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ABSTRACT
The problems of time-dependent behavior in
general, and dynamic resource allocation in
particular, pervade many aspects of modern
life. Prominent examples range from relia-
bility and efficient use of communication re-
sources in a telecommunication network to
the allocation of tracks in a continental rail-
way network, from scheduling the usage of
computational resources on a chip for dura-
tions of nano-seconds to the weekly, monthly
or longer range reactive planning in a factory
or a supply chain. But how can we model,
analyze or even optimize such problems in
an efficient manner?

1. INTRODUCTION
Timing: Twenty years ago, Rajeev Alur

and David Dill introduced the notion of
timed automata which, together with its later
extensions, has proven a highly expressive
and uniform formalism for formulating and
analysing timing and resource problems aris-
ing in a variety of application domains. As
a witness for the importance of the formal-
ism one may consider the 2008 CAV award
given to Alur and Dill for their seminal 1990
article Automata for modeling real-time sys-
tems,3 which provided the theoretical foun-
dation for the computer aided verification of
real-time systems.

Real-time systems and resource allocation
problems have manifested themselves un-
der different names in application domains
such as manufacturing, transport, communi-
cation networks, embedded systems, and dig-
ital circuits, and have been treated using the-
ories and methods so-far scattered around
many disciplines. All of these applications
involve distributed, reactive systems of con-
siderable complexity, and with a number of
real-time constraints in the sense that correct-
ness not only depends on the logical order-
ing of events of the systems, but also on the
relative timing between these.

State-based models have been the basis
of a wide range of successful computer-
supported verification methodologies allow-
ing the efficient prediction of functional prop-
erties, e.g. absence of deadlock or memory
overflow. However, many of the models
used in this methodology are purely discrete
and their treatment of time is purely quali-
tative, that is, behaviors are just sequences
of events appearing one after the other but
without any quantitative timing information
about the duration of actions and the time be-
tween events. Timed automata allow such
timing constraints to be expressed, while
being amenable to computer-aided analysis
methods such as simulation, verification, op-
timization and controller synthesis.

Performance: In all of the above applica-
tions, an explicit constraint on timing is only
one of a number of quantitative aspects of
importance. Within embedded systems ad-
ditional key quantities include energy and
memory consumption, in communication net-
works required band-width is a key quantity,
and within the factory and supply chain appli-
cations need for storage and overall cost for
a given production are crucial quantities. The
extended notion of priced or weighted timed
automata has been put forward as a formal-
ism allowing for such additional and time-
dependent quantities to be modelled, without
hampering efficient analysis and even permit-
ting optimization.

Uncertainty: Classical models for schedul-
ing in manufacturing, such as job-shop prob-
lems, are somewhat detached from indus-
trial practise and reality. They assume that
the duration of every step as well as the ar-
rival times are fixed and known with cer-
tainty; in practice however, it is rarely the
case that a schedule is executed as planned.
The problem of coping with uncertainty is
identified by providers of scheduling tools
and by their clients as one of the major prob-
lems in the domain. There have been vari-
ous attempts to model and solve such prob-
lems, but no unified approach has emerged.
Using so-called timed games with controlled
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Figure 1: Several refinements of a model (a) of the working mathematician according to Erdős: After insertion of a coin into the coffee
dispenser, coffee can be collected, and the scientist can go back to work. In the timed-automaton model (b), precisely five time units pass
between coin insertion and coffee collection, and the time which passes between coin insertion and going back to work is less than ten time
units. In the priced timed automaton (c), cost rates (modeling e.g. energy consumption) are associated with the three states. In the timed
game (d), uncertainty as to precisely when coffee is delivered is modeled as an uncontrolled edge.



and uncontrolled transitions for representing
the uncertainty coming from the plant, we
can model a large class of such problems,
and provide efficient off-line algorithms for
synthesizing reactive schedulers. Such algo-
rithms can plan for the best, worst or aver-
age case, but the scheduling strategies they
produce are adaptive and can take advantage,
for example, of the fact that a task has termi-
nated before it was expected to.

In this paper we present the formalism of
timed automata and its priced and game ex-
tension as a unifying mathematical frame-
work for the modelling, analysis, optimiza-
tion and synthesis of real-time related phe-
nomena.

