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Abstract. We propose a latent variable approach for multiple clustering
of categorical data. We use logistic regression models for the conditional
distribution of observable features given the latent cluster variables. This
model supports an interpretation of the different clusterings as represent-
ing distinct, independent factors that determine the distribution of the
observed features. We apply the model for the analysis of plant distri-
bution data, where multiple clusterings are of interest to determine the
major underlying factors that determine the vegetation in a geographical
region.

1 Introduction

There exist a variety of different approaches to learning multiple clusterings.
They can differ not only with regard to their mathematical models and algo-
rithmic methods, but there can also be widely different intuitions and objectives
with regard to the interpretation of the multiple clusterings. On the one hand, in
ensemble clustering, the individual clusterings are essentially regarded as differ-
ent, imperfect versions of a single underlying true clustering (e.g. [10]). In many
multiple clustering methods, on the other hand, the different clusterings are in-
tended to represent different views of the data, each providing a different insight
into the structure of the data. One objective for clustering methods then is to
ensure that different clusterings are in some sense independent, disparate [6], or
non-redundant [8].

Probabilistic latent variable models are used for a variety of data analysis
tasks (in the case of discrete data jointly referred to as latent class analysis), in-
cluding clustering. Several authors have investigated probabilistic latent variable
models for multiple clusterings [13, 4, 2]. For the case of discrete observable fea-
tures, no special assumptions on the distributional form of the features given the
latent variables are made in these approaches, i.e. the conditional distribution of
the features follows an unconstrained multinomial distribution. Latent variable
models are also commonly used for dimensionality reduction of high-dimensional
numeric data. An important example is the factor analysis model, in which the
observed data is interpreted as a noisy linear transformation of a small number
of latent dimensions. While it is quite common to refer to latent class analysis
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as a “categorical data analogue to factor analysis” [5][1, Chapter 13], it seems
that this correspondence has not been fully exploited for clustering applications,
or put into the context of multi-clustering, via the combined use of multiple
latent variables, and special assumptions on the conditional distribution of the
observed features.

In this paper we propose a probabilistic latent variable model for multiple
clusterings. As in factor analysis, we interpret the observed (discrete) data as a
noisy transformation of underlying, discrete latent dimensions. The linear map-
ping of factor analysis is replaced by a log-linear logistic regression model. The
latent dimensions then define clusterings that can be seen as independent factors
that determine the distribution of the observed features.

In contrast with several other multiple clustering methods (e.g., [4, 8]) our
method is not based on an association of different clusterings with different
feature subsets, even though such associations can emerge.

Our approach is partly motivated by applications to biogeographical data.
Specifically, we are investigating plant distribution data. Segmentations of geo-
graphic units into floristic regions based on similarity of plant species composi-
tion were already undertaken in the 19th century. An early application of formal
methods of clustering in this context is [9]. We apply our method to distribution
data for 2398 plant species in Switzerland. The goal of factorial clustering for
this type of data will be to obtain multiple clusterings, each of which could cor-
respond to one of several underlying environmental, geographical, or historical
factors, which jointly influence the vegetation.

2 Latent Variable Models for Clustering

Latent variable models are routinely used for clustering, both for single and
multiple clustering. However, they can be used in several, slightly different ways.
In order to more clearly explain our approach, we briefly review in this section
possible approaches to using latent variable models for clusterings.

Throughout, we assume that the observable dataX consists of n observations
of k attributes, i.e. X is an n × k matrix. A latent variable model contains m
additional unobserved variables, and we denote with L the n × m matrix of
the latent variables in the n observations. We note that when we assume that
in the n observations both the observable and latent variables are identically
and independently sampled, it will be simpler and more natural to describe
the model in terms of vectors X, L of length n and m, respectively. However,
in some applications, especially segmentation of time sequences or images, the
latent variables are not independent at different data points.

