Priced Timed Automata Optimal Scheduling

Kim G. Larsen

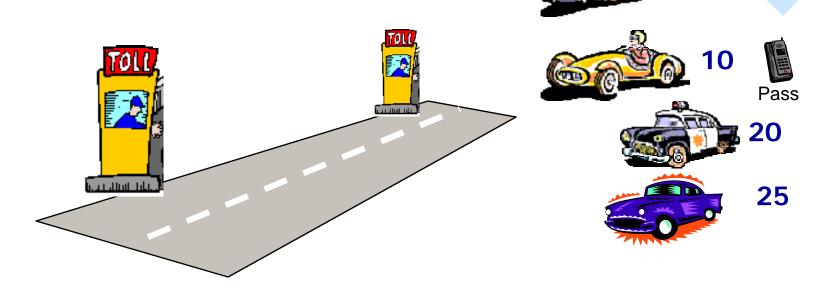
CISS – Aalborg University DENMARK

Overview

- Timed Automata
 - Scheduling
- Priced Timed Automata Copyright 1998-2008 by Uppsala Ur More Information at http://www.uppa
 - Optimal Reachability
 - Optimal Infinite Scheduling
 - Multi Objectives
- Energy Automata

Real Time Scheduling

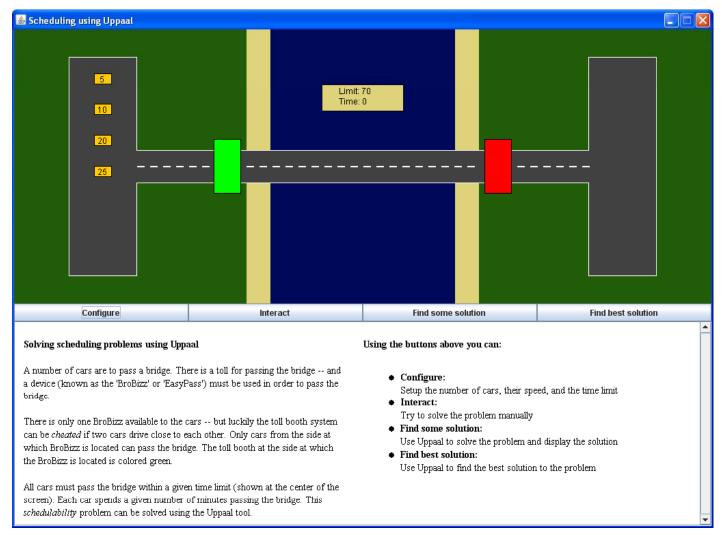
- Only 1 "Pass"
- Cheat is possible (drive close to car with "Pass")



SAFE CAN THEY MAKE IT TO SAFE WITHIN 70 MINUTES ???

UNSAFE

Let us play!



Real Time Scheduling

Solve Scheduling Problem using UPPAAL

C1

unsafe

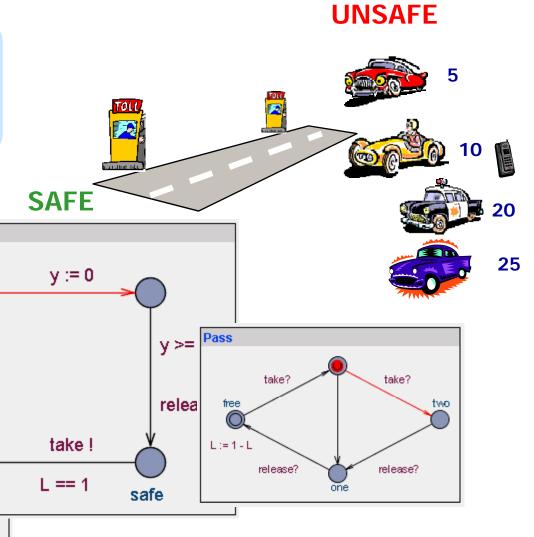
release!

y >= 5

y := 0

L == 0

take!



