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Abstract Timed automata have an infinite semantics. F@roblems related to timed automata, it is highly impracti-
verification purposes, one usually uses zone-based abstcatfrom a tool-implementation point of view. Instead, most
tions w.r.t. the maximal constants to which clocks of theeal-time verification tools apply abstractions based on so-
timed automaton are compared. We show that by distinguisialled zones, which in practise provide much coarser (and
ing maximal lower and upper bounds, significantly coarsbence smaller) abstractions.

abstractions can be obtained. We show soundness and comJo ensure finiteness, it is essential that the given abstrac-
pleteness of the new abstractions w.r.t. reachability and detizon{region as well as zone based) take into account the ac-
strate how information about lower and upper bounds caral constants with which clocks are compared. In particu-
be used to optimise the algorithm for bringing a differendar, the abstraction could identify states which are identical
bound matrix into normal form. Finally, we experimentallyexcept for the clock values which exceed thaximunsuch
demonstrate that the new techniques dramatically increasmstants. Obviously, the smaller we choose these maximum
the scalability of the real-time model checképrAAL. constants, the coarser the resulting abstraction will be. Al-
lowing clocks to be assigned different (maximum) constants
is an obvious first step in this direction, and in [5] this idea
has been (successfully) elaborated by allowing the maxi-
mum constants to depend not only on the particular clock
but also on the particular location of the timed automaton.
1 Introduction In all cases thexactnesss established by proving that the
abstraction respectssimilarity, i.e. states identified by the
abstraction are bisimilar.

d- Consider now the timed automaton of Fig. 1. Clean§
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Since their introduction by Alur and Dill in [2, 3], timed au-
tomata have become one of the most well-established mo ; ) .
els for real-time systems with well-studied underlying the= the maximum constant far and1 is the maximum con-

ory and development of mature model-checking tools sugfant fory. Thus, abstractions based on maximum constants

asUPPAAL [13] and KRONOS[6]. By their very definition V1! Id'St'n?”'Sh %" statestwtr_wer;e fgtrl]o falrlld%/ tg L. In par "
timed automata describe (uncountable) infinite state spadig!ar, & forward computation of the full state space will -
egardless of the search order — create an excessive number

Thus, algorithmic verification relies on the existence of eX . : X
act finite abstractions. In the original work by Alur and Dillmc abstract (symbolic) states including all a6bstract states of
the so-called region-graph construction provided a ‘univ 1e form (671%6_ %_': k), whereo < kthgtlo ) as weIII .af
sal' such abstraction. However, whereas the region-gragh? ~¥ > 10°). However, assuming that we are only inter-

construction is well suited for establishing decidability ofSted inréachabilityproperties (as is often the caselrr-
PAAL), the application of downwards closure with respect to

simulationwill lead to an exact abstraction which could po-
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ze€X,(v+d)(z) =v(x)+4.IfY C X, thenvY := (]
denotes the valuation such that for each clack X Y,
v[Y := 0](x) = v(z) and for each clock € Y, v[Y =
0](z) = 0. The satisfaction relation |= g for g € G(X) is
defined in the natural way.

Definition 2 (Timed automata semantics)The semantics

Fig. 1 A small timed automaton. The state space of the automatofi a timed automatotd = (L, X, ¢y, E, I) is defined by a

when in location? is shown. The area to thight is the abstraction of transition systens 4 = (S, sg, —), whereS = L x R, is

>0
the last zone the set of statesy = (£, 1) is the initial stateyo(z) = 0

forall z € X, and—C S x S is the set of transitions defined

The fact thatl0° is anupperbound in the example of by:
Fig. 1 is crucial for the reduction we obtained above. In this (8) i , ,
paper we present new, substantially coarser, yet still exa‘ct,(g’ v) = (5; v+ 6)if V0 = 0" <4 (_’/ +0) = I/l)
abstractions based dwo maximum constants obtained by~ (£:¥) — (&', v[Y := 0]) if there exists((, g, ¢')
distinguishing lower and upper bounds. In all cases the ex-SUch thav |= g andv[Y":= 0] |= I(¢').

actness '(W.r.t. reachability) is established by prqving that t.l?ﬂe reachability problemfor an automatond and a loca-
abstraction respects downwards closure w.r.t. simulation,

; ; . S kBn ¢ is to decide whether there is a stdfer) reachable
for each state in the abstraction there is an original state s

latng it. Th . f ab . : he ad m (£y, 1) in the transition systerfi 4. As usual, for veri-
ulating it. The variety of abstractions comes from the addizatiq purposes, we define a symbolic semantics for timed
tional requirements foeffectiverepresentation aneffficient

. ; ; . L automata. For universality, the definition uses arbitrary sets
computation and manipulation. In particular we insist th

¥ clock valuations.
zones can form the basis of our abstractions; in fact, the sug-

gested abstractions are defined in terms of low-complexitefinition 3 (Symbolic semantics)rhe symbolic semantics
transformations of the difference bound matrix (DBM) repof a timed automatoml = (L, X, ¢°, £, ) is defined by the
resentation of zones. Furthermore, we demonstrate how Jistract transition systerts, so, =), whereS = L x oR%,
formation about lower and upper bounds can be used to 0fiq " is defined by the fo’IIO\;ving, two rules:

mise the algorithm for bringing a DBM into normal form. Fi-

nally, we experimentally demonstrate the significant speedPelay: (¢, W) = ({,W’), whereW’ = {v +d | v €
ups obtained by our new abstractions, to be comparable with W Ad > 0AV0 < d' <d: (v +d') E I({)}.

the convex hull overapproximation supported BpPAAL.  Action: (¢, W) = (¢/, W) if there exists a transition 2
Here, the distinction between lower and upper bounds is ¢/ jn A, suchthatV’ = {v/ | v e W : v = gAYV =
combined with the orthogonal idea of location dependency v[Y = 0| AV = I(0)}
of [5].

ekl

The symbolic semantics of a timed automaton may induce
an infinite transition system. To obtain a finite graph one
may, as suggested in [5], apply some abstraction
a : P(RY,) — P(RZ,) such that? C a(W). The ab-
stract transition system=:,’ is then given by the following
ipference rule:

