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Abstract

We adopt probabilistic decision graphs developed in thd fi¢lautomated verification as a tool for proba-
bilistic model representation and inference. We show thababilistic inference has linear time complexity
in the size of the probabilistic decision graph, that thelfaaprobabilistic decision graph for a given distri-
bution is at most as large as the smallest junction tree foséime distribution, and that in some cases it can
in fact be much smaller. Behind these very promising featofeprobabilistic decision graphs lies the fact
that they integrate into a single coherent framework a nurabeepresentational and algorithmic optimiza-
tions developed for Bayesian networks (use of hidden vleglzontext-specific independence, structured
representation of conditional probability tables).

1 Introduction and Maler’s (1999) Probabilistic Decision Graphs, and
show how to perform basic probabilistic inference prob-
Over the past 15 years Bayesian networks have been déems on this representation. As it will turn out that these
veloped in Al as the main representation tool for prob-inference problems have linear time complexity in the
ability distributions on finite state spaces. In about thesize the representation, a crucial question will be how
same period of time, ordered binary decision diagramdarge a representation of a distribution as a probabilistic
(OBDDs) (Bryant 1986) have emerged in automated verdecision graph will be in comparison to a representation
ification as the primary representation tool for Booleanas a junction-tree. This question is answered in section 4.
functions, and have also been adopted for the representsive also discuss the problem of learning probabilistic de-
tion of arbitrary real-valued functions (Fujita, McGeer & cision graphs from data, and argue that there can be sub-
Yang 1997, Lai & Sastry 1992), and, in particular, prob- stantial benefits in learning a decision graph, rather than
ability distributions (Bozga & Maler 1999). a Bayesian network.
Bayesian networks and OBDD-based representatio% Definitions
frameworks of probability distributions are developed
with similar goals: to obtain compact representations ofThroughout the remainder of this papeX =

probability distributions on which certain basic opera- X, ..., X,, denotes a set of random variables. The
tions can be performed efficiently. The types of oper-range (set of possible values) of; is R(X;) =
ation one is interested in, however, are somewhat dif-{z; ;... ,z;,}. The product seR(X;) x ... x R(X,,)

ferent. A basic problem motivating the whole OBDD is denoted byV. We are interested in representations for
approach, for instance, is equality testing, i.e. checkinghe joint distribution ofX on .

whether two OBDDs (or probabilistic versions thereof) patinition 2.1 Let 7 be a tree with nodes
represent the same Boolean function (probability distri- Xi,...,X,} and direct successor relatiomEr.
bution). This question has not attracted much attentiony (eal function graph (RFGYor X with respect to

in Al. The probabilistic inference problems consideredio tree orderT is a rooted directed acyclic graph
in Al, on the other hand, play no prominent role in the ~ _ (V, E), such that

verification literature.

In spite (.Jf some referenges to the.L'JS(?Z‘ of OBDDs fgr A node labeled withX; also is labeled with a vector
some specialized subtasks in probabilistic represemtatio Y , R
and inference (Boutilier, Friedman, Goldszmidt & Koller (P opi) € R
1996, Nielsen, Wuillemin, Jensen & Kjeerulff 2000), e For each nodes labeled with X;, eachz;; €
there thus has not been any rigorous appraisal of the mer-  R(X;), and eachX; € X with (X;,X;) € Er
its of (probabilistic) OBDD technology from the Al point there exists exactly one edgglabeled withz; p)
of view. This paperis meantto provide such an appraisal. in E leading fromv to a node’ € V labeled with
To this end we first introduce a generalization of Bozga X;.

e each node € V islabeled with a variabl&’; € X.



by f¢. WhendG is a PDG, therys defines a probability
distribution onW, which we denote withP5.

Note that for leaf nodew the right hand side of (1)
reduces top;, so that the recursive definition is well-
founded.

For the PDG in Figure 1 we obtain, for instance,
f5(Xs = 1,X4, = 0) = 06-0.1, and f' (X; =
1,X,=0,X3=1,X,=0)=0.7-0.8-0.6-0.1.

