Priced Timed Automata Optimal Scheduling

Kim G．Larsen
CISS－Aalborg University DENMARK

ロロリヒ

Overview

- Timed Automata
- Scheduling
- Priced Timed Automata
- Optimal Reachability
- Optimal Infinite Scheduling
- Multi Objectives

CO GA
ECDAR

- Energy Automata

Real Time Scheduling

- Only 1 "Pass"
- Cheat is possible (drive close to car with "Pass")

UNSAFE

SAFE CAN THEY MAKE IT TO SAFE WITHIN 70 MI NUTES ???

Let us play!

Real Time Scheduling

UNSAFE

Solve Scheduling Problem using UPPAAL

Resources \& Tasks

Resource

Task Graph Scheduling - Example

Task Graph Scheduling - Example

Task Graph Scheduling - Example

Task Graph Scheduling - Example

A
R日圆 Q Q Q $Q \rightarrow$ Q
Task1

D

P2 [E<> (Task1.End and ... and Task6.End)

Experimental Results

name	\#tasks	\#chains	\# machines	optimal	TA
001	437	125	4	1178	1182
000	452	43	20	537	537
018	730	175	10	700	704
074	1007	66	12	891	894
021	1145	88	20	605	612
228	1187	293	8	1570	1574
071	1193	124	20	629	634
271	1348	127	12	1163	1164
237	1566	152	12	1340	1342
231	1664	101	16	t.o.	1137
235	1782	218	16	t.o.	1150
233	1980	207	19	1118	1121
294	2014	141	17	1257	1261
295	2168	965	18	1318	1322
292	2333	318	3	8009	8009
298	2399	303	10	2471	2473

Symbolic A* Branch-\&-Bound 60 sec

Abdeddaïm, Kerbaa, Maler

Priced Timed Automata

Cuss

EXAMPLE: Optimal rescue plan for cars with different subscription rates for city driving !

OPTI MAL PLAN HAS ACCUMULATED COST=195 and TOTAL TI ME=65!

Experiments

Task Graph Scheduling - Revisited

Task Graph Scheduling - Revisited

Compute :
$(D$ * (C * $(A+B))+((A+B)+(C$ * $))$
using 2 processors

P2 2	1	5	6

OpIMO-jo
$\xrightarrow{-M A L}$
!!

Task Graph Scheduling - Revisited

A simple example

Observer variable C :

$$
\begin{aligned}
\left(\ell_{0},[0,0]\right) \xrightarrow{1.9} 9.5\left(\ell_{0},[1.9,1.9]\right) \rightarrow_{0}\left(\ell_{1},[1.9,0]\right) \rightarrow_{0} & \sum C_{i}=16.6 \\
\left(\ell_{2},[1.9,0]\right) \xrightarrow{0.1}_{0.1}\left(\ell_{2},[2,0.1]\right) \rightarrow_{7}\left(\ell_{4},[2,0.1]\right) &
\end{aligned}
$$

$$
\left(\ell_{0},[0,0]\right) \xrightarrow{1.2}_{6.0}\left(\ell_{0},[1.2,1.2]\right) \rightarrow_{0}\left(\ell_{1},[1.2,0]\right) \rightarrow_{0}
$$

$$
\left(\ell_{3},[1.2,0]\right) \stackrel{0.8}{\rightarrow}\left(\ell_{3},[2,0.8]\right) \rightarrow_{1}\left(\ell_{4},[2,0.8]\right) \quad \sum C_{i}=15.0
$$

A simple example

Q: What is cheapest cost for reaching $\boldsymbol{\ell}_{\mathbf{4}}$?

$\inf _{0 \leq t \leq 2} \min \{5 t+10(2-t)+1,5 t+(2-t)+4\}=9$
\rightarrow strategy: leave immediately ℓ_{0}, go to ℓ_{3}, and wait there $2 \mathrm{t} . \mathrm{u}$.

