
International Journal on Software Tools for Technology (2005) 00: 1–12
DOI 10.1007/s10009-005-0190-0

SPECIAL SECTION ON TACAS 04

Gerd Behrmann · Patricia Bouyer ·
Kim G. Larsen · Radek Peĺanek

Lower and upper bounds in zone-based abstractions
of timed automata

Received: date / Published online: date
c© Springer-Verlag 2005

Abstract Timed automata have an infinite semantics. For
verification purposes, one usually uses zone-based abstrac-
tions w.r.t. the maximal constants to which clocks of the
timed automaton are compared. We show that by distinguish-
ing maximal lower and upper bounds, significantly coarser
abstractions can be obtained. We show soundness and com-
pleteness of the new abstractions w.r.t. reachability and demon-
strate how information about lower and upper bounds can
be used to optimise the algorithm for bringing a difference
bound matrix into normal form. Finally, we experimentally
demonstrate that the new techniques dramatically increase
the scalability of the real-time model checkerUPPAAL.

Keywords

1 Introduction

Since their introduction by Alur and Dill in [2,3], timed au-
tomata have become one of the most well-established mod-
els for real-time systems with well-studied underlying the-
ory and development of mature model-checking tools such
asUPPAAL [13] andKRONOS [6]. By their very definition
timed automata describe (uncountable) infinite state spaces.
Thus, algorithmic verification relies on the existence of ex-
act finite abstractions. In the original work by Alur and Dill,
the so-called region-graph construction provided a ‘univer-
sal’ such abstraction. However, whereas the region-graph
construction is well suited for establishing decidability of

G. Behrmann () · K. G. Larsen
BRICS, Aalborg University, Denmark
E-mail: behrmann@cs.auc.dk, kgl@cs.auc.dk

P. Bouyer
LSV, CNRS & ENS de Cachan, UMR 8643, France
E-mail: bouyer@lsv.ens-cachan.fr

R. Peĺanek
Masaryk University Brno, Czech Republic
E-mail: xpelanek@informatics.muni.cz

problems related to timed automata, it is highly impracti-
cal from a tool-implementation point of view. Instead, most
real-time verification tools apply abstractions based on so-
called zones, which in practise provide much coarser (and
hence smaller) abstractions.

To ensure finiteness, it is essential that the given abstrac-
tion (region as well as zone based) take into account the ac-
tual constants with which clocks are compared. In particu-
lar, the abstraction could identify states which are identical
except for the clock values which exceed themaximumsuch
constants. Obviously, the smaller we choose these maximum
constants, the coarser the resulting abstraction will be. Al-
lowing clocks to be assigned different (maximum) constants
is an obvious first step in this direction, and in [5] this idea
has been (successfully) elaborated by allowing the maxi-
mum constants to depend not only on the particular clock
but also on the particular location of the timed automaton.
In all cases theexactnessis established by proving that the
abstraction respectsbisimilarity, i.e. states identified by the
abstraction are bisimilar.

Consider now the timed automaton of Fig. 1. Clearly106

is the maximum constant forx and1 is the maximum con-
stant fory. Thus, abstractions based on maximum constants
will distinguish all states wherex ≤ 106 andy ≤ 1. In par-
ticular, a forward computation of the full state space will –
regardless of the search order – create an excessive number
of abstract (symbolic) states including all abstract states of
the form (`, x − y = k), where0 ≤ k ≤ 106, as well as
(`, x− y > 106). However, assuming that we are only inter-
ested inreachabilityproperties (as is often the case inUP-
PAAL), the application of downwards closure with respect to
simulationwill lead to an exact abstraction which could po-
tentially be substantially coarser than closure under bisim-
ilarity. Observing that106 is an upper bound on the edge
from ` to `2 in Fig. 1, it is clear that for any state where
x ≥ 10, increasingx will only lead to ‘smaller’ states with
respect to simulation preorder. In particular, applying this
downward closure results in the radically smaller collection
of abstract states, namely(`, x− y = k), where0 ≤ k ≤ 10
and(`, x− y > 10).

2 G. Behrmann et al.

Fig. 1 A small timed automaton. The state space of the automaton
when in locatioǹ is shown. The area to theright is the abstraction of
the last zone

The fact that106 is anupper bound in the example of
Fig. 1 is crucial for the reduction we obtained above. In this
paper we present new, substantially coarser, yet still exact,
abstractions based ontwo maximum constants obtained by
distinguishing lower and upper bounds. In all cases the ex-
actness (w.r.t. reachability) is established by proving that the
abstraction respects downwards closure w.r.t. simulation, i.e.
for each state in the abstraction there is an original state sim-
ulating it. The variety of abstractions comes from the addi-
tional requirements foreffectiverepresentation andefficient
computation and manipulation. In particular we insist that
zones can form the basis of our abstractions; in fact, the sug-
gested abstractions are defined in terms of low-complexity
transformations of the difference bound matrix (DBM) rep-
resentation of zones. Furthermore, we demonstrate how in-
formation about lower and upper bounds can be used to opti-
mise the algorithm for bringing a DBM into normal form. Fi-
nally, we experimentally demonstrate the significant speed-
ups obtained by our new abstractions, to be comparable with
the convex hull overapproximation supported byUPPAAL.
Here, the distinction between lower and upper bounds is
combined with the orthogonal idea of location dependency
of [5].

2 Preliminaries

Although we perform our experiments inUPPAAL, we de-
scribe the theory on the basic timed automaton model. Vari-
ables, committed locations, networks, urgency, and other things
supported byUPPAAL are not important with respect to pre-
sented ideas, and the technique can easily be extended for
these ‘richer’ models.

LetX be a set of non-negative real-valued variables called
clocks. The set of guardsG(X) is defined by the grammar
g := x ./ c | g ∧ g, wherex ∈ X, c ∈ N and./∈ {<,≤,≥
, >}.
Definition 1 (Timed automata syntax)A timed automaton
is a tupleA = (L,X, `0, E, I), whereL is a finite set of
locations,X is a finite set of clocks,̀0 ∈ L is an initial
location,E ⊆ L×G(X)× 2X ×L is a set of edges labelled
by guards and a set of clocks to be reset, andI : L → G(X)
assigns invariants to clocks.

A clock valuationis a functionν : X → R≥0. If δ ∈ R≥0,
then ν + δ denotes the valuation such that for each clock

x ∈ X, (ν + δ)(x) = ν(x) + δ. If Y ⊆ X, thenν[Y := 0]
denotes the valuation such that for each clockx ∈ X Y ,
ν[Y := 0](x) = ν(x) and for each clockx ∈ Y , ν[Y :=
0](x) = 0. The satisfaction relationν |= g for g ∈ G(X) is
defined in the natural way.