2 Preliminaries

Although we perform our experiments WPPAAL, we de-

scribe the theory on the basic timed automaton model. V.
ables, committed locations, networks, urgency, and other thingg?) = (¢, W) W = a(W)
supported byJpPAAL are not important with respect to pre-(¢, W) =, (¢, a(W")) B '

sented ideas, and the technique can easily be extendedAf%rimple way to ensure that the reachability graph induced

thesLe ‘B'g?)er, modefls. . l-valued variabl I ‘=" is finite is to establish that there is only a finite
etX be a set of non-negative real-valued variables caliegh, o1 of abstractions of sets of valuations: that is, the set

clocks The set of guard&/(X) is defined by the grammar{a(W) | adefined on W is finite. In this caseq is said to
g=apic|ghg wherer € X,ce Nand=€ {<,<,>  po afinite abstraction Moreover, =’ is said to besound
>} andcompletg(w.r.t. reachability) whenever

Definition 1 (Timed automata syntax)Atimed automaton  Sound:(¢y, {v,}) =* (¢, W) implies3v : v € W and(¢y, 1) —*

is atupled = (L, X, ¢, E,I), whereL is a finite set of (I,v).

locations, X is a finite set of clocksi, € L is an initial  Completey(/, o) —* (¢,v) implies3W : v € W and(¢o, {vo}) =
location,E C L x G(X) x 2% x L is a set of edges labelled e, w).

by guards and a set of clocks to be reset, and. — G(X)
assigns invariants to clocks.

By language misuse, we say that an abstraaii@msound
(resp.completé whenever =, is sound (resp. complete).
A clock valuationis a functionv : X — R>q. If § € R>y, Completeness follows trivially from the definition of abstrac-
thenv + § denotes the valuation such that for each clodion. Of course, ifa andb are two abstractions such that for
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any set of valuation8/, a(W) C b(W), we prefertouse ab-3_|f (¢, 1) < (£, 1) and (1, 11) <) (01,11 + ), then

stractionb because the graph induced by it is a priori smaller o (8" ,
than the one induced ky Our aim is thus to propose an ab- there exists’ such that(ls,15) =" (£2,v2 + ¢') and
straction which is finite, as coarse as possible, and which (‘1,71 +6) < (b2, 2 +6').
induces a sound abstract transition system. We also req
that abstractions beffectivelyrepresentable and may bé
ficientlycomputed and manipulated.

A first step in finding an effective abstraction is reali
ing thatW will always be a zone whenevet®, {1,}) =*

(¢, W). A zoneis a conjunction of constraints of the formp,nqsition 1 Let < be a simulation relation, as defined

x >4 cOorz —y > ¢, Wherer andy are clocks and: € 5pqye, If(¢,11) < (¢,12) and if a discrete staté is reach-

Z and represented usintifference bound matric®BM).  5pe from(¢, 1), then it is also reachable froift, vs).

We will briefly recall the definition of DBMs and refer to

[7,9-11] for more details. A DBM is a square matix = Reachability is thus preserved by simulation as well as by
(cij>=ij)o<ij<n SUCh thate; ; € Z and=; ;€ {<,<} or bisimulation. However, in general the weaker notion of sim-

¢;j = oo and <; ;=<. The DBM D represents the zoneylation preserves fewer properties than that of bisimulation.
[D] which is defined bffD] = {v [ V0 <i,j <n,v(z;) — For example, deadlock properties as expressed in
v(zj) <ij cijy, Where{x; | 1 <i < n} isthe set of clocks UppaaL! are not preserved by simulation, whereas they are
andz is a clock which is always 0 (i.e. for each valuatiopreserved by bisimulation. In Fig. ©, z = 15,y = 0030.5)

v, v(zg) = 0). DBMs are not a canonical representatiogimu|ates(£,l— = 115,y = 0.5) as well as(¢,z = 10 +

of zones, but a normal form can be computed by consider- — 0.5).

ing the DBM as an adjacency matrix of a weighted directed

graph and computing all shortest paths. In particulab, &

(€ij, =i,5)0<i,j<n is @ DBM in normal form, then it satisfies _ _

the triangular inequality that is, for everyo < 4,4,k < n, -2 Classical maximal bounds

we have thate; ;, <i ;) < (Cik, <ik) + (x5, <k,;), Where

Comparisons and additions are defined in a natural Way (éré‘@ classical abstraction for timed automata is based on max-
[9]). All operations needed to compute>* can be imple- imal bounds, one for each clock of the automaton. Het

mented by manipulating the DBMs. (L, X, ¢, E,I) be atimed automaton. Theaximal bound
of a clockz € X, denotedM (x), is the maximal constarit
such that there exists a guard or invariant containing &

in A. Let v and v’ be two valuations. We define the fol-
lowing relation:v =,; v/ & ovr e X eitherv(z) =
The abstraction used in real-time model checkers suchragr)or(v(z) > M(z)andv/(x) > M(z)).

UpPPAAL [14] andKRONOS[6] is based on the idea that the . _ .
behaviour of an automaton is only sensitive to changes r_nr_nall The rellat_|onR ={((t.v),(&.v)) |v=nmv'}is

a clock if its value is below a certain constant. That is, fét PiSimulation relation.

each clock there is a maximum constant such that, once {i& 41, now define the abstraction w.rt.=,,. LetW be
0, WLt =p.

value of a clock has passed this constant, its exact value is S
S t of valuations; thein- = =7 I =
longer relevant — only the fact that it is larger than the ma%pg)e of valuations; them-,, (W) = {v | 7' € W»' =y

imum constant matters. Transforming a DBM to reflect thi

idea is often referred to a&xtrapolation[5, 8] ornormalisa- | emma 2 The abstractiom— . is sound and complete.
tion[12]. In what follows we will use the terraxtrapolation -

W& call such a relation ddcation-basell simulationrela-
tion or simply asimulationrelation. A simulation relation
=< such that<~! is also a simulation relation is called a
s(1ocation-basedb)isimulation relation

3 Maximum bound abstractions

These two lemmas come from [5]. They will, moreover,

) ) o . be consequences of our main result.
3.1 Simulation and bisimulation

The notion of bisimulation has so far been the semantic tool )

for establishing soundness of suggested abstractions. In thi& Lower and upper maximal bounds

paper we shall exploit the more liberal notion of simulation

to allow for even coarser abstractions. Let us fix a timeH’]e new abstractions introduced in what follows will be sub-

automatond = (L, X, £y, E, I). We consider a relation onstantially coarser tham=, . It will no longer be based on a

L x R¥, satisfying the following transfer properties: single maximal bound per clock but rather on two maximal
- bounds per clock, allowing lower and upper bounds to be
10 (61,11) X (b2, v2), thenty = {5, distinguished.