C2

unsafe

releas

unsafe

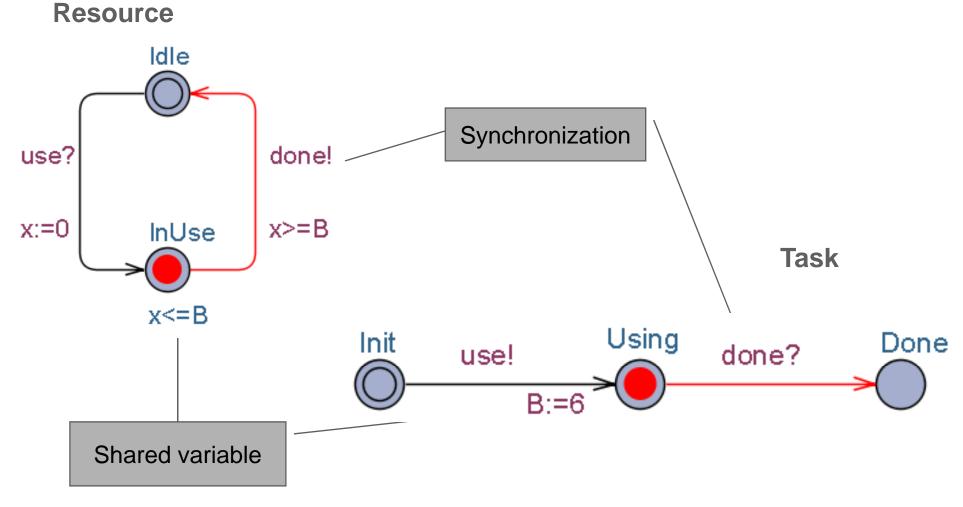
L == 0

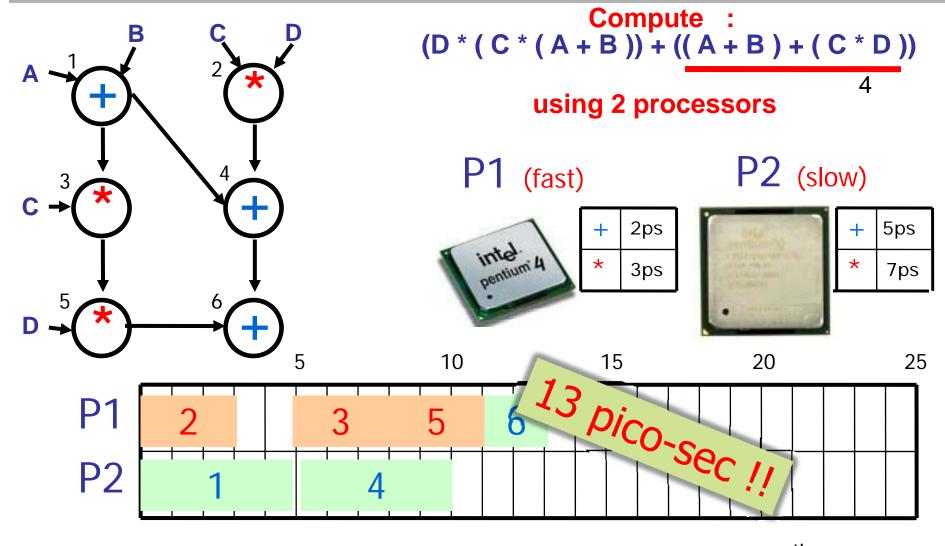
unsafe

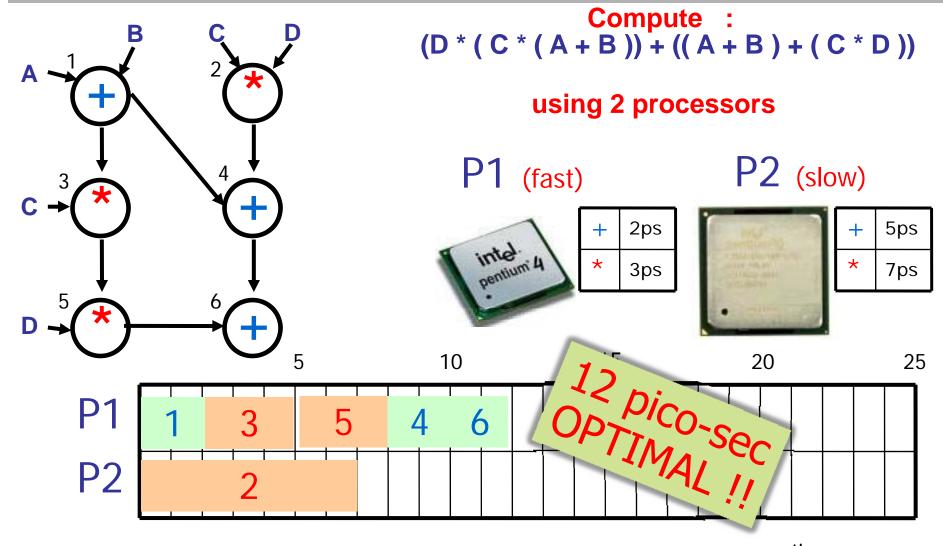
release!

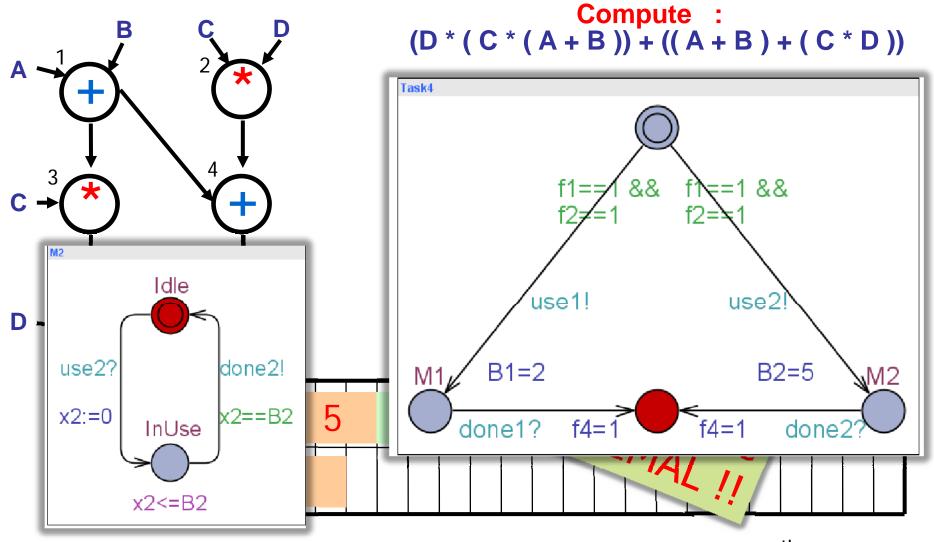
C4

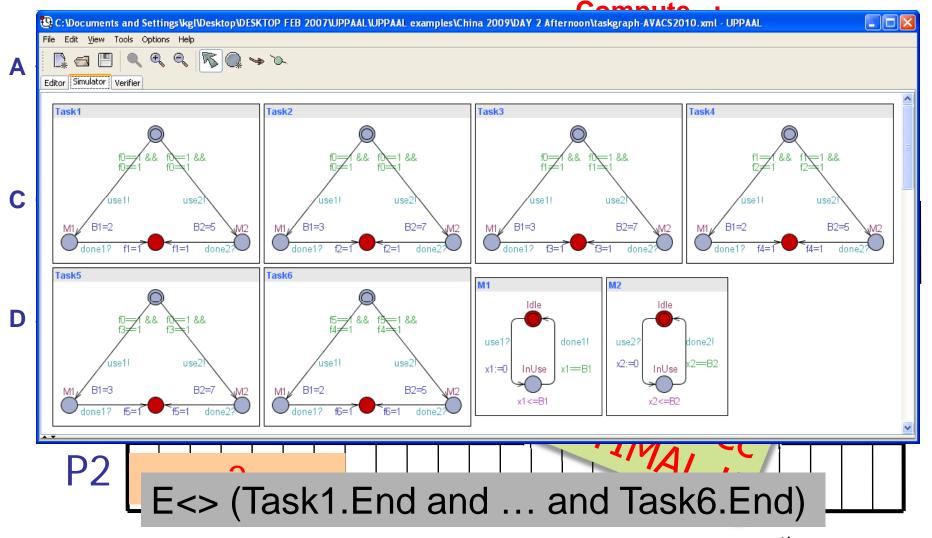
Resources & Tasks











Experimental Results

name	#tasks	#chains	# machines	optimal	TA
001	437	125	4	1178	1182
000	452	43	20	537	537
018	730	175	10	700	704
074	1007	66	12	891	894
021	1145	88	20	605	612
228	1187	293	8	1570	1574
071	1193	124	20	629	634
271	1348	127	12	1163	1164
237	1566	152	12	1340	1342
231	1664	101	16	t.o.	1137
235	1782	218	16	t.o.	1150
233	1980	207	19	1118	1121
294	2014	141	17	1257	1261
295	2168	965	18	1318	1322
292	2333	318	3	8009	8009
298	2399	303	10	2471	2473

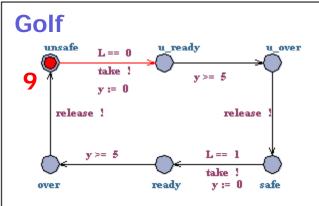
Symbolic A*
Branch-&-Bound
60 sec

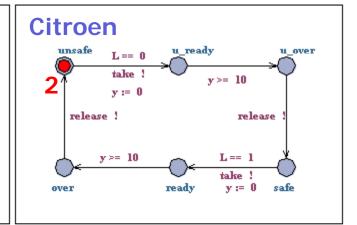
Abdeddaïm, Kerbaa, Maler

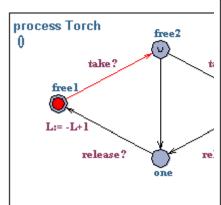
Priced Timed Automata

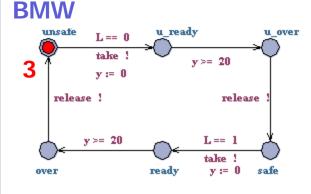
EXAMPLE: Optimal rescue plan for cars with different subscription rates for city driving!