Like Bayesian networks, PDGs encode by their struc-
ture certain conditional independence relations. These
independence relations, however, are not expressible by
equations of the fornP(X; | X1,...,X,_1) = P(X; |
Pa(X;)), wherePa(X;) C {X;,...,X,; 1} is a set of
random variables, but in terms of equalities between con-
ditional distributions given partitions of the state space
A RFGG is called aprobabilistic decision graph (PDG) P(X; | X1,...,X; 1) = P(X; | ), where.w is a
if for all nodesv with label X; it holds thatp}, € [0,1]  partition of IV that is definable byX;,... , X; | (see
anth Pl = (Billingsley 1986, Section 33) for the basic notion of
a conditional distribution given a partition of the state
space). In the PDG of Figure 1, for example, we have
P(X4 ‘ X17X27X3) = P(X4 ‘ §Z74), Where,(ZZl =

Figure 1: Probabilistic Decision Graph

We also introduce the following notation: with respect
to the treeT we define forX; € X: sucg(X;) :=

g(( )6())( G =), ety ot exive ant tansi. {0 = 1111 = LX; = 0}, {X, = 0., = 0}}
] T . The general form of the factorization by a PDG structure
tive closure ofET. Also we denote witlpredr (X;) the then is

unigue immediate predecessorX®fin T (predr(X;) =

¢ if X; is the root). With respect to a RFG we letV; n

denote the set of all nodes i labeled withX;. When Pg =[] Pa(Xi | ), 2)

X; € suce(X;), v € Vi, andl < h < k;, then we i=1

denote withsucdqv, X;, z; ) the noder’ € V; that is
connected te via the (unique) edgév, v') € E labeled
with z; 5. Finally, we usep to denote the root ofr.

Figure 1 illustrates the definitions given so far.

where| o7 | = |V;].

From this basic factorization further conditional inde-
pendence relations i®; can be deduced by a PDG-
It shows a PDG for four binary random variables analogon of the d-separation condition. These derived

P X,. The underlying treeT is given by the conditional independencies, again, are in terms of par-
eo]lg’]é-s.E’T 4: {(X1, X), (X1, X3), (X3, X1)}. The la- titions rather than variables, and take the general form

bels of the edges it are represented by their style: a(Xi | #,%) = Po(X; | %) for certain partitions .
dotted forz; , — 0, solid forz;» = 1. The labeling AB,%. Independence structures captured by Bayesian

of the nodes with elements fronX is represented by networks and t.)y PDGs are different: cqnditional inde-

the setsV;. In this examplesucdv,, Xs,0) — vy, and pendence relations exprgssed by PDGs in general can.not

sucdvs, Xi,1) = sucdvs, X, 1) = ‘Vﬁ be expressed by Bayesian network structures, and vice
We now turn to the semantics of a RFG, which essenY€"S&: We defer a more detailed analysis of this topic to

tially consists of a real-valued function di. This is an extended version of this paper.

defined recursively via a definition of a functigi, for L
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each node.
Definition 2.2 LetG = (V,E) be a RFG w.r.tT, v € We now turn to the question of how to compute posterior
Vi. Letsuce (X;) = {Y1,...,Y;} C X. Areal-valued probabilities from PDG representations. Central to the
function fZ, is defined oijesuccr(Xi)R(Xj) by solution of this problem are the concepts of thdlow
l andout-flowof a node.
Fh@in 21y 20) H FRCqrYnmin) (4 Definition 3.1 Let G = (V, E) be an RFG forX with
A=1 respect tdl'. Letv € V;. The out-flow ofv is defined as
1)
(vin € R(X,), 23 € X zesucs (vy) R(2)). The function ofv) = . faa)

f& on W defined for the roop of G is simply denoted =€ esuogy (x1) BIXS)



