
In Int. J. of Uncertainty, Fuzziness and K.-B. Sys., vol.12, pp.19-42 (2004) 1

Probabilistic Decision Graphs – Combining

Verification and AI Techniques for Probabilistic

Inference

MANFRED JAEGER
Aalborg Universitet, Institut for Datalogi

Fredrik Bajers Vej 7, 9220 Aalborg Ø, Denmark
jaeger@cs.auc.dk

Abstract

We adopt probabilistic decision graphs developed in the field of
automated verification as a tool for probabilistic model representation
and inference. We show that probabilistic inference has linear time
complexity in the size of the probabilistic decision graph, that the
smallest probabilistic decision graph for a given distribution is at most
as large as the smallest junction tree for the same distribution, and
that in some cases it can in fact be much smaller. Behind these very
promising features of probabilistic decision graphs lies the fact that
they integrate into a single coherent framework a number of representa-
tional and algorithmic optimizations developed for Bayesian networks
(use of hidden variables, context-specific independence, structured rep-
resentation of conditional probability tables).

1 Introduction

Over the past 15 years Bayesian networks have been developed in AI as a
representation framework for probability distributions, especially distribu-
tions on finite state spaces. In about the same period of time, ordered binary
decision diagrams (OBDDs) (Bryant 1986) have emerged in automated ver-
ification as the primary representation tool for Boolean functions. They
have also been adopted for the representation of real-valued functions in
general (Fujita, McGeer & Yang 1997, Lai & Sastry 1992), and probability
distributions in particular (Bozga & Maler 1999).

Bayesian networks and OBDD-based representation frameworks of prob-
ability distributions are developed with similar goals: to obtain compact

representations of probability distributions on which certain basic opera-
tions can be performed efficiently. The types of operation one is interested
in, however, are somewhat different. A basic problem motivating the OBDD
approach, for instance, is equality testing, i.e. checking whether two OB-
DDs (or probabilistic versions thereof) represent the same Boolean function
(probability distribution). This question has not attracted much attention
in AI. The probabilistic inference problems considered in AI, on the other
hand, play no prominent role in the verification literature.

In spite of some references to the use of OBDDs for some specialized
subtasks in probabilistic representation and inference (Boutilier, Friedman,
Goldszmidt & Koller 1996, Nielsen, Wuillemin, Jensen & Kjærulff 2000),
there thus has not been any rigorous appraisal of the merits of (probabilis-
tic) OBDD technology from the AI point of view. This paper is meant
to provide such an appraisal. To this end we introduce a generalization
of Bozga and Maler’s (1999) Probabilistic Decision Graphs, and then in-
vestigate the following questions: how are the probabilistic (or statistical)
models encoded by the structure of a probabilistic decision graph character-
ized in terms of independence relations (section 3)? How can one perform
basic probabilistic inference tasks based on this representation, and what
is the complexity (section 4)? In answer to the last question we find that
basic inference problems have linear time complexity. In order to evaluate
the performance of probabilistic decision graphs in comparison to Bayesian
networks, we therefore investigate in section 5 how large a representation
of a distribution as a probabilistic decision graph will be in comparison to
a representation as a junction tree. We also discuss the problem of learn-
ing probabilistic decision graphs from data, and argue that there can be
substantial benefits in learning a decision graph, rather than a Bayesian
network.

Throughout the paper we motivate our results by comparisons and analo-
gies with Bayesian networks. Basic concepts relating to Bayesian networks
are used without further explanations; for these the reader is referred to
(Jensen 2001) and (Cowell, Dawid, Lauritzen & Spiegelhalter 1999). Read-
ers not familiar with Bayesian networks will still be able to follow most of the
technical material on probabilistic decision graphs, but may find it harder
to understand the motivation of the particular questions here investigated.

2

2 Definitions

Throughout the remainder of this paper X = X1, . . . , Xn denotes a set
of random variables. The range (set of possible values) of Xi is R(Xi) =
{xi,1, . . . , xi,ki

}. The product set R(X1) × . . . × R(Xn) is denoted by W .
An element x ∈ W is sometimes called an instantiation of the variables
X . If Y ⊆ X then W [Y] denotes the factor ×X∈Y R(X) of W , and x[Y]
denotes the projection of x ∈ W onto W [Y] (in other words, x[Y] is the
instantiation of the subset Y of variables according to the full instantiation
x).

Our primary interest is in representations for the joint distribution of
X , i.e. probability distributions on W . The following definition provides a
somewhat more general framework for the representation of arbitrary real-
valued functions on W . Figure 1 illustrates the definitions.

Definition 2.1 Let F = {T1, . . . , Tk} be a forest over X, i.e. each Tj is a
rooted, directed tree whose nodes are a subset of X, and the union of all
nodes in the Tj is X . Let EF denote the edge relation in F . A real function
graph structure for X with respect to the forest F is a rooted directed acyclic
graph G = (V,E), such that

• each node ν ∈ V is labeled with a variable Xi ∈ X.

• For each node ν labeled with Xi, each xi,h ∈ R(Xi), and each Xj ∈ X

with (Xi, Xj) ∈ EF there exists exactly one edge e (labeled with xi,h)
in E leading from ν to a node ν ′ ∈ V labeled with Xj .

A real function graph structure is turned into a real function graph (RFG)
if

• each node ν labeled with Xi also is labeled with a value vector vector
pν = (pν

1 , . . . , p
ν
ki

) ∈ R
ki (i = 1, . . . , n).

We denote the resulting RFG with G = (V,E,p). A RFG G is called a
probabilistic decision graph (PDG) if for all nodes ν with label Xi: pν

h ∈ [0, 1]

and
∑ki

h=1 pν
h = 1.

Figure 1 shows at the top a forest for variables X1, . . . , X6. All variables
here are binary, i.e. R(Xi) = {0, 1}. Below, a PDG with respect to F is
shown. The labeling of the nodes ν1, . . . , ν11 with the variables X is shown
by indicating the sets Vi of nodes labeled with Xi. The labeling of the edges
with the elements of R(Xi) is indicated by dotted lines for label 0, and solid
lines for label 1.

3

PSfrag replacements

ν1
(.3,.7)

ν2
(.8,.2)

ν3
(.9,.1)

ν4
(.5,.5)

ν5
(.4,.6)

ν6
(.1,.9)

ν7
(.2,.8)

ν8
(.5,.5)

ν9
(.1,.9)

ν10
(.4,.6)

ν11
(.8,.2)

V1

V2 V3

V4

V5

V6

X1

X2 X3

X4

X5

X6

F

G = (V,E,p)

Figure 1: Probabilistic Decision Graph with underlying forest and nodes
reached by x = (1, 0, 1, 1, 0, 0)

A note on terminology here may be useful: the term probabilistic deci-
sion graph as we use it is adopted from (Bozga & Maler 1999). The same
term had previously been used by Koenig and Simmons (1994) for a graph-
ical representation of a sequential decision process. Rather than trying to
resolve this clash of terminology by introducing yet another term, we here
simply emphasize that these two usages are independent, and that our PDGs
represent probability distributions, not decision models.

We have to introduce some additional notation for graph-theoretical con-
cepts that are important for RFGs. With respect to the forest F we define
for Xi ∈ X: succF (Xi) := {Xj ∈ X | (Xi, Xj) ∈ EF }, succ∗F (Xi) := {Xj ∈
X | (Xi, Xj) ∈ E∗

F }, where E∗
F is the reflexive and transitive closure of EF .