Definition 2 (Timed automata semantics)The semantics
of a timed automatonA = (L,X, `0, E, I) is defined by a
transition systemSA = (S, s0,→), whereS = L × RX

≥0 is
the set of states,s0 = (`0, ν0) is the initial state,ν0(x) = 0
for all x ∈ X, and→⊆ S×S is the set of transitions defined
by:

– (`, ν)
ε(δ)→ (`, ν + δ) if ∀0 ≤ δ′ ≤ δ : (ν + δ′) |= I(l);

– (`, ν) → (`′, ν[Y := 0]) if there exists(`, g, Y, `′) ∈ E
such thatν |= g andν[Y := 0] |= I(`′).

The reachability problemfor an automatonA and a loca-
tion ` is to decide whether there is a state(`, ν) reachable
from (`0, ν0) in the transition systemSA. As usual, for veri-
fication purposes, we define a symbolic semantics for timed
automata. For universality, the definition uses arbitrary sets
of clock valuations.

Definition 3 (Symbolic semantics)The symbolic semantics
of a timed automatonA = (L,X, `0, E, I) is defined by the

abstract transition system(S, s0,⇒), whereS = L × 2R
X
≥0

and ‘⇒’ is defined by the following two rules:

Delay: (`,W) ⇒ (`,W ′), whereW ′ = {ν + d | ν ∈
W ∧ d ≥ 0 ∧ ∀0 ≤ d′ ≤ d : (ν + d′) |= I(`)}.

Action: (`,W) ⇒ (`′, W ′) if there exists a transitioǹ
g,Y→

`′ inA, such thatW ′ = {ν′ | ∃ν ∈ W : ν |= g ∧ ν′ =
ν[Y := 0] ∧ ν′ |= I(`′)}.

The symbolic semantics of a timed automaton may induce
an infinite transition system. To obtain a finite graph one
may, as suggested in [5], apply some abstraction
a : P(RX

≥0) ↪→ P(RX
≥0) such thatW ⊆ a(W). The ab-

stract transition system ‘⇒a’ is then given by the following
inference rule:

(`,W) ⇒ (`′,W ′)
(`, W) ⇒a (`′, a(W ′))

if W = a(W).

A simple way to ensure that the reachability graph induced
by ‘⇒a’ is finite is to establish that there is only a finite
number of abstractions of sets of valuations; that is, the set
{a(W) | adefined on W} is finite. In this case,a is said to
be afinite abstraction. Moreover, ‘⇒a’ is said to besound
andcomplete(w.r.t. reachability) whenever

Sound:(`0, {ν0}) ⇒∗
a (`,W) implies∃ν : ν ∈ W and(`0, ν0) →∗

(l, ν).
Complete:(`0, ν0) →∗ (`, ν) implies∃W : ν ∈ W and(`0, {ν0}) ⇒∗

a

(`,W).

By language misuse, we say that an abstractiona is sound
(resp.complete) whenever ‘⇒a’ is sound (resp. complete).
Completeness follows trivially from the definition of abstrac-
tion. Of course, ifa andb are two abstractions such that for

Lower and upper bounds in zone-based abstractions 3

any set of valuationsW , a(W) ⊆ b(W), we prefer to use ab-
stractionb because the graph induced by it is a priori smaller
than the one induced bya. Our aim is thus to propose an ab-
straction which is finite, as coarse as possible, and which
induces a sound abstract transition system. We also require
that abstractions beeffectivelyrepresentable and may beef-
ficientlycomputed and manipulated.

A first step in finding an effective abstraction is realis-
ing thatW will always be a zone whenever(`0, {ν0}) ⇒∗

(`, W). A zoneis a conjunction of constraints of the form
x ./ c or x − y ./ c, wherex andy are clocks andc ∈
Z and represented usingdifference bound matrices(DBM).
We will briefly recall the definition of DBMs and refer to
[7,9–11] for more details. A DBM is a square matrixD =
〈ci,j ,≺i,j〉0≤i,j≤n such thatci,j ∈ Z and≺i,j∈ {<,≤} or
ci,j = ∞ and≺i,j=<. The DBM D represents the zone
[[D]] which is defined by[[D]] = {ν | ∀0 ≤ i, j ≤ n, ν(xi)−
ν(xj) ≺i,j ci,j}, where{xi | 1 ≤ i ≤ n} is the set of clocks
andx0 is a clock which is always 0 (i.e. for each valuation
ν, ν(x0) = 0). DBMs are not a canonical representation
of zones, but a normal form can be computed by consider-
ing the DBM as an adjacency matrix of a weighted directed
graph and computing all shortest paths. In particular, ifD =
〈ci,j ,≺i,j〉0≤i,j≤n is a DBM in normal form, then it satisfies
the triangular inequality, that is, for every0 ≤ i, j, k ≤ n,
we have that(ci,j ,≺i,j) ≤ (ci,k,≺i,k) + (ck,j ,≺k,j), where
comparisons and additions are defined in a natural way (see
[9]). All operations needed to compute ‘⇒’ can be imple-
mented by manipulating the DBMs.

3 Maximum bound abstractions

The abstraction used in real-time model checkers such as
UPPAAL [14] andKRONOS[6] is based on the idea that the
behaviour of an automaton is only sensitive to changes of
a clock if its value is below a certain constant. That is, for
each clock there is a maximum constant such that, once the
value of a clock has passed this constant, its exact value is no
longer relevant – only the fact that it is larger than the max-
imum constant matters. Transforming a DBM to reflect this
idea is often referred to asextrapolation[5,8] or normalisa-
tion [12]. In what follows we will use the termextrapolation.

3.1 Simulation and bisimulation

The notion of bisimulation has so far been the semantic tool
for establishing soundness of suggested abstractions. In this
paper we shall exploit the more liberal notion of simulation
to allow for even coarser abstractions. Let us fix a timed
automatonA = (L,X, `0, E, I). We consider a relation on
L× RX

≥0 satisfying the following transfer properties:

1. If (`1, ν1) 4 (`2, ν2), then`1 = `2.
2. If (`1, ν1) 4 (`2, ν2) and(`1, ν1) → (`′1, ν

′
1), then there

exists(`′2, ν
′
2) such that(`2, ν2) → (`′2, ν

′
2) and(`′1, ν

′
1) 4

(`′2, ν
′
2).

3. If (`1, ν1) 4 (`2, ν2) and(`1, ν1)
ε(δ)→ (`1, ν1 + δ), then

there existsδ′ such that(`2, ν2)
ε(δ′)→ (`2, ν2 + δ′) and

(`1, ν1 + δ) 4 (`2, ν2 + δ′).

We call such a relation a (location-based) simulationrela-
tion or simply asimulationrelation. A simulation relation
4 such that4−1 is also a simulation relation is called a
(location-based)bisimulation relation.

Proposition 1 Let 4 be a simulation relation, as defined
above. If(`, ν1) 4 (`, ν2) and if a discrete statè′ is reach-
able from(`, ν1), then it is also reachable from(`, ν2).

Reachability is thus preserved by simulation as well as by
bisimulation. However, in general the weaker notion of sim-
ulation preserves fewer properties than that of bisimulation.
For example, deadlock properties as expressed in
UPPAAL1 are not preserved by simulation, whereas they are
preserved by bisimulation. In Fig. 1,(`, x = 15, y = 0030.5)
simulates(`, x = 115, y = 0.5) as well as(`, x = 106 +
1, y = 0.5).