Thus, the outflow o¥ is just the sum of all values of

e

Equations (4) and (5) give rise to a simple procedure
for computingifl(v) andofl(v) for all nodesr in time

The definition of the in-flow of a node is slightly more linear in the size o&: first ofl(v) is computed in bottom
involved, and we first have to provide some terminologyup pass througlir starting with the leaves, thefi(v) is

for paths inG. LetY be a subset oX that is upward

closed inT, i.e. X; € Y and(X;, X;) € Er implies
X; €Y. LetY' := Y U{X; | predr(X;) € Y}.

computed in a top down pass starting with the root.
For a PDGG the computations offl and ofl serve
to answer simple probabilistic queries. The most ba-

Any instantiationy € xycy R(Y) defines a subtree of sic probabilistic query one needs to solve is the com-

G with root p that contains exactly one node from eachputation of the probabilityP; (Y =
V; with X; € Y. We refer to such an instantiation as a tiation of a subset of variable¥ C

pathin G. In Figure 1, for instance, fo¥ = {X;} we

y) of an instan-
X to the values
y € Xyey R(Y). This can be done by transformirdg

obtainY™ = {X;, X,, X3}, and the instantiation, or into a RFGGy—, as follows: for allX; € Y and all

path,X; = 1 defines the subtree consisting of the nodesy € V; changepj, to 0 if z; ; is not the value to which
X;is mstanhated iny (otherwise leavg) unchanged).
Form € W we then have

fay_, (@) = { gc(w)

It follows that the root inG'y —,, has out-flow equal to
Pa(Y =1y). AsGy—, and the out-flow of its root can
be computed in time linear in the size Gf we see that
probabilities of events of the for® = y can be com-
puted in linear time based on a PDG representation.

A slightly more complicated probabilistic inference
problem is the computation of a posterior distribution
P;(X; | Y =y) foravariableX; ¢ Y given (the “ev-
idence”)Y = y. Of course, this can be reduced to a
i) obtained by removing all nodes labeled number of computations df; (X; = z;,,Y = y) by

V1, V2, Vs.

Now letY C X be upward closed andl; € Y.
Each pathy € xycy R(Y) then defines the uniquee
V; contained in the subtree defined 9y We say thav
is reached by, and define

if x satisfiesY =y
else

Path(r,Y) := {y € xyey R(Y) | v reached by }.

For the PDG of
for example: Path(vs, (X1, X3)) =
{(0/1),(1/1)}, and Patr(VG,(Xl,Xg,Xg)) =
{(0,0,1),(0,1,1),(1,0,1), (1,1,1)}.

Definition 3.2 Let G andT be as in Definition 3.1. Let
v € Vi, v # p, and letG \ X; denote the RFG over
X \ sucg (X

Figure 1 we have,

with someX; € succ.(X;) from G. The in-flow ofv is
defined as

ifl (v) := >

y€ePath(v, X \sucg;. (X))

faxi(y)- ()

For the root we defindl(p) := 1.

To provide a better intuition for the quantitigl
and ofl, we note thatifl(v) - ofl(v) is equal to

ZmePath(u,X) f(,‘(m)

The following lemma is the basis for an efficient com-

putation ofifl andofl for all nodes in a RFG.
Lemma 3.3 (a) Letr € V;. Then

ofl(v Z ]

h=1 Y esucer (X;)

of(sucdv,Y,z;4)). (4)

(b) Letv € V;, v # p. Assume thapredy(
Then

ifl(v) =

k]
Z [ifl (v
1

v'eVj:

X)) = X;.

v)py [ of(sucer’, Y, z;,4))]. 5)

h= Y esucer (X;)\ X

v=sucdr’',X; JTih)

the method already described. However, the posterior
distribution of X; can also be read off the RFGy —,
directly, because

PG(X]‘ =, Y =y) =
LS it (6)
ofi(p) > ifl(w)py, T ofi(sucdv, Y, z;4))

veV; Y esucer (X;)

(whereifl andofl are computed if'y —,).