Corner Point Regions

THM [Behrmann, Fehnker ..01] [Alur,Torre,Pappas 01] Optimal reachability is decidable for PTA
 x
THM [Bouyer, Brojaue, Briuere, Raskin 07] Optimal reachability is PSPACE-complete for PTA

$$
\stackrel{3}{-->}
$$

Priced Zones

[CAVO1]

Priced Zones - Reset

[CAV01]

Symbolic Branch \& Bound Algorithm

Cost := ∞
Passed := \emptyset
Waiting := $\left\{\left(l_{0}, Z_{0}\right)\right\}$
while Waiting $\neq \emptyset$ do
select (l, Z) from Waiting
if $l=l_{g}$ and $\operatorname{minCost}(Z)<$ Cost then Cost := minCost (Z)
if minCost $(Z)+\operatorname{Rem}(1, Z) \geq$ Coth
if minCost $(Z)+\operatorname{Rem}_{(l, Z)} \geq$ so them
if for all $\left(l, Z^{\prime}\right)$ in Passed: $Z^{\prime} \not \mathbb{K}^{Z}$ then
add (l, Z) to Passed \leq is a well-quasi add all $\left(l^{\prime}, Z^{\prime}\right)$ with $(l, Z) \rightarrow\left(l^{\prime}, Z^{\prime}\right)$
return Cost

$$
Z^{\prime} \leq Z
$$

Z^{\prime} is bigger \& cheaper than Z
ordering which guarantees termination!

Example: Aircraft Landing

E earliest landing time
T target time
L latest time
e cost rate for being early
I cost rate for being late
d fixed cost for being late

Planes have to keep separation distance to avoid turbulences
 caused by preceding planes

Example: Aircraft Landing

4 earliest landing time
5 target time
9 latest time
3 cost rate for being early
1 cost rate for being late
2 fixed cost for being late

Planes have to keep separation distance to avoid turbulences
 caused by preceding planes

Aircraft Landing

Source of examples:

Baesley et al'2000

	problem instance	1	2	3	4	5	6	7
	number of planes	10	15	20	20	20	30	44
	number of types	2	2	- 2	2	2	4	2
1	optimal value	700	1480	820	2520	3100	24442	1550
	explored states	481	2149	920	5693	15069	122	662
	cputime (secs)	4.19	25.30	11.05	87.67	220.22	0.60	4.27
2	optimal value	90	210	60	640	0	554	0
	explored states	1218	1797	669	28821	47993	9035	92
	cputime (secs)	17.87	39.92	11.02	755.84	1085.08	123.72	1.06
3	optimal value	0	0	0	130	170	0	
	explored states	24	46	84	207715	189602	62	N/A
	cputime (secs)	0.36	0.70	1.71	14786.19	12461.47	0.68	
	optimal value				0	0		
	explored states cputime (secs)	N/A	N/A	N/A	65 1.97	64 1.53	N/A	N/A

Symbolic Branch \& Bound Algorithm

Cost := ∞
Passed := \emptyset
Waiting := $\left\{\left(l_{0}, Z_{0}\right)\right\}$
while Waiting $\neq \emptyset$ do
select (l, Z) from waiting
if $l=l_{g}$ and $\min \operatorname{Cost}(Z) \quad$ Cost then Cost : = mincoot(Z Z)
if minCost $(Z)+\operatorname{Rem}_{(l, Z)} \geq$ Cost then break
if for all $\left(t, Z^{\prime}\right)$ in Passed: $Z^{\prime} \not \leq Z$ then
add (l, Z) to Passed
add all $\left(l^{\prime}, Z^{\prime}\right)$ with $(l, Z) \rightarrow\left(l^{\prime}, Z^{\prime}\right)$ to Waiting
return Cost

Aircraft Landing (revisited)

