” each nodeC into a linear sequence
of nodes, one for eachXi 2 new(C). By induction on
the number of nodes inJ one now shows that one can
construct a PDGG w.r.t. T , which represents the same
distribution asJ , and for each nodeC of the original
junction tree the following holds for the cardinalities of
the node setsVi:Xi:Xi2new(C) jVi jjR(Xi) j � YX2var(C) jR(X) j:
The theorem then follows, because the total sizes ofG,
respectivelyJ , are given (up to linear factors) by sum-
ming the left, respectively right, side of this inequality
over all nodesC of J . �

Theorem 4.1 shows that PDG representations are al-
ways as efficient as Bayesian network representations.
The following example shows that in some cases they
are more efficient.

Example 4.2 LetX1; : : : ; Xn�1 be independent binary
random variables withP (Xi = 1) = 1=2 (i =1; : : : ; n� 1), andXn a random variable withP (Xn = 1 j X1 = e1; : : : ; Xn�1 = en�1)= ( 0 if

Pn�1j=1 ej mod2 = 01 if
Pn�1j=1 ej mod2 = 1:

The joint distribution ofX1; : : : ; Xn then models the
generation of ann� 1 bit random number with an added
parity check bit. A Bayesian network representation of
this distribution is shown in Figure 3 (a). The junction-
tree constructed from this network (as well as any other
junction-tree forP ) is of exponential size inn. Fig-
ure 3 (b) shows the structure of a PDG representation
of P , which is linear inn.
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Figure 3: Bayesian network and PDG representations

In the preceding example any direct Bayesian network
representation ofP is of exponential size. However, one
can reduce the size of the representation by introducing
suitable auxiliary (“hidden”) variables and represent the
joint distribution of theXi and the new variables: whileXn depends on all ofX1; : : : ; Xn�1, it becomes inde-
pendent fromX1; : : : ; Xn�2 given

Pn�2j=1 Xj mod 2.
This can be utilized by introducing a new random vari-
ableY :=Pn�2j=1 Xj mod2, and decompose the network
by introducingY as an intermediary variable betweenX1; : : : ; Xn�2 andXn. This process can be iterated,
thus effectively replacing the exponentially large condi-
tional probability table atXn with a network of hidden
variables. Both the size of the resulting Bayesian net-
work and its junction-tree then are linear inn. The fol-
lowing theorem shows that hidden variables provide a
general method for making Bayesian network represen-
tations as efficient as PDGs.

Theorem 4.3 There exists an effective transformation
that takes a PDGG as input, and returns a Bayesian
networkB with the following properties: whenX =X1; : : : ; Xn are the random variables ofG, thenB has
nodesX[fNi j i = 1; : : : ; ng; the marginal distribution
defined byB onX is equal to the distribution defined byG, and there exists a junction treeJ for B whose size is
quadratic in the size ofG.

Proof: (Sketch) LetG = (V;E) with tree structureT be given. LetNi be a random variable with rangeR(Ni) := Vi (i = 1; : : : ; n). The network structure
of B is defined bypredB(Xi) := Ni for all i, and
pred(Ni) := fXj ; Njg whenXi = succT (Xj). With
this network structurePG can be encoded. The cliques
of the junction tree obtained fromB by the usual
construction are sets of the formfNj ; Xj ; Nig and thus



are labeled with tables of sizejVj jjR(Xj) jjVi j. �
A more detailed analysis furthermore shows that the

size ofJ obtained in this construction is only linear in
the size ofGwhen one does not explicitly represent rows
with value 0 in the tables ofJ .

5 Construction of PDGs

Our results so far demonstrate that PDG representations
of probability distributions provide a basis for proba-
bilistic inference with several potential advantages over
Bayesian network or junction-tree representations. The
question then is, how do we obtain a PDG representa-
tion? In this section we briefly discuss three possible ap-
proaches: direct specification, compilation of a Bayesian
network, and learning from data.

Direct Specification

Like a Bayesian network, a PDG may be specified di-
rectly by a domain expert. In some cases this can be
straightforward (as in Example 4.2) and rather more nat-
ural than the specification of a Bayesian network for the
same distribution. In other cases the potentially large
number of nodes allocated to each variableXi will make
a direct specification of a large scale PDG rather cumber-
some.

One reason why the specification of a large probabil-
ity distribution by a Bayesian network is feasible is that
the specification task is decomposed into the problem of
specifying a number of relatively small conditional dis-
tributions. It turns out that a similar compositional spec-
ification is possible for PDGs. We illustrate the general
approach by an example.