2. TIMED AUTOMATA

2.1 A model for time
Timed automata3, 4 are a powerful model

for representing and reasoning about sys-
tems where the notion of time is essential.
They are an extension of classical finite-state
automata with real-valued variables called
clocks. These clocks all increase at the same
rate, and their values can be used to restrict
availability of transitions and how long one
can stay in a location (or state). Also, clocks
can be reset to zero when a transition is taken.
To this end, each transition has associated
with it a guard (which must be satisfied for
the transition to be enabled) and a set of
clocks to be reset, and each location carries
an invariant which must be continuously sat-
isfied when the system is in the location. Be-
low we show an example of a timed automa-
ton with two clocks, x and y, and label set
{a, b, c, d, e}. Note that no time can elapse
in location `1 due to the invariant (y = 0);
locations with this property are called urgent.

`0 `1

(y=0)

`2

`3

,x≤2,a,y:=0
b

c

x=2,d

x=2,e

Guards and invariants are given as compar-
isons x ./ c of a clock value with an integer
constant, or as conjunctions of these. In some
contexts, also so-called diagonal constraints
x− y ./ c are allowed as parts of a guard (or
invariant), but other extensions quickly lead
to undecidability issues, see below.

A configuration of the system is made of
a location and a clock valuation (in our case,
values for both clocks x and y). A possible

execution in our example is:24`0
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where the first component of a configuration
is the location and the second and third com-
ponents give the values of clocks x and y, re-
spectively. This execution corresponds to a
delay of 1.3 time units in `0, the firing of tran-
sition a (this is possible because the value of
clock x is 1.3, which is less than 2; clock y
is then set to 0), a delay of 0 time unit in `1
(which we did not represent as it is a no-op),
the firing of transition c, etc.

In the context of verification, several prob-
lems are of interest, like the model-checking
of safety properties (“Can a distinguished set
of states be avoided?”), reachability/liveness
properties (“Can/will a distinguished goal
state be reached?”), or more involved prop-
erties such as response properties (“Is any
request eventually granted?”). As a model
for real-time systems, these properties can
include quantitative constraints, for instance
time-bounded reachability, or time-bounded
response properties (“Is any request granted
within two minutes?”). It is also relevant to
compute optimal time-bounds for these prop-
erties, like optimal-time reachability (“What
is the minimum time required for reaching a
distinguished set of states?”).

2.2 The region abstraction
A timed automaton is a finite representa-

tion of an infinite transition system, since
clocks take (nonnegative) real values. How-
ever, there is a way to deal with this infinity
of configurations by reasoning symbolically:
the main theoretical ingredient for solving
problems on timed automata is the notion of
regions,4 which provide a finite partitioning
of the state space such that states within a
given region are behaviorally indistinguish-
able.

The precise definition of regions is such
that inside a region, integral parts of clock
values do not change, and also the ordering
of clocks according to their values’ fractional
parts stays the same. Special consideration
has to be given to the cases where one or
more clock values are integers, and finiteness
of the region partitioning is ensured by con-

sidering as equivalent all clock values which
exceed the maximal constant appearing in
guards and invariants of the timed automaton
in question. In the left part of Figure 2 we
show the fourty-four regions for two clocks x
and y with maximal constant equal to 2. In
this two-clock case, regions can be points
(both clocks have integer values), open line
segments (one clock has integer value, or
their fractional parts are equal), open trian-
gles, or open unbounded rectangles.

From two equivalent configurations (same
location, region equivalent valuations), by
delaying or by taking a transition, similar
regions will be visited and similar behav-
iors will be possible. Regions are thus a
way to finitely abstract the behaviors of a
timed automaton. There are finitely (but ex-
ponentially) many regions, and by consider-
ing as abstract configurations pairs of loca-
tions and regions, we get a finite automaton,
called the region automaton, which preserves
many properties including reachability, live-
ness and safety. Hence verification of those
properties on the original timed automaton
can be transferred to the finite region automa-
ton, and can thus be checked using exponen-
tial time. Furthermore, it is possible to design
algorithms that work without constructing
the whole region graph (using on-the-fly tech-
niques), thus using only polynomial space.