4

Also we denote with pred F (Xi) the unique immediate predecessor of Xi in
F (predF (Xi) = ∅ if Xi is a root), and with pred ∗

F (Xi) the set of variables
on the path from the root of the tree containing Xi to Xi (excluding Xi).

When Xj ∈ succF (Xi), ν ∈ Vi, and 1 ≤ h ≤ ki, then we denote with
succ(ν,Xj , xi,h) the node ν ′ ∈ Vj that is connected to ν via the (unique) edge
(ν, ν ′) ∈ E labeled with xi,h. In figure 1, for example, succ(ν1, X2, 0) = ν3,
and succ(ν4, X4, 1) = succ(ν5, X4, 1) = ν6.

We now turn to the semantics of a RFG, which essentially consists of a
real-valued function on W . This is defined recursively via a definition of a
function f ν

G for each node ν.

Definition 2.2 Let G = (V,E) be a RFG w.r.t. F , ν ∈ Vi. Let succF (Xi) =
{Y1, . . . , Yl} ⊆ X . A real-valued function f ν

G is defined on W [succ∗F (Xi)] by

fν
G(xi,h, z1, . . . , zl) := pν

h

l
∏

j=1

f
succ(ν,Yj ,xi,h)
G (zj) (1)

(xi,h ∈ R(Xi), zj ∈ W [succ∗F (Yj)]). From the functions defined at roots of
(G,E), we obtain a function on W :

fG :=
∏

ν: ν root

fν
G (2)

When G is a PDG, then fG defines a probability distribution on W , which
we denote with PG.

Note that for leaf nodes ν the right hand side of (1) reduces to pν
h, so that

the recursive definition is well-founded.
For the PDG in Figure 1 we obtain, for instance, f ν5

G (X3 = 1, X4 = 1) =
0.6 · 0.9, f ν1

G (X1 = 1, X2 = 0, X3 = 1, X4 = 1) = 0.7 · 0.8 · 0.6 · 0.9 = 0.3024,
fν9

G (X5 = 0, X6 = 0) = 0.1 · 0.8 = 0.08, and thus fG((1, 0, 1, 1, 0, 0)) =
0.3024 · 0.08.

In the remainder of this section we provide some alternative character-
izations and basic properties of the function fG defined by G. A central
notion in the investigation of RFGs is that of a path, which we develop in
the following two definitions.

Definition 2.3 Let x ∈ W , ν ∈ V . We define inductively: x reaches ν if

- ν is a root, or

- ν ∈ Vi, Xi ∈ succF (Xj), x reaches ν ′ ∈ Vj, and ν = succ(ν ′, Xi,x[Xj]).

5

In figure 1 the nodes reached by x = (1, 0, 1, 1, 0, 0) are shaded. Whether
x ∈ W reaches some ν ∈ Vi only depends on x[Y], where Y is any subset
of X containing pred ∗

F (Xi). For any y ∈ W [Y] we can therefore say that y

reaches (or does not reach) ν, and define:

Definition 2.4 Let ν ∈ Vi, pred ∗
F (Xi) ⊆ Y ⊆ X. Then

Path(ν,Y) := {y ∈ W [Y] | y reaches ν}. (3)

For the PDG of Figure 1 we have, for example: Path(ν6, (X1, X3)) =
{(0, 1), (1, 1)}, and Path(ν6, (X1, X2, X3)) = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)}.

We can now also characterize the function fG as follows.

Proposition 2.5 (A) For all x ∈ W and all i ∈ 1, . . . , n there exists exactly
one νi(x) ∈ Vi that is reached by x, and

fG(x) =
n

∏

i=1

p
νi(x)
ind(i,x), (4)

where ind(i,x) is the index in R(Xi) of x[Xi].
(B) Let G \ Xi denote the RFG obtained from G by removing all nodes

labeled with some Xj ∈ succ∗F (Xi). For any ν ∈ Vi, and any x ∈ Path(ν,X)
then

fG(x) = fG\Xi
(x[X \ succ∗F (Xi)])f

ν
G(x[succ∗F (Xi)]). (5)

3 Independence Structure and Canonicity

The structure of a PDG encodes certain (conditional) independence relations
in the distribution PG. In this section we characterize these independence
relations as conditional independencies of distributions given partitions of
the state space W . This is a generalization of the type of conditional inde-
pendence relations encoded in a Bayesian network structure, which can be
characterized by conditional independencies given sets of variables. We will
then show that for a fixed forest F , every probability distribution P that
can be represented by a PDG over F has a canonical normal form PDG-
representation. From this we can then derive that different PDG structures
(for a given F) encode different probabilistic models, i.e. the sets of proba-
bility distributions that can be represented over the structures are different.

We begin with briefly reviewing the relevant definitions about conditional
distributions given partitions of the state space. For details the reader is
referred to (Billingsley 1986, Section 33).

6

Definition 3.1 Let A = {A1, . . . , Ak} be a partition of W , i ∈ {1, . . . , n},
and P a probability distribution on W . The conditional probability dis-
tribution of Xi given Aj (j = 1, . . . , k) is the function on R(Xi) defined
by

P (Xi | Aj)(xi,h) := P (Xi = xi,h | Aj). (6)

The conditional probability distribution of Xi given A is the function on
R(Xi) × W defined by

P (Xi | A)(xi,h,x) :=

k
∑

j=1

P (Xi = xi,h | Aj)1Aj
(x), (7)

where 1Aj
is the indicator of Aj , i.e. 1Aj

(x) = 1 iff x ∈ Aj , and 1Aj
(x) = 0

otherwise.

A subset Y ⊆ X of variables generates the partition

A (Y) := {{x ∈ W | x[Y] = y} | y ∈ W [Y]}. (8)

Then P (Xi | A (Y)) is the usual conditional distribution of Xi given Y ,
for which we also use the simpler notation P (Xi | Y).

Given two partitions B,C we denote with A (B,C) the partition gen-
erated by B,C , i.e. the partition consisting of the sets of the form B ∩ C
with B ∈ B and C ∈ C . We say that Xi is conditionally independent from
C given B if

P (Xi | A (B,C)) = P (Xi | B). (9)

Every node ν in a PDG defines a two-way partition of W into Path(ν,X)
and its complement. We can now properly identify the value vectors pν and
the local functions P ν

G as conditional probability distributions:

Proposition 3.2 Let ν ∈ Vi, Y = pred ∗
F (Xi). Then for all y ∈ Path(ν,Y):

pν = PG(Xi | Y = y) = PG(Xi | Path(ν,Y)) (10)

P ν
G = PG(succ∗F (Xi) | Y = y) = PG(succ∗F (Xi) | Path(ν,Y)). (11)

A subset U ⊆ V defines the partition generated by all the two-way
partitions given by the ν ∈ U . We denote this partition with A (U). Of
particular interest is the case U = Vi. The partition A (Vi) simply is the
partition of W into the sets {x | x reaches ν} (ν ∈ Vi). Using these parti-
tions, we can express the representation of a probability distribution by a
PDG as a factorization in a manner that parallels the factorized represen-
tation P = P (Xi | Pa(Xi)) of a distribution in a Bayesian network (see e.g.
(Jensen 2001, Section 1.4)).