A latent variable model, then, consists of a joint distribution for X and L,
which can be written as

P (X | L, θX|L)P (L | θL). (1)

In hierarchical models, this might be extended by a distribution over θX|L, θL
parametrized by hyperparameters λ.

32



The perhaps most common use of model (1) for clustering is to perform
two steps [13]: first, fit the parameters θX|L, θL by maximizing the marginal
likelihood of the observed data X = x:

(θ∗X|L, θ
∗
L) := argmax

θX|L,θL

∑

l

P (X = x | L = l, θX|L)P (L = l | θL). (2)

This step is usually performed using the EM algorithm. Then, compute the most
probable values of L given X = x:

l∗ = argmax
l

P (L = l | X = x, θ∗X|L, θ
∗
L) (3)

In multiple clustering, a joint configuration of the latent variables defines
multiple cluster indices. For simplicity we may assume for now that each latent
variable defines its own clustering, and that therefore the membership of the ith
data item in the jth clustering is given by l∗i,j . However, in the multi-cluster case,
the second step can also take a slightly different form, and the most probable
latent variable values be computed component-wise. Denoting by lj the jth
column of l (i.e., l = (l1, . . . , lm)), this can be written as

l∗j = argmax
lj

∑

l1,...,lj−1,lj+1,lm

P (L = l | X = x, θ∗X|L, θ
∗
L). (4)

This is the (hard) clustering rule used, e.g., in [13, 14]. The clusterings obtained
from (3) and (4) can differ.

If the ultimate goal is only to compute a most probable configuration of L,
then one may also try to simplify the combination of (2) and (3) into a single
optimization:

l∗ := argmax
l

max
θX|L,θL

P (X = x | L = l, θX|L)P (L = l | θL). (5)

This rule can be justified by a Bayesian interpretation, for example: it amounts to
finding the jointly most probably values of l, θX|L, θL, given the dataX = x, and
assuming a uniform prior for θX|L, θL. Rule (5) may be still further simplified,
if one assumes the model for the latent variables to be fixed, and not subject to
optimization, i.e., P (L = l | θL) = P (L = l | θ∗L) for fixed parameters θ∗L, and
the parameter optimization is only for θX|L. If, furthermore, P (L = l | θ∗L) is
assumed uniform, then (5) reduces to

l∗ := argmax
l

max
θX|L

P (X = x | L = l, θX|L). (6)

Whether it is justified to assume a fixed distribution P (L | θ∗L) can depend on
two considerations: first, assuming that (1) actually represents the generative
process for the data, one might have sufficient background knowledge to identify
the distribution of L a-priori. L being an unobserved variable, whose existence
is essentially hypothesized, and for which it is typically even unclear how many

33



states it has, this is a rather unlikely case in practice, however. Second, clustering
being an exploratory data-analysis tool, one may also consider what settings of
P (L | θ∗L) may lead via (5) to interesting insights into the data, regardless of
whether the underlying probabilistic model is accurate as a generative model.

For example, in the single clustering case, when the data is generated by a
mixture model where one mixture component has a much higher prior proba-
bility than the others, then clustering via (3) can easily lead to only obtaining
a single cluster. If, on the other hand, one eliminates the influence of the prior
distribution by assuming (incorrectly) a uniform distribution over the mixture
components, then clustering via (6) can reveal the mixture structure of the data.

3 The Factorial Logistic Model

In the factor analysis model, both X and L are numerical, the rows in X and
L are iid, and the model (1) is given by distribution

P (Li) ∼ N(0,ΣL)
P (Xi | Li) ∼ N(WLi + μ,ΣX)

where ΣL is an arbitrary covariance matrix, W is a k × m matrix, μ a m-
dimensional mean vector, and ΣX a diagonal covariance matrix. Thus, data
is assumed to be generated by sampling from a lower (k) dimensional Gaus-
sian distribution, linearly mapped into the higher (m) dimensional space, and
independent Gaussian noise added to each coordinate.