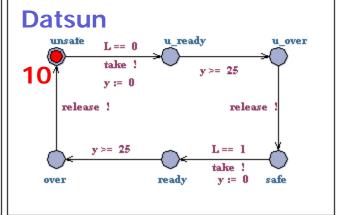










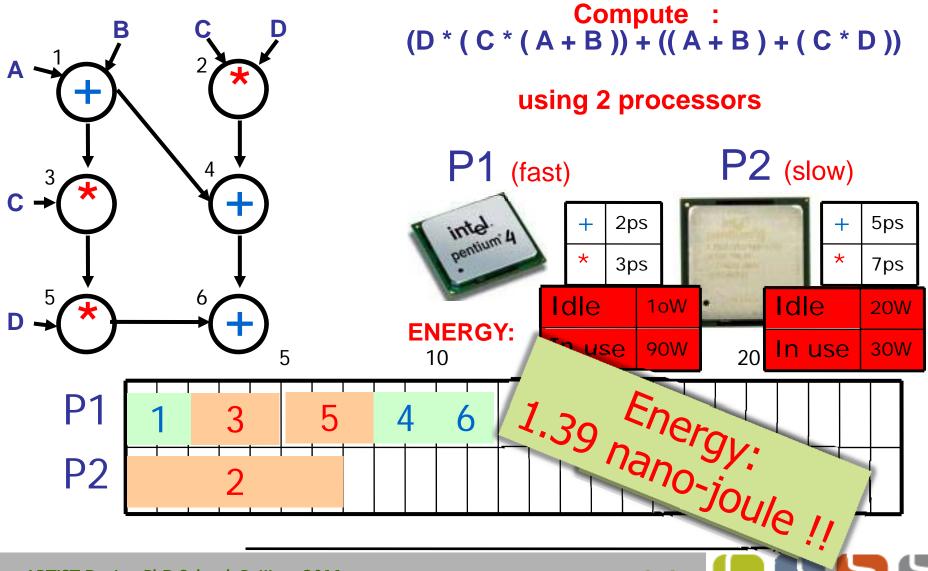


OPTIMAL PLAN HAS ACCUMULATED COST=195 and TOTAL TIME=65!

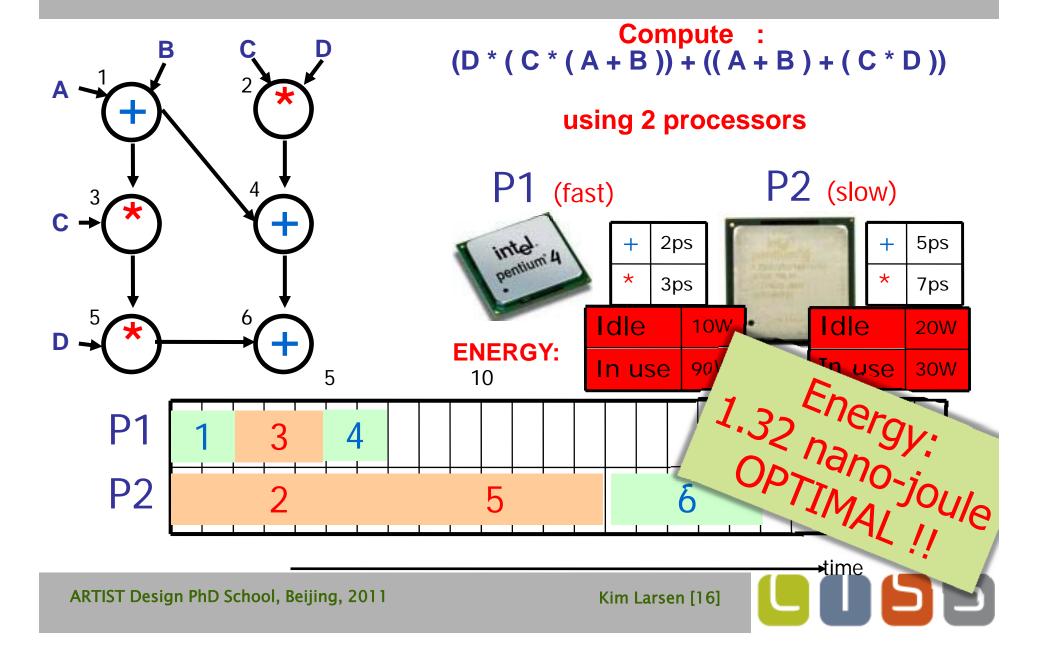
Experiments

COST-rates			es	SCHEDULE	COST	TIME	#Expl	#Pop'd
G	С	В	D					
Min Time			е	CG> G< BD> C< CG>		60	1762 1538	2638
1	1	1	1	CG> G< BG> G< GD>	55	65	252	378
9	2	3	10	GD> G< CG> G< BG>	195	65	149	233
1	2	3	4	CG> G< BD> C< CG>	140	60	232	350
1	2	3	10	CD> C< CB> C< CG>	170	65	263	408
1	20	30	40	BD> B< CB> C< CG>	975 1085	85 time<85	1	-
0	0	0	0	-	0	-	406	447

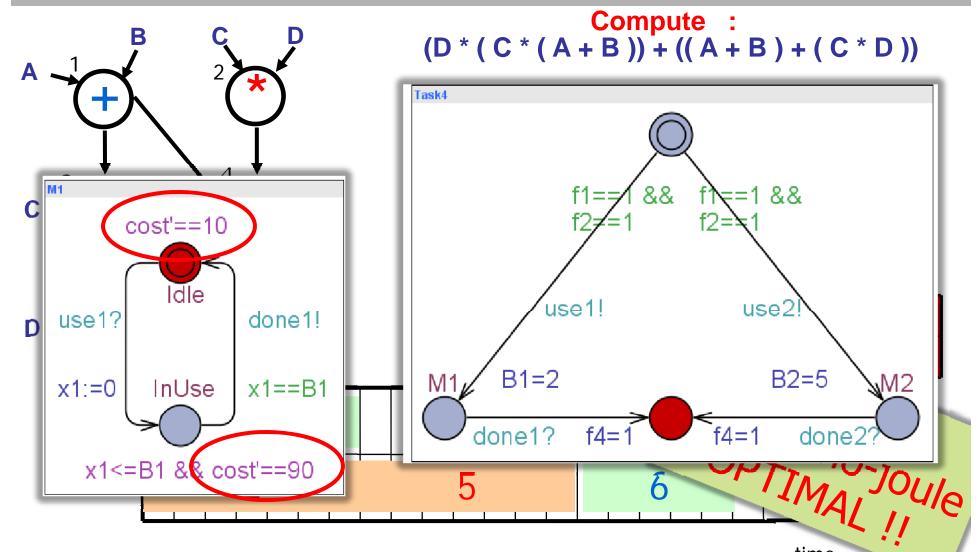
Task Graph Scheduling - Revisited



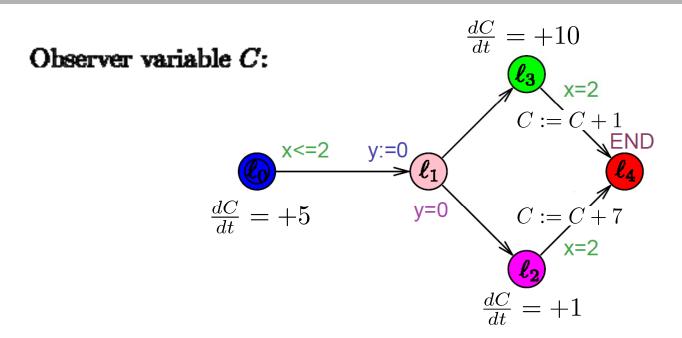
Task Graph Scheduling - Revisited



Task Graph Scheduling - Revisited



A simple example



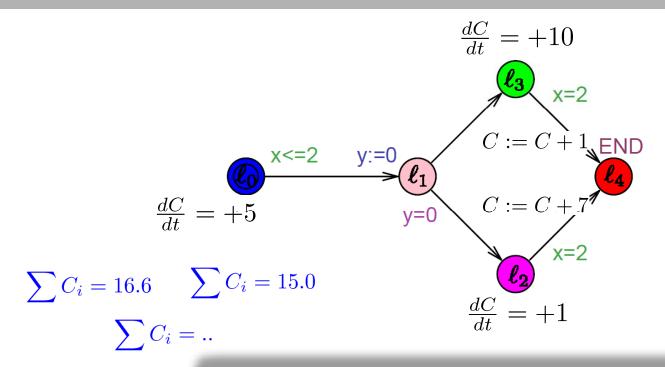
$$(\ell_0, [0, 0]) \xrightarrow{1.9}_{9.5} (\ell_0, [1.9, 1.9]) \to_{\mathbf{0}} (\ell_1, [1.9, 0]) \to_{\mathbf{0}} \sum C_i = 16.6$$
$$(\ell_2, [1.9, 0]) \xrightarrow{0.1}_{\mathbf{0}.1} (\ell_2, [2, 0.1]) \to_{\mathbf{7}} (\ell_4, [2, 0.1])$$