2.3 The limits of the region
abstraction

Not all properties can be decided on timed
automata using the region abstraction, and
language-based problems such as checking
inclusion (“Are all behaviors of a timed au-
tomaton also behaviors of another timed au-
tomaton?”) and universality (“Can all be-
haviors be realized in a given timed automa-
ton?”) are undecidable. Regarding language-
theoretic questions, the set of languages
(i.e., set of behaviors) accepted by timed au-
tomata is not closed under complement. For
instance, the following timed automaton ac-
cepts all behaviors with at least two a’s sepa-
rated by one time unit, but it can be proved
that no timed automaton can accept the com-
plement language. The same counterexam-
ple can be used to show that timed automata
are not determinizable.
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Figure 2: The region abstraction is a finite representation of all possible behaviors of the timed automaton. Consider the timed automaton
on top of the picture, and assume we enter location `1 with clock values (x0, y0) such that 0 < y0 < x0 < 1 (that is, somewhere in the
red triangle, see the picture on the left); as clock y has value strictly less than 1, we have the option to switch to location `2, which would
reset clock x and end up in the green region. We also have the option to delay in `1; in that case, we will exit the red triangle and reach
the blue line, where x = 1 and 0 < y < 1. Here again we have two options: switching to `2, or delaying to the next clock-region where
0 < y < 1 < x < 2 and y > 1− x (that is, the fractional part of y is larger than that of x). In case we still decide to wait in that region, we
reach the horizontal blue region where 1 = y < x < 2. From that region on, the transition to `2 is not available anymore. This description
of the possible behaviors starting from the red region, which has been represented on the picture to the right, does not depend on the precise
values of the clocks: region equivalence preserves enough information to encode exactly the behaviors of the underlying timed automaton.

2.4 Timed automata in prac-
tice

In practice, algorithms based on the region
automaton are infeasible because of their ex-
ponential time complexity. A rectification of
this is provided by the so-called zone graph
abstraction: A zone is a set of clock valua-
tions defined by a clock constraint and can
hence be represented by such, and the zone
graph has as vertices pairs of locations and
zones which satisfy the location’s invariant,
and its edges are derived from the transitions
of the timed automaton under investigation.
The number of zones is unbounded, so un-
like the region graph, the zone graph is infi-
nite. Finiteness can be enforced using a tech-
nique known as normalization;11 however the
number of zones is still much larger than the
number of regions, and moreover the same
zone can be represented using many differ-
ent clock constraints.

Despite the above, zone-based algorithms
have shown to be very efficient in practice,
and they form the basis of a number of suc-
cessful tools. The reason is again that the al-
gorithms used have no need to explore all of
the zone graph (they work on-the-fly), and
that operations on zones can be implemented
very efficiently (in time cubic in the number
of clocks).

Zones are usually represented using
difference-bound matrices, or DBMs. The
DBM representation of a zone on a set of
k clocks has (k+1)× (k+1) entries, where
an entry ci,j represents a clock constraint
xi − xj ≤ ci,j and an extra clock x0 is
added to represent clock constraints which do

not involve differences of clocks. DBMs in
turn can be represented as directed weighted
graphs; see below for an example of a zone
and its DBM (graph) representation. Canoni-
cal representations of zones can be obtained
using shortest-path closure or shortest-path
reduction of their DBM graphs.

Z =

8>>>>>>>><>>>>>>>>:
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x3 ≥ −5
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2
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Zone-based algorithms are implemented
in a number of tools, e.g. UPPAAL, KRONOS,
HYTECH, and others, which by now have
been successfully applied to numerous indus-
trial case studies ranging from verification of
real-time control programs and communica-
tion protocols to optimal real-time schedul-
ing, as illustrated in the next section.

2.5 Task graph scheduling:
time optimality

A task graph problem involves a number
of tasks T1, ..., Tm, a number of machines
or processors P1, ..., Pn, and a (partial) map-
ping d giving, for each task Ti and proces-
sor Pj , the time d(i, j) for computing Ti

on Pj . In addition there is a partial order on
the tasks used for describing dependencies.
Figure 3 is an example of a task graph prob-
lem.