3.2 Classical maximal bounds

The classical abstraction for timed automata is based on max-
imal bounds, one for each clock of the automaton. LetA =
(L,X, `0, E, I) be a timed automaton. Themaximal bound
of a clockx ∈ X, denotedM(x), is the maximal constantk
such that there exists a guard or invariant containingx ./ k
in A. Let ν and ν′ be two valuations. We define the fol-
lowing relation:ν ≡M ν′ def⇐⇒ ∀x ∈ X : eitherν(x) =
ν′(x)or(ν(x) > M(x) and ν′(x) > M(x)).

Lemma 1 The relationR = {((`, ν), (`, ν′)) | ν ≡M ν′} is
a bisimulation relation.

We can now define the abstractiona≡M
w.r.t.≡M . LetW be

a set of valuations; thena≡M (W) = {ν | ∃ν′ ∈ W, ν′ ≡M

ν}.

Lemma 2 The abstractiona≡M is sound and complete.

These two lemmas come from [5]. They will, moreover,
be consequences of our main result.

3.3 Lower and upper maximal bounds

The new abstractions introduced in what follows will be sub-
stantially coarser thana≡M

. It will no longer be based on a
single maximal bound per clock but rather on two maximal
bounds per clock, allowing lower and upper bounds to be
distinguished.

1 There is a deadlock whenever there exists a state(`, ν) such that
no further discrete transition can be taken.

4 G. Behrmann et al.

Definition 4 LetA = (L,X, `0, E, I) be a timed automa-
ton. The maximal lower bound denotedL(x) (resp. maximal
upper boundU(x)) of clockx ∈ X is the maximal constant
k such that there exists a constraintx > k or x ≥ k (resp.
x < k or x ≤ k) in a guard of some transition or in an in-
variant of some location ofA. If no such constant exists, we
setL(x) (resp.U(x)) to−∞.

Let us fix for the rest of this section a timed automatonA and
boundsL(x), U(x) for each clockx ∈ X as above. The idea
of distinguishing lower and upper bounds is the following: if
we know that the clockx is between 2 and 4, and if we want
to check that the constraintx ≤ 5 can be satisfied, the only
relevant information is that the value ofx is greater than 2,
and not thatx ≤ 4. In other terms, checking the emptiness
of the intersection between a non-empty interval[c, d] and
]−∞, 5] is equivalent to checking whetherc > 5; the value
of d is not useful. Formally, we define the LU preorder as
follows.

Definition 5 (LU preorder ≺LU) Let ν andν′ be two val-
uations. Thenν′ ≺LU ν if and only if for each clockx:

– ν′(x) = ν(x),
– or L(x) < ν′(x) < ν(x),
– or U(x) < ν(x) < ν′(x).

Lemma 3 The relationR = {((`, ν), (`, ν′)) | ν′ ≺LU ν}
is a simulation relation.

Proof The only non-trivial part in proving thatR indeed sat-
isfies the three transfer properties of a simulation relation is
to establish that ifg is a clock constraint, then ‘ν |= g implies
ν′ |= g’. Consider the constraintx ≤ c. If ν(x) = ν′(x),
then we are done. IfL(x) < ν′(x) < ν(x), thenν(x) ≤ c
implies ν′(x) ≤ c. If U(x) < ν(x) < ν′(x), then it is not
possible thatν |= x ≤ c (becausec ≤ U(x)). Consider now
the constraintx ≥ c. If ν(x) = ν′(x), then we are done. If
U(x) < ν(x) < ν′(x), thenν(x) ≥ c impliesν′(x) ≥ c. If
L(x) < ν′(x) < ν(x), then it is not possible thatν satisfies
the constraintx ≥ c becausec ≤ L(x). ¤

Using the above LU preorder, we can now define a first
abstraction based on the lower and upper bounds.

Definition 6 (a≺LU
, abstraction w.r.t. ≺LU) Let W be a

set of valuations. We define the abstraction w.r.t.≺LU as
a≺LU

(W) = {ν | ∃ν′ ∈ W, ν′ ≺LU ν}.
Before going further, we illustrate this abstraction in Fig. 2.

We are looking at several cases, depending on the relative
positions of the two valuesL(x) andU(x) and of the valua-
tion ν. We represent with a plain line the value ofa≺LU ({ν})
and with a dashed line the value ofa≡M

({ν′}), where the
maximal boundM(x) corresponds to the maximum ofL(x)
andU(x). In each case, we indicate the ‘quality’ of the new
abstraction compared with the ‘old’ one. We notice that the
new abstraction is coarser in three cases and matches the old
abstraction in the fourth case.

Fig. 2 Quality ofa≺LU compared witha≡M for M = max(L, U)

Lemma 4 LetA be a timed automaton. Define the constants
M(x), L(x), andU(x) for each clockx as described before.
The abstractiona≺LU is sound, complete, and coarser or
equal toa≡M

.

Proof Completeness is obvious, and soundness comes from
Lemma 3. Definitions ofa≺LU anda≡M give the last result
because for each clockx, we haveM(x) = max (L(x), U(x)).
¤

This result could suggest that one usea≺LU
in real-time

model checkers. However, we do not yet have an efficient
method for computing the transition relation ‘⇒a≺LU

’. In-
deed, even ifW is a zone, it might be the case thata≺LU (W)
is not even convex (we urge the reader to construct such an
example for herself). For effectiveness and efficiency rea-
sons we prefer abstractions which transform zones into zones
because we can then use the DBM data structure. In the next
section we present DBM-based extrapolation operators that
will give abstractions which are sound, complete, finite, and
effective.

4 Extrapolation using zones

The (sound and complete) symbolic transition relations in-
duced by abstractions considered so far unfortunately do not
preserve convexity of sets of valuations. In order to allow
for sets of valuations to be representedefficientlyas zones,
we consider slightly finer abstractionsaExtra such that for
every zoneZ, Z ⊆ aExtra(Z) ⊆ a≺LU

(Z) (resp.Z ⊆
aExtra(Z) ⊆ a≡M

(Z)) (this ensures correctness) andaExtra(Z)
is a zone (this gives an effective representation). These ab-
stractions are defined in terms ofextrapolationoperators on
DBMs. If Extra is an extrapolation operator, it defines an
abstraction,aExtra, on zones such that for every zoneZ,
aExtra(Z) = [[Extra(DZ)]], whereDZ is the DBM in nor-
mal form which represents the zoneZ.

In the remainder of the paper, we consider a timed au-
tomatonA over a set of clocksX = {x1, . . . , xn}, and
we suppose we are given another clockx0 which is always
zero. For all these clocks, we define the constantsM(xi),
L(xi), U(xi) for i = 1, . . . , n. For x0, we setM(x0) =
U(x0) = L(x0) = 0 (x0 is always equal to zero, so we as-
sume we are able to check whetherx0 is really zero). In our
framework, a zone will be represented by DBMs of the form
〈ci,j ,≺i,j〉i,j=0,...,n.