2. If (fl,lll) < (6271/2) and(él,yl) — ( /171/1), then there

exists(/y, v5) such thatls, v2) — (f3,v5) and(4}, 1) < 1 There is a deadlock whenever there exists a $tate) such that
(€5, vh). no further discrete transition can be taken.
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Definition 4 Let A = (L, X, ¢y, E,I) be a timed automa-
ton. The maximal lower bound denot&(lr) (resp. maximal
upper boundJ(z)) of clockz € X is the maximal constant
k such that there exists a constraint> k or x > k (resp.
x < korz < k)in aguard of some transition or in an in-
variant of some location aofl. If no such constant exists, we
setL(x) (resp.U(z)) to —oo. ) ) _

Fig. 2 Quality ofa~, , compared withu=,, for M = max(L,U)
Let us fix for the rest of this section a timed automatband
boundsL(x), U(x) for each clock: € X as above. The idea ) )
of distinguishing lower and upper bounds is the following: #€mma 4 Let.A be a timed automaton. Define the constants
we know that the clock is between 2 and 4, and if we wantV (), L(x), andU (x) for each clocks as described before.
to check that the constraint < 5 can be satisfied, the only The abstractiom .y is sound, complete, and coarser or
relevant information is that the value ofis greater than 2, €qual toa=,, .
and not thatr < 4. In other terms, checking the emptiness _ )
of the intersection between a non-empty interéal/] and Proof Completeness is obvious, and soundness comes from
] — o0, 5] is equivalent to checking whether> 5; the value Lemma 3. Definitions ofi. . anda=,, give the last result
of d is not useful. Formally, we define the LU preorder a%ecause for each cloak we havel (z) = max (L(z), U(x)).
follows.

Definition 5 (LU preorder <) Letr and’ be two val- This result could suggest that one usg ,, in real-time
uations. Then’ <y v if and only if for each clock: model checkers. However, we do not yet have an efficient
method for computing the transition relatios-,_ . In-
deed, even itV is a zone, it might be the case that, , (W)
is not even convex (we urge the reader to construct such an
example for herself). For effectiveness and efficiency rea-
Lemma 3 The relationR = {((¢,v), ((,v)) | V' <py v} SONSwe prefer abstractions which transform zones into zones
is a simulation relation. because we can then use the DBM data structure. In the next
section we present DBM-based extrapolation operators that

Proof The only non-trivial part in proving thakt indeed sat- Will give abstractions which are sound, complete, finite, and
isfies the three transfer properties of a simulation relationgéective.

to establish that i is a clock constraint, them‘= g implies
V' = ¢'. Consider the constraint < c. If v(z) = V'(z),
then we are done. IE(z) < v/ (z) < v(z), thenv(z) < ¢
impliesv/(z) < c. If U(z) < v(z) < v/(z), then it is not
possible that = « < ¢ (because < U(xz)). Consider now
the constraint: > c. If v(z) = v/(z), then we are done. If
U(z) < v(z) < V' (z), thenv(x) > cimpliesv/(z) > c. If
L(z) < vV'(z) < v(x), then it is not possible that satisfies
the constraint > ¢ because < L(z).

- V(z) =v(2),
—orL(z) < v(x) <v(z),
—orU(z) <v(z) <v'(z).

4 Extrapolation using zones

The (sound and complete) symbolic transition relations in-
duced by abstractions considered so far unfortunately do not
preserve convexity of sets of valuations. In order to allow
for sets of valuations to be representdticientlyas zones,

we consider slightly finer abstractiong,,, such that for

Using the above LU preorder, we can now define a firf§Y®Y Z0neZ, Z C darxua(Z) C a<,, (%) (resp.Z C
abstraction based on the lower and upper bounds. Apxira(Z) € a=,, (Z)) (this ensures correctness) anid . (%)
is a zone (this gives an effective representation). These ab-

Definition 6 (a,,, abstraction w.rt. <;;) Let W be a Stractions are defined in termseftrapolationoperators on
set of valuations. We define the abstraction WKL as DBMs. |f Extra is an eXtrapOlation Operator, it defines an
az,, (W) ={v |3/ e W,v <pp v}. abstraction,agxira, ON zones such that for every zowg
apxtra(Z) = [Extra(Dz)], whereD is the DBM in nor-
Before going further, we illustrate this abstraction in Figal form which represents the zorde
We are looking at several cases, depending on the relativeIn the remainder of the paper, we consider a timed au-
positions of the two values(z) andU (z) and of the valua- tomaton.A over a set of clocksX = {zy,...,z,}, and
tion v. We represent with a plain line the valuexof, , ({v}) we suppose we are given another clagkwhich is always
and with a dashed line the value ef,, ({¢'}), where the zero. For all these clocks, we define the constadis:;),
maximal boundV/ (x) corresponds to the maximum 6fz) L(x;), U(x;) for i = 1,...,n. For zo, we setM(zg) =
andU (x). In each case, we indicate the ‘quality’ of the new (z¢) = L(zo) = 0 (2o is always equal to zero, so we as-
abstraction compared with the ‘old’ one. We notice that treime we are able to check whethgris really zero). In our
new abstraction is coarser in three cases and matches thdmlthework, a zone will be represented by DBMs of the form
abstraction in the fourth case. (i 5y =i,j)i,j=0,....n-
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We now present several extrapolations starting from tle3 Extrapolation based on LU bounfisr) andU (x)
classical one and improving it step by step. Each extrapola-
tion will be illustrated by a small picture representing a zorEhe second improvement uses the two boubds andU (x).
(in black) and its corresponding extrapolation (dashed). If D = (¢; j, <i j)i,j=0,....n IS @ DBM, thenExtrayy (D) is
i i i iven by(c, ., <! ) i—o.... ., defined as:
4.1 Classical extrapolation based on maximal bounds) g V(€ g <0)ig=0nmim

o0 ifcm > L(ﬂii),

If DisaDBM (ci,j,-ﬂ,j)i,j:o_“n,thenExtraM(D) is given (cl <! ) = (*U(l'j),<) if*Ci_’j > U(ij),

6,50 i

Il:()))\/Nt.he DBM (c; ;, < j)i,j=0..n defined and illustrated be- (cijy =) otherwise.
00 if c;j > M(x;),

(cijr=ig) = (=M(z5), <) if —cij > M(z;),
(Cijs=ij) otherwise.