Figure 4 (a) shows a PDG for three binary random
variablesA;B;C (according to whichB andC are inde-
pendent givenA). Figure 4 (b) shows a RFG that spec-
ifies the conditional distribution of another variableD
givenB andC. Note that according to this RFGD is
conditionally independent fromC givenB = 1. A joint
distribution ofA;B;C;D now is the product of the func-
tions defined by (a) and (b). A PDG representing this
product can be computed with the multiplication algo-
rithm of Section 3. This means that first for the variablesA;B;C;D a tree structureT has to be determined which
is a refinement of the tree structures of the individual fac-
tors. In this example, the only solution is the linear orderA;B;C;D. Transformations of the two factors (a) and
(b) into RFGs for this linear order are shown as (c) and
(d). Note that we also introduced “dummy” nodes for
variables that originally did not appear in the individual
factors. Finally, (c) and (d) are multiplied, yielding the
final PDG (e). The size of the final PDG will depend on
the choice of the tree structureT . The problem of find-
ing a tree structure that minimizes the size of the prod-

uct is somewhat analogous to the problem of finding an
optimal triangulation for a Bayesian network in order to
minimize the size of the induced junction tree.

Compilation

The preceding discussion also points to a method for au-
tomatically compiling a Bayesian network into a PDG:
one can first rewrite the conditional probability tables of
the network as RFGs similar in form to Figure 4 (b), and
then compute the product. A second approach is pro-
vided by the results of Section 4: one can first construct
a junction tree from the Bayesian network and then turn
the junction tree into a PDG, as described in the proof of
Theorem 4.1. This latter approach has the advantage that
it can utilize all the techniques that have been developed
for the construction of small junction trees. The first ap-
proach, on the other hand, can utilize at an early stage in
the construction process potential conditional indepen-
dencies, which can already greatly reduce the size of the
RFGs representing the individual conditional probability
tables.

Learning from data

PDGs can be learned from empirical data with essen-
tially the same techniques as used for Bayesian net-
works. When the structure(V;E) of a PDG is given,
then maximum likelihood estimateŝp�h for the parame-
ters are obtained from the empirical conditional distribu-
tionsP data(Xi j Ai) in the data. In the case of incom-
plete data, the EM-algorithm can be used. Due to the lin-
ear time complexity of probabilistic inference, a single
expectation step of the EM-algorithm has time complex-
ity O(NK), whereN is the number of data items andK = Pi jVi jki is the size of the PDG (the computa-
tion of the expected conditional distributions given a sin-
gle data item essentially consists of one outflow/inflow
computation, as in probabilistic inference). The max-
imization step requires timeO(K), so that the overall
complexity of a single iteration of the EM-algorithm isO(NK).

Structure learning for PDGs has some interesting as-
pects. At first this might seem like an almost hopeless
task, as the space of all PDG-structures is considerably
larger than the space of all Bayesian network structures
for the same set of variables (a very coarse lower bound
for all PDG-structures forn variables is22n , whereas a
coarse upper bound for all Bayesian network structures
is 2n2). However, there are some mitigating factors: first,
the space of PDG-structures has a hierarchical structure
determined by the level of possible tree structuresT , and,
for eachT , the possible refinements to a graph(V;E).
This gives rise to hierarchical search strategies where a
top-level search overT -structures is guided by approx-
imate optimizations of the exact graph structure given
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Figure 4: Compositional specification

theT -structure. For any givenT -structure, the space of
possible PDG-structures can be explored using elemen-
tary split and join operations: a split operation replaces
a node� with l � 2 predecessors withl distinct copies,
each having one of�’s predecessors as a parent, and all
having the same successors as�. One can show that for
every PDG-structure that does not realize the maximal
likelihood score for PDG-structures over the sameT -
structure, there exists at least one split operation that will
lead to a structure with higher likelihood score. A join
operation reduces model complexity by merging nodes�; �0 2 Vi with succ(�; Y; xi;h) = succ(�0; Y; xi;h) for
all Y 2 succT (Xi); 1 � h � ki, and(p�1 ; : : : ; p�ki) �(p�01 ; : : : ; p�0ki).