The logistic regression model for the distribution of a binary variable X
conditional on numeric latent variables L is given by

logP (X = 1 | L)/P (X = 0 | L) = w0 +wL, (7)

where w = (w1, . . . , wk) is a k-vector of real weights. We write X ∼ LR(w0,wL)
if X follows (7). This model also applies when the latent variables L are ordinal,
i.e. each Lj codes by an integer {0, . . . , rj − 1} one of rj different, ordered cate-
gories. To accommodate nominal predictor variables (i.e., unordered categorical
variables) in the logistic regression model, one encodes a nominal variable Lj

with r states by binary indicator variables Lj,1, . . . , Lj,r, i.e. Lj,h = 1, Lj,h′ = 0
(h′ �= h) means that Lj is in its hth state.

We will consider both ordinal and nominal latent variables for clustering.
An ordinal latent variable defines an ordered clustering, i.e. the cluster indices
define an ordering of the clusters. Whether such an ordering is meaningful and
interpretable is application dependent. For biogeographical data ordinal latent
variables and ordered clusterings are often natural, since data patterns are often
determined by underlying continuous variables. We will, thus, assume that L is
a vector of m latent variables that define c different clusterings. Furthermore, we
assume that one of the following two cases applies: (1) all Lj in L are ordinal;
in this case c = m, and the jth clustering consists of rj distinct cluster. (2)
L is an encoding by binary indicator variables of c distinct nominal variables
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with r1, . . . , rc distinct states, respectively. In this case m =
∑c

i=1 ri. We refer
to model (1) as the (r1o, . . . , rko) model, and (2) as the (r1n, . . . , rcn) model.
One could also consider models combining ordinal and nominal latent variables,
but we will here focus on “pure” models.

As in the factor analysis model, we assume that P (X | L) ∼ ∏n
i=1 P (X i |

Li) ∼ ∏n
i=1

∏k
j=1 P (X i,j | Li). Assuming that each Xi,j follows a logistic re-

gression model (7) with parameters wj,0,wj , one obtains the model for the ith
data item:

P (Xi | Li) ∼
k∏

j=1

LR(wj,0,wjLi). (8)

This conditional model for X may be combined with various models for
P (L), with or without an iid assumption for the rows of L. We refer to multiple
clustering based on (8) as factorial logistic (FL) clustering.

4 Learning

We apply the simple learning rule (6) for clustering with the logistic regression
model. Thus, we assume that L is uniformly distributed, which implies, in partic-
ular, independence over rows: P (L) ∼ ∏

i P (Li). In case of L encoding nominal
variables, the uniform distribution, of course, is conditional on “legal” states of
L, i.e. at most one indicator variable for any particular nominal variable being
equal to 1.

For the optimization of (6) we then use the obvious iterative procedure, where
after a random initialization L := l0 two steps are alternated:

i θX|Lt
:= argmaxθX|L P (X = x | L = lt, θX|L)

ii lt+1 := argmaxl P (X = x | L = l, θX|Lt
)

Step i is performed in our implementation using the SPSS method of fitting
logistic regression models, which supports both ordinal and nominal predictor
variables. Due to the factorization (8), the optimization reduces to k independent
optimizations for the parameters (wj,0,wj) (j = 1, . . . , k). It is thus linear in k.
It also is linear in n, since the likelihood only depends on the counts |{i | Xi,j =

1,Li = l̂}| for fixed configurations l̂ of the latent variables.

For step ii we have P (X = x | L = l, θX|Lt
) =

∏
i P (Xi = xi | Li =

li, θX|Lt
), so that the problem decomposes into n distinct optimizations for the

li. It can be naively performed by computing P (Xi = xi | Li = li, θX|Lt
) for

each candidate li, which gives a procedure that is still linear in n and k, but
exponential in c.