We want to determine a schedule of when
to start the execution of tasks, and on which

processors, that minimizes the total execu-
tion time while being feasible in respecting
the following conditions: (a) a task can be ex-
ecuted only if all its predecessors have com-
pleted; (b) each machine can process at most
one task at a time; (c) tasks cannot be pre-
empted.

Task graph scheduling problems may be
easily modelled as networks of timed au-
tomata so that every run corresponds to a fea-
sible schedule and the fastest run gives the
time-optimal schedule: For each processor
we construct a small timed automaton able —
when idle— to handle within the appropriate
amount of time the requests from the tasks.
For the processors of Figure 3, these are as
follows:

P1:

idle+

(x≤2)

×
(x≤3)

x:=0

add1

x:=0

mult1

x=2

done1

x=3

done1

P2:

idle+

(y≤5)

×
(y≤7)

x:=0

add2

x:=0

mult2

y=5

done2

y=7

done2

Each task is modelled as a timed automa-
ton waiting to be served by either of the pro-
cessors, conditioned by the completion of its
predecessors. Tasks T4 and T5 of our exam-
ple can be represented as follows:

T4:
t1∧t2

addi

t4:=1

donei

T5:
t3

addi

t5:=1

donei



Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time
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× 3 picoseconds
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+
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×
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+
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×
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+
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Figure 3: Task graph problem with 6 tasks, where each task corresponds to the computation of a given sub-expression of (D × (C ×
(A + B)) + ((A + B) + (C ×D)). Given the execution platform with two processors, P1 and P2, and corresponding computation times
for addition and multiplication, as well as their energy consumption, Sch1 to Sch3 provide three feasible schedules, where Sch2 is in fact
time-optimal, and Sch3 is energy-optimal.

Extensive experiments on benchmarks
have demonstrated that the above timed
automata approach to task graph schedul-
ing is competitive compared with more
traditional approaches from operations re-
search (e.g. mixed-integer linear program-
ming) as well as specialized, heuristic algo-
rithms from planning and scheduling.1 Fur-
thermore the generic approach of timed au-
tomata admits easy incorporation of more
specialized features (e.g. release times, dead-
lines) to the models and scheduling.

2.6 Extensions of timed au-
tomata

We have seen that timed automata are a
rich formalism with efficient tool support. As
such, they are often cited as the model of
choice for representing and reasoning about
embedded and real-time systems. This suc-
cess has naturally led to several extensions
of the model, for instance with more gen-
eral guards or resets being allowed (e.g. ad-
ditive guards10 or non-deterministic udpates
of clocks15), or with more involved dynam-
ics measuring other quantities than time. Un-
fortunately, these extensions quickly lead to

undecidability; e.g. for timed automata in
which clocks can be stopped (so-called stop-
watch automata), even basic properties such
as safety or liveness are undecidable.23

On the other hand, the model of hybrid au-
tomata,22, 23 though suffering from the same
undecidability problems as mentioned for
other classes above, has emerged as a popu-
lar formalism for which semi-decision and
approximation procedures have been devel-
oped. The priced timed automata which we
shall discuss in the next section form an inter-
mediate class between timed and hybrid au-
tomata for which some of the good decidabil-
ity properties of timed automata are retained.

3. PRICED TIMED AU-
TOMATA

3.1 A model for resources
Time is not the only quantitative notion of

interest when designing embedded systems;
other quantities such as energy or memory
consumption, required bandwidth, or accu-
mulated cost can be of interest in such sys-
tems.

These notions are intimately connected to
time, because the longer the device is oper-
ating, the more resources it consumes. This
makes timed automata the model of choice
to reason about those quantities, and has led
to the definition of priced timed automata,5, 9

extending timed automata with cost (which
is the general name we will use in the sequel
to refer to the various quantities which can
be modeled within this formalism).

With a look to decidability, we only al-
low linearly evolving costs: in each location,
costs evolve linearly with respect to elapsed
time. The important restriction which dif-
ferentiates priced timed automata from lin-
ear hybrid automata (for which reachability
is undecidable) is that cost information can-
not be used in the guards of the automaton:
it can only be used as an observer variable
for evaluating the price of executions of the
underlying timed automaton.