This extrapolation benefits from the properties of the two
different maximal bounds and generalises the operatar.,, -
For every zong, it holds thatZ C agxtra,, (Z) C aExtra,, (Z)-

This is the extrapolation operator used in the real-time modgl Diagonal extrapolation based on LU bounds
checkerdJPPAAL andKRONOS This extrapolation removengx) andU(z)

bounds that are larger than the maximal constants. The co

rectness follows fromigyira,, (2) C a=,,(Z) and is proved Thjs |ast extrapolation is a combination of the extrapolation
in [8] and for the location-based version in [5]. based on LU bounds and the improved extrapolation based

In the remainder of this paper, we will propose severgh maximal constants. It is the most general oneD lf=
other extrapolations that will improve the classical one, i i ir=is)ij—o...n is @ DBM, thenExtral, (D) is given

; ) =
t_he sense that the zones obtained _Wlth thg new extrapcﬂ the DBM(c;J, <§7j>i,j:o,,..,n defined as:
tions will be larger than those obtained with the classica

extrapolation. 00 ife; j > Lixy),
o0 if — Co,i > L(xi);
/ I _ e ] N s
4.2 Diagonal extrapolation based (i =ig) = 4 ?f co,j > U(%)a% # 0,
on maximal constantd/ (z) (=U(zj), <) if —co; > Ul(xj),i=0,
(Cijs=ij) otherwise.

The first improvement consists in noticing that if the whole
zone is above the maximal bound of some clock, then we
can remove some of the diagonal constraints of the zones,
even if they are not themselves above the maximal bound.
More formally, if D = (¢; ;, < )i, j=0,...n iS @ DBM, then

EXU‘&L(D) is given by<c;,j, <;,j>m:0 ,,,,, » defined as:

o) ifCiyj > M(IZ),

0 if —coi > M(z;), 4.5 Correctness of these abstractions
(Cg,j’ <;,j) =< o0 if —cg; > M(l‘j),i # 0,

(—M(z;),<) ifif —ci; > M(z;),i =0, We know that all the above extrapolations are complete ab-
stractions as they transform a zone into a clearly larger one.
Finiteness also comes immediately because we can do all the
computations with DBMs and the coefficients after extrapo-
lation can only take a finite number of values. Effectiveness
of the abstraction is obvious as extrapolation operators are
directly defined on the DBM data structure. The only dif-
ficult point is proving that the extrapolations we have pre-
sented are correct. To prove the correctness of all these ab-
stractions, due to the inclusions shown in Fig. 3, it is suffi-

For every zoneZ it then holds thatZ C apyira,, (Z) C  cient to prove the correctness of the largest abstractian,

aExtra}t{ (Z) . aExtrazU .

(Cijs=ij) otherwise.
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Fig. 3 For any zoneZ, we have the inclusions indicated by theFig. 4 DBM in LU form. All DBM entries in thewhite areasare+oo.
arrows The setsa,, .+ (Z) and agxua,,,;, (Z) are incomparable. DBMs in LU form can be represented as an asymmetric DBM in which
M

The ag.i-a Operators are DBM-based abstractions, whereas the otHPrly rows for lower bounded clocks and columns for upper bounded
two are semantic abstractions. T#ashed arrowwas proved in [5], ClOCks are included
whereas thelotted arrowis the main result of this paper
Lemma5 LetD be a DBM in normal form. ThebhU-PROJECTION D)
IS

Proposition 2 LetZ be azone. Thew,, ..+ (2) € a<.4(2) _ i normal form

in LU form,

The proof of this proposition is quite technical and is omit- reachability equivalent .

ted here due to page limits. Notice, however, that it is a key

result. Using all the above discussions, we are able to clappyof Canonicity is easy to show. The LU form follows di-

the following theorem, which states that, . is an ab- rectly from the definition of the LU form and the definition

straction which can be used in the implementation of timexd the projection function. Reachability equivalence is a con-

automata. sequence dfD] C [LU-PROJECTIOND)]| C [Extra},(D)] €
O

<LU([[D]])'

In the remainder of this section, we will alter the succes-
sor computation such that we retain during the entire succes-
sor computation. We first summarise how the DBM-based
successor computation is currently performed. Debe a
DBM in normal form We want to compute the successor

of D w.rt. an edge/ X ¢ in UPPAAL, this is broken

In the preceding section it was shown that the abstractidown into a number of elementary DBM operations, quite
based on the new extrapolation operator is coarser than sirailar to the symbolic semantics of timed automata (Ta-
one currently used in timed automata model checkers. Thig 1). After applying the guard and the target invariant, the
can result in a smaller symbolic representation of the staigsult must be checked for consistency, and after applying
space of a timed automaton. As we will see in this sethe extrapolation operator the DBM must be brought back
tion, besides reducing the memory requirements, identifyiimgo normal form. Checking the consistency of a DBM is
lower and upper bounded clocks can be used to speed updbee by computing the normal form and checking the diag-
successor computation. onal for negative entries. In general, the normal form can be

In certain models some clocks only have lower boungemputed using thé (n?)-time Floyd—Warshall all-pairs-
or only have upper bounds. We say that a cledk lower- shortest-path algorithm, but when applying a guard or in-
boundedresp.upper-bounde}if L(x) > —oo (resp.U(z) > Vvariant, resetting clocks, or computing the delay successors,
—oc). Let D be a DBM andD’ = Extraj,(D). It fol- the normal form can be recomputed much more efficiently
lows directly from the definition of the extrapolation operf15] (see left column of Fig. 5).Table 1 shows the opera-
ator that for allz;, U(x;) = —oo impliesc]; = +oc and tionsinvolved and their complexity (all DBMs excet are
L(x;) = —oo impliesc; . = +oo. We say that a DBMD is in normal form). The last step is clearly the most expensive.
in LU formwhenever all coefficients; ; = oo, except when As mentioned, with the new extrapolation operafgyris in
x; is lower boundedand z; is upper bounded. Thug)’ is L_U form. Using LU-PROJECTION t_he successor computa-.
in LU form. If we let [Low| = {i | ;islower bounded}, tion can be changed such that all intermediate DBMs are in

|Up| = {i | ;isupper bounded}, and|Clocks| = |Low|u LU form:

. - a
Theorem 1 ag,,,,+ is sound, complete, finite, and effec-
tively computable.