Instead of computing the posterior distribution of a
variable X; given an instantiatio’y” = y as evidence,
one may also be interested in computing the posterior
distribution of X ; given evidence of a more general form,
e.g. disjunctive evidence lik&(s = z32 V X3 =
z3 7. We now show that the approach used to compute
P;(X; | Y = y) canbe extended in a very coherent way
to compute posterior distribution®; (X; | £), wheref
can, in principle, be any subset @f that is given as ev-
idence. As to be expected, the linear time complexity of
the computation oP;(X; | Y = y) can not be main-
tained for general evidence séts

The functionfg, _, can also be written as the prod-
uct fg - 1y—,, Wherely—, is the indicator function of
Y =y, ie ly—y(z) = 1if x satisfiesY = y, and
ly—y(x) = 0 else. To generalize our approach to the
computation of posterior distributions, it is sufficient to



Algorithm: multiply-rfg(pg, pa: roots of RFGs w.r.tT)

1:= index of variable at the root af
p = new node labeled witi;;
forh=1,... ,k; do
Py =00 PRt
for all Y € suce(X;) do
sucdp,Y, z;p) ==
multiply-rfg(sucd pe, Y, zi.1.), SUCEpr. Y, 1) );
end
end
return p.

Table 1: Multiplication algorithm

Figure 2 shows an indicator graph for the tree structure
of Figure 1 and the instantiatioki, = 1, X3 = 0. As
an indicator graph for an instantiation can be given for
any tree structure, and satisfidg | = 1 for all 7, we find
that the general complexity result of Theorem 3.5 gives
the same linear bound on the computation of a represen-
tation forG - 1y —, as we found before (and, in fact, the
computation ofG - 1y —,, via the general algorithm of
Table 1 reduces to a traversal@fand the setting to O of
parameterg;, whenv € V;, andz; 5 is inconsistent with
Y =y).

Not every set C W can be represented with an indi-
cator graph that has the same tree struciues a given
PDG. However, itis always possible to represémtith a
tree structurd” that is a refinement df in the sense that
forall X;, X; : X; € sucé.(X;) = X, € sucé. (X;).

show how to compute RFGs representing functions ofA possible choice foff” is a total order consistent with

the formfg - 1¢ with £ C W in general.
We first observe that indicator functions also can
be represented by RFGs:

Definition 3.4 A RFG H for X is called anindicator
graph iff p;, € {0,1} forall v, h. Thenfg(z) € {0,1}

forallz € W,andEg := {z | fa(x) = 1} is the event
defined byH .

Indicator graphs, of course, are closely related to OB-
DDs, which are essentially the subclass of indicator

graphs for which the underlyirgj is a linear order.
The computation of a RFG representationfef- 1¢,

thus, becomes a special case of the general problem of

computing for two RFG<7 and H a RFGG - H rep-
resenting the producfs - fg. We now show how this

the partial order ofl’, because every indicator function
1¢ can be represented on the basis of sticH-or multi-
plication, the PDG7 then first has to be transformed into
a PDGG' with tree structurl”’. While algorithmically
not difficult, this transformation can cause an exponential
blowup in the size of the PDG.

can be accomplished in general, in essence by extending
Bryant's (1986) method for performing Boolean opera-
tions on OBDDs.
Bryant's algorithm requires OBDD’s with respect to
the same variable order as input. Similarly, our basic4 PDGs vs. Junction Trees
multiplication algorithm requires that the two factors of o o ) .
the multiplication are RFGs with respect to the same unAS probabilistic inference is linear in the size of a PDG,
derlying tree structur@'. but NP-hard in the size of a Bayesian network represen-
A high-level description of the algorithm is given in tation (Cooper 1990), the respective sizes of PDG and
table 1. In its formulation an RFG is identified with its Bayesian network representations are not an appropriate
root node, and nodes here are also understood to stof@€asure to compare the efficiency of these two frame-
the information on their successor nodesdv, -, -). To ~ WOrks. o
make the algorithm efficient, it is necessary to do some | "€ most popular approach for probabilistic inference
bookkeeping in order to avoid evaluating recursive callsiTom Bayesian networks is to transform a given Bayesian
with identical arguments more than once. This can pd1etwork into gunction treerepresenting the same distri-