$$(\ell_0, [0, 0]) \xrightarrow{1.2}_{6.0} (\ell_0, [1.2, 1.2]) \to_{\mathbf{0}} (\ell_1, [1.2, 0]) \to_{\mathbf{0}}$$

$$(\ell_3, [1.2, 0]) \xrightarrow{0.8}_{8.0} (\ell_3, [2, 0.8]) \to_{\mathbf{1}} (\ell_4, [2, 0.8])$$

$$\sum C_i = 15.0$$

A simple example

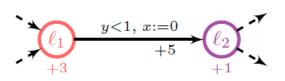


Q: What is cheapest cost for reaching ℓ_4 ?

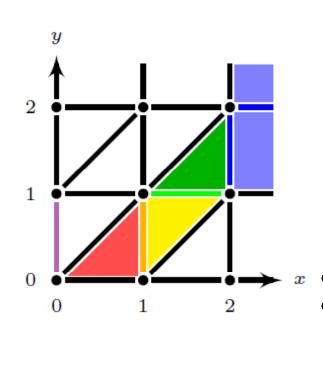
$$\inf_{0 < t < 2} \min\{5t + 10(2-t) + 1, 5t + (2-t) + 4\} = 9$$

 \rightarrow strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

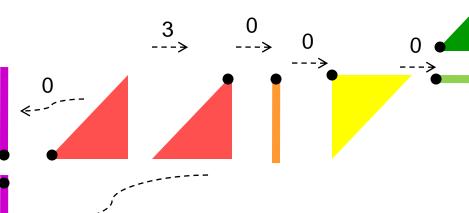
Corner Point Regions



THM [Behrmann, Fehnker ..01] [Alur, Torre, Pappas 01] Optimal reachability is decidable for PTA

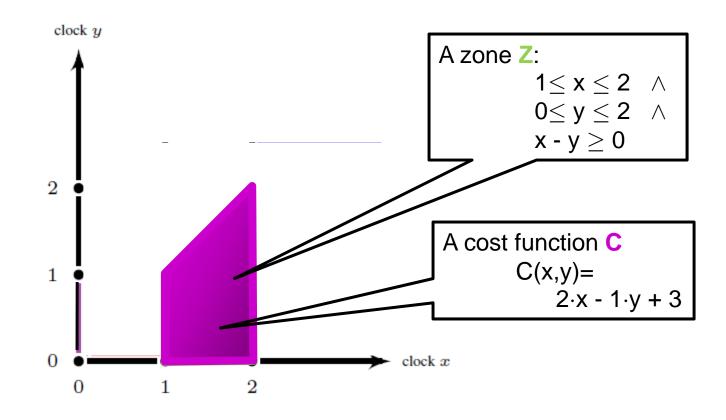


THM [Bouyer, Brojaue, Briuere, Raskin 07] Optimal reachability is PSPACE-complete for PTA



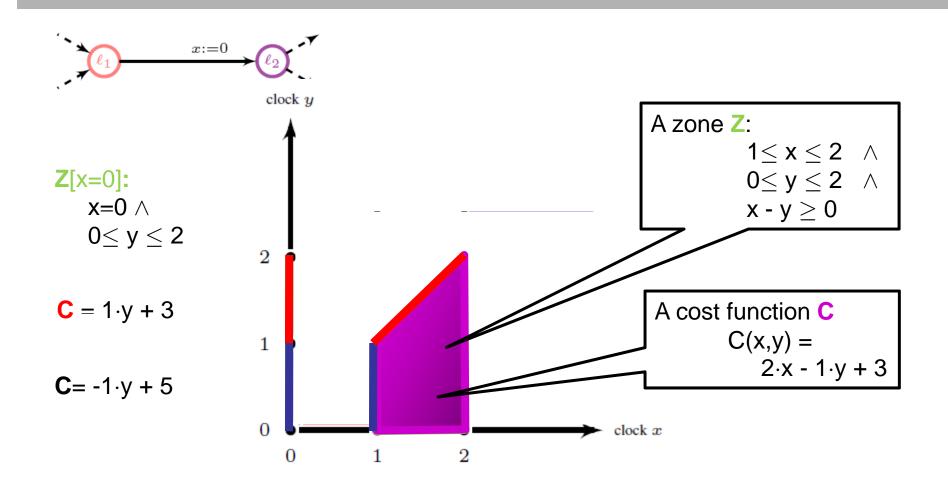
Priced Zones

[CAV01]



Priced Zones - Reset

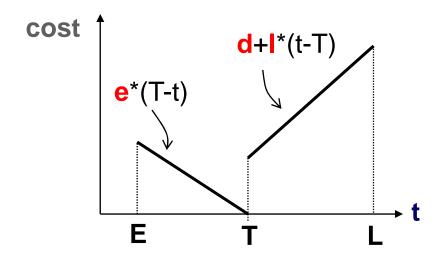
[CAV01]



Symbolic Branch & Bound Algorithm

```
Cost := \infty
Passed := 0
Waiting := \{(l_0, Z_0)\}
while Waiting \neq \emptyset do
    select (l, Z) from Waiting
                                                         Z' \leq Z
    if l = l_q and minCost(Z) < Cost then
                                                       Z' is bigger &
        Cost := minCost(Z)
                                                      cheaper than Z
    if minCost(Z) + Rem_{(l,Z)} \ge \mathcal{G}
    if for all (l, Z') in Passed: Z' \nleq Z then
                                                   ≤ is a well-quasi
        add (l, Z) to Passed
                                                   ordering which
        add all (l', Z') with (l, Z) \rightarrow (l', Z')
                                                     guarantees
                                                     termination!
return Cost
```

Example: Aircraft Landing



E earliest landing time

T target time

L latest time

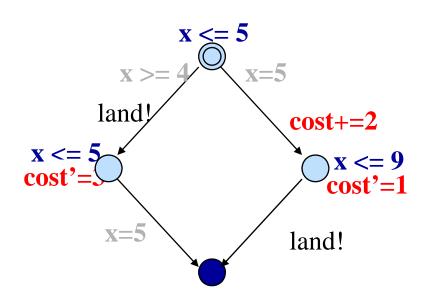
e cost rate for being early

l cost rate for being late

d fixed cost for being late

Planes have to keep separation distance to avoid turbulences caused by preceding planes

Example: Aircraft Landing



- 4 earliest landing time
- target time
- latest time
- 3 cost rate for being early
- cost rate for being late
- 2 fixed cost for being late

Planes have to keep separation distance to avoid turbulences caused by preceding planes

Aircraft Landing

Source of examples:

Baesley et al'2000

П	problem instance	1	2	3	4	5	6	7
Ш	number of planes	10	15	20	20	20	30	44
Ш	number of types	2	2	2	2	2	4	2
П	optimal value	700	1480	820	2520	3100	24442	1550
1	explored states	481	2149	920	5693	15069	122	662
Ш	cputime (secs)	4.19	25.30	11.05	87.67	220.22	0.60	4.27
П	optimal value	90	210	60	640	650	554	0
2	explored states	1218	1797	669	28821	47993	9035	92
Ш	cputime (secs)	17.87	39.92	11.02	755.84	1085.08	123.72	1.06
П	optimal value	0	0	C	130	170	0	
3	explored states	24	46	84	207715	189602	62	N/A
Ш	cputime (secs)	0.36	0.70	1.71	14786.19	12461.47	0.68	
П	optimal value				0	0		
4	explored states	N/A	N/A	N/A	65	64	N/A	N/A
	cputime (secs)	-	-	_	1.97	1.53	-	-

Symbolic Branch & Bound Algorithm

```
Zone based
Cost := \infty
                                  Linear Programming
Passed := ∅
                                  Problems
Waiting := \{(l_0, Z_0)\}
                                  →(dualize)
while Waiting \neq \emptyset do
                                  Min Cost Flow
    select (l, Z) from Waiting
   if l = l_q and minCost(Z) \} Cost then
        Cost := minCoct(Z)
    if minCost(Z) + Rem<sub>(l,Z)</sub> \geq Cost then break
   if for all (i, Z') in Passed: Z' \nleq Z then
       add (l, Z) to Passed
       add all (l', Z') with (l, Z) \rightarrow (l', Z') to Waiting
return Cost
```

Aircraft Landing (revisited)

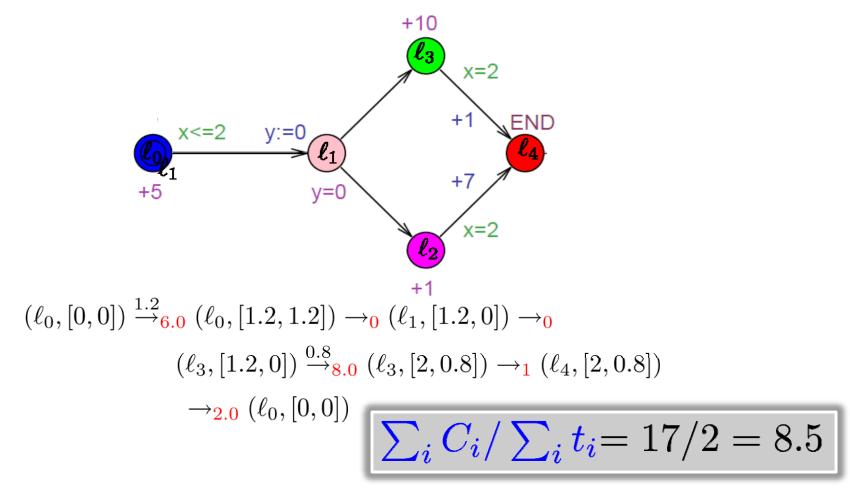
[TACAS04]

RW	Planes	10	15	20	20	20	30	44
	Types	2	2	2	2	2	4	2
1	simplex	0.844s	5.210s	2.135s	17.888s	44.878s	0.451s	0.670s
	netsimplex	0.156s	0.657s	0.369s	2.363s	5.503s	0.127s	0.322s
factor		5.41	7.93	5.79	7.57	8.16	3.55	2.08
2	simplex	2.577s	7.436s	2.175s	94.357s	120.004s	2.322s	0.264s
	netsimplex	0.332s	1.036s	0.436s	13.376s	18.033s	0.600s	0.179s
factor		8.00	7.18	4.99	7.054	6.65	3.87	1.474
3	simplex	0.120s	0.181s	0.357s	740.100s	516.678s	0.166s	N/A
	netsimplex	0.064s	0.104s	0.129s	170.176s	124.805s	0.079s	N/A
factor		1.87	1.74	2.77	4.34	4.14	2.10	
4	simplex	N/A	N/A	N/A	1.603s	0.318s	N/A	N/A
	netsimplex	N/A	N/A	N/A	0.378s	0.093s	N/A	N/A
factor					4.24	3.42		

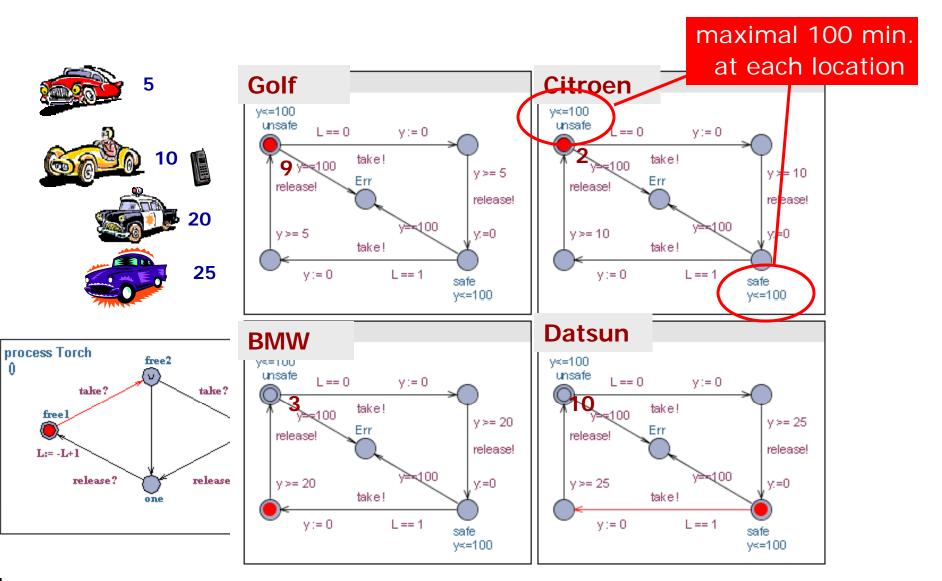
A. Loebel (2000). MCF Version 1.2 - A network simplex implementation. (http://www.zib.de)

Optimal

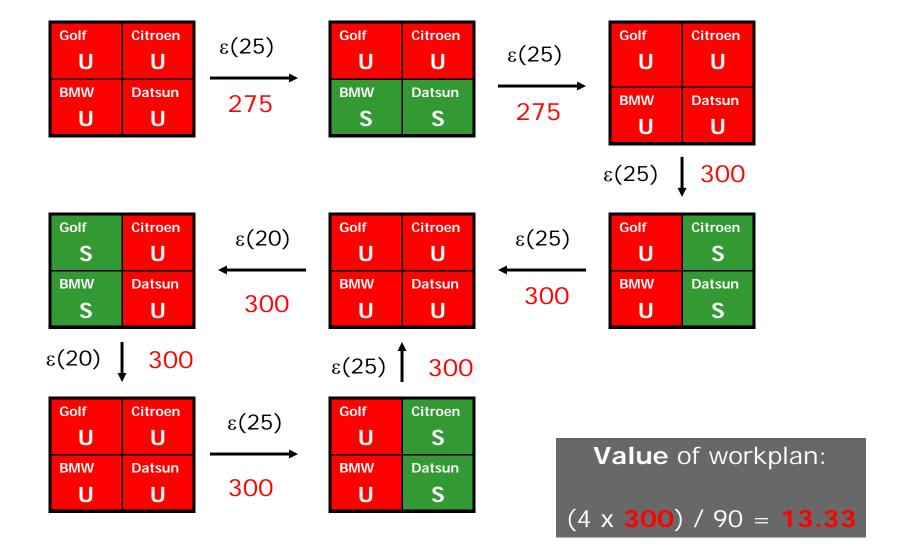
Schedule



EXAMPLE: Optimal WORK plan for cars with different subscription rates for city driving!