Overall, we obtain a learning method that is linear in the number of data
items and the observable attributes, and exponential in the number of cluster-
ings.
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(a) (b)

Fig. 1. Mapping areas with mountain - valley division (a), and previous segmentation
of valley areas into floristic regions [12] (b)

5 Experiments

We apply FL-clustering to geobotanical data. In our experiments we use the
source data for the “Swiss Web Flora” 3 [11]. The dataset contains information
on the distribution of 2697 plant species in Switzerland, which has been divided
into 565 mapping areas. We reduced slightly more detailed species abundance
information in the original data to simple binary presence/absence data. We
also in this process deleted plants with a very sparse and uncertain distribution.
This left us with 2398 species in our data.4 We view each plant species as an
observable attribute, and the mapping areas as independent observations. Thus,
n = 565 and k = 2398 in the notation of Section 2. Figure 1 shows the division
of Switzerland into the mapping areas. Apart from the species occurrence data,
only a single additional variable is recorded for each area: a binary variable that
indicates whether the area is a mountain area (above timberline), or a valley
area (below timberline). The value of this variable is shown if Figure 1 by a
green color for valley, and grey color for mountain areas.

Conventional (single-) clusterings of the data lead to a segmentation of
Switzerland into floristic regions. Figure 1 (b) shows a result obtained by ag-
glomerative hierarchical clustering of the valley areas only [12] (thus, the white
part of the figure does not correspond to a computed cluster; it comprises areas
not included in the clustering).

5.1 Synthetic Data

In order to obtain an initial evaluation of the feasibility of our approach, we first
conduct an experiment with synthetic data. For this we constructed two artificial
segmentations of Switzerland based on the same mapping regions as in the real

3 www.wsl.ch/land/products/webflora/welcome-en.ehtml
4 The data is available at http://www.wsl.ch/info/mitarbeitende/wohlgemu/lehre EN/
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Fig. 2. Artificial segmentations (top); “Wrong” clusterings (bottom)

data. These segmentations are shown in Figure 2 (top), and henceforth referred
to as “vertical” and “horizontal” segmentation, respectively. For each combina-
tion of a vertical and a horizontal segment, we defined a species distribution type
by a nominal logistic regression model that expresses a preference of the species
for the selected vertical and horizontal segment. The logistic regression weights
were adjusted so as to obtain conditional probability distributions for the pres-
ence of a species of the following form (here showing the case of preference for
the first segment in both segmentations):

Vertical
Horizontal yellow green blue

blue 0.98 0.5 0.5
yellow 0.5 0.02 0.02

(9)

According to each distribution type we created 15 synthetic plant species,
and randomly sampled an occurrence variable for the species at each of the
mapping areas.

We then performed FL clustering based on the 90 synthetic species using the
(3o,2o) model (it is not our ambition at this point to detect the “right” number
of segmentations and segments per segmentation). In approximately 1 out of
3 random restarts the algorithm terminated with the correct segmentations of
Figure 2, or solutions that differed from the correct one in cluster assignments for
2-3 regions. In the remaining restarts the algorithm terminated at local optima,
a representative example of which is shown in Figure 2 (bottom). However, the
(almost) correct solutions were identified by higher log-likelihood scores (between
-19912 and -19783) than that of the wrong solutions (between -23474 and -
21677).
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For comparison, we also performed an experiment where the logistic regres-
sion model for P (X | L) was replaced by a full multinomial model, i.e. for each
species we fit a conditional probability table of the form (9) with 6 independent
parameters. In this case, almost all restarts terminated with wrong solutions as in
Figure 2, and, more importantly, the correct solutions could not be distinguished
by a higher likelihood score: in the multinomial model, any pair of segmenta-
tions whose combination identifies the 6 different combinations of vertical and
horizontal segments achieves the same, optimal, likelihood score.

We also use this synthetic data experiment to demonstrate that in FL-
clustering there is not necessarily a correlation between clusterings and feature-
subsets. Figure 3 (a) shows for each of the 90 synthetic species the mutual
information between the species occurrence feature and the two clusterings of
Figure 2 (top). The plot shows that there is no strong association of individual
species features with one or the other of the two segmentations.