done as for Boolean operations on OBDDs, which lead®ution, and then compute probabilities on the junction
to the following complexity result. tree representation. The transformation of a Bayesian

network into a junction tree can cause an exponential
blowup, but inference on junction trees then is linear in
the size of the junction tree (see e.g. (Jensen 2001, Cow-
ell, Dawid, Lauritzen & Spiegelhalter 1999)). Other
methods for probabilistic inference from Bayesian net-

Figure 2: Indicator graph for partial instantiation

Theorem3.5LetG = (V,Eg) andH = (U, Ey) be
two RFGs forX w.r.t. the same tree ordéf. Then an
RFGG - H representing; - fi can be computed in time
O, Vil - |Ui| - ky).



works have the same complexity characteristics as the
junction tree approach.

The pertinent comparison we have to make, therefore, @
is between the sizes of PDGs and junction tree represen-
tations of a probability distribution. @

Theorem 4.1 There exists an effective transformation
that takes a junction treé as input, and returns a PDG @ @

G representing the same distribution.AsThe size of¢ @ @ ceen @

is linear in the size of. v>< Y
Proof: (Sketch) LetJ be a junction tree. For a node \\ / :

of J denote withvar(C') the set of variables fronX that

appearirC. TurnJ into a directed tree by taking an arbi- @ @ @
trary node as the root and directing all edges away from

the root. With every nod€’ of .J we can then associate (a) (b)
the setnew(C) C var(C) of variables fromX that are
not contained in the parent nogeed; (C) of C. The tree

orderT for G is now obtained from this directed junction
tree by “expanding” each nod@ into a linear sequence

of nodes, one for eac; € new(C). By induction on In the preceding example any direct Bayesian network
the number of nodes i one now shows that one can representation of is of exponential size. However, one
construct a PDG w.r.t. T', which represents the same can reduce the size of the representation by introducing
distribution asJ, and for each nod€’ of the original  gyjtable auxiliary (“hidden”) variables and represent the
junction tree the following holds for the cardinalities of jgint distribution of theX; and the new variables: while

Figure 3: Bayesian network and PDG representations

the node set¥: X,, depends on all of;,... , X, 1, it becomes inde-
pendent fromX,,... X, 5 given Z;‘;f X; mod 2.
Z Vil R(X3) | < H [ R(X)]. This can be utilized by introducing a new random vari-
iXi€new(C) Xevar(€) ableY := Y"""7 X; mod2, and decompose the network
The theorem then follows, because the total size& of by introducing)” as an mtgrmedlary variable petween
X1,...,X, 2 and X,,. This process can be iterated,

respectivelyJ, are given (up to linear factors) by sum-
ming the left, respectively right, side of this inequality
over all nodes” of J.

thus effectively replacing the exponentially large condi-
tional probability table afX,, with a network of hidden
variables. Both the size of the resulting Bayesian net-
work and its junction-tree then are linearsin The fol-

Theorem 4.1 shows that PDG representations are a'owing theorem shows that hidden variables provide a

ways as efficient as Bayesian network representatlons.eneral method for making Bayesian network represen-

The followm_g_example shows that in some cases thefations as efficient as PDGs.
are more efficient.