An example of a priced timed automaton,
extending the timed automaton of the previ-
ous section, is depicted below:
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Figure 4: The corner-point abstraction refines the region abstraction by also keeping track of the corner point close to which an ex-
ecution runs. This is needed to measure costs: for instance, if we are in the orange location (with cost rate +3) and in the red region
where 0 < y < x < 1, the price of delaying depends on the value of the clocks. From (a), where both x and y are close to 0, we can let
almost one time-unit elapse and reach (b). The resulting cost is almost +3. On the other hand, from (c), where x is close to 1 and y close
to 0, letting time elapse takes us “in almost no time” to the subsequent region, so that the cost is close to 0. Of course, we still have enough
information to keep track of which transitions of the timed automaton are available (notice that resetting transitions from the blue regions
have not been represented for the sake of readability).

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,y:=0

x=2 +1

x=2
+7

A decoration +10 on a location indicates
that cost increases by 10 per time unit in the
location; a decoration +7 on a transition indi-
cates that taking the transition increases over-
all cost by 7. The executions of such an au-
tomaton are those of the underlying timed au-
tomaton. The total cost of the example exe-
cution given in Section 2.1 is hence given by

1.3× (+5) + 0.7× (+1) + 7 = 14.2

3.2 Optimizing the resources
Natural optimization questions can be

posed on that model, e.g. the optimal reacha-
bility problem (minimum cost for reaching a
given goal), the mean-cost optimization prob-
lem (mean cost used in the long run), or the
discounted-cost optimization problem (where
costs are discounted exponentially as time
elapses).

As an example, we compute the minimum
cost that is required for reaching location ,
in the previous example. There are two fami-
lies of executions: those that go through `2
and those that go through `3. Furthermore,
in each family, there is a single parameter t:
the time elapsed in location `0, everything
else being determined by the guards in the

automaton. Hence the minimum cost is:

inf
0≤t≤2

min

„
5t+10(2−t)+1

5t+(2−t)+7

«
= 9 (1)

where the expressions 5t + 10(2− t) + 1
and 5t + (2− t) + 7 give the cost of execu-
tions going through `2 respectively `3 after
delaying t time units in location `0.

The standard region construction is not
accurate enough to properly keep track of
cost information, and a refinement of the re-
gion abstraction, the corner-point abstrac-
tion,13 has to be used to solve the optimiza-
tion problems mentioned above. For this ab-
straction, regions are refined by distinguish-
ing their corner points. As an example, the
two-dimensional region depicted below is re-
fined into three region-corner pairs; the mean-
ing of a region-corner pair is that the current
clock valuation is in the region close to the
distinguished corner:

;

(a) (b) (c)

Similar to the refinement of regions, the
transitions in the region automaton have to
be refined to keep track of the corners. In the
example above, there is a (delay) transition
from region-corner pair (a) to (b), whereas
(c) cannot be reached from neither (a) nor (b).
Figure 4 illustrates the corner-point abstrac-
tion of an example priced timed automaton.
This graph has two types of delay edges: ei-
ther within a region, from one corner to an-
other, or from a corner of a region to the
corresponding corner in the subsequent re-

gion. The first case corresponds to a delay
of “almost” one time unit, while the second
case corresponds to a delay of “almost” zero
time units. In addition, there are edges rep-
resenting transitions of the timed automaton
(which reset clock x in our example of Fig-
ure 4). In that case as well, there is a natural
mapping between corners.

The edges of the corner-point abstraction
are labeled with discrete cost information:
if the cost rate in the current location is +3,
all one time-unit edges have label +3, and all
zero time-unit edges get label 0. Edges com-
ing from discrete transitions are labeled with
the cost of the transition (+5 in the example).