RW	Planes	10	15	20	20	20	30	44
	Types	2	2	2	2	2	4	2
1	simplex	0.844 s	5.210 s	2.135 s	17.888 s	44.878 s	0.451 s	0.670 s
	netsimplex	0.156 s	0.657 s	0.369 s	2.363 s	5.503 s	0.127 s	0.322 s
factor		5.41	7.93	5.79	7.57	8.16	3.55	$\mathbf{2 . 0 8}$
2	simplex	2.577 s	7.436 s	2.175 s	94.357 s	120.004 s	2.322 s	0.264 s
	netsimplex	0.332 s	1.036 s	0.436 s	13.376 s	18.033 s	0.600 s	0.179 s
factor		$\mathbf{8 . 0 0}$	$\mathbf{7 . 1 8}$	$\mathbf{4 . 9 9}$	$\mathbf{7 . 0 5 4}$	$\mathbf{6 . 6 5}$	3.87	$\mathbf{1 . 4 7 4}$
3	simplex	0.120 s	0.181 s	0.357 s	740.100 s	516.678 s	0.166 s	$\mathrm{~N} / \mathrm{A}$
	netsimplex	0.064 s	0.104 s	0.129 s	170.176 s	124.805 s	0.079 s	$\mathrm{~N} / \mathrm{A}$
factor		$\mathbf{1 . 8 7}$	$\mathbf{1 . 7 4}$	$\mathbf{2 . 7 7}$	$\mathbf{4 . 3 4}$	$\mathbf{4 . 1 4}$	$\mathbf{2 . 1 0}$	
4	simplex	N / A	N / A	N / A	1.603 s	0.318 s	$\mathrm{~N} / \mathrm{A}$	N / A
	netsimplex	N / A	N / A	N / A	0.378 s	0.093 s	$\mathrm{~N} / \mathrm{A}$	N / A
factor					$\mathbf{4 . 2 4}$	$\mathbf{3 . 4 2}$		
$\mathrm{A} . \mathrm{L}$								

A. Loebel (2000). MCF Version 1.2 - A network simplex implementation. (http://www.zib.de)

Optimal Schedule

EXAMPLE: Optimal WORK plan for cars with different subscription rates for city driving !

UCb

Workplan I

Workplan II

Optimal Infinite Scheduling

Maximize throughput:

i.e. maximize Reward / Time in the long run!

Optimal Infinite Scheduling

Optimal Infinite Scheduling

Mean Pay-Off Optimality

Bouyer, Brinksma, Larsen:
HSCC04,FMSD07

THM: The mean-pay off optimization problem (and PSPACE-complete) for PTA. Corner Point Abstract Sound \& Complete
Optimal Schedule $\sigma^{*}: \operatorname{val}\left(\sigma^{*}\right)=\inf _{\sigma}$ vali(σ

Discount Optimality $\lambda<1$: discounting factor

Larsen, Fahrenberg: INFINITY'08

Cost of time $\mathbf{t}_{\mathbf{n}}$

THM: The dsicount optimization problem is decidable for PTA.
Corner Point Abstract Sound \& Complete
Value of path $\sigma: \quad \operatorname{val}(\sigma)=\int_{t=0}^{t=\infty} c(t) \lambda^{t} d t$ Optimal Schedule $\sigma^{*}: \operatorname{val}\left(\sigma^{*}\right)=\inf _{\sigma} \operatorname{val}(\sigma)$

Soundness of

Corner Point Abstraction

Lemma

Let Z be a (bounded, closed) zone and let f be a(well-defined) function over Z defined by:

$$
f:\left(t_{1}, \ldots, t_{n}\right) \mapsto \frac{a_{1} t_{1}+\cdots+a_{n} t_{n}+a}{c_{1} t_{1}+\cdots+c_{n} t_{n}+d}
$$

then $\inf _{Z} f$ is obtained at a corner-point of Z (with integer coefficients).

Lemma

Let Z be a (bounded, closed) zone and let f be a function over Z defined by:

$$
f:\left(t_{1}, \ldots, t_{n}\right) \mapsto a_{1} \lambda^{t_{1}}+\cdots a_{n} \lambda^{t_{n}}+a
$$

then $\inf _{Z} f$ is obtained at a corner-point of Z (with integer coefficients).

Application

Dynamic Voltage Scaling

Multiple Objective Scheduling

"Experimental" Results

"Experimental" Results