7

Proposition 3.3 The probability distribution PG represented by a PDG G
satisfies the conditional independence relations

PG(Xi | X \ succ∗F (Xi)) = PG(Xi | pred
∗
F (Xi)) = PG(Xi | A (Vi)), (12)

and therefore satisfies the factorization

PG(x) =

n
∏

i=1

PG(Xi | A (Vi))(x[Xi],x). (13)

We also obtain the following converse statement:

Proposition 3.4 A probability distribution P can be represented as a PDG
over a given PDG structure (V,E) if P satisfies the conditional independence
relations (12) for i = 1, . . . , n.

For the PDG in figure 1 we obtain as an instance of (12) that PG(X4 |
X1, X3) = PG(X4 | A (V4)), which expresses equality of the conditional
distributions given the two partitions B := {{X3 = 0, X1 = 0}, {X3 =
0, X1 = 1}, {X3 = 1, X1 = 0}, {X3 = 1, X1 = 1}}, and C := {{X3 =
1}, {X3 = 0, X1 = 0}, {X3 = 0, X1 = 1}}. This, in turn, can be written as
the “context specific” independence

PG(X4 | X3 = 1, X1) = PG(X4 | X3 = 1). (14)

The independence relation (14) can not be represented by the structure
of a Bayesian network. On the other hand, there are conditional indepen-
dence relations between sets of random variables that can be expressed in a
Bayesian network structure, but cannot be captured in a PDG. For exam-
ple, one can show (by an exhaustive search over candidate PDG structures)
that no PDG can capture the conditional independence relations between
variables X1, X2, X3, X4 that are encoded in a “diamond” Bayesian network
structure with edges (X1, X2), (X1, X3), (X2, X4), (X3, X4). The intuitive
(albeit not fully correct) explanation for this is that PDG structures en-
code ‘variable-level’ independence relations only through certain separation
properties in the underlying forest structure, and that the class of separa-
tion relations on forests is less rich than the class of d-separation relations
(Pearl 1988) on directed acyclic graphs. It follows that PDGs and Bayesian
network are incomparable with respect to their expressiveness for conditional
independence relations.

Apart from the basic conditional independence relations (12) a PDG
structure will usually encode many further conditional independence rela-
tions. In the case of Bayesian networks, the d-separation criterion provides a

8

complete characterization of conditional independence relations implied by
a network structure. It is an open problem whether for PDGs one can also
find suitable (graph-theoretic) characterizations of all implied conditional
independencies. The problem is made more difficult by the fact that in the
context of PDGs one considers conditional independencies of the form (9)
expressed in terms of partitions. As we have seen, there are various ways to
define partitions (by sets of variables, sets of PDG-nodes,. . .), and before
one can derive criteria for the derivation of independencies (9) one has to
establish a representation language for partitions. It may very well turn out,
therefore, that one can derive for certain restricted representation languages
for partitions complete characterizations for conditional independencies in
PDGs, but no single such characterization for a language that can represent
every partition.

One of the main motivations behind the development of OBDDs is
their canonicity: given a boolean function f and a fixed order on the
variables, there is a unique canonical representation of f by a (reduced)
OBDD (Bryant 1986). A related question has received some attention in
the Bayesian network literature: given an independence model (i.e. a cer-
tain set of conditional independencies), is there a unique Bayesian network
structure representing this model? The answer usually is no. This has given
rise to the study of equivalence classes of Bayesian network structures and
their representation by essential graphs (Verma & Pearl 1991, Andersson,
Madigan & Perlman 1997).

We will now investigate the corresponding questions for PDGs. First it
will be shown that, unsurprisingly, the canonicity property of OBDDs carries
over to PDGs: for a fixed forest F there is a unique canonical representation
of each distribution P that can be represented over F . We will then show
that this implies that different PDG-structures for the same forest F encode
distinct independence models.

To simplify matters, we only consider in the following representations of
strictly positive probability distributions P , i.e. P (x) > 0 for all x ∈ W .
Distributions that do not have this property permit PDG-representations
with arbitrary subgraphs rooted at nodes that are not reachable by any x

of positive probability. To obtain normal forms for their representation one
therefore has to use suitable additional conventions for the representation
of such subgraphs.

The following definition is standard for OBDD-related frameworks.

Definition 3.5 Let G = (V,E,p) be a PDG, i ∈ {1, . . . , n}. Two nodes
ν, ν ′ ∈ Vi are equivalent, denoted ν ∼ ν ′, if pν = pν′

, and succ(ν,Xj , xi,h) ∼

9

succ(ν ′, Xj , xi,h) for all Xj ∈ succF (Xi) and h = 1, . . . , ki.

The definition of ∼ gives rise to a simple recursive decision procedure
for ∼. We note in the following proposition that ∼ also has a very natural
semantic interpretation.

Proposition 3.6 Let PG be strictly positive. Then for all i = 1, . . . , n;
ν, ν ′ ∈ Vi: ν ∼ ν ′ iff P ν

G = P ν′

G .

By recursively merging nodes ν, ν ′ with ν ∼ ν ′ (starting with leaf nodes,
where ν ∼ ν ′ simply means pν = pν′

) one can transform in quadratic time
a given PDG into an equivalent one that is reduced in the following sense
(again a standard definition for OBDD-related frameworks):

Definition 3.7 A PDG is called reduced if there do not exist distinct nodes
ν, ν ′ with ν ∼ ν ′.

Theorem 3.8 Let F be a given forest. Let P be a strictly positive proba-
bility distribution that is representable by a PDG over F . Then there exists
exactly one reduced PDG over F representing P .

Proof: To simplify notation, we assume that all random variables are bi-
nary, and that F consists of a single tree that is the linear order X1, . . . , Xn

(the general case then follows by applying this case to all linear branches in
F). Let P be given, and let i ∈ 1, . . . , n. Define an equivalence relation ≈
for y,y′ ∈ W [X1, . . . , Xi−1] by: y ≈ y′ iff

P (Xi, . . . , Xn | (X1, . . . , Xi−1) = y) = P (Xi, . . . , Xn | (X1, . . . , Xi−1) = y′).
(15)

From the strict positivity of P it follows that the two conditional prob-
ability distributions in (15) are well-defined, and hence the relation ≈ is
well-defined. Let [y] denote the equivalence class of y.

Now consider a reduced PDG G = (V,E,p) for P . From (15),(11)
and proposition 3.6 it follows that there is a 1-to-1 correspondence be-
tween the nodes in Vi and the equivalence classes [y]: for all ν ∈ Vi we
have Path(ν, {X1, . . . , Xi−1}) = [y] for some y. The equivalence relation
∼ on W [X1, . . . , Xi−1] therefore determines the set Vi, and the partition
of W [X1, . . . , Xi−1] into the sets {Path(ν, {X1, . . . , Xi−1}) | ν ∈ Vi}. These
partitions for i = 1, . . . , n, in turn completely determine the structure (V,E).
Finally, for any ν ∈ Vi the vector pν is uniquely determined by P through
(10). �

As a consequence we obtain:

10

Theorem 3.9 Let G = (V,E), G′ = (V ′, E′) be two distinct PDG struc-
tures over the same forest F . Let PG and PG′ denote the set of probability
distributions representable over G and G′, respectively. Then PG 6= PG′ .