The corner-point abstraction can be used
to solve many optimization problems, as it
can be shown that in these cases, optimal to-
tal cost is obtained for runs which always
take transitions close to integer clock values.
Hence the optimization problem reduces to
a problem on a finite graph which can be
solved using different standard techniques.
This is the case for the mean-cost optimiza-
tion problem13 and the discounted-cost prob-
lem.21 For optimal reachability, another tech-
nique of priced regions has been used9 which
also extends to a setting of multiple indepen-
dent cost variables.25

As for algorithm and tool support, the
zone-based approach has been successfully
extended to solve the optimal reachability
problem,24 by introducing priced zones, and
tool support is available in UPPAAL CORA.
For mean-cost and discounted-cost optimiza-
tion, active research is being conducted in
developing efficient zone-based algorithms,
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Figure 5: The resource management problem asks whether it is possible to maintain the cost level within fixed bounds. There can be only
a lower bound (a), a lower and an upper bound (b, c), or a strong lower and a soft upper bound. Figures (a), (b) and (d) represent solutions
to the respective problems for the priced timed automaton depicted on the left: there is an infinite path that satisfies the global constraint.
In case (a) for instance, we have depicted a possible schedule for the first cycle, and this path can be repeated because at the start of the
second cycle, the cost level is larger than at the start of the first cycle. In figure (c), the proposed schedule violates the lower bound, and it
can be shown that there exists no infinite path which maintains cost level within the specified bounds.

or alternatively showing that no such algo-
rithms exist.

3.3 Task graph scheduling:
energy optimality

Reconsidering our running task graph
scheduling problem of Section 2.5, cost-
optimal reachability for priced timed au-
tomata may be used to provide energy-
optimal schedules.

For the task graph scheduling instance of
Figure 3, energy consumption of the two pro-
cessors is reflected in the respective timed
automata by suitable cost-rates in the loca-
tions corresponding to the processor being
idle or in use. The processors can then be rep-
resented by the following two priced timed
automata:

P1:
+10+90

(x≤2)

+90

(x≤3)
x:=0

add1

x:=0

mult1

x=2

done1

x=3

done1

P2:
+20+30

(y≤5)

+30

(y≤7)
x:=0

add2

x:=0

mult2

y=5

done2

y=7

done2

Thus the energy needed for performing
computation steps is modeled as cost in the
priced timed automaton model, and optimal
reachability techniques can be employed for
finding an energy-optimal schedule.

3.4 Managing the resources
Up to this point we have only employed

priced timed automata as a formalism for
modeling time-dependent consumption of re-
sources. However, in several situations re-
sources may not just be consumed but also
occasionally regained, e.g. in rechargeable
batteries, autonomous robots equipped with
solar cells for energy harvesting, or in tanks
which may not only be emptied but also filled.
Extending priced timed automata to allow for
both positive (regaining) and negative (con-

sumption) rates provides a natural modelling
formalism.

However, a new question now emerges re-
lated to the appropriate management of re-
sources: “Is it possible to maintain the level
of resources within fixed bounds?” Such
resource-bound problems are highly relevant
to the analysis of several embedded systems,
e.g. it is natural to plan the usage of a device
with rechargeable batteries or solar cells so
that one never runs out of energy, nor exceeds
the maximum capacity for energy storage.

This problem goes one step further to-
wards (linear) hybrid automata: while costs
can still not be used directly in guards, they
restrict the possible behaviors of the timed au-
tomaton by forbidding transitions that would
make the total cost go below the lower bound
or above the upper bound. There are several
variants to this problem: there can be no up-
per bound (when representing the evolution
of a bank account for instance), a “soft” up-
per bound (once reached, the cost cannot in-
crease anymore, as is the case for a recharge-
able laptop battery), or a strong upper bound
(for instance when modeling the level of oil
in a closed tank which might explode if it
exceeds the maximum capacity). Figure 5
shows a priced timed automaton together
with some resource management problems.

Few results have been obtained on this
problem so far: only the case of one-clock
priced timed automata has been investi-
gated.16 This restriction has two important
consequences: Cycle detection can be done
statically, as each resetting transition leads to
a configuration with clock value 0, and the
region automaton can be coarsened so that
the partition consists of intervals with end-
points given by the constants in the automa-
ton’s guards. As a consequence, there are
only polynomially many regions.

For priced timed automata with more than
one clock, no results are known, but even for
one-clock automata, there are some difficul-

ties which mean that abstractions like the re-
gion automaton or the corner-point abstrac-
tion are insufficient. As an example, consider
the following priced timed automaton:

`0

+2

`1

+2

`2

+4

x=1,x:=0

−3

x=1,x:=0

Assuming that we start with initial cost 0,
this automaton has exactly one feasible exe-
cution in which the cost level remains non-
negative: after spending 1 time unit in loca-
tion `0, we alternately spend half a time unit
in `1 and half a time unit in `2. Any other ex-
ecution eventually violates the lower bound.