Lower and upper bounds in zone-based abstractions 5

We now present several extrapolations starting from the
classical one and improving it step by step. Each extrapola-
tion will be illustrated by a small picture representing a zone
(in black) and its corresponding extrapolation (dashed).

4.1 Classical extrapolation based on maximal boundsM(x)

If D is a DBM〈ci,j ,≺i,j〉i,j=0...n, thenExtraM (D) is given
by the DBM 〈c′i,j ,≺′i,j〉i,j=0...n defined and illustrated be-
low:

(c′i,j ,≺′i,j) =





∞ if ci,j > M(xi),
(−M(xj), <) if −ci,j > M(xj),
(ci,j ,≺i,j) otherwise.

This is the extrapolation operator used in the real-time model
checkersUPPAAL andKRONOS. This extrapolation removes
bounds that are larger than the maximal constants. The cor-
rectness follows fromaExtraM

(Z) ⊆ a≡M
(Z) and is proved

in [8] and for the location-based version in [5].
In the remainder of this paper, we will propose several

other extrapolations that will improve the classical one, in
the sense that the zones obtained with the new extrapola-
tions will be larger than those obtained with the classical
extrapolation.

4.2 Diagonal extrapolation based
on maximal constantsM(x)

The first improvement consists in noticing that if the whole
zone is above the maximal bound of some clock, then we
can remove some of the diagonal constraints of the zones,
even if they are not themselves above the maximal bound.
More formally, if D = 〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, then
Extra+

M (D) is given by〈c′i,j ,≺′i,j〉i,j=0,...,n defined as:

(c′i,j ,≺′i,j) =





∞ if ci,j > M(xi),
∞ if −c0,i > M(xi),
∞ if −c0,j > M(xj), i 6= 0,

(−M(xj), <) if if − ci,j > M(xj), i = 0,

(ci,j ,≺i,j) otherwise.

For every zoneZ it then holds thatZ ⊆ aExtraM
(Z) ⊆

aExtra+
M

(Z).

4.3 Extrapolation based on LU boundsL(x) andU(x)

The second improvement uses the two boundsL(x) andU(x).
If D = 〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, thenExtraLU (D) is
given by〈c′i,j ,≺′i,j〉i,j=0,...,n defined as:

(c′i,j ,≺′i,j) =





∞ if ci,j > L(xi),
(−U(xj), <) if −ci,j > U(xj),
(ci,j ,≺i,j) otherwise.

This extrapolation benefits from the properties of the two
different maximal bounds and generalises the operatoraExtraM

.
For every zoneZ, it holds thatZ ⊆ aExtraM

(Z) ⊆ aExtraLU
(Z).

4.4 Diagonal extrapolation based on LU bounds
L(x) andU(x)

This last extrapolation is a combination of the extrapolation
based on LU bounds and the improved extrapolation based
on maximal constants. It is the most general one. IfD =
〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, thenExtra+

LU (D) is given
by the DBM〈c′i,j ,≺′i,j〉i,j=0,...,n defined as:

(c′i,j ,≺′i,j) =





∞ if ci,j > L(xi),
∞ if − c0,i > L(xi),
∞ if − c0,j > U(xj), i 6= 0,

(−U(xj), <) if − c0,j > U(xj), i = 0,

(ci,j ,≺i,j) otherwise.

4.5 Correctness of these abstractions

We know that all the above extrapolations are complete ab-
stractions as they transform a zone into a clearly larger one.
Finiteness also comes immediately because we can do all the
computations with DBMs and the coefficients after extrapo-
lation can only take a finite number of values. Effectiveness
of the abstraction is obvious as extrapolation operators are
directly defined on the DBM data structure. The only dif-
ficult point is proving that the extrapolations we have pre-
sented are correct. To prove the correctness of all these ab-
stractions, due to the inclusions shown in Fig. 3, it is suffi-
cient to prove the correctness of the largest abstraction,viz
aExtra+

LU
.

6 G. Behrmann et al.

Fig. 3 For any zoneZ, we have the inclusions indicated by the
arrows. The setsa

Extra+
M

(Z) and aExtraLU (Z) are incomparable.

TheaExtra operators are DBM-based abstractions, whereas the other
two are semantic abstractions. Thedashed arrowwas proved in [5],
whereas thedotted arrowis the main result of this paper

Proposition 2 LetZ be a zone. ThenaExtra+
LU

(Z) ⊆ a≺LU
(Z).

The proof of this proposition is quite technical and is omit-
ted here due to page limits. Notice, however, that it is a key
result. Using all the above discussions, we are able to claim
the following theorem, which states thataExtra+

LU
is an ab-

straction which can be used in the implementation of timed
automata.

Theorem 1 aExtra+
LU

is sound, complete, finite, and effec-
tively computable.

5 Acceleration of successor computation

In the preceding section it was shown that the abstraction
based on the new extrapolation operator is coarser than the
one currently used in timed automata model checkers. This
can result in a smaller symbolic representation of the state
space of a timed automaton. As we will see in this sec-
tion, besides reducing the memory requirements, identifying
lower and upper bounded clocks can be used to speed up the
successor computation.

In certain models some clocks only have lower bounds
or only have upper bounds. We say that a clockx is lower-
bounded(resp.upper-bounded) if L(x) > −∞ (resp.U(x) >
−∞). Let D be a DBM andD′ = Extra+

LU (D). It fol-
lows directly from the definition of the extrapolation oper-
ator that for allxi, U(xi) = −∞ implies c′j,i = +∞ and
L(xi) = −∞ impliesc′i,j = +∞. We say that a DBMD is
in LU formwhenever all coefficientsci,j = ∞, except when
xi is lower boundedand xj is upper bounded. Thus,D′ is
in LU form. If we let |Low| = {i | xi is lower bounded},
|Up| = {i | xi is upper bounded}, and|Clocks| = |Low| ∪
|Up|, then it follows that a DBM in LU form can be rep-
resented by a|Low| × |Up| matrix rather than the normal
|Clocks| × |Clocks| since all remaining entries in the DBM
will be +∞ (see Fig. 4).

The projection of a DBM onto the LU form is given by
the functionLU-PROJECTION(D) = D′, where

D′
ij =

{
Dij i ∈ |Low|, j ∈ |Up|,
∞ otherwise.

Fig. 4 DBM in LU form. All DBM entries in thewhite areasare+∞.
DBMs in LU form can be represented as an asymmetric DBM in which
only rows for lower bounded clocks and columns for upper bounded
clocks are included

Lemma 5 LetD be a DBM in normal form. ThenLU-PROJECTION(D)
is

– in normal form,
– in LU form,
– reachability equivalent toD.