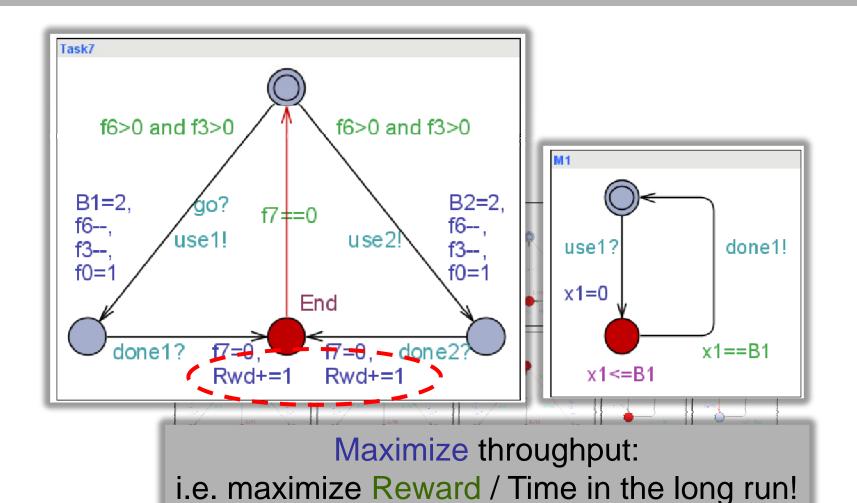


Workplan I

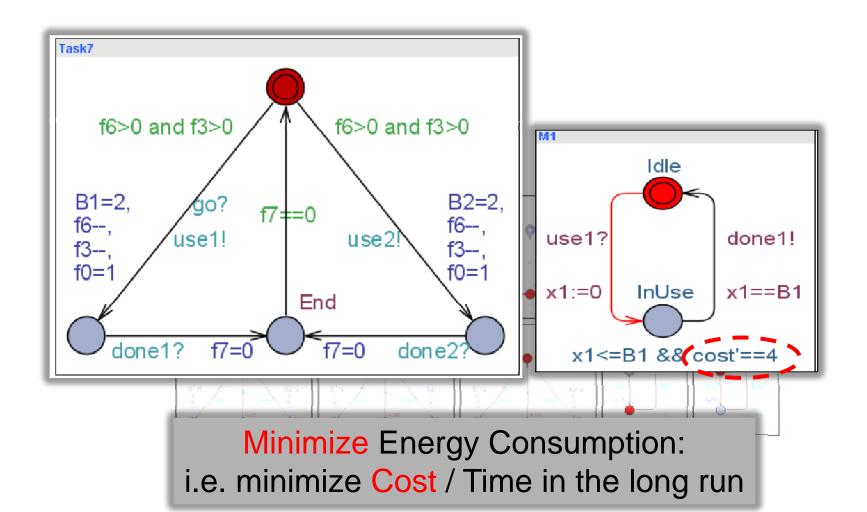


Workplan II

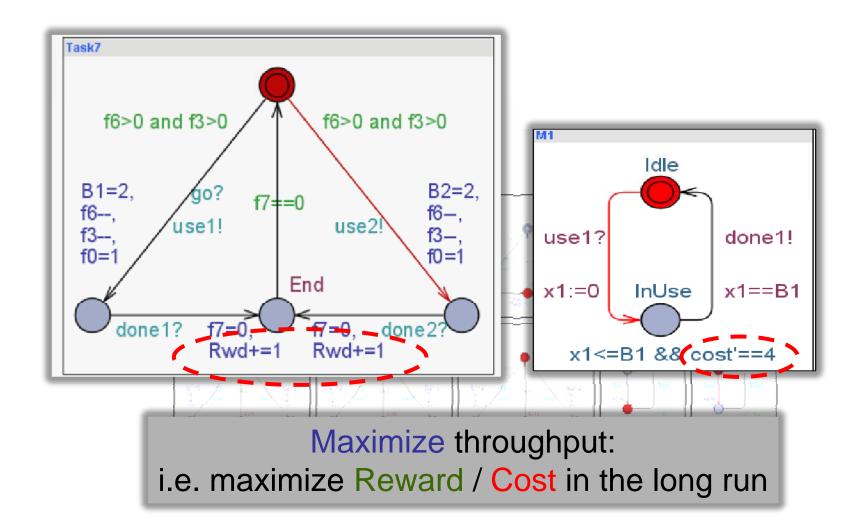
Optimal Infinite Scheduling



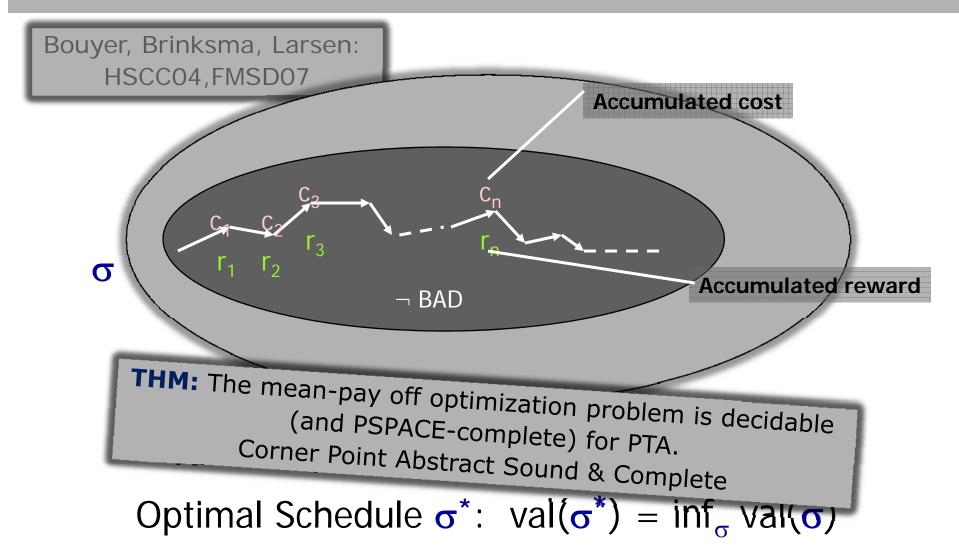
Optimal Infinite Scheduling



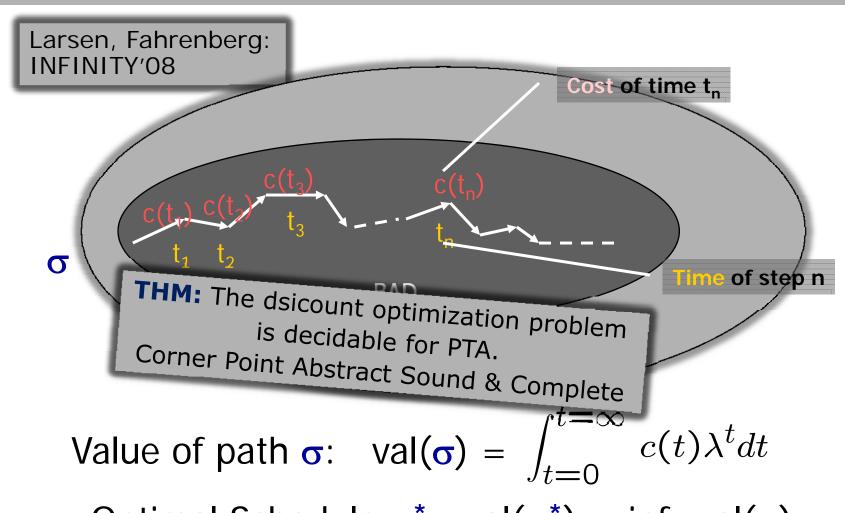
Optimal Infinite Scheduling



Mean Pay-Off Optimality



Discount Optimality $\lambda < 1$: discounting factor



Optimal Schedule σ^* : val (σ^*) = inf_{σ} val (σ)

Soundness of Corner Point Abstraction

Lemma

Let Z be a (bounded, closed) zone and let f be a(well-defined) function over Z defined by:

$$f:(t_1,\ldots,t_n)\mapsto \frac{a_1t_1+\cdots+a_nt_n+a}{c_1t_1+\cdots+c_nt_n+d}$$

then $\inf_{Z} f$ is obtained at a corner-point of Z (with integer coefficients).