Example 4.2 Let X; ..., X, 1 be independent binary Theorem 4.3 There exists an effective transformation

andom variables WiF(Y, 1) — 1j2 ¢~ L Iakes & PO s et and reums o Bayesir
L...,n —1), andX, a random variable with Xi1,..., X, are the random variables 6f, thenB has
P(X,=1|X1=e1,...,Xn_1 =e€n_1) nodesXU{Ni | =1, ,n}; the mar.gine_lldistripution
0 if Zq:l . mod2 = 0 defined byB onX is equal Fo the distribution deflrlled.by
= { i Z-Z;’l ej. mod2 — 1 G, and t.he're eX|st a junction trgefor B whose size is
j=1"1 : guadratic in the size df.
The joint distribution of X, ..., X,, then models the Proof: (Sketch) LetG = (V, E) with tree structure
generation of am — 1 bit random number with an added 7' be given. LetN; be a random variable with range
parity check bit. A Bayesian network representation of R(N;) := V; (i = 1,...,n). The network structure

this distribution is shown in Figure 3 (a). The junction- of B is defined bypreds(X;) := N; for all 4, and
tree constructed from this network (as well as any othepred N;) := {X;, N;} whenX,; = suce (X;). With
junction-tree forP) is of exponential size im. Fig-  this network structuré’; can be encoded. The cliques
ure 3 (b) shows the structure of a PDG representatiomf the junction tree obtained fronB by the usual
of P, which is linear inn. construction are sets of the forfV;, X;, V; } and thus



are labeled with tables of si2&’; || R(X;)|| Vi|. O  uctis somewhat analogous to the problem of finding an
optimal triangulation for a Bayesian network in order to
A more detailed analysis furthermore shows that theminimize the size of the induced junction tree.
size of J obtained in this construction is only linear in o
the size ofZ when one does not explicitly represent rows Compilation

with value 0 in the tables of . The preceding discussion also points to a method for au-
. tomatically compiling a Bayesian network into a PDG:
5 Construction of PDGs one can first rewrite the conditional probability tables of

Our results so far demonstrate that PDG representatioris'® Network as RFGs similar in form to Figure 4 (b), and
of probability distributions provide a basis for proba- thén compute the product. ‘A second approach is pro-
bilistic inference with several potential advantages overVided by the results of Section 4: one can first construct

Bayesian network or junction-tree representations. Thé junction tree from the Bayesian network and then turn

question then is, how do we obtain a PDG representat_hejunction tree into a PDG, as described in the proof of

tion? In this section we briefly discuss three possible ap heorem 4.1. This latter approach has the advantage that
proaches: direct specification, compilation of a Bayesiarlt €N utilize all the techniques that have been developed

network, and learning from data. for the construction of small junction trees. The first ap-
proach, on the other hand, can utilize at an early stage in
Direct Specification the construction process potential conditional indepen-

