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Introduction

Over the last decade several strands of research in Artificial Intelligence and Machine
Learning have come together in an emergent field sometimes called probabilistic logic
learning or statistical relational learning. In this extended abstract the origins, develop-
ment and some current challenges of this field are briefly sketched.

Probability and Logicin Al

Knowledge representation and reasoning under uncertainty is one of the long-standing
challenges for Al In most approaches to reasoning under uncertainty, the classical cal-
culus of probabilities is used as the underlying framework for quantifying uncertainty.
To implement probabilistic reasoning in a formal system, the first natural idea was to
build on standard logics, and extend their syntax and semantics so as to obtain systems
in which one could not only reason about the truth of falsity of a proposition, but more
generally about the probability of a proposition being true. Propositional logic was ex-
tended in this way by Nilsson [11] (and, in fact, already 130 years earlier by Boole [2]);
first-order logic by Halpern [5] and Bacchus [1].

Several problems emerged for using these probabilistic logics in practice: the com-
putational complexity of probabilistic inference, the weak implications often obtained in
these logics (i.e. a knowledge base KB would often not entail much more for a query
proposition ¢ than that the probability of ¢ lies between 0 and 1), and the fact that the
logic-based representation languages were not well suited to express knowledge about
stochastic independence or causal relations, two important aspects of probabilistic rea-
soning.

As a result, probabilistic graphical models, notably Bayesian Networks [12,9], be-
came the more successful paradigm for probabilistic reasoning in Al. Graphical models
specify a unique distribution over the possible worlds (and hence over the propositions)
for a fixed propositional vocabulary. The specification of graphical models relies heavily
on knowledge of independence and/or causality, and inference in graphical models, while
still intractable in the worst case, has proven to be feasible in many practical applications.
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Figure 1. Probabilistic Logic Models

There is a price to pay for these advantages of graphical models over logic-based
representations: first, graphical models require a high specification effort, and do not al-
low for a modular, incremental compilation of partial (probabilistic) knowledge. Second,
a probabilistic graphical model is restricted to one particular domain represented by its
propositional variables, and does not allow to express more high-level knowledge that
generalizes over wide classes of domains. For example, a single graphical model could
represent the probability distribution over the propositional variables bloodtype(John,A),
bloodtype(John,B), bloodtype(John,AB), bloodtype(John,0). .., bloodtype(Mary,A), ...,
bloodtype(Mary,0), ... bloodtype(Paul,0), representing the bloodtype in the domain John,
Mary, Paul, where, say Mary and Paul are the parents of John. However, we can not rep-
resent a general model about the probabilities of bloodtypes and the laws of inheritance
that could be applied to arbitrary pedigrees.

The second limitation of graphical models is addressed in frameworks for knowledge
based model construction [3]. Here high-level representation languages using elements
of first-order logic are used to specify general knowledge that for each concrete domain
(consisting of a set of objects, and possibly some known structure, e.g. the kinship rela-
tions in a pedigree) defines a unique probability distribution over a domain-specific set of
propositional variables. We call any such high-level model a probabilistic-logic model,
Figure 1. Examples of formal languages for the specification of probabilistic-logic mod-
els are Prism [16], relational Bayesian networks [6], Bayesian logic programs [10], and
Markov logic networks [15].

Learning from Structured Data

The classical data model in machine learning consists of a list of examples (or obser-
vations, data-items, ...), each of which consists of values for a certain set of attributes.
However, in many modern applications of machine learning, the available data is not
easily represented in this format: the world wide web in web mining, bio-molecular data
in bioinformatics, social network data — data often comes in the form of labeled graphs,
trees, time sequences, or, specifically, relational databases, rather than a plain attribute-



value table. Specialized sub-fields of machine learning, notably inductive logic program-
ming [13] and graph mining [4] have long considered such non-standard forms of data.

Probabilistic-logic models afford a unifying view of many different types of data and
connect some of these traditional disciplines of machine learning: many non-standard
forms of data can be seen as models over a finite domain of objects (web pages, atoms,
...) for a logical language containing relation symbols of various arities representing
attributes and relations (links between web pages, bonds between atoms, .. .) of objects.
Structured data, thus, has the form of input domains for a probabilistic-logic model as
depicted in Figure 1, and Probabilistic-logic models can be used as predictive models
for structured data. For example, a probabilistic-logic model for a certain genetic trait
over pedigree input domains can be used to predict whether a given person is affected
by that trait. Moreover, predictive models with structured output fall within the scope
of probabilistic-logic models: a probabilistic-logic model, for example, can also return a
probability distribution over possible kinship structures, given an input domain specified
only by a set of persons and some of their (genetic) attributes. Thus, the model could be
used to predict the underlying pedigree structure from observed genetic data.

Relational Bayesian Networks

Relational Bayesian Networks [6,7] are a representation language for probabilistic-logic
models that is based on the syntax of probability formulas. These formulas can be seen
as probabilistic generalizations of predicate logic formulas: a predicate logic formula
¢(z1,...,xL), built via the syntactic constructors atomic formulas, boolean connectives,
and quantification, defines for every tuple c1, ..., cx of domain elements a truth value
é(ca,...,cx) € {true, false}. A probability formula F'(z1,...,zy), built via the syn-
tactic constructors atomic formulas, convex combinations, and combination functions
(which closely correspond to the three predicate logic constructors), defines for every
tuple c1, . . ., ¢, of domain elements a probability value F'(cq, ..., cx) € [0,1].

A main strength of the Relational Bayesian Network language is the parsimony and
recursive nature of its syntax, which enables theoretical analyses as well as algorithmic
procedures to be performed by a straightforward induction over the construction of prob-
ability formulas. For example, the learning from data of parameter values in relational
Bayesian networks is essentially performed by computing partial derivatives of proba-
bility formulas by induction over their syntactic form [8].

The Primula system (http://www.cs.aau.dk/~jaeger/Primula) is a publicly available
implementation of relational Bayesian networks.

Challenges

From a Computer Science and Al perspective, one of the main benefits of developing
and studying probabilistic-logic languages is to identify the common, abstract structure
of probabilistic models for many domains, and to provide uniform inference and learn-
ing methods that are applicable over a wide spectrum of domains and application types.
However, it is often unrealistic to expect that the generic algorithms implemented in a
system like Primula can compete against highly engineered special purpose tools for



concrete application tasks like protein structure prediction, or other core tasks in bioin-
formatics. Nevertheless, the flexibility and richness of probabilistic-logic modeling lan-
guages affords also for such applications new opportunities for developing and testing
new types of predictive models. The potential of probabilistic-logic models in bioinfor-
matics applications has been demonstrated in a major EU research project, which is doc-
umented in [14]. The more specific application for biological sequence analysis is the
subject of an ongoing Danish national research project (http://lost.ruc.dk).

Many challenges also remain in the further theoretical and algorithmic development
of probabilistic-logic modeling. With regard to inference problems, the focus, so far, has
been on “fixed domain” inference problems: how to compute probabilities in models
induced by one concrete input domain. However, one can also consider more general
questions like: what are the bounds for the probability values of a certain proposition that
are obtained when the model is instantiated over a range of input domains? Can inference
results obtained for one domain be dynamically updated under incremental changes of
the domain?
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