5.2 Real Data

We now perform experiments with the real data consisting of the actual 2398
species. Again, we do not try at this point to automatically detect an appropriate
number of segmentations, or segments per segmentation. We run the learning
algorithm with a few selected ordinal and nominal logistic models. In all cases
we perform 20 runs of the algorithm with different random initializations of the
latent variables L. The results shown in the following are the segmentations that
achieved the highest likelihood score (6) within the 20 restarts.

Figure 4 shows the result of clustering with the (3o,3o) and (3n,3n) logistic
models. We use different colors to represents segments computed by nominal
logistic models, and greyscale values for ordinal logistic models. The greyscale
values then show the ordering of the segments according to their (ordinal) index.
One first observes that both models have produced one segmentation in which
the mountain areas are identified as one segment: there is an almost perfect
correspondence between the mountain attribute illustrated in Figure 1, and the
dark grey, respectively yellow, segments in the first segmentations of Figure 4
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Fig. 4. Clustering result using (3o,3o) (top) and (3n,3n) (bottom) logistic models

(note that our method does not entail an ordering of the different segmentations;
in particular, in Figure 4 we have just for convenience vertically aligned similar
segmentations, and arbitrarily put the ones containing the mountain segment
first).

Apart from the mountain/valley attribute our data does not contain “hidden
class variables” that could be used for interpreting the segmentations, and there-
fore one has to look for additional, external data sources, and expert knowledge.
As previously mentioned, we expect that the different segmentations to some
extent correspond to ecological factors that determine plant growth. A difficulty
we now encounter is that many such candidate factors (e.g., average annual tem-
perature, average precipitation) are highly correlated with the mountain/valley
division, and often show a secondary gradient in north-south direction. The sec-
ond segmentations of Figure 4 are somewhat dominated by a north-south strat-
ification, and also exhibit some of the patterns visible in Figure 1 (b). However,
it seems impossible to identify these north-south segmentations with any par-
ticular ecological factor. Instead, it can only be taken as aggregating the north-
south dependency of several factors. Moreover, whereas one clustering showing
the mountain/valley division was quite consistently produced in the random
restarts, there were larger variations observed in the north-south clustering.

The range of likelihood values obtained in 20 restarts was −288 · 103 to
−278·103 for (3o,3o) clustering, and −308·103 to −296·103 for (3n,3n) clustering
(since the former model fits more independent parameters, higher likelihood
scores are to be expected).

Figure 3 shows the mutual information values for the plant features and
the (3o,3o) segmentation of Figure 4. This plot shows a relatively strong cor-
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relation of some species with the mountain/valley clustering, and a somewhat
less pronounced primary correlation of some other species with the north/south
segmentation. The large number of species with very small mutual information
values for either segmentation is largely made up of species that occur in only a
few areas.

Fig. 5. Clustering result using multinomial P (X | L)

In analogy to the experiment with synthetic data, we also perform with the
real data an experiment with full multinomial species distribution models instead
of the logistic ones. The result is shown in Figure 5. While the mountain/valley
pattern is also partly visible in some of the segments, there is no single segment
or segmentation corresponding to this division, and the overall segmentation
result is clearly less useful than the one obtained with the logistic models.

The poor performance of the multinomial model may in part be due to this
model’s inability to isolate in its different clusterings several independent ex-
planatory factors, as illustrated by the synthetic data experiments. In addition,
the multinomial model suffered from severe problems of convergence to local
optima: even though the global likelihood maximum of the multinomial model
must be at least as high as the logistic optimum, the likelihood values found
in 20 restarts were significantly lower for the multinomial than for the logistic
models (range −433 · 103 to −405 · 103).