Like a Bayesian network, a PDG may be specified di-dencies, which can already greatly reduce the size of the
rectly by a domain expert. In some cases this can p&FGs representing the individual conditional probability
straightforward (as in Example 4.2) and rather more natfables.
ural than the specification of a Bayesian network for theLearnin from data
same distribution. In other cases the potentially large 9
number of nodes allocated to each variaBlewill make =~ PDGs can be learned from empirical data with essen-
adirect specification of a large scale PDG rather cumbertially the same techniques as used for Bayesian net-
some. works. When the structuréV, E) of a PDG is given,
One reason why the specification of a large probabilthen maximum likelihood estimatgg for the parame-
ity distribution by a Bayesian network is feasible is that ters are obtained from the empirical conditional distribu-
the specification task is decomposed into the problem ofions P%3(X; | o) in the data. In the case of incom-
specifying a number of relatively small conditional dis- plete data, the EM-algorithm can be used. Due to the lin-
tributions. It turns out that a similar compositional spec-ear time complexity of probabilistic inference, a single
ification is possible for PDGs. We illustrate the generalexpectation step of the EM-algorithm has time complex-
approach by an example. ity O(NK), whereN is the number of data items and
Figure 4 (a) shows a PDG for three binary randomK& = )_,|V;|k; is the size of the PDG (the computa-
variables4, B, C (according to which3 andC are inde-  tion of the expected conditional distributions given a sin-
pendent giverd). Figure 4 (b) shows a RFG that spec- gle data item essentially consists of one outflow/inflow
ifies the conditional distribution of another variable ~ computation, as in probabilistic inference). The max-
given B andC. Note that according to this RFG is  imization step requires timé&(K), so that the overall
conditionally independent fror@ givenB = 1. Ajoint ~ complexity of a single iteration of the EM-algorithm is
distribution ofA, B, C, D now is the product of the func- O(NK).
tions defined by (a) and (b). A PDG representing this Structure learning for PDGs has some interesting as-
product can be computed with the multiplication algo- pects. At first this might seem like an almost hopeless
rithm of Section 3. This means that first for the variablestask, as the space of all PDG-structures is considerably
A, B, C, D atree structur@ has to be determined which larger than the space of all Bayesian network structures
is a refinement of the tree structures of the individual fac-for the same set of variables (a very coarse lower bound
tors. In this example, the only solution is the linear orderfor all PDG-structures for variables is2*", whereas a
A, B,C,D. Transformations of the two factors (a) and coarse upper bound for all Bayesian network structures
(b) into RFGs for this linear order are shown as (c) andis 2”2). However, there are some mitigating factors: first,
(d). Note that we also introduced “dummy” nodes for the space of PDG-structures has a hierarchical structure
variables that originally did not appear in the individual determined by the level of possible tree structdfeand,
factors. Finally, (c) and (d) are multiplied, yielding the for eachT', the possible refinements to a grafih E).
final PDG (e). The size of the final PDG will depend on This gives rise to hierarchical search strategies where a
the choice of the tree structu@ The problem of find- top-level search over'-structures is guided by approx-
ing a tree structure that minimizes the size of the prodimate optimizations of the exact graph structure given
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theT'-structure. For any giveff'-structure, the space of graphs in the sense of Bozga and Maler are essentially
possible PDG-structures can be explored using elemerRDGs as introduced here with an underlying linear order
tary split andjoin operations: a split operation replaces T'. The questions that Bozga and Maler then investigate
a nodev with | > 2 predecessors withdistinct copies, in connectionwith these representations are quite distinc
each having one af’s predecessors as a parent, and allfrom the questions considered in this paper.

having the same successorsagOne can show that for

every PDG-structure that does not realize the maximal Several proposals have been made to encode con-
T ) ditional probability tables of Bayesian networks with
likelihood score for PDG-structures over the saffie P y Y

structure, there exists at least one split operation thiat wi (decision-) trees that make use of "context-specific’-
' pitop independence relations within the conditional distribu-

lead tq a structure with higher I|keI_|hood score. A Join tion of a variableX; given its parentBa(X;) (Boutilier et
opelranon reduces model complexity b,y merging nodes, 1996, Zhang & Poole 1999, Cano, Moral & Salmeron
”’”'/ € Vi with sucdw, Y, ;) = Sucqr’, Y. z;.p) f<1r 2000). The possible use of OBDDs instead of trees has
a Y € SUC,CT(X"')’I < h < ki and(pi,....pi) ¥ 450 been mentioned (Boutilier et al. 1996). These ap-
(7 pk,)- proaches can be seen as hybrid frameworks combining
A major advantage of learning PDGs rather thanejements of “pure” Bayesian network and PDG represen-
Bayesian networks lies in the fact that here a score funceations. A number of adaptations of standard Bayesian
tion like MDL-score that penalizes model complexity network inference techniques to such structured repre-
directly penalize thenferential complexityof a model,  sentations of conditional probability tables have been de-
rather than merely itsepresentational complexityIn  scribed: Boutelier et al. (1996) suggest to use the struc-
contrast, MDL-score does not distinguish between twoyre in the conditional distributions either to decompose
Bayesian networks of the same size (and having the sam@e network by introducing auxiliary variables that re-
likelihood score), but with perhaps widely different be- qyce the overall network connectivity, or to obtain more
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Figure 4: Compositional specification

perform well on inference problems. ferential tractability afforded by the more compact repre-
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