Proof: Assume without loss of generality that | V |≥| V ′ |. Let p = {pν |
ν ∈ V } be a set of value vectors for G, such that all components pν

h are
distinct (ν ∈ Vi, 1 ≤ h ≤ ki, i = 1, . . . , n). The PDG (V,E,p) then is re-
duced. Let PG be the probability distribution represented by (V,E,p), and
assume that PG also is representable over (V ′, E′) with parameters p′. From
theorem 3.8 it follows that (V ′, E′,p′) is not reduced. Turning (V ′, E′,p′)
into a reduced PDG by merging states yields a reduced PDG (V ′′, E′′,p′′)
for PG with |V ′′ |<|V |, in contradiction to theorem 3.8. �

Theorem 3.9 does not extend to PDG-structures over different forests.
For instance, two different linear orders of X are underlying forests for two
distinct complete trees for X, each of which can represent every probability
distribution.

4 Probabilistic Inference

We now turn to the question of how to compute conditional probability
distributions of a variable X ∈ X given the values y of a subset of observed
variables Y ⊂ X . Central to the solution of this problem are the concepts
of the in-flow and out-flow of a node.

Definition 4.1 Let G = (V,E,p) be an RFG for X with respect to F . Let
ν ∈ Vi. The out-flow of ν is defined as

ofl(ν) :=
∑

z∈W [succ∗
F

(Xi)]

fν
G(z). (16)

Thus, the outflow of ν is just the sum of all values of f ν
G.

Definition 4.2 Let G and F be as in Definition 4.1. Let ν ∈ Vi, and let
G \ Xi as in proposition 2.5 (B). The in-flow of ν is defined as

ifl(ν) :=
∑

y∈Path(ν,X\succ∗
F

(Xi))

fG\Xi
(y). (17)

If X \ succ∗F (Xi) is empty (which happens exactly when F consists of a
single tree with root Xi) define ifl(ν) := 1.

11

From proposition 2.5 (B) it follows that

ifl(ν)ofl(ν) =
∑

x∈Path(ν,X)

fG(x). (18)

The following lemma is the basis for an efficient computation of ifl and ofl
for all nodes in a RFG.

Lemma 4.3 (a) Let ν ∈ Vi. Then

ofl (ν) =

ki
∑

h=1

pν
h

∏

Y ∈succF (Xi)

ofl (succ(ν, Y, xi,h)). (19)

(b) Let ν ∈ Vi, where Xi is a root of F . Then

ifl(ν) =
∏

ν′ 6=ν: ν′ root

ofl(ν ′) (20)

(c) Let ν ∈ Vi, where Xi is not a root of F . Assume that pred F (Xi) = Xj .
Then

ifl(ν) =

kj
∑

h=1

∑

ν′∈Vj :

ν=succ(ν′,Xi,xj,h)

[ifl(ν ′)pν′

h

∏

Y ∈succF (Xj)\Xi

ofl(succ(ν ′, Y, xj,h))]. (21)

Proof: (a) follows directly by summation of (1) over all xi,h and z1, . . . , zl.
(b): For Xi a root we have Path(ν,X \ succ∗

F (Xi)) = W [X \ succ∗F (Xi)],
and therefore (20) follows from (2) and (16).

For (c), let ν, Vi be given. Let Y := X \ succ∗F (Xi). We partition
Path(ν,Y) into disjoint subsets according to the Xj-component of y ∈
Path(ν,Y), and according to the nodes reached by y in Vj :

Path(ν,Y) =

kj
⋃

h=1

⋃

ν′∈Vj

ν=succ(ν′,Xi,xj,h)

Path(ν ′,Y \ Xj) × {xj,h}. (22)

Denote Z := succ∗F (Xj) \ {succ∗F (Xi) ∪ {Xj}}. With

Path(ν ′,Y \ Xj) = Path(ν ′,Y \ succ∗F (Xj)) × W [Z] (23)

12

and (from (5)) for y ∈ Path(ν ′,Y \ Xj):

fG\Xi
(y, xj,h) = f(G\Xi)\Xj

(y[Y \ succ∗F (Xj)])f
ν′

G\Xi
(y[Z], xj,h) (24)

we obtain

∑

y∈Path(ν′,Y \Xj)

fG\Xi
(y, xj,h)

=
∑

u∈Path(ν′,Y \succ∗
F

(Xj))

f(G\Xi)\Xj
(u)

∑

w∈W [Z]

fν′

G\Xi
(w, xj,h)

= ifl(ν ′)
∑

w∈W [Z]

pν′

h

∏

Y ∈succF (Xj)\Xi

f
succ(ν′,Y,xj,h)
G (w[succ∗F (Y)])

= ifl(ν ′)pν′

h

∏

Y ∈succF (Xj)\Xi

ofl(succ(ν ′, Y, xj,h)). (25)

The last equality is obtained by splitting the summation over w ∈ W [Z] into
individual summations over the factors W [succ∗

F (Y)] (Y ∈ succF (Xj) \Xi),
and distributing the summations into the product. Together with (22) this
proves (c). �

Equations (19) - (21) give rise to a simple procedure for computing ifl(ν)
and ofl (ν) for all nodes ν in time linear in the size of G. We give a time bound
in terms of the size |G |:=

∑n
i=1 |Vi | ki of G. Note that by this definition

we identify the size of G with the number of parameters in G (which also
is an upper bound for the number of edges in E). In particular, we assume
a fixed representation size for the parameters, so that considerations about
complexity dependence on the length of the numerical representations do
not enter the picture.

Theorem 4.4 Given a RFG G = (V,E,p) one can compute in O(|G |) time
the values ofl(ν) and ifl(ν) for all ν ∈ V .

Proof: One first computes ofl(ν) for all ν. This is done recursively starting
with the leaf nodes ν, for which ofl (ν) =

∑ki

h=1 pν
h. Given that ofl(ν ′) is

already computed for all successors ν ′ of an interior node ν, ofl(ν) can be
computed using (19). This computation is linear in the number of outgoing
edges of ν, and so the computation for all ν is linear in the size of G.
Apart from the ofl values we also store at each node the values πh(ν) :=
∏

Y ∈succF (Xi)
ofl(succ(ν, Y, xi,h)) (h = 1, . . . , ki). This comes at no extra

cost, as the πh are just intermediate results in the computation of ofl .

13

In a second pass, ifl(ν) is computed for all ν. This computation starts
at root nodes ν, for which ifl(ν) is computed with (20). Given that ifl(ν ′)
has been computed for all predecessors ν ′ of an interior node ν, ifl(ν) is
computed using (21). The double summation of (21) amounts to a summa-
tion over all incoming edges of ν, so the overall complexity will be linear,
provided each term in the sum can be computed in constant time. This is
done using the auxiliary values πh computed in the first phase, which allow
us to rewrite the terms in the sum (21) as ifl(ν ′)pν′

h πh(ν ′)/ofl (ν).
�

Based on computations of ifl and ofl probabilistic queries can be an-
swered. The most basic probabilistic query one needs to solve is the com-
putation of the probability PG(Y = y) of an instantiation of a subset of
variables Y ⊆ X to the values y ∈ W [Y]. This can be done by transform-
ing G into a RFG GY =y as follows: for all Xj ∈ Y and all ν ∈ Vj change
pν

h to 0 if y[Xj] 6= xj,h. For x ∈ W we then have

fGY =y
(x) =

{

PG(x) if x[Y] = y

0 else.

It follows that PG(Y = y) is equal to
∏

ofl (ν ′), where the product is over
roots ν ′ of GY =y. As GY =y and the out-flow of its roots can be computed
in time linear in the size of G, we see that probabilities of events of the form
Y = y can be computed in linear time based on a PDG representation.