Hence with discrete costs on transitions,
the abstractions introduced above do not
suffice even for one-clock priced timed au-
tomata. If one restricts to automata with-
out discrete costs, the corner-point abstrac-
tion can be used to show decidability of the
management problem for lower bound only,
and for strong lower and soft upper bound;
in these cases, feasible executions proceed
close to corners of regions, and the problem
is solvable in polynomial time.

4. PRICED TIMED GAMES

4.1 A model for uncertainties
The systems we have considered so far are

closed in the sense that we have a complete
description of the system. This is not suf-
ficient to model embedded systems where
interaction with the environment is crucial,
or systems with some imprecisions. These
can be modelled using (two-player) timed
games,7 in which some actions are triggered
by the environment (we can think of signals
received by sensors, or of unexpected events).
The aim is to control, or guide, the system
so that it will be safe or correct regardless of
the way the environment interferes. An ex-
ample of a timed game is depicted below.



The dashed edges are those of the environ-
ment (said to be uncontrollable): when they
are firable, the system cannot prevent (nor
force) them to be fired. Here, the system
cannot decide whether it goes through `2 or
through `3.

`0 `1

(y=0)

`2

`3

,x≤2,y:=0

x=2

x=2

For simple correctness criteria, e.g. reach-
ability or safety, the set of winning states
(i.e., states from which the system can be con-
trolled under the safety constraint) and also
winning strategies (i.e., policies for how to
control the system) can be computed using
the region abstraction.7 Also computability
of time-optimal strategies,6 as well as strate-
gies under partial observability based on dis-
crete observations,20 has been demonstrated.
For efficient algorithms, a zone-based ap-
proach for solving timed games with reach-
ability and safety objectives has been devel-
oped,19 and tool support is now available in
UPPAAL-TIGA.8 Using a subset construc-
tion, also strategies under partial observabil-
ity can be computed with this approach.

4.2 Task graph scheduling:
timing uncertainty

Returning to our running task graph
scheduling example, we can use the formal-
ism of timed games to model uncertainty in
precisely how much time a certain compu-
tation on a given processor takes. In Sec-
tion 2.5 we modeled computation times by
precise numbers, whereas we now can make
the model more realistic by only providing
interval bounds within which computation
times are prescribed to lie. The timed game
models below provide version of the proces-
sors P1 and P2 from Figure 3 in which com-
putation times are prescribed to lie in the in-
tervals [1, 2] for addition and [1, 3] for multi-
plication on P1, and similarly for P2. Note
that uncertainty of precise computation times
has been modeled by uncontrollable edges:

P1:

idle+

(x≤2)

×
(x≤3)

x:=0

add1

x:=0

mult1

x≥1

done1

x≥1

done1

P2:

idle+

(x≤2)

×
(x≤3)

x:=0

add2

x:=0

mult2

y≥3

done2

y≥2

done2

Using these models, a computed time-
optimal schedule will no longer be a sim-
ple fixed assignment of tasks and time slots
to processors, but rather a flexible dynamic
assignment, where task scheduling can be

adapted on-line according to actual comple-
tion times of previous tasks.

4.3 Cost-optimal strategies
It is natural to extend the timed game

framework with cost information, hence mak-
ing it possible to model uncertainty as well as
resource use, and to ask for controllability un-
der resource constraints, or for optimal con-
trollability. The model of priced timed games
is a synthesis of priced timed automata and
timed games; we show an example below:

`0

+5

`1

(y=0)

`2

+10

`3

+1

,x≤2,y:=0

x=2 +1

x=2
+7

In the above example we may e.g. want to
compute the minimum cost for reaching lo-
cation , regardless of the moves of the envi-
ronment (which is in charge of the edges out
of `1 as before). As the system cannot con-
trol whether execution goes through `2 or `3,
the minimum cost is given by the formula

inf
0≤t≤2

max

„
5t+10(2−t)+1

5t+(2−t)+7

«
= 14 +

1

3

and the strategy is to wait 4
3

time units
in `0. Hence techniques based on the re-
gion automaton or the corner-point abstrac-
tion are not sufficient for computing optimal-
reachability strategies, even in case of one-
clock priced timed games.