5 Acceleration of successor computation

|Up|, then it follows that a DBM in LU form can be rep-
resented by dlLow| x |Up| matrix rather than the normal
|Clocks| x |Clocks| since all remaining entries in the DBM
will be +c0 (see Fig. 4).

The projection of a DBM onto the LU form is given by
the functionLU-PROJECTION D) = D’, where

Dy = LU-PROJECTIONINTERSECTIONg, D))

Dy = LU-PROJECTIONRESETy (D1))

D3 = LU-PROJECTIONELAPSE(Ds))

D, = LU-PROJECTIONINTERSECTION({), D3))
D5 = EXTRAPOLATION(Dy)

Dg = LU-PROJECTION CANONIZE(D5))

i € |Lowl,j € |Up],

D, = Dij
K otherwise.

(.¢]

2 The pseudocode is in a procedural style rather than a functional

style. The latter would require a copy of the input DBM.
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Lemma 7 Let D be a DBM in LU form. Then we have the
following syntactic equality:

CANONIZE(D) = LU-CANONIZE(D)

Proof Follows from the observation thafANONIZE pre-

Fig. 5 Left Operations on symmetric DBMs for computing successerves the LU form. O
sors.Right The corresponding operations on asymmetric DBMs. Al ) ] )
operations maintain the canonical form. Notice that our model does not Table 1 gives the complexity of the new algorithms. As

allow guards over clock differences, hence one of the clocks givendgin be seen, the complexity of the new algorithms is bound
TIGHTEN will be zero by the number of lower and upper bounded clocks rather

The correctness of this change follows from Lemma 5. THjgan the total number of clocks. For some models we ex-
final step in creating a more efficient successor computatiBfct this change to provide a significant speed-up. One such
is to replace the operations on the left of Fig. 5 with those &¥amPple is presented in the following section.

the right:

Dy = LU-INTERSECTIONg, D) 6 Job shop scheduling

Dy = LU-RESETy (D)

D3 = LU-ELAPSE(D>) Let 9 be a finite set of machines. jab is a finite sequence
Dy = LU-INTERSECTIONI({), D3) of pairs (my,dy) - - - (my, d), Where eachn; is a machine
D5 = LU-EXTRAPOLATION(Dy) of M andd; is an integer representing a duration. A pair
D¢ = LU-CANONIZE(Ds) (m;,d;) means that the job needs the maching for d;

\its of time. Thejob shop scheduling probleconsists in
scheduling a finite sets of jobs on the machineS)bftwo
jobs can not use the same machine at the same time) such

Lemma 6 Let D be a DBM in normal form and LU form. that all jobs are completed in the shortest amount of time.

The correctness of this change is ensured by the follo
ing lemmas.

Then we have the following syntactic equalities: As is done in [1,4], jobs can be represented by simple timed
automata (see Fig. 6 for an example).
LU-PROJECTIONINTERS(g, D)) = LU-INTERS(g, D) We first notice that all clocks; are only lower bounded,
LU-PROJECTIONRESETy (D)) = LU-RESETy (D) thatisU(x;) = —oo. We add a clock which will represent

universal time. This clock is never reset and never checked.

However, we want to be able to check that the time when

reaching the configuration where all jobs are in stAtis

less than some given value (because we look for an opti-

Proof For all LU operations, we must argue that the cormmal scheduling). Thus, we can say that cladk only up-

straints in the LU projection of the DBM are preserved. per bounded, and thus thatt) = —oco. Assume now that
For the first equality we observe that)J-TIGHTEN is  we apply the forward computation to this system. We notice

always called for a guarél > v, where eitherr or y is k& that no constraint; < c for some constant can be gener-

and the other is zero, since guards on clock differences ated (see Table 1, there is no bounding invariant in the states

not allowed in our model. It is both a lower bounded andand in the guards). Using what precedes, at each step of the

an upper bounded clock, tharJ-TIGHTEN behaves like forward computation, ifi/ is the current DBM (after the six

TIGHTEN except thal. U-CLOSEL only iterates over lower steps described in Table 1), only the following coefficients

and upper bounded clocks (for all other clocks, the sum atie different from+-oo: m;, . for eachi andm, ;. Notice

the loop body is infinity). Ifk is lower bounded but not up-

per bounded, then thB,, is not in the DBM: In this case,

the loop over the lower bounded clocks propagates the effect

that tighteningD,,,, would have had iCANONIZE had been

called (the correctness of this can be observed by reordering

how CANONIZE visits the clocks — then none of the itera-

tions except for the last one modifies the DBM). The case for

k being upper bounded, but not lower bounded, is similar.

The second equal.lty fQIIOWS a S.lm”.ar observation fofEig. 6 Timed automata encoding of job shop scheduling problem with
reset: For the constraints in the projectibft)-RESETbe-  yyqjobs./, — (ma,4)(ma, 5) andJ> = (m1, 3) and set of machines

haves exactly likd&RESET. Changes to constraints not in them = {m., m»}. A stater; means that the job is waiting for machine

projection can be ignored since they do not propagate to com-to be free for doing some work. A state; means that machine,;
straints in the projection is working on the given job. By a cartesian product of these automata
. . ) . which forbids two jobs being together in a statg, we get all possible
The final equality follows from the observation tH&tAP SEschedules for these jobs. The problem thus reduces to computing the

preserves the LU form. 0  minimal time for reaching statg of all jobs

ELAPSE(D) = LU-ELAPSE(D)
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Table 1 Steps in computing the zone of a symbolic successor

Operation Symmetric Asymmetric

D1 = INTERSECTIONg, D) o2 |g)) O(|Low]| - [Up| - |g|)

D, = RESETy (D) O(n - [Y]) O(|Low| - |Y| + [Up| - [Y])
D3 = ELAPSE(D3) O(n) O(|Low]| - [Y])

Dy = INTERSECTIONI(£), D3)  O(n?-|I(1)]) O(|Low| - |Up|- |I(1)])

D5 = EXTRAPOLATION(D,) O(n?) O(|Low| - |Up|)

De = CANONIZE(Ds) O(n?) O(|Low| - |Up| - |[Low N Up|)

that we thus only need to stofe + 1) coefficients (where 7 |mplementation and experiments
n is the number of jobs) at each step of the computation,