Proof Canonicity is easy to show. The LU form follows di-
rectly from the definition of the LU form and the definition
of the projection function. Reachability equivalence is a con-
sequence of[[D]] ⊆ [[LU-PROJECTION(D)]] ⊆ [[Extra+

LU (D)]] ⊆
a≺LU

([[D]]). ¤

In the remainder of this section, we will alter the succes-
sor computation such that we retain during the entire succes-
sor computation. We first summarise how the DBM-based
successor computation is currently performed. LetD be a
DBM in normal form. We want to compute the successor

of D w.r.t. an edgè
g,Y→ `′. In UPPAAL, this is broken

down into a number of elementary DBM operations, quite
similar to the symbolic semantics of timed automata (Ta-
ble 1). After applying the guard and the target invariant, the
result must be checked for consistency, and after applying
the extrapolation operator the DBM must be brought back
into normal form. Checking the consistency of a DBM is
done by computing the normal form and checking the diag-
onal for negative entries. In general, the normal form can be
computed using theO(n3)-time Floyd–Warshall all-pairs-
shortest-path algorithm, but when applying a guard or in-
variant, resetting clocks, or computing the delay successors,
the normal form can be recomputed much more efficiently
[15] (see left column of Fig. 5).2 Table 1 shows the opera-
tions involved and their complexity (all DBMs exceptD5 are
in normal form). The last step is clearly the most expensive.
As mentioned, with the new extrapolation operatorD5 is in
LU form. UsingLU-PROJECTION, the successor computa-
tion can be changed such that all intermediate DBMs are in
LU form:

D1 = LU-PROJECTION(INTERSECTION(g,D))
D2 = LU-PROJECTION(RESETY (D1))
D3 = LU-PROJECTION(ELAPSE(D2))
D4 = LU-PROJECTION(INTERSECTION(I(`), D3))
D5 = EXTRAPOLATION(D4)
D6 = LU-PROJECTION(CANONIZE(D5))

2 The pseudocode is in a procedural style rather than a functional
style. The latter would require a copy of the input DBM.

Lower and upper bounds in zone-based abstractions 7

Fig. 5 Left: Operations on symmetric DBMs for computing succes-
sors.Right: The corresponding operations on asymmetric DBMs. All
operations maintain the canonical form. Notice that our model does not
allow guards over clock differences, hence one of the clocks given to
TIGHTEN will be zero

The correctness of this change follows from Lemma 5. The
final step in creating a more efficient successor computation
is to replace the operations on the left of Fig. 5 with those on
the right:

D1 = LU-I NTERSECTION(g,D)
D2 = LU-RESETY (D1)
D3 = LU-ELAPSE(D2)
D4 = LU-I NTERSECTION(I(`), D3)
D5 = LU-EXTRAPOLATION(D4)
D6 = LU-CANONIZE(D5)

The correctness of this change is ensured by the follow-
ing lemmas.

Lemma 6 Let D be a DBM in normal form and LU form.
Then we have the following syntactic equalities:

LU-PROJECTION(INTERS(g,D)) = LU-I NTERS(g, D)
LU-PROJECTION(RESETY (D)) = LU-RESETY (D)

ELAPSE(D) = LU-ELAPSE(D)

Proof For all LU operations, we must argue that the con-
straints in the LU projection of the DBM are preserved.

For the first equality we observe thatLU-T IGHTEN is
always called for a guardk ./ v, where eitherx or y is k
and the other is zero, since guards on clock differences are
not allowed in our model. Ifk is both a lower bounded and
an upper bounded clock, thenLU-T IGHTEN behaves like
TIGHTEN except thatLU-CLOSE1 only iterates over lower
and upper bounded clocks (for all other clocks, the sum in
the loop body is infinity). Ifk is lower bounded but not up-
per bounded, then theDxy is not in the DBM: In this case,
the loop over the lower bounded clocks propagates the effect
that tighteningDxy would have had ifCANONIZE had been
called (the correctness of this can be observed by reordering
how CANONIZE visits the clocks – then none of the itera-
tions except for the last one modifies the DBM). The case for
k being upper bounded, but not lower bounded, is similar.

The second equality follows a similar observation for
reset: For the constraints in the projection,LU-RESET be-
haves exactly likeRESET. Changes to constraints not in the
projection can be ignored since they do not propagate to con-
straints in the projection.

The final equality follows from the observation thatELAPSE
preserves the LU form. ¤

Lemma 7 Let D be a DBM in LU form. Then we have the
following syntactic equality:

CANONIZE(D) = LU-CANONIZE(D)

Proof Follows from the observation thatCANONIZE pre-
serves the LU form. ¤

Table 1 gives the complexity of the new algorithms. As
can be seen, the complexity of the new algorithms is bound
by the number of lower and upper bounded clocks rather
than the total number of clocks. For some models we ex-
pect this change to provide a significant speed-up. One such
example is presented in the following section.

6 Job shop scheduling

Let M be a finite set of machines. Ajob is a finite sequence
of pairs(m1, d1) · · · (mk, dk), where eachmi is a machine
of M and di is an integer representing a duration. A pair
(mi, di) means that the job needs the machinemi for di

units of time. Thejob shop scheduling problemconsists in
scheduling a finite sets of jobs on the machines ofM (two
jobs can not use the same machine at the same time) such
that all jobs are completed in the shortest amount of time.
As is done in [1,4], jobs can be represented by simple timed
automata (see Fig. 6 for an example).

We first notice that all clocksxi are only lower bounded,
that isU(xi) = −∞. We add a clockt which will represent
universal time. This clock is never reset and never checked.
However, we want to be able to check that the time when
reaching the configuration where all jobs are in statef is
less than some given value (because we look for an opti-
mal scheduling). Thus, we can say that clockt is only up-
per bounded, and thus thatL(t) = −∞. Assume now that
we apply the forward computation to this system. We notice
that no constraintxi ≤ c for some constantc can be gener-
ated (see Table 1, there is no bounding invariant in the states
and in the guards). Using what precedes, at each step of the
forward computation, ifM is the current DBM (after the six
steps described in Table 1), only the following coefficients
are different from+∞: mxi,t for eachi andm0,t. Notice

Fig. 6 Timed automata encoding of job shop scheduling problem with
two jobsJ1 = (m1, 4)(m2, 5) andJ2 = (m1, 3) and set of machines
M = {m1, m2}. A statemi means that the job is waiting for machine
mi to be free for doing some work. A statemi means that machinemi

is working on the given job. By a cartesian product of these automata
which forbids two jobs being together in a statemi, we get all possible
schedules for these jobs. The problem thus reduces to computing the
minimal time for reaching statef of all jobs

8 G. Behrmann et al.

Table 1 Steps in computing the zone of a symbolic successor

Operation Symmetric Asymmetric

D1 = INTERSECTION(g, D) O(n2 · |g|) O(|Low| · |Up| · |g|)
D2 = RESETY (D1) O(n · |Y |) O(|Low| · |Y |+ |Up| · |Y |)
D3 = ELAPSE(D2) O(n) O(|Low| · |Y |)
D4 = INTERSECTION(I(`), D3) O(n2 · |I(l)|) O(|Low| · |Up| · |I(l)|)
D5 = EXTRAPOLATION(D4) O(n2) O(|Low| · |Up|)
D6 = CANONIZE(D5) O(n3) O(|Low| · |Up| · |Low ∩Up|)

that we thus only need to store(n + 1) coefficients (where
n is the number of jobs) at each step of the computation,
instead of(n + 1)2 as is usually the case.