Lemma

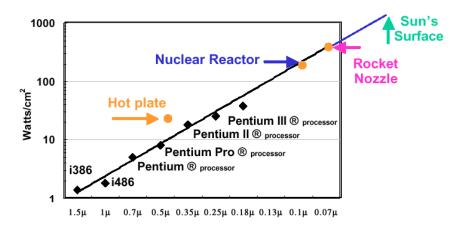
Let Z be a (bounded, closed) zone and let f be a function over Z defined by:

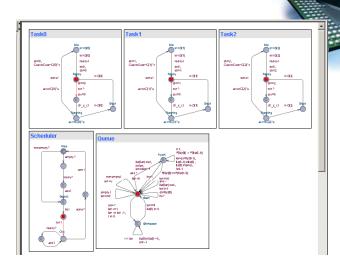
$$f:(t_1,\ldots,t_n)\mapsto a_1\lambda^{t_1}+\cdots+a_n\lambda^{t_n}+a$$

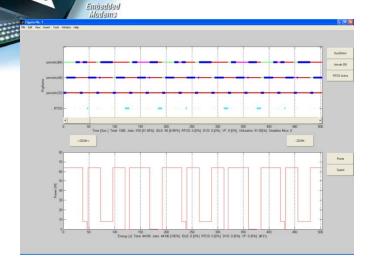
then $\inf_{\mathbb{Z}} f$ is obtained at a corner-point of \mathbb{Z} (with integer coefficients).

Application

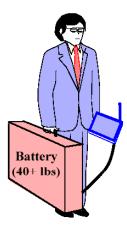
Dynamic Voltage Scaling



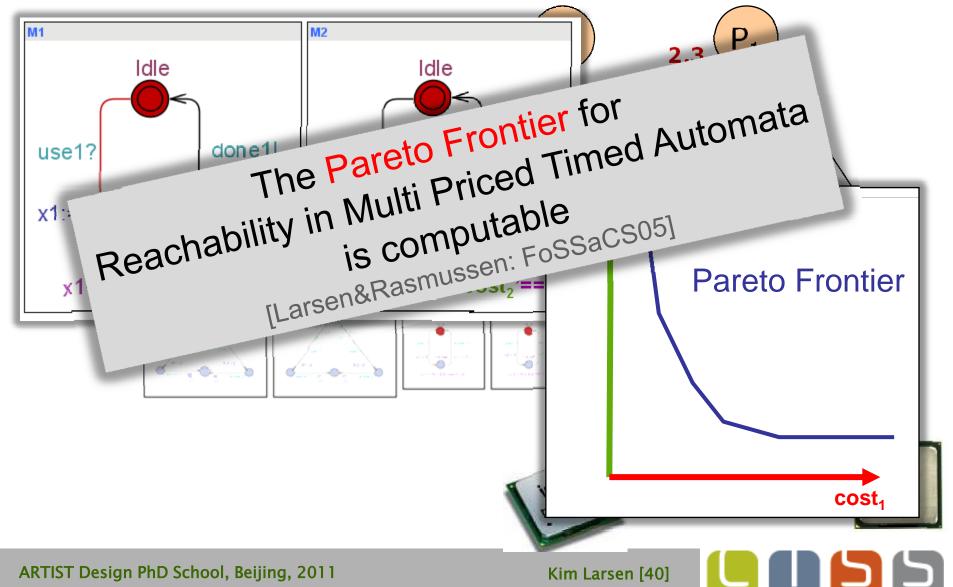




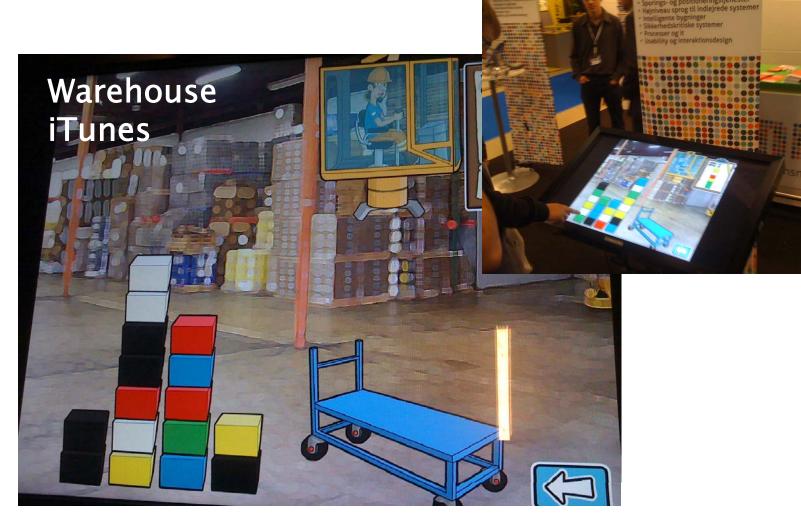
Information Applianses



Multiple Objective Scheduling



"Experimental" Results



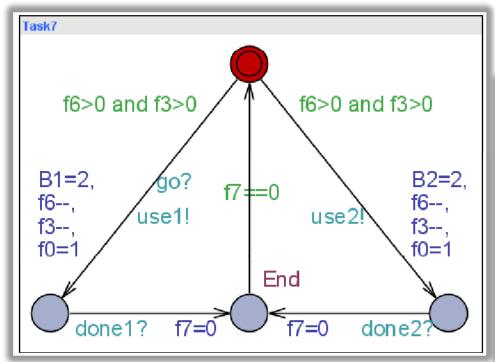
"Experimental" Results

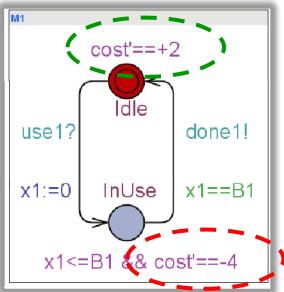
Energy Automata

Managing Resources

Example V_{max} In some cases, resources can both be consumed and regained. The aim is then to keep the level of resources within given bounds.