A major advantage of learning PDGs rather than
Bayesian networks lies in the fact that here a score func-
tion like MDL-score that penalizes model complexity
directly penalize theinferential complexityof a model,
rather than merely itsrepresentational complexity. In
contrast, MDL-score does not distinguish between two
Bayesian networks of the same size (and having the same
likelihood score), but with perhaps widely different be-
havior in terms of inference complexity. As eventually
we will want to use the model for inference (not for com-
pressing the observed data!), it is very desirable to guide
the model search directly towards those models that will
perform well on inference problems.

6 Related Work

As noted in Section 1, our definition of probabilistic
decision graphs is based on a definition originally pro-
posed by Bozga and Maler (1999). Probabilistic decision

graphs in the sense of Bozga and Maler are essentially
PDGs as introduced here with an underlying linear orderT . The questions that Bozga and Maler then investigate
in connection with these representations are quite distinct
from the questions considered in this paper.

Several proposals have been made to encode con-
ditional probability tables of Bayesian networks with
(decision-) trees that make use of “context-specific”-
independence relations within the conditional distribu-
tion of a variableXi given its parentsPa(Xi) (Boutilier et
al. 1996, Zhang & Poole 1999, Cano, Moral & Salmeron
2000). The possible use of OBDDs instead of trees has
also been mentioned (Boutilier et al. 1996). These ap-
proaches can be seen as hybrid frameworks combining
elements of “pure” Bayesian network and PDG represen-
tations. A number of adaptations of standard Bayesian
network inference techniques to such structured repre-
sentations of conditional probability tables have been de-
scribed: Boutelier et al. (1996) suggest to use the struc-
ture in the conditional distributions either to decompose
the network by introducing auxiliary variables that re-
duce the overall network connectivity, or to obtain more
efficient strategies for cutset conditioning. Zhang and
Poole (1999) show how to perform variable elimination
on tree representations of cpts. In none of these ap-
proaches has it been possible to quantify the gain in in-
ferential tractability afforded by the more compact repre-
sentations. This is not surprising, because the compact-
ness of the new cpt-representations in general will not be
preserved under the multiplication and marginalization
operations occurring in the inference procedures.

In a somewhat different vein, Cano et al. (2000) use



trees to represent the potentials in a join-tree represen-
tation, and show how to adapt the standard propagation
algorithm to this representation. In order to make sure
that trees generated during the inference process remain
small, it is suggested to use trees that, where necessary,
only approximate the true potentials, which makes this a
framework for approximate inference.

Another method related to PDG representations are
the polynomial representations of Darwiche (2000,
2002). In this framework the joint distribution of vari-
ablesX1; : : : ; Xn is represented by a multilinear poly-
nomial in indicator variables�Xi and numerical con-
stants. This polynomial, in turn, can be represented by
an arithmetic circuit whose size is linear in the size of
a junction-tree representation for the distribution. Prob-
abilistic inference now is linear in the size of the arith-
metic circuit. Though these latter results bear some
resemblance to our results on PDGs, there is a fun-
damental difference between Darwiche’s approach and
ours. Unlike PDGs, arithmetic circuits do not provide
a primary representation language for probability distri-
butions: there is no syntactic criterion that can be ap-
plied to tell whether any given arithmetic circuit repre-
sents a probability distribution or some other real-valued
function. For this reason it is all but impossible to di-
rectly specify a probability distribution as a circuit, or
to learn a circuit representation from data. This makes
this form of representation a secondary representation
that can only be obtained by compilation of some other
representation like a Bayesian network (as proposed by
Darwiche (2000)) – or a PDG.

7 Conclusion

PDGs are a promising alternative to Bayesian networks
and/or junction trees for the representation of proba-
bility distributions. An attractive feature of PDGs is
that they replace by one coherent, simple framework
a number of modeling techniques (use of hidden vari-
ables, context-specific independence, structured repre-
sentation of conditional probability tables) previously
used to make Bayesian network representations more ef-
ficient. The algorithms for probabilistic inference on
PDGs (computation of in- and out-flow, multiplication of
RFGs) are very simple and extend the special inference
methods proposed by Nielsen et al. (2000) for determin-
istic subnetworks to general probabilistic inference.

Different direct construction methods for PDGs are
available, so that PDGs are a “stand-alone” represen-
tation framework that is not dependent on compilation
from some other representation.

Eventually, a more comprehensive evaluation of the
significance and applicability of PDGs will have to come
out of a better understanding where the partition-based
factorizations (2) encoded by PDGs are more natural and

compact than the variable-based factorizations encoded
by Bayesian networks.
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