A slightly more complicated probabilistic inference problem is the com-
putation of a posterior distribution PG(Xj | Y = y) for a variable Xj 6∈ Y

given (the “evidence”) Y = y. Of course, this can be reduced to a number
of computations of PG(Xj = xj,h,Y = y) by the method already described.
However, the posterior distribution of Xj can also be read off the RFG GY =y

directly, because

PG(Xj = xj,h | Y = y) =
1

PG(Y = y)

∑

ν∈Vj

ifl(ν)pν
h

∏

Y ∈succF (Xj)

ofl(succ(ν, Y, xj,h))

(26)
(where ifl and ofl are computed in GY =y, and PG(Y = y) is computed as
above).

Instead of computing the posterior distribution of a variable Xj given an
instantiation Y = y as evidence, one may also be interested in computing
the posterior distribution of Xj given evidence of a more general form, e.g.
disjunctive evidence like X3 = x3,2 ∨ X3 = x3,7. We now show that the

14

approach used to compute PG(Xj | Y = y) can be extended in a very
coherent way to compute posterior distributions PG(Xj | E), where E can,
in principle, be any subset of W that is given as evidence. As to be expected,
the linear time complexity of the computation of PG(Xj | Y = y) can not
always be maintained for general evidence sets E .

The function fGY =y
can also be written as the product fG · 1Y =y, where

1Y =y is the indicator function of Y = y, i.e. 1Y =y(x) = 1 if x[Y] = y,
and 1Y =y(x) = 0 else. To generalize our approach to the computation
of posterior distributions, it is sufficient to show how to compute RFGs
representing functions of the form fG · 1E with E ⊆ W in general.

We first observe that indicator functions 1E also can be represented by
the subclass of RFGs that essentially corresponds to classical OBDDs:

Definition 4.5 A RFG H for X is called an indicator graph, iff pν
h ∈ {0, 1}

for all ν, h. Then fH(x) ∈ {0, 1} for all x ∈ W , and EH := {x | fG(x) = 1}
is the event defined by H.

The computation of a RFG representation of fG · 1E , thus, is a special
case of the general problem of computing for two RFGs G and H a RFG G·H
representing the product fG · fH . When G and H are given w.r.t. the same
underlying forest F , then this problem can be solved by a simple adaption
of Bryant’s (1986) method for performing Boolean operations on OBDDs.
A high-level description of the resulting algorithm is given in table 1. It is
stated for the case that F consists of a single tree. For general F one simply
applies this procedure to all pairs of corresponding trees of G. To make
this algorithm efficient, it is necessary to do some bookkeeping in order to
avoid evaluating recursive calls with identical arguments more than once.
This can be done as for Boolean operations on OBDDs, which leads to the
following complexity result.

Theorem 4.6 Let G = (V,EG) and H = (U,EH) be two RFGs for X w.r.t.
the same forest F . Then an RFG G·H representing fG ·fH can be computed
in time O(

∑n
i=1 |Vi | · |Ui | ·ki).

Figure 2 shows an indicator graph for the forest of Figure 1 and the
instantiation X2 = 1, X3 = 0, X6 = 0. As an indicator graph for an instanti-
ation can be given for any forest, and such that |Vi |= 1 for all i, we find that
the general complexity result of Theorem 4.6 gives the same linear bound on
the computation of a representation for G · 1Y =y as we found before (and,
in fact, the computation of G · 1Y =y via the general algorithm of Table 1

15

Algorithm: multiply-rfg(ρG, ρH : roots of RFGs w.r.t. single-tree forest F)

i:= index of variable at the root of F
ρ := new node labeled with Xi;
for h = 1, . . . , ki do

pρ
h := pρG

h · pρH

h ;
for all Y ∈ succF (Xi) do

succ(ρ, Y, xi,h) := multiply-rfg(succ(ρG, Y, xi,h), succ(ρH , Y, xi,h));
end

end
return ρ.

Table 1: Multiplication algorithm

reduces to a traversal of G and the multiplication with 0 of some parameters
pν

h).
Not every set E ⊆ W can be represented with an indicator graph that has

the same underlying forest F as a given PDG. To compute the conditional
distribution of PG given arbitrary evidence E , one therefore may first have
to determine a forest F ∗, such that both PG and 1E are representable over
F ∗, and then transform the given PDG and indicator graph into RFGs
over F ∗. While algorithmically not very difficult, this procedure can cause
an exponential blowup in the size of the PDG and/or the indicator graph.
One thus sees that conditional distributions PG(Xi | E) can be computed
efficiently (in quadratic time) for evidence E representable over the forest F
underlying G, but not for all E . The situation, thus, is quite similar to what
one finds in Bayesian networks, where one can condition on E efficiently if
E is expressed as a condition on variables in a single clique of the junction
tree (or a conjunction of such conditions), but P (Xi | E) also cannot be
computed efficiently for arbitrary E .

5 PDGs vs. Junction Trees

In this section we compare the efficiency of probabilistic inference for PDGs
with the efficiency of Bayesian network inference. For PDG based infer-
ence we have found linear time complexity in the size of the PDG. The
time complexity of Bayesian network based inference is linear in the size
of the junction tree into which the Bayesian network is compiled for infer-

16

PSfrag replacements

ν1
(1,1)

ν2
(0,1)

ν3
(1,0)

ν4
(1,1)

ν5
(1,1)

ν6
(1,0)

V1

V2 V3

V4

V5

V6

Figure 2: Indicator graph for partial instantiation

ence (inference methods that do not use junction trees have essentially the
same complexity; see e.g. (Dechter 1996)). The pertinent comparison we
have to make, therefore, is between the sizes of PDGs and junction tree
representations of a probability distribution.

Theorem 5.1 There exists an effective transformation that takes a junction
tree J as input, and returns a PDG G representing the same distribution as
J . The size of G is linear in the size of J .

Proof: We give a fairly detailed proof of this theorem here. In spite of
the somewhat technical nature of the formal proof, the basic construction is
very simple and fully illustrated by the example shown in figure 3.

Let J be a junction tree with nodes (cliques) C1, . . . , CK . Thus, each Ci

is a subset of X, and ∪K
i=1Ci = X. Let P be the distribution of X encoded

by the J .
The underlying forest of the PDG we construct consists of one tree for

each connected component of J . To simplify notation we here assume that
J only has one connected component.

We turn J into a directed tree by choosing an arbitrary clique Cr as the
root, and directing all edges away from Cr. With every node C of J we
can then associate the set new(C) ⊆ C of variables from X that are not
contained in the parent node pred J(C) of C. The forest F for G is now
obtained from this directed junction tree by substituting for each node Ci

a linear sequence of nodes, one for each Xh ∈ new(Ci). The predecessor of
the first node in the sequence is the last node of the sequence substituted
for predJ(Ci). Figure 3 (i) and (ii) show a directed junction tree J , and the
forest F constructed for J .

17

By induction on K one now shows that one can construct a PDG G
w.r.t. F , which represents the same distribution as J , and for each node C
of the original junction tree the following holds for the cardinalities of the
node sets Vi:

∑

i:Xi∈new(C)

|Vi ||R(Xi) | ≤ 2
∏

X∈var(C)

|R(X) | . (27)

The theorem then follows, because the total sizes of G, respectively J , are
given (up to linear factors) by summing the left, respectively right, side of
this inequality over all nodes C of J .