. 5 0
instead offn +.1) asis ugually the case. . .. We have implemented a prototype of a location-based vari-
What we will see now is that the inclusion checking W'ﬂ&nt of theExtrat,, operator inUPPAAL 3.4.2. Maximum
these DBMs in I.‘U form s more general than t_he qom'm.it'%wer and uppe?%ounds for clocks are found for each au-
test prese_:nte.('j in[1,4]. Tr/1e /|dea of the dom_lnatlng POINt i3 maton using a simple fixed-point iteration. Given a loca-
the fc;lllowmg.}f (g’ v) anr?(t U )/ar.](ca tW<° \{alugtlogs,/th_lt_arr]\. W€tion vector, the maximum lower and upper bounds are found
sayt at(f]’w 'ﬁ etterbtl ant 7Uf) re<¢an ”I— Ub. d 'S by taking the maximum of the bounds in each location, sim-
means that all possible runs froftf, v') can also be done ilarly to the approach taken in [5]. At the moment we have

from (¢,v). The zones (after LU extrapolation) we computsnly implemented thé.U-CANONIZE operation on top of

can be represented as follows (when projecting on the plﬁ"%ymmetric DBM representation. For storing visited states,

(8, @2)): we rely on theminimal constraint fornrepresentation of a
zone described in [13], which does not stereo entries.

As expected, experiments with the model in Fig. 1 show
that with LU extrapolation, the computation time for build-
ing the complete reachable state space does not depend on
the value of the constants, whereas the computation time
grows with the constant when using the classical extrapo-
lation. We have also performed experiments with models of

The domination point of the zone (as defined in [1,4]) i¢arious instances of the CSMA/CD protocol and
represented in the previous figure by a bullet. The valuBischer’s protocol for mutual exclusion. Finally, experiments
tion v corresponding to this domination point is such thatsing a number of industrial case studies were made. For
v(x;) = My, s — Mo, for everyi andu(t) = —mog ;. How- each modelUrPPAAL was run with four different options:
ever, notice that this point is not better than any point in te-n1) classic non-location-based extrapolation (without ac-
zone, but it is better than any point with a minimal tim&ve clock reduction), £n2) classic location-based extrapo-
(clock t). Given two such zoneg and Z’, the domination lation (active clock reduction is a side effect of this}(3)

test as done in [1,4] is then equivalent to checking that: LU location-based extrapolation, and 4) classic location-
based extrapolation with convex-hull approximation. In all

—moe < =My 4, experiments the minimal constraint form for zone represen-
{ ’ (1)  tation was used [13] and the complete state space was gen-
erated. All experiments were performed on a 1.8-GHz Pen-
In contrast, checking inclusion & into Z is equivalent to tium 4 running Linux 2.4.22, and experiments were limited
checking that: to 15 min of CPU time and 470 MB memory. The results can
be seen in Table 2.

mo., < Mot 5 Looking at the table, we see that for both Fischer’s pro-
Lot <mg,, for any i’ @ tocol for mutual exclusion and the CSMA/CD protocdlp-

’ PAAL scales considerably better with the LU extrapolation
One can easily check that Egs. dp imply Egs. inc. We hagperator. Comparing it with the convex-hull approximation
thus that the domination test implies the inclusion checkin@vhich is an overapproximation), we see that for these mod-
Checking inclusion with this new extrapolation is thus morels, the LU extrapolation operator comes close to the same
general than the domination test of [1,4]. Intuitively,4f speed, although it still generates more states. Also notice
is included inZ, then the domination poini{g, v) of Z and that the runs with the LU extrapolation operator use less
(t',v") of Z' are such that, v) +t' —t > (¢',v"), which also memory than convex-hull approximation due to the fact that
implies that all possible paths frof#, v’) are also possible in the latter case DBMs are used to represent the convex
from (¢, v) after having waited’ — ¢ units of time (thug¢,v)  hull of the zones involved (in contrast to using the mini-
is somehow also ‘better’ thaf’, v')). mal constraint form of [13]). For the three industrial exam-

/ / .
My, t — Mot > My, — My, foranyi.

m
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Table 2 Results for Fischer’s protocol (f), CSMA/CD (c), a model of a buscoupler, the Philips Audio protocol, and a model of a five-task
fixed-priority preemptive scheduler

—nl —n2 —n3 —A
Model Time States Mem Time States Mem Time States Mem Time  States Mem
5 4.02 82,685 5 0.24 16,980 3 0.03 2,870 3 0.03 3,650 3
f6 597.04 1,489,230 49 6.67 158,220 7 0.11 11,484 3 0.10 14,658 3
7 352.67 1,620,542 46 0.47 44,142 3 0.45 56,252 5
f8 2.11 164,528 6 2.08 208,744 12
f9 8.76 598,662 19 9.11 754,974 39
f10 37.26 2,136,980 68 39.13 2,676,150 143
f11 152.44 7,510,382 268
c5 0.55 27,174 3 0.14 10,569 3 0.02 2,027 3 0.03 1,651 3
c6 19.39 287,109 11 3.63 87,977 5 0.10 6,296 3 0.06 4,986 3
c7 195.35 813,924 29 0.28 18,205 3 0.22 14,101 4
c8 0.98 50,058 5 0.66 38,060 7
c9 2.90 132,623 12 1.89 99,215 17
cl0 8.42 341,452 29 5.48 251,758 49
cll 24.13 859,265 76 15.66 625,225 138
cl2 68.20 2,122,286 202 43.10 1,525,536 394
bus 102.28 6,727,443 303 66.54 4,620,666 254 62.01 4,317,920 246 45.08 3,826,742 324
philips 0.16 12,823 3 0.09 6,763 3 0.09 6,599 3 0.07 5,992 3

sched 17.01 929,726 76 15.09 700,917 58 12.85 619,351 52 55.41 3,636,576 427

—n0 is with classical maximum bound extrapolatiern 1 is with location-based maximum bound extrapolatiem,2 is with location-based
LU extrapolation, and- A is with convex hull overapproximation. Times are in seconds, states are the number of generated states, and memory
usage is in MB.

ples, the speed-up is less dramatic: these models have a nverdication speed, memory consumption, and scalability for
complex control structure and thus little can be gained fromnumber of models.