What we will see now is that the inclusion checking with
these DBMs in LU form is more general than the domination
test presented in [1,4]. The idea of the dominating point is
the following: if (t, v) and(t′, v′) are two valuations, then we
say that(t, v) is better than(t′, v′) if t ≤ t′ andv ≥ v′. This
means that all possible runs from(t′, v′) can also be done
from (t, v). The zones (after LU extrapolation) we compute
can be represented as follows (when projecting on the plan
(t, xi)):

The domination point of the zone (as defined in [1,4]) is
represented in the previous figure by a bullet. The valua-
tion v corresponding to this domination point is such that
v(xi) = mxi,t −m0,t for everyi andv(t) = −m0,t. How-
ever, notice that this point is not better than any point in the
zone, but it is better than any point with a minimal time
(clock t). Given two such zonesZ andZ ′, the domination
test as done in [1,4] is then equivalent to checking that:

{−m0,t ≤ −m′
0,t,

mxi,t −m0,t ≥ m′
xi,t −m′

0,t for any i.
(1)

In contrast, checking inclusion ofZ ′ into Z is equivalent to
checking that:

{
m′

0,t ≤ m0,t

m′
xi,t ≤ mxi,t for any i

. (2)

One can easily check that Eqs. dp imply Eqs. inc. We have
thus that the domination test implies the inclusion checking.
Checking inclusion with this new extrapolation is thus more
general than the domination test of [1,4]. Intuitively, ifZ ′

is included inZ, then the domination points(t, v) of Z and
(t′, v′) of Z ′ are such that(t, v)+t′−t ≥ (t′, v′), which also
implies that all possible paths from(t′, v′) are also possible
from (t, v) after having waitedt′−t units of time (thus(t, v)
is somehow also ‘better’ than(t′, v′)).

7 Implementation and experiments

We have implemented a prototype of a location-based vari-
ant of theExtra+

LU operator inUPPAAL 3.4.2. Maximum
lower and upper bounds for clocks are found for each au-
tomaton using a simple fixed-point iteration. Given a loca-
tion vector, the maximum lower and upper bounds are found
by taking the maximum of the bounds in each location, sim-
ilarly to the approach taken in [5]. At the moment we have
only implemented theLU-CANONIZE operation on top of
a symmetric DBM representation. For storing visited states,
we rely on theminimal constraint formrepresentation of a
zone described in [13], which does not store+∞ entries.

As expected, experiments with the model in Fig. 1 show
that with LU extrapolation, the computation time for build-
ing the complete reachable state space does not depend on
the value of the constants, whereas the computation time
grows with the constant when using the classical extrapo-
lation. We have also performed experiments with models of
various instances of the CSMA/CD protocol and
Fischer’s protocol for mutual exclusion. Finally, experiments
using a number of industrial case studies were made. For
each model,UPPAAL was run with four different options:
(−n1) classic non-location-based extrapolation (without ac-
tive clock reduction), (−n2) classic location-based extrapo-
lation (active clock reduction is a side effect of this), (−n3)
LU location-based extrapolation, and (−A) classic location-
based extrapolation with convex-hull approximation. In all
experiments the minimal constraint form for zone represen-
tation was used [13] and the complete state space was gen-
erated. All experiments were performed on a 1.8-GHz Pen-
tium 4 running Linux 2.4.22, and experiments were limited
to 15 min of CPU time and 470 MB memory. The results can
be seen in Table 2.

Looking at the table, we see that for both Fischer’s pro-
tocol for mutual exclusion and the CSMA/CD protocol,UP-
PAAL scales considerably better with the LU extrapolation
operator. Comparing it with the convex-hull approximation
(which is an overapproximation), we see that for these mod-
els, the LU extrapolation operator comes close to the same
speed, although it still generates more states. Also notice
that the runs with the LU extrapolation operator use less
memory than convex-hull approximation due to the fact that
in the latter case DBMs are used to represent the convex
hull of the zones involved (in contrast to using the mini-
mal constraint form of [13]). For the three industrial exam-

Lower and upper bounds in zone-based abstractions 9

Table 2 Results for Fischer’s protocol (f), CSMA/CD (c), a model of a buscoupler, the Philips Audio protocol, and a model of a five-task
fixed-priority preemptive scheduler

−n1 −n2 −n3 −A

Model Time States Mem Time States Mem Time States Mem Time States Mem

f5 4.02 82,685 5 0.24 16,980 3 0.03 2,870 3 0.03 3,650 3
f6 597.04 1,489,230 49 6.67 158,220 7 0.11 11,484 3 0.10 14,658 3
f7 352.67 1,620,542 46 0.47 44,142 3 0.45 56,252 5
f8 2.11 164,528 6 2.08 208,744 12
f9 8.76 598,662 19 9.11 754,974 39
f10 37.26 2,136,980 68 39.13 2,676,150 143
f11 152.44 7,510,382 268

c5 0.55 27,174 3 0.14 10,569 3 0.02 2,027 3 0.03 1,651 3
c6 19.39 287,109 11 3.63 87,977 5 0.10 6,296 3 0.06 4,986 3
c7 195.35 813,924 29 0.28 18,205 3 0.22 14,101 4
c8 0.98 50,058 5 0.66 38,060 7
c9 2.90 132,623 12 1.89 99,215 17
c10 8.42 341,452 29 5.48 251,758 49
c11 24.13 859,265 76 15.66 625,225 138
c12 68.20 2,122,286 202 43.10 1,525,536 394

bus 102.28 6,727,443 303 66.54 4,620,666 254 62.01 4,317,920 246 45.08 3,826,742 324
philips 0.16 12,823 3 0.09 6,763 3 0.09 6,599 3 0.07 5,992 3
sched 17.01 929,726 76 15.09 700,917 58 12.85 619,351 52 55.41 3,636,576 427

−n0 is with classical maximum bound extrapolation,−n1 is with location-based maximum bound extrapolation,−n2 is with location-based
LU extrapolation, and−A is with convex hull overapproximation. Times are in seconds, states are the number of generated states, and memory

usage is in MB.

ples, the speed-up is less dramatic: these models have a more
complex control structure and thus little can be gained from
changing the extrapolation operator. This is supported by the
fact that also the convex-hull technique fails to give any sig-
nificant speed-up (in the last example it even degrades per-
formance). During the course of our experiments we also
encountered examples where the LU extrapolation operator
did not make any difference: the token ring FDDI protocol
and the B&O protocols found on theUPPAAL Web site3 are
among these. Finally, we conducted several experiments on
Fischer’s protocol with the LU extrapolation but without the
LU-CANONIZE operator. This showed thatLU-CANONIZE
gives a speed-up in the order of 20% compared toCANON-
IZE.