Consuming & Harvesting Energy

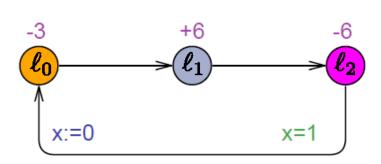


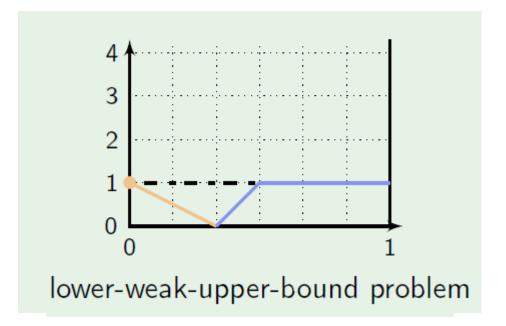


Maximize throughput while respecting: $0 \le E \le MAX$

Energy Constrains

- Energy is not only consumed but may also be regained
- The aim is to continously satisfy some energy constriants





Results (so far)

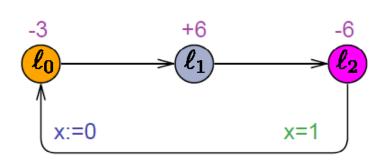
Bouyer, Fahrenberg, Larsen, Markey, Srba:

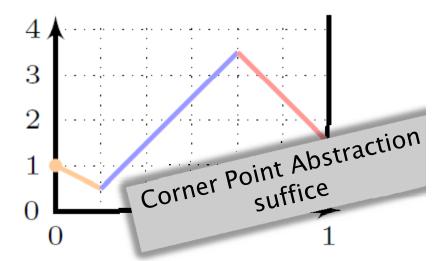
FORMATS 2008

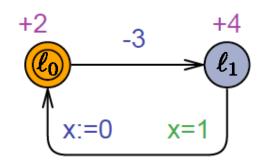
	imaad				
Untimed		games	existential problem	universal problem	
	L	∈ UP ∩ coUP P-h	∈ P	∈ P	
	L+W	∈ NP ∩ coNP P-h	∈ P	∈ P	
	L+U	EXPTIME-c	€ PSPACE NP-h	∈ P	

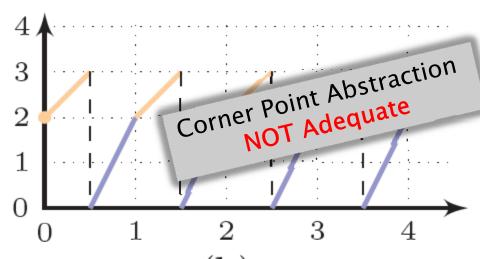
1 (Clock			
I CIOCK		games	existentia Corner Point Abstraction Suffic	
	L	?	E P	nt Abstraction Suffice
	L+W	?	∈ P	€ P
	L+U	undecidable	?	?

Discrete Updates on Edges

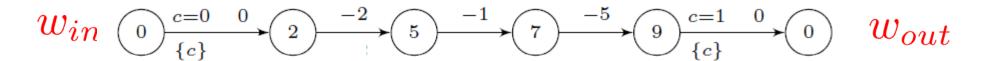




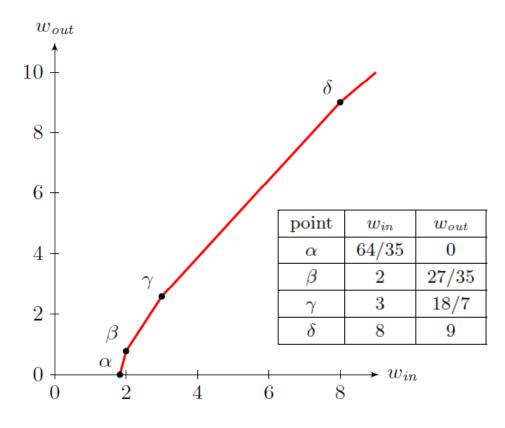




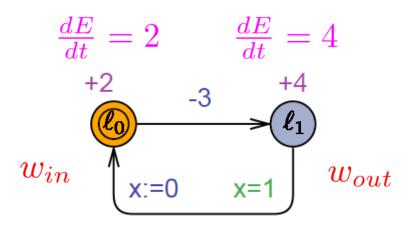
New Approach: Energy Functions



- Maximize energy along paths
- Use this information to solve general problem

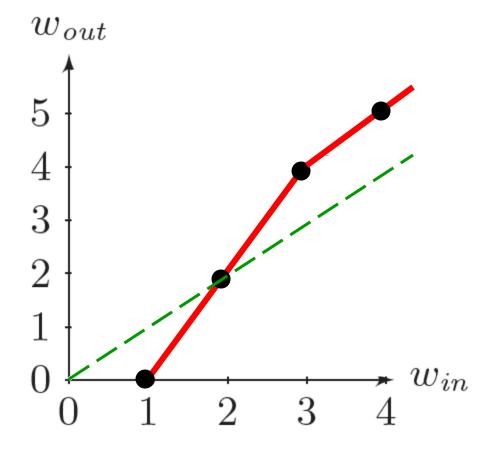


Energy Function

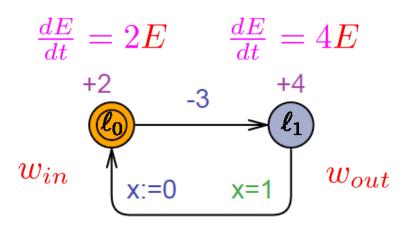


General Strategy

Spend just enough time to survive the next negative update



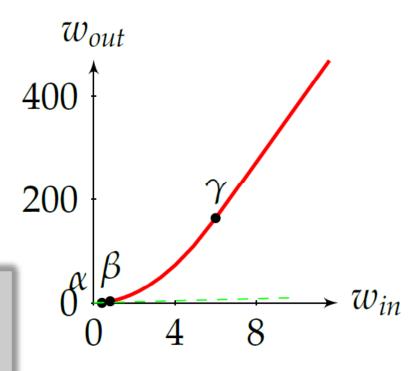
Exponential PTA



General Strategy

Spend just enough time to survive the next negative update

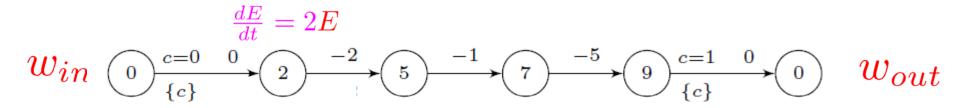
so that after next negative update there is a certain positive amount!

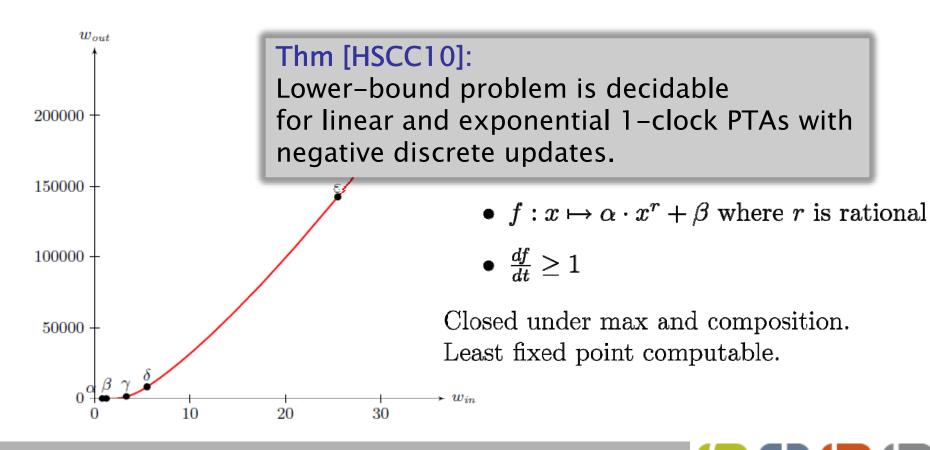


Minimal Fixpoint:

$$\frac{3}{e^2-1} \approx 0.47$$

Exponential PTA





Conclusion

- Priced Timed Automata a uniform framework for modeling and solving dynamic ressource allocation problems!
- Not mentioned here:
 - Model Checking Issues (ext. of CTL and LTL).
- Future work:
 - Zone-based algorithm for optimal infinite runs.
 - Approximate solutions for priced timed games to circumvent undecidablity issues.
 - Open problems for Energy Automata.
 - Approximate algorithms for optimal reachability