changing the extrapolation operator. This is supported by the

fact that also the convex-hull technique fails to give any sig-

nificant speed-up (in the last example it even degrades per-

formance). During the course of our experiments we also For further work, we suggest implementing an asymmet-
encountered examples where the LU extrapolation operafisrDBM based on the fact that anx m matrix, wheren

did not make any difference: the token ring FDDI protocd$ the number of lower bounded clocks amdis the num-
and the B&O protocols found on tHéppAAL Web sité are  ber of upper bounded clocks, suffices to represent the zones
among these. Finally, we conducted several experiments@rihe timed automaton when using the LU extrapolation.
Fischer’s protocol with the LU extrapolation but without th&Ve expect this to significantly improve the successor com-
LU-CANONIZE operator. This showed thatJ-CANONIZE ~putation for some models. We notice that when using the
gives a speed-up in the order of 20% compare@4nioN- €ncoding of job shop scheduling problems given in [4], all
IZE. clocks of the automaton are without upper bounds, with the
exception of one clock (the clock measuring global time),
which lacks lower bounds. Therefore, an asymmetric DBM
representation for this system will have a size linear in the
number of clocks. This observation was already made in [4],

) ) but we get it as a side effect of using LU extrapolation. We
In this paper we extend the status quo of timed automata ais, notice that when using LU extrapolation, the inclusion

stractions by contributing several new abstractions. In part jecking done on zones IdPPAAL turns out to be more
ular, we proposed a new extrapolation operator distinguishisneral than the dominating point check in [4]. We need to

ing between guards giving an upper bound to a clock afiestigate to what extent a generic timed automaton reach-

guards giving a lower bound to a clock. The improvement ghyijivy checker using LU extrapolation can compete with the
the usual extrapolation is orthogonal to the Iocat'On'baSEbelem-speciﬁc implementation in [4].

one proposed in [5] in the sense that they can be easily com-
bined. We prove that the new abstraction is sound and com-
plete w.r.t. reachability and is finite and effectively com-
putable. We implemented the new extrapolatiotUPPAAL
grlldea _Ir_]ﬁw op;er?tor for: con;pqtln%_ thet ’?O”“a' form tOf .Ecknowledgements Patricia Bouyer was partially supported by ACI
: € prototype showea signimcant Improvements 18q1os. Her research was conducted partly while she was visiting CISS,

Aalborg University. Radek Péhek was partially supported by GBR
% http://www.uppaal.com. Grant No. 201/03/0509.
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9 Appendix: Technical proofs

We need to prove tha®, is non-empty. If it is not the case,

it means that we have

This appendix presents the proof of Proposition 2. It is qu
technical, but we will detail it because it is fundamental. L

g{e%,m Ci0) + (Po.j> Co.g) + (¢ji5 =4.4) < (0, <)

®)

us recall the statement of the proposition we want to provevith potentially: = 5. We want to prove that this is not pos-

Proposition 3 LetZ be azone. The%xtra;, (Z)Cax,,(2)

Proof Let D = (c; j; <i,)i,j=0..n D€ @ DBM in normal

form. We denote by’ = (c; ;; <

Let us fixv € [Extraf,(D)]. We want to prove that €

sible. We will have to distinguish several cases, depending
'on the values op, o andpy ;.

Iy +
i,j>z,]:O...n the DBMEXtraLLd.Q)CaSQpi,o, Ci,O) = (Ci70, '<i,0) (hyp not Used)

a+ ([D]). We define the seft, as{v’ € [D] | ' <Lu v}. We can simplify inequality (3) by applying the triangular

We have that € [Extraf, (D)] iff P, is notempty. The set i
P, is defined by the constraints:

{w; —aj <ijcijlt,7e{0,1,...,n}},
U{zi > L(wi) | v(zi) > L(xi)},
Uiz < v(wi) | viz:) < Uz},
U{x; > v(xz;) | v(x;) < Lx;)}.

We will simplify the constraints definind,. For this, we

nequality, and we get that

(¢j,0:<5,0) + (Po,j> Co,5) < (0, <).

1. Case(po,j, Co,;j) = (0.4 <0,5)
In this case, we get

(¢3,0, =5.0) + (€05, <0,5) < (0, <),
which implies thatD is empty, which is a contradiction.

- 2. Case(po,j; Coj) = (—v(z;), <). (hyp:v(z;) < L(z;))
need the following three lemmas. We then get that
Lemmas8 If ¢;o < +oo, then(c, <)) = oo implies (¢j0,<j0) + (—v(z;),<) < (0,<),

o> L(zj).
co > Lz;) which implies that(z;) 4;0 cjo- In particular we have,
Lemma 9 (cf ;. <4.:) # (co.i,<o,i) implies—co; > U(x;) (c}0-=50) > (¢j.0, =j0), whichis possible only if; o >
(and(cg 4, <04) = (U (), <)). L(z;) (Lemma 8). However, in this case, we have that
o v(zj) < L(z;), which is a contradiction.
Lemma 10 Letv € [Extraf, (D)]. Then 3. Case(po,j; Co,;) = (—L(z;), <). (hyp: (—L(z;), <) <
; j)andv(z;) > L(x;
1. If V(.Z‘l) < U(.%'Z‘),L(,’L‘i), thenz/(a;i) <4,0 Ci,0, and thus \(X/(éjg,;totjél)at V(a:j) > (xj))
(v(24), <) < (€i,0, <i0)-

2. If V(I,) < L(I,), U(l’7), then —Co,i 4071‘ I/(Ii), and (Cj"()7 "<j’()) + (—L(.Tj), <) < (07 S)

<

pJ—

therefore(—v(z;), <) < (co.i, <0.i)-

Proof

1. If Ci,0 > L(l’l), then we have/(.’ﬁi) <i,0 Ci,0- If Ci,0 <

L(z;), then(c; o, <; o) = (ci0,<i0), and we are done

for the first inequality.

.M —coi>U(x;), then it is not possible ag, ;, < ;)
(=U(=;), <). Otherwise(c; ;, <p ;) = (co,i, <0,i). Thus
we are also done for the second inequality. O

and thus that

¢j0 < L(zj) < wv(z;).

As cjo < L(z;), we get that(c} o, < o) = (¢j0,<j0),
and thus there is a contradiction (because;) <j,

C;‘,o)-

9.2 Casdpi,0, Cio) = (), <) (hyp:v () < U(xs))

Applying the previous lemmas, we get thatis represented

by the DBM(p; ;, C; ;)i,j=0,....n, Where(p; o, Ci,o) |

(v(x;), <) ifv(x;) < L(x;),U(x;)
= ¢ min((v(x;), <), (¢i0,<i0)) if L(z;) < v(z;) < U(x;)
(61‘707 '<i70) if I/(l‘z) > U(ZL‘Z)
and(po,i, Co,i)
(—v(x;), <) if v(z;) < L(x;),U(x;)
= HliIl((Coﬂ', 4071'), (71/(‘%1‘), S)) if U(I’Z) < V(Il) < L(l?z)

if v(z;) > L(z

2

)

min((co,i, <0,:), (—L(24), <))

and(p;j, Cij) = (cij, <ay) if 4,5 # 0.

n this case, we get that

(v(24), <) + (po,j, Co,j) + (¢4, <54) < (0,<).