8 Remarks and conclusions

In this paper we extend the status quo of timed automata ab-
stractions by contributing several new abstractions. In partic-
ular, we proposed a new extrapolation operator distinguish-
ing between guards giving an upper bound to a clock and
guards giving a lower bound to a clock. The improvement of
the usual extrapolation is orthogonal to the location-based
one proposed in [5] in the sense that they can be easily com-
bined. We prove that the new abstraction is sound and com-
plete w.r.t. reachability and is finite and effectively com-
putable. We implemented the new extrapolation inUPPAAL
and a new operator for computing the normal form of a
DBM. The prototype showed significant improvements in

3 http://www.uppaal.com.

verification speed, memory consumption, and scalability for
a number of models.

For further work, we suggest implementing an asymmet-
ric DBM based on the fact that ann × m matrix, wheren
is the number of lower bounded clocks andm is the num-
ber of upper bounded clocks, suffices to represent the zones
of the timed automaton when using the LU extrapolation.
We expect this to significantly improve the successor com-
putation for some models. We notice that when using the
encoding of job shop scheduling problems given in [4], all
clocks of the automaton are without upper bounds, with the
exception of one clock (the clock measuring global time),
which lacks lower bounds. Therefore, an asymmetric DBM
representation for this system will have a size linear in the
number of clocks. This observation was already made in [4],
but we get it as a side effect of using LU extrapolation. We
also notice that when using LU extrapolation, the inclusion
checking done on zones inUPPAAL turns out to be more
general than the dominating point check in [4]. We need to
investigate to what extent a generic timed automaton reach-
ability checker using LU extrapolation can compete with the
problem-specific implementation in [4].

Acknowledgements Patricia Bouyer was partially supported by ACI
Cortos. Her research was conducted partly while she was visiting CISS,
Aalborg University. Radek Pelánek was partially supported by GǍCR
Grant No. 201/03/0509.

10 G. Behrmann et al.

9 Appendix: Technical proofs

This appendix presents the proof of Proposition 2. It is quite
technical, but we will detail it because it is fundamental. Let
us recall the statement of the proposition we want to prove.

Proposition 3 LetZ be a zone. ThenaExtra+
LU

(Z) ⊆ a≺LU
(Z).

Proof Let D = 〈ci,j ;≺i,j〉i,j=0...n be a DBM in normal
form. We denote byD′ = 〈c′i,j ;≺′i,j〉i,j=0...n the DBMExtra+

LU (D).
Let us fix ν ∈ [[Extra+

LU (D)]]. We want to prove thatν ∈
a≺+

LU
([[D]]). We define the setPν as{ν′ ∈ [[D]] | ν′ ≺LU ν}.

We have thatν ∈ [[Extra+
LU (D)]] iff Pν is not empty. The set

Pν is defined by the constraints:

{xi − xj ≺i,j ci,j | i, j ∈ {0, 1, . . . , n}},
∪{xi > L(xi) | ν(xi) > L(xi)},
∪{xi ≤ ν(xi) | ν(xi) ≤ U(xi)},
∪{xi ≥ ν(xi) | ν(xi) ≤ L(xi)}.

We will simplify the constraints definingPν . For this, we
need the following three lemmas.

Lemma 8 If cj,0 < +∞, then (c′j,0,≺′j,0) = ∞ implies
cj,0 > L(xj).

Lemma 9 (c′0,i,≺′0,i) 6= (c0,i,≺0,i) implies−c0,i > U(xi)
(and(c′0,i,≺′0,i) = (−U(xi), <)).

Lemma 10 Letν ∈ [[Extra+
LU (D)]]. Then

1. If ν(xi) ≤ U(xi), L(xi), thenν(xi) ≺i,0 ci,0, and thus
(ν(xi),≤) ≤ (ci,0,≺i,0).

2. If ν(xi) ≤ L(xi), U(xi), then−c0,i ≺0,i ν(xi), and
therefore(−ν(xi),≤) ≤ (c0,i,≺0,i).

Proof

1. If ci,0 > L(xi), then we haveν(xi) ≺i,0 ci,0. If ci,0 ≤
L(xi), then(c′i,0,≺′i,0) = (ci,0,≺i,0), and we are done
for the first inequality.

2. If −c0,i>U(xi), then it is not possible as(c′0,i,≺′0,i) =
(−U(xi), <). Otherwise,(c′0,i,≺′0,i) = (c0,i,≺0,i). Thus
we are also done for the second inequality. ¤

Applying the previous lemmas, we get thatPν is represented
by the DBM〈pi,j ,⊂i,j〉i,j=0,...,n, where(pi,0,⊂i,0)

=





(ν(xi),≤) if ν(xi) ≤ L(xi), U(xi)
min((ν(xi),≤), (ci,0,≺i,0)) if L(xi) < ν(xi) ≤ U(xi)
(ci,0,≺i,0) if ν(xi) > U(xi)

and(p0,i,⊂0,i)

=





(−ν(xi),≤) if ν(xi) ≤ L(xi), U(xi)
min((c0,i,≺0,i), (−ν(xi),≤)) if U(xi) < ν(xi) ≤ L(xi)
min((c0,i,≺0,i), (−L(xi), <)) if ν(xi) > L(xi)

and(pi,j ,⊂i,j) = (ci,j ,≺i,j) if i, j 6= 0.

We need to prove thatPν is non-empty. If it is not the case,
it means that we have

(pi,0,⊂i,0) + (p0,j ,⊂0,j) + (cj,i,≺j,i) < (0,≤) (3)

with potentiallyi = j. We want to prove that this is not pos-
sible. We will have to distinguish several cases, depending
on the values ofpi,0 andp0,j .

9.1 Case(pi,0,⊂i,0) = (ci,0,≺i,0) (hyp not used)

We can simplify inequality (3) by applying the triangular
inequality, and we get that

(cj,0,≺j,0) + (p0,j ,⊂0,j) < (0,≤).

1. Case(p0,j ,⊂0,j) = (c0,j ,≺0,j)
In this case, we get

(cj,0,≺j,0) + (c0,j ,≺0,j) < (0,≤),

which implies thatD is empty, which is a contradiction.
2. Case(p0,j ,⊂0,j) = (−ν(xj),≺). (hyp:ν(xj) ≤ L(xj))

We then get that

(cj,0,≺j,0) + (−ν(xj),≤) < (0,≤),

which implies thatν(xj) 6≺j,0 cj,0. In particular we have,
(c′j,0,≺′j,0) > (cj,0,≺j,0), which is possible only ifcj,0 >
L(xj) (Lemma 8). However, in this case, we have that
ν(xj) ≤ L(xj), which is a contradiction.

3. Case(p0,j ,⊂0,j) = (−L(xj), <). (hyp: (−L(xj), <) ≤
(c0,j ,≺0,j) andν(xj) > L(xj))
We get that

(cj,0,≺j,0) + (−L(xj), <) < (0,≤)

and thus that

cj,0 ≤ L(xj) < ν(xj).