The average time consumption of a single run (restart) of (3o,3o) or (3n,3n)
clustering was approximately 3 hours, with an average of approximately 15 iter-
ations until convergence. This increased to approximately 6 hours for (3o,3o,3o)
or (3n,3n,3n) clusterings. The time is consumed almost entirely in fitting in each
iteration the 2398 logistic regression models for all the plants. For comparison, a
single run with the multinomial model (taking approximately 8 iterations on av-
erage until convergence) takes only about 1 minute, since the multinomial model
is easily fit by taking simple counts.

6 Discussion and Future Work

Our experiments have shown that using FL-clustering we can find multiple mean-
ingful clusterings of categorical data. The objective in our approach is explana-
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tory (identify underlying factors that determine the overall data patterns) rather
than descriptive (provide the user with multiple views of the data).

For our purpose, it is clearly essential to use a conditional model P (X | L) of
a restricted functional form, rather than an unconstrained multinomial model.
Logistic regression models are a canonical choice, and can be seen as a categorical
data analogue to the linear mappings between latent and observed dimensions
in the factor analysis model.

A common objective in multiple clustering is that different clusterings are in
some sense orthogonal or complementary. We are not yet able to say in which
sense, or to what extent, FL-clustering satisfies such an objective. Empirically, a
bias towards learning complementary clusterings was difficult to verify with our
data, since most natural candidate segmentations based on hidden environmen-
tal variables would exhibit rather similar patterns (and not at all resemble the
segmentations in Figure 2). Theoretically, one can note that a multi-clustering
L = l in which two clusterings are identical can not be a local maximum of the
likelihood (6) (except for some degenerate, noise-free, data sets). FL-clustering,
thus, is biased away from returning multiple identical clusterings. How this can
be strengthened into a formal result linking likelihood gain and complementarity
of different clusterings is a subject for future work.

In our experiments we have used data with a spatial structure on the data
instances. Within this paper, we have used the spatial structure only for the
visualization of the clustering (i.e., segmentation) results. The model can equally
be used for other categorical data, and is especially suited for high-dimensional
binary data (such as text document data).

On the other hand, our work was also specifically motivated by spatial data,
and the relationship in this case of multiple clustering with factorial hidden
Markov models [3] and factorial Markov random fields [7]. For spatial data one
can impose a Markov random field structure on the latent variables L, i.e.,
the assumption of a uniform distribution for L which we used to derive (6)
is replaced, e.g., by the assumption that P (L = l | θ∗L) is a Gibbs distribution
with fixed parameters θ∗L. Learning in such a setting proceeds in the same way as
described in Section 4, only that P (L = l | θ∗L) has to be added as a likelihood
factor. The optimization in step ii will then usually not be possible precisely,
and require an approximate solution. In this paper we did not employ a Markov
random field model, since this would usually be used to enforce some smoothness
and contiguity properties of the learned segments, which, for our data, seems
unwarranted (considering, e.g., the rugged outline of the mountain areas).

In this paper we focused on the core of a probabilistic (multi-) clustering
model, i.e., the joint distribution of latent and observable variables. In this model,
the number of clusterings, and the number of clusters in each clustering is fixed.
We remark, however, that either model selection techniques like BIC or MDL
scoring, or a nonparametric Bayesian ’wrapper’ around the core model can be
used to also learn the model structure.
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7 Conclusion

We proposed a latent variable model for multiple clustering of categorical data
based on a logistic regression model for the conditional distribution of the ob-
served features. We believe that in analogy to successful techniques for dimen-
sionality reduction, a restricted distributional form for the noisy transformation
between the latent and the observed features can be instrumental for revealing
relevant patterns in the latent feature space.

For clustering based on a latent variable model we have suggested a simple
optimization of the conditional likelihood of the data given the latent variables,
with a fixed marginal distribution for the latent variables. This leads to a learn-
ing procedure that is linear in the number of observed features, and enables us
to experiment with high-dimensional biogeographical data. Our preliminary re-
sults from these experiments demonstrate the ability of the method to discover
clusterings that represent meaningful explanatory factors for the data. However,
further work is needed to consolidate the results returned for this data, and to
investigate their potential biological meaning.
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