Let K = 1, i.e. J consists of a single clique C1 with new(C1) = X. Then
F is a linear order, which we may choose just to be the order X1, . . . , Xn.
Define the PDG structure (V,E) to be the complete tree for the order F .
Then every probability distribution can be represented over (V,E), and we
have |Vi |=

∏i−1
j=1 |R(Xj) |, and

n
∑

i=1

|Vi ||R(Xi) | =

n
∑

i=1

i
∏

j=1

|R(Xi) | ≤ 2

n
∏

j=1

|R(Xi) | . (28)

In the complete tree (V,E) the leaf nodes ν ∈ Vn are in 1-to-1 correspon-
dence with the elements of W [X1, . . . , Xn−1]. We generalize this property
to the following invariant that will be maintained in the induction:

(I) For all i = 1, . . . , n: if Xi ∈ new(C) is the last element in the sequence
substituted for C in the construction of F , then

Vi = {νy | y ∈ W [C \ Xi]} (29)

where νy is such that that Path(νy,X) = {x ∈ W | x[C \ Xi] = y}.

Now let K > 1. Without loss of generality, assume that CK is a leaf of
J , that CK−1 is its parent, and that for some 1 ≤ k < l ≤ m < n:

CK−1 = {Xk, Xk+1, . . . , Xm} CK = {Xl, Xl+1, . . . , Xn}. (30)

Then new(CK) = {Xm+1, . . . , Xn}. Let J ′ be the junction tree obtained
from J by removing CK , and let G′ be the PDG over a (single-tree) forest
F ′ constructed for J ′ according to the induction hypothesis.

Let Xf be the last element in the linear sequence of nodes new(CK−1)
that was substituted for CK−1 in the construction of the forest F ′. The forest

18

PSfrag replacements

C1
X1,X2

C2
X2,X3,X4

C3
X4,X5,X6

X1

X2

X3

X4

X5

X6
ν
(5)
(0)

ν
(4)
(0,0)

(i) (ii) (iii)

Figure 3: Construction of PDG from Junction Tree

F for J now is obtained by appending the linear sequence Xm+1, . . . , Xn to
Xf in F ′.

To define G, first define the set Vm+1 as follows:

Vm+1 := {ν
(m+1)
y | y ∈ W [Xl, . . . , Xm]}. (31)

We connect each ν
(m+1)
y to the nodes in Vf , so that

Path(ν
(m+1)
y ,X) = {x ∈ W | x[Xl, . . . , Xm] = y}. (32)

For this, first observe that according to (I) there exists for all z ∈ W [{Xk, . . . , Xm}\

Xf] a node ν
(f)
z ∈ Vf with Path(ν

(f)
z ,X) = {x ∈ W | x[{Xk, . . . , Xm} \

Xf] = z}. If f 6∈ {l, . . . ,m} define

succ(ν
(f)
z , Xm+1, xf,h) := ν

(m+1)
z[Xl,...,Xm] (h = 1, . . . , kf). (33)

If f ∈ {l, . . . ,m} define

succ(ν
(f)
z , Xm+1, xf,h) := ν

(m+1)
z[Xl,...,Xm],xf,h

(h = 1, . . . , kf). (34)

Definition (33) is illustrated in figure 3 (iii) by the connections between V4

and V1, whereas definition (34) is illustrated in the connections between

V4 and V5. Now (32) holds for all ν
(m+1)
y . The construction of G is com-

pleted by appending to each node in Vm+1 a complete tree for the variables
Xm+2, . . . , Xn.

A leaf node ν ∈ Vn then has a unique predecessor ν
(m+1)
y in Vm+1 from

which it is reached by a unique z ∈ W [Xm+1, . . . , Xn−1]. Thus

Path(ν,X) = {x | x[Xl, . . . , Xn−1] = (y, z)}. (35)

19

Conversely, for every pair (y, z) as in (35) there exists a ν ∈ Vn with (35).
This shows (I) for the extended graph.

The verification of the bound (27) for the extended graph is similar as
in the base case K = 1. It thus remains to show that the distribution P
represented by J can be represented over the PDG structure (V,E). By
induction hypothesis, the marginal distribution P | X1, . . . , Xm is repre-
sentable over (G′, E′) with parameters p′. By the semantics of join trees,
P (Xm+1, . . . , Xn | X1, . . . , Xm) = P (Xm+1, . . . , Xn | Xl, . . . , Xm). For each

y ∈ W [Xl, . . . , Xm] one can parameterize the subtree rooted at ν
(m+1)
y so

that

P
ν
(m+1)
y

G = P (Xm+1, . . . , Xn | (Xl, . . . , Xm) = y). (36)

In the PDG G = (V,E,p) obtained by extending the parameterization p′

with these parameters then PG = PG(Xm+1, . . . , Xn | X1, . . . , Xm)PG(X1, . . . , Xm)
= PG(Xm+1, . . . , Xn | Xl, . . . , Xm)PG′(X1, . . . , Xm) = P (Xm+1, . . . , Xn |
Xl, . . . , Xm)P (X1, . . . , Xm) = P .

�

Theorem 5.1 shows that PDG representations are always as efficient as
Bayesian network representations. The following example shows that in
some cases they are more efficient.

Example 5.2 Let X1, . . . , Xn−1 be independent binary random variables
with P (Xi = 1) = 1/2 (i = 1, . . . , n − 1), and Xn a random variable with

P (Xn = 1 | X1 = e1, . . . , Xn−1 = en−1) =

{

0 if
∑n−1

j=1 ej mod 2 = 0

1 if
∑n−1

j=1 ej mod 2 = 1.

The joint distribution of X1, . . . , Xn then models the generation of an n− 1
bit random number with an added parity check bit. A Bayesian network
representation of this distribution is shown in Figure 4 (a). The junction-
tree constructed from this network (as well as any other junction-tree for
P) is of exponential size in n. Figure 4 (b) shows the structure of a PDG
representation of P , which is linear in n.

In the preceding example any direct Bayesian network representation of
P is of exponential size. However, one can reduce the size of the represen-
tation by introducing suitable auxiliary (“hidden”) variables and represent
the joint distribution of the Xi and the new variables: while Xn depends
on all of X1, . . . , Xn−1, it becomes independent from X1, . . . , Xn−2 given
∑n−2

j=1 Xj mod 2. This can be utilized by introducing a new random variable

20

PSfrag replacements

X1 X2

X3

X4

Xn

Xn−1

PSfrag replacements

X1

X2X2

X3X3

X4

Xn XnXn−1

(a) (b)

Figure 4: Bayesian network and PDG representations

Y :=
∑n−2

j=1 Xj mod 2, and decompose the network by introducing Y as an
intermediary variable between X1, . . . , Xn−2 and Xn. This process can be
iterated, thus effectively replacing the exponentially large conditional prob-
ability table at Xn with a network of hidden variables. Both the size of the
resulting Bayesian network and its junction-tree then are linear in n. The
following theorem shows that hidden variables provide a general method for
making Bayesian network representations as efficient as PDGs.

Theorem 5.3 There exists an effective transformation that takes a PDG
G as input, and returns a Bayesian network B with the following properties:
when X = X1, . . . , Xn are the random variables of G, then B has nodes
X ∪ {Ni | i = 1, . . . , n}; the marginal distribution defined by B on X is
equal to the distribution defined by G, and there exists a junction tree J for
B whose size is quadratic in the size of G.