As cj,0 ≤ L(xj), we get that(c′j,0,≺′j,0) = (cj,0,≺j,0),
and thus there is a contradiction (becauseν(xj) ≺′j,0
c′j,0).

9.2 Case(pi,0,⊂i,0) = (ν(xi),≤) (hyp:ν(xi) ≤ U(xi))

In this case, we get that

(ν(xi),≤) + (p0,j ,⊂0,j) + (cj,i,≺j,i) < (0,≤).

1. Case(p0,j ,⊂0,j) = (c0,j ,≺0,j) (hyp not used)
Using the triangular inequality, we can simplify and we
get

(ν(xi),≤) + (c0,i,≺0,i) < (0,≤).

If (c0,i,≺0,i) = (c′0,i,≺′0,i), then this is not possible.
Otherwise,−c0,i > U(xi) and(c′0,i,≺′0,i) = (−U(xi), <
) (Lemma 9). Thusν(xi) > U(xi), which is indeed a
contradiction.

Lower and upper bounds in zone-based abstractions 11

2. Case(p0,j ,⊂0,j) = (−ν(xj),≤) (hyp:ν(xj) ≤ L(xj))
We get that

(ν(xi)− ν(xj),≤) + (cj,i,≺j,i) < (0,≤).

If (c′j,i,≺′j,i) = (cj,i. ≺j,i), then this is not possible.
Thus,∞ = (c′j,i,≺′j,i) > (cj,i,≺j,i), and there are three
cases:
– cj,i > L(xj), thus(cj,i,≺j,i) > (ν(xj),≤), which

implies that(ν(xi),≤) < (0,≤), which is impossi-
ble. We thus assume thatcj,i ≤ L(xj).

– −c0,j > L(xj), thus−c0,j > ν(xj). By Lemma 10
(point 2), this is not possible (asν(xj) ≤ L(xj)) if
ν(xj) ≤ U(xj). Assume thus thatν(xj) > U(xj). In
this case,−ν(xj) ≤ c0,j , i.e. ν(xj) ≥ −c0,j , which
leads to a contradiction.

– −c0,i > U(xi), which contradictsν(xi) ≤ U(xi).
3. Case(p0,j ,⊂0,j) = (−L(xj), <) (hyp: ν(xj) > L(xj)

and(c0,j ,≺0,j) ≥ (−L(xj), <))
We get that

(ν(xi),≤) + (−L(xj), <) + (cj,i,≺j,i) < (0,≤).

If (cj,i,≺j,i) > (L(xj), <), then we get(ν(xi),≤) <
(0,≤), which is not possible. Assume now that
(cj,i,≺j,i) ≤ (L(xj), <). If (c′j,i,≺′j,i) = (cj,i,≺j,i),
then

(ν(xi)− ν(xj),≤) + (c′j,i,≺′j,i) < (0,≤).

This is not possible. The only possibility is thus to have
∞ = (c′j,i,≺′j,i) > (cj,i. ≺j,i). Can we have−c0,j >
L(xj) or −c0,i > U(xi)? By hypothesis, the first case
is not possible. If−c0,i > U(xi), then (c′0,i,≺′0,i) =
(−U(xi), <), which contradicts the fact thatν(xi) ≤
U(xi).

In all cases, there is a contradiction with inequality 3,Pν is
thus non-empty. This concludes the proof of
Proposition 2. ¤

References

1. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed au-
tomata. Submitted to TCS (2004)

2. Alur, R., Dill, D.: Automata for modeling real-time sys-
tems. In: Proceedings of the 17th International Colloquium on
Automata, Languages and Programming (ICALP’90), vol. 443,
Lecture Notes in Computer Science, pp. 322–335. Berlin, Heidel-
berg, New York: Springer 1990

3. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput.
Sci.126(2), 183–235 (1994)

4. Abdeddaim, Y., Maler, O.: Job-shop scheduling using timed au-
tomata. In: Proceedings of the 13th International Conference on
Computer Aided Verification (CAV’01), vol. 2102, Lecture Notes
in Computer Science, pp. 478–492. Berlin, Heidelberg, New York:
Springer (2001)

5. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard
analysis in timed automata verification. In: Proceedings of the 9th
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’2003), vol. 2619, Lec-
ture Notes in Computer Science, pp. 254–277. Berlin, Heidelberg,
New York: Springer 2003

6. Behrmann, G., Bouyer, P., Larsen, K.G., Pelanek, R.: Lower
and upper bounds in zone based abstractions of timed automata.
In: Proceedings of the 10th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’2004), vol. 2988, Lecture Notes in Computer Science,
pp. 312–326. Berlin, Heidelberg, New York: Springer 2004

7. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S.,
Yovine, S.:KRONOS: A model-checking tool for real-time sys-
tems. In: Proceedings of the 10th International Conference on
Computer Aided Verification (CAV’98), vol. 1427, Lecture Notes
in Computer Science, pp. 546–550. Berlin, Heidelberg, New York:
Springer 1998

8. Bengtsson, J.: Clocks, DBMs and States in Timed Systems. PhD
thesis, Department of Information Technology, Uppsala Univer-
sity, Uppsala, Sweden 2002

9. Bouyer, P.: Untameable timed automata! In: Proceedings of the
20th Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’03), vol. 2607, Lecture Notes in Computer Science,
pp. 620–631. Berlin, Heidelberg, New York: Springer 2003

10. Bouyer, P.: Forward analysis of updatable timed automata. Formal
Methods Syst. Des.24(3), 281–320 (2004)

11. Bengtsson, J., Yi, W.: On clock difference constraints and termi-
nation in reachability analysis of timed automata. In: Dong, J.S.,
Woodcock, J. (eds.) Proceedings of ICFEM’03, vol. 2885, Lec-
ture Notes in Computer Science. Berlin, Heidelberg, New York:
Springer 2003

12. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press,
Cambridge, MA 1999

13. Dill, D.: Timing assumptions and verification of finite-state con-
current systems. In: Proceedings of the Workshop on Automatic
Verification Methods for Finite State Systems, vol. 407, Lecture
Notes in Computer Science, pp. 197–212. Berlin, Heidelberg,
New York: Springer 1989

14. Daws, C., Tripakis, S.: Model-checking of real-time reachability
properties using abstractions. In: Proceedings of the 4th Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’98), vol. 1384, Lecture Notes
in Computer Science, pp. 313–329. Berlin, Heidelberg, New York:
Springer 1998

15. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verifica-
tion of real-time systems: Compact data structure and state-space
reduction. In: Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS’97), pp. 14–24. IEEE Press, New York 1997

16. Larsen, K.G., Pettersson, P., Yi, W.:UPPAAL in a nutshell. Int. J.
Softw. Tools Technol. Transfer1(1–2), 134–152 (1997)

17. Rokicki, T.G.: Representing and Modeling Digital Circuits. PhD
thesis, Stanford University, Stanford, CA 1993