1. Case(poJ7 Co,j) = (COJ‘7 -<07j) (hyp not Used)
Using the triangular inequality, we can simplify and we
get

(v(@i), <) + (co,i, <0,i) < (0,<).
If (co,is=0,i) = (cpi5=0p.:), then this is not possible.
Otherwise—co; > U(z;) and(cq ;, <o ;) = (U (i), <

) (Lemma 9). Thus/(z;) > U(x;), which is indeed a
contradiction.
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2.

. Case(poj, Co,;) = (—L(z;),
L(‘TJ)’ <)) S

Case(po,;, Co,j) = (—v(x;), <) (hyp:v(z;) < L(x;)) 5.

We get that

(w(@i) = v(z5), <) + (¢, =5.0) < (0, <)

If (c};,=%:) = (cji- <j.4), then this is not possible.

Thus,co = (¢} ;, <) > (¢j.4,<;.4), and there are three ©-

cases:

= ¢ > L(x;), thus(c;i, <;:) > (v(z;), <), which
implies that(v(z;), <) < (0,<), w hICh is impossi-
ble. We thus assume that; < L(x;).

- —co,; > L(z;), thus—c¢q ; > 1/( ;). By Lemma 10 £

(point 2), this is not possible (ag(z;) < L(x;)) if
v(z;) < U(x;). Assume thus that(z;) > U(z;). In
this case—v(z;) < ¢, i.€.v(x;) > —co,;, Which
leads to a contradiction.
— —co,; > U(z;), which contradicts/(z;) < U(x;).
<) (hyp: v(z;) > L(z;)
and(co,;, <o0,;) >
We get that

(v(@:), <) + (=L(x;), <) + (¢j,i, <) <
If (cji<j4) > (L(‘TJ)

(0,<).
<), then we get(v(z;), <) <

(0,<), which is not p035|ble Assume now thatl-
(C[}'7i7<371) S (L 'I]) ) If ( jz? jz) = (C]ﬂ/?<]ﬂ/)’
then

(V(a%‘)_V(xj)7§)+(09¢7<;¢> < (O’S) 12.

This is not possible. The only possibility is thus to have,
00 = (cj;,<j;) > (¢ <j,i). Can we have-cg; >
L(xj) or —co; > U(x;)? By hypothesis, the first case
is not possible. If-co; > U(x;), then(cg;, <p,) =
(=U(x;),<), which contradicts the fact that(z;) <

In all cases, there is a contradiction with inequality3,is

thus
Proposition 2.

non-empty. This concludes the proof of

O

References

1.
2.

Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed aut7.

tomata. Submitted to TCS (2004)

Alur, R., Dill, D.: Automata for modeling real-time sys-
tems. In: Proceedings of the 17th International Colloquium on
Automata, Languages and Programming (ICALP’90), vol. 443,
Lecture Notes in Computer Science, pp. 322—-335. Berlin, Heidel-
berg, New York: Springer 1990

. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput.

Sci. 1262), 183-235 (1994)

. Abdeddaim, Y., Maler, O.: Job-shop scheduling using timed au-

tomata. In: Proceedings of the 13th International Conference on
Computer Aided Verification (CAV’'01), vol. 2102, Lecture Notes
in Computer Science, pp. 478-492. Berlin, Heidelberg, New York:
Springer (2001)

10.

14.

15.

16.

Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard
analysis in timed automata verification. In: Proceedings of the 9th
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’2003), vol. 2619, Lec-
ture Notes in Computer Science, pp. 254-277. Berlin, Heidelberg,
New York: Springer 2003

Behrmann, G., Bouyer, P., Larsen, K.G., Pelanek, R.: Lower
and upper bounds in zone based abstractions of timed automata.
In: Proceedings of the 10th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’2004), vol. 2988, Lecture Notes in Computer Science,
pp. 312—-326. Berlin, Heidelberg, New York: Springer 2004
Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S.,
Yovine, S.:KRONOS A model-checking tool for real-time sys-
tems. In: Proceedings of the 10th International Conference on
Computer Aided Verification (CAV'98), vol. 1427, Lecture Notes
in Computer Science, pp. 546-550. Berlin, Heidelberg, New York:
Springer 1998

. Bengtsson, J.: Clocks, DBMs and States in Timed Systems. PhD

thesis, Department of Information Technology, Uppsala Univer-
sity, Uppsala, Sweden 2002

Bouyer, P.: Untameable timed automata! In: Proceedings of the
20th Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS'03), vol. 2607, Lecture Notes in Computer Science,
pp. 620-631. Berlin, Heidelberg, New York: Springer 2003
Bouyer, P.: Forward analysis of updatable timed automata. Formal
Methods Syst. De4(3), 281-320 (2004)

Bengtsson, J., Yi, W.: On clock difference constraints and termi-
nation in reachability analysis of timed automata. In: Dong, J.S.,
Woodcock, J. (eds.) Proceedings of ICFEM’'03, vol. 2885, Lec-
ture Notes in Computer Science. Berlin, Heidelberg, New York:
Springer 2003

Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press,
Cambridge, MA 1999

. Dill, D.: Timing assumptions and verification of finite-state con-

current systems. In: Proceedings of the Workshop on Automatic
Verification Methods for Finite State Systems, vol. 407, Lecture
Notes in Computer Science, pp. 197-212. Berlin, Heidelberg,
New York: Springer 1989

Daws, C., Tripakis, S.: Model-checking of real-time reachability
properties using abstractions. In: Proceedings of the 4th Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’98), vol. 1384, Lecture Notes
in Computer Science, pp. 313-329. Berlin, Heidelberg, New York:
Springer 1998

Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verifica-
tion of real-time systems: Compact data structure and state-space
reduction. In: Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS'97), pp. 14-24. IEEE Press, New York 1997
Larsen, K.G., Pettersson, P., Yi, WUPPAAL in a nutshell. Int. J.
Softw. Tools Technol. Transfd(1-2), 134-152 (1997)

Rokicki, T.G.: Representing and Modeling Digital Circuits. PhD
thesis, Stanford University, Stanford, CA 1993