Proof: (Sketch) Let G = (V,E), and assume that F consists of a single
tree (otherwise the construction proceeds separately for each component of
(V,E)). Let Ni be a random variable with range R(Ni) := Vi (i = 1, . . . , n).
The network structure of B is defined by pred B(Xi) := Ni for all i, and
pred (Ni) := {Xj , Nj} when Xi = succF (Xj). With this network structure
PG can be encoded. The cliques of the junction tree obtained from B by
the usual construction are the sets of the form {Nj , Xj , Ni} and thus are
labeled with tables of size | Vj ||R(Xj) || Vi |. Summing these over i gives a

21

(e)(b)

(a)

(d)(c)

PSfrag replacements

X1

X2

X3

X4

Xn

Xn−1

A
.5,.5

A
.5,.5

A
.5,.5

B
.3,.7

B
.3,.7

B
.3,.7

B
.1,.9

B
.1,.9

B
.1,.9

C
.6,.4

C
.6,.4

C
.6,.4

C
.6,.4

C
.7,.3

C
.7,.3

C
.7,.3

C
.7,.3

B
1,1

B
1,1

C
1,1

C
1,1

C
1,1

C
1,1

D
.3,.7

D
.3,.7

D
.3,.7

D
.5,.5

D
.5,.5

D
.5,.5

D
.7,.3

D
.7,.3

D
.7,.3

D
1,1

A
1,1

Figure 5: Compositional specification

quadratic bound in the size of G of the size of the junction tree. �

A more detailed analysis furthermore shows that the size of J obtained in
this construction is only linear in the size of G when one does not explicitly
represent rows with value 0 in the tables of J .

6 Construction of PDGs

Our results so far demonstrate that PDG representations of probability dis-
tributions provide a basis for probabilistic inference with several potential
advantages over Bayesian network or junction-tree representations. The
question then is, how do we obtain a PDG representation? In this section
we briefly discuss three possible approaches: direct specification, compila-
tion of a Bayesian network, and learning from data.

Direct Specification

Like a Bayesian network, a PDG may be specified directly by a domain
expert. In some cases this can be straightforward (as in Example 5.2) and
rather more natural than the specification of a Bayesian network for the
same distribution. In other cases the potentially large number of nodes
allocated to each variable Xi will make a direct specification of a large scale
PDG rather cumbersome.

22

One reason why the specification of a large probability distribution by
a Bayesian network is feasible is that the specification task is decomposed
into the problem of specifying a number of relatively small conditional dis-
tributions. It turns out that a similar compositional specification is possible
for PDGs. We illustrate the general approach by an example.

Figure 5 (a) shows a PDG for three binary random variables A,B,C
(according to which B and C are independent given A). Figure 5 (b) shows
a RFG that specifies the conditional distribution of another variable D given
B and C. Note that according to this RFG D is conditionally independent
from C given B = 1. A joint distribution of A,B,C,D now is the product of
the functions defined by (a) and (b). A PDG representing this product can
be computed with the multiplication algorithm of Section 4. This means
that first for the variables A,B,C,D a forest F has to be determined which
is a refinement of the forests of the individual factors. In this example,
the only solution is the linear order A,B,C,D. Transformations of the two
factors (a) and (b) into RFGs for this linear order are shown as (c) and (d).
Note that we also introduced “dummy” nodes for variables that originally
did not appear in the individual factors. Finally, (c) and (d) are multiplied,
yielding the final PDG (e). The size of the final PDG will depend on the
choice of the forest F . The problem of finding a forest that minimizes the
size of the product is somewhat analogous to the problem of finding an
optimal triangulation for a Bayesian network in order to minimize the size
of the induced junction tree.

Compilation

The preceding discussion also points to a method for automatically compil-
ing a Bayesian network into a PDG: one can first rewrite the conditional
probability tables of the network as RFGs similar in form to Figure 5 (b),
and then compute the product. A second approach is provided by the re-
sults of Section 5: one can first construct a junction tree from the Bayesian
network and then turn the junction tree into a PDG, as described in the
proof of Theorem 5.1. This latter approach has the advantage that it can
utilize all the techniques that have been developed for the construction of
small junction trees. The first approach, on the other hand, can utilize at
an early stage in the construction process potential conditional independen-
cies, which can already greatly reduce the size of the RFGs representing the
individual conditional probability tables.

23

Learning from data

PDGs can be learned from empirical data with essentially the same tech-
niques as used for Bayesian networks. When the structure (V,E) of a PDG
is given, then maximum likelihood estimates p̂ν

h for the parameters are ob-
tained from the empirical conditional distributions P data(Xi | A (Vi)) in the
data. In the case of incomplete data, the EM-algorithm can be used. Due
to the linear time complexity of probabilistic inference, a single iteration of
the EM-algorithm has time complexity O(N |G |), where N is the number
of data items.

Structure learning for PDGs has some interesting aspects. At first this
might seem like an almost hopeless task, as the space of all PDG-structures
is considerably larger than the space of all Bayesian network structures for
the same set of variables (a very coarse lower bound for all PDG-structures
for n variables is 22n

, whereas a coarse upper bound for all Bayesian net-
work structures is 2n2

). However, there are some mitigating factors: first,
the space of PDG-structures has a hierarchical structure determined by the
level of possible forests F , and, for each F , the possible refinements to a
graph (V,E). This gives rise to hierarchical search strategies where a top-
level search over F -structures is guided by approximate optimizations of the
exact graph structure given the F -structure. For any given F , the space
of possible PDG-structures can be explored using elementary split and join
operations: a split operation replaces a node ν with l ≥ 2 predecessors with
l distinct copies, each having one of ν’s predecessors as a parent, and all
having the same successors as ν. A join operation reduces model complex-
ity by merging nodes ν, ν ′ ∈ Vi with succ(ν, Y, xi,h) = succ(ν ′, Y, xi,h) for
all Y ∈ succF (Xi), 1 ≤ h ≤ ki, and (pν

1 , . . . , p
ν
ki

) ≈ (pν′

1 , . . . , pν′

ki
). Thus,

join operations corresponds to the merging of states in the computation of a
reduced PDG, only that now states are merged that are only approximately
equivalent.

A major advantage of learning PDGs rather than Bayesian networks
lies in the fact that here a score function like MDL-score that penalizes
model complexity directly penalizes the inferential complexity of a model,
rather than merely its representational complexity. In contrast, MDL-score
does not distinguish between two Bayesian networks of the same size (and
having the same likelihood score) that still differ widely with respect to
complexity of probabilistic inference, because they give rise to junction trees
of very different size. As eventually one will want to use the model for
inference (not for compressing the observed data!), it is very desirable to
guide the model search directly towards those models that will perform

24

well on inference problems. By limiting search to PDG-structures within
a specified size bound, one moreover can force the learning procedure to
produce models for which inference speed satisfies a specified performance
requirement.

7 Related Work

As noted in Section 1, our definition of probabilistic decision graphs is based
on a definition originally proposed by Bozga and Maler (1999). Probabilistic
decision graphs in the sense of Bozga and Maler are essentially PDGs as
introduced here with an underlying linear order T . Most questions that
Bozga and Maler then investigate in connection with these representations
are quite distinct from the questions considered in this paper. An exception
here is the issue of canonicity of representation, for which Bozga and Maler
also present a result, which, however, only refers to representations over
complete tree structures.