Generally, priced timed games are much
more difficult to analyse than priced timed au-
tomata. Cost-optimal strategies are undecid-
able,18 even when restricted to priced timed
games with only three clocks.12

Decidability has been shown for classes of
priced timed games with strong conditions
on the cost evolution2, 14 and for one-clock
priced timed games.17 The reason for the lat-
ter is the same as for one-clock priced timed
automata above: resetting the clock leads to a
configuration with a known clock valuation.

The mentioned undecidablity results have
been shown by reduction from the halting
problem for two-counter, or Minsky, ma-
chines. The essence of the reduction is that
given three clocks x, y and z, it can be
checked whether the value of y is twice the
value of x. Consider the following module,
which is to be part of a larger priced timed
game:

`0

+α

`1

+β

x=1,x:=0

y=1,y:=0 y=1,y:=0

z=1,z:=0z:=0

Along an execution in this module, total
cost is increased by α(1−x0)+βx0, where

x0 is the initial value of x when entering the
gadget. Using this and similar other construc-
tions, modules which increase total cost by
2(1− x0) + y0 + 1 respectively (1− y0) +
2x0 + 2 can be designed. These will be in-
tegrated in another module and depicted as
gray boxes.

`0

c+=2(1−x0)+y0+1

c+=(1−y0)+2x0+2

,
By requiring that the optimal strategy has

total cost no more than 3, this module can
be used to ensure that the value of y is twice
the value of x. Indeed, if y0 > 2x0, the op-
ponent can choose the upper of the two gray
sub-modules to increase total cost above 3,
and if y0 < 2x0, the opponent can choose
the lower sub-module. Similar modules can
be used to ensure other arithmetic properties
of clock values, and collecting these appro-
priately, a two-counter machine can be en-
coded as a priced timed game.

4.4 Resource management
The formalism of priced timed games can

also be used to model resource management
problems under uncertainty, such as e.g. the
problem of programming an autonomous
robot so that it always is able to reach its base
before running out of energy, even if some
obstacles can interfere. As in the automaton
framework, this problem has been addressed
only quite recently,16 and many problems are
still open. Preliminary results are rather neg-
ative: finding a strategy that keeps the total
cost within a given interval is undecidable,
even if the timed game has only one clock.
The reason is again that it is possible to im-
plement basic arithmetic operations, but this
time on the value c of the total cost. Consider
the following module:

`0

+2

`1

+2

−1

`2

−2

`3

−2

+1

,

`4

+1
x:=0

x:=0

x=1

x=1

x:=0

x=1

If c is to be kept within the interval [0, 1],
then the total cost when leaving this module
must be exactly half of what it was when en-
tering. Indeed, the only winning strategy is
to wait in location `0 until c reaches value
1, then switch to `1 and immediately pass
to `2 and wait until c reaches 0, and then pass
over `3 and spend the remaining time in `4.
Any other strategy lets the opponent take the
system to the , location with total cost be-
low 0 or above 1. The resulting behavior can
be depicted as follows:



c

x

0 1

1

c0

1−c0
2

1− c0
2

c0
2

slope +2
loc. `0

slope−2
loc. `2

slope +1
loc. `4

This is the basic step in encoding a two-
counter machine as a resource management
problem on a one-clock priced timed game,
entailing that this problem is undecidable.

5. CONCLUSIONS
Timed automata and their priced and game

extensions provide a uniform and expressive
formalism for dynamic resource allocation,
allowing for analysis of a wide collection
of performance and optimization problems,
with results competitive with respect to more
traditional approaches such as mixed-integer
linear programming or others.

With the trend towards multi-core and
multi-processor architectures in embedded
systems, classical scheduling theory for
one-processor systems no longer applies,
and there is an increasing usage of timed-
automata technology to schedulability and
performance analysis in these settings.

Particularly challenging problems remain-
ing to be settled include decidability of syn-
thesis for priced timed games under par-
tial observability, as well as a range of re-
source management problems in the setting
of priced timed automata and games with
both consumption and regaining of resources.
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