Several proposals have been made to encode conditional probability ta-
bles of Bayesian networks with (decision-) trees that make use of “context-
specific”-independence relations within the conditional distribution of a vari-
able Xi given its parents Pa(Xi) (Boutilier et al. 1996, Zhang & Poole 1999,
Cano, Moral & Salmeron 2000). The possible use of OBDDs instead of trees
has also been mentioned (Boutilier et al. 1996). These approaches can be
seen as hybrid frameworks combining elements of “pure” Bayesian network
and PDG representations. A number of adaptations of standard Bayesian
network inference techniques to such structured representations of condi-
tional probability tables have been described: Boutilier et al. (1996) suggest
to use the structure in the conditional distributions either to decompose the
network by introducing auxiliary variables that reduce the overall network
connectivity, or to obtain more efficient strategies for cutset conditioning.
Zhang and Poole (1999) show how to perform variable elimination on tree
representations of cpts. In none of these approaches has it been possible to
quantify the gain in inferential tractability afforded by the more compact
representations. This is not surprising, because the compactness of the new
cpt-representations in general will not be preserved under the multiplication
and marginalization operations occurring in the inference procedures.

In a somewhat different vein, Cano et al. (2000) use trees to represent the
potentials in a join-tree representation, and show how to adapt the standard
propagation algorithm to this representation. In order to make sure that
trees generated during the inference process remain small, it is suggested to

25

use trees that, where necessary, only approximate the true potentials, which
makes this a framework for approximate inference.

Another method related to PDG representations are the polynomial rep-
resentations of Darwiche (2000, 2002). In this framework the joint distribu-
tion of variables X1, . . . , Xn is represented by a multilinear polynomial in
indicator variables λXi

and numerical constants. This polynomial, in turn,
can be represented by an arithmetic circuit whose size is linear in the size of a
junction-tree representation for the distribution. Probabilistic inference now
is linear in the size of the arithmetic circuit. Though these latter results bear
some resemblance to our results on PDGs, there is a fundamental difference
between Darwiche’s approach and ours. Unlike PDGs, arithmetic circuits
do not provide a primary representation language for probability distribu-
tions: there is no syntactic criterion that can be applied to tell whether any
given arithmetic circuit represents a probability distribution or some other
real-valued function. For this reason it appears to be very difficult to specify
a probability distribution directly as a circuit, or to learn a circuit repre-
sentation from data. This makes this form of representation a secondary
representation that will have to be obtained by compilation of some other
representation like a Bayesian network (as proposed by Darwiche (2000)) –
or a PDG.

8 Conclusion

PDGs are a promising alternative to Bayesian networks and/or junction
trees for the representation of probability distributions. An attractive fea-
ture of PDGs is that they replace by one coherent, simple framework a
number of modeling techniques (use of hidden variables, context-specific
independence, structured representation of conditional probability tables)
previously used to make Bayesian network representations more efficient.
The algorithms for probabilistic inference on PDGs (computation of in- and
out-flow, multiplication of RFGs) are very simple and extend the special
inference methods proposed by Nielsen et al. (2000) for deterministic sub-
networks to general probabilistic inference.

Different direct construction methods for PDGs are available, so that
PDGs are a “stand-alone” representation framework that is not dependent
on compilation from some other representation.

Our main goal in this paper was to develop the basic concepts of PDG
representations (syntax, (independence-)semantics, algorithms and complex-
ity of probabilistic inference), and to assess the respective efficiencies of

26

Bayesian network and PDG representations. Some other important ques-
tions here were only treated very superficially. Most important among these
is the question of how to construct PDGs in practice, and especially how to
learn PDGs from data. This is the subject of ongoing and future work.

Another aspect not considered here is the integration of PDGs into the
Bayesian network paradigm by using them as a compact representation of
conditional probability tables and/or clique potentials (as suggested by some
of the previous approaches mentioned in section 7). The difficulty with this
approach is that marginalization operations that need to be performed for
probabilistic inference can cause an exponential blowup of the size of PDG
representations, so that there are no guarantees that an initially compact
representation of conditional probability tables will really make inference
more efficient.

References

Andersson, S. A., Madigan, D. & Perlman, M. D. (1997), ‘A characteriza-
tion of markov equivalence classes for acyclic digraphs’, The Annals of
Statistics 25(2), 505–541.

Billingsley, P. (1986), Probability and Measure, Wiley.

Boutilier, C., Friedman, N., Goldszmidt, M. & Koller, D. (1996), Context-
specific independence in Bayesian networks, in ‘Proceedings of the
Twelfth Annual Conference on Uncertainty in Artificial Intelligence
(UAI–96)’, Portland, Oregon, pp. 115–123.

Bozga, M. & Maler, O. (1999), On the representation of probabilities over
structured domains, in ‘Proceedings of CAV-99’, number 1633 in ‘Lec-
ture Notes in Computer Science’.

Bryant, R. E. (1986), ‘Graph-based algorithms for boolean function manip-
ulation’, IEEE Transactions on Computers 35(8), 677–691.

Cano, A., Moral, S. & Salmeron, A. (2000), ‘Penniless propagation in join
trees’, International Journal of Intelligent Systems 15(11), 1027–1059.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L. & Spiegelhalter, D. J. (1999),
Probabilistic Networks and Expert Systems, Springer.

Darwiche, A. (2000), A differential approach to inference in Bayesian net-
works, in ‘Proceedings of the Sixteenth Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI–2000)’.

27

Darwiche, A. (2002), A logical approach to factoring belief networks, in
‘Proceedings of KR-2002’.

Dechter, R. (1996), Bucket elimination: A unifying framework for prob-
abilistic inference, in ‘Proceedings of the Twelfth Annual Conference
on Uncertainty in Artificial Intelligence (UAI–96)’, Portland, Oregon,
pp. 211–219.

Fujita, M., McGeer, P. C. & Yang, J.-Y. (1997), ‘Multi-terminal binary de-
cision diagrams: an efficient data structure for matrix representation’,
Formal Methods in System Design 10, 149–169.

Jensen, F. (2001), Bayesian Networks and Decision Graphs, Springer.

Koenig, S. & Simmons, R. G. (1994), Risk-sensitive planning with proba-
bilistic decision graphs, in ‘Principles of Knowledge Representation and
Reasoning, Proceedings of the Fourth International Conference (KR-
94)’, pp. 363–373.

Lai, Y.-T. & Sastry, S. (1992), Edge-valued binary decision diagrams
for multi-level hierarchical verification, in ‘Proceedings of the 29th
ACM/IEEE Design Automation Conference’, pp. 608–613.

Nielsen, T. D., Wuillemin, P.-H., Jensen, F. V. & Kjærulff, U. (2000), Using
ROBDDs for inference in Bayesian networks with troubleshooting as
an example, in ‘Proceedings of the Sixteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI–2000)’.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems : Networks
of Plausible Inference, The Morgan Kaufmann series in representation
and reasoning, rev. 2nd pr. edn, Morgan Kaufmann, San Mateo, CA.

Verma, T. & Pearl, J. (1991), Equivalence and synthesis of causal models,
in P. Bonissone, M. Henrion, L. Kanal & J. Lemmer, eds, ‘Uncertainty
in Artificial Intelligence 6’, Elsevier Science Publishers, pp. 255–268.

Zhang, N. L. & Poole, D. (1999), On the role of context-specific indepen-
dence in probabilistic inference, in ‘Proc. Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI-99)’, pp. 1288–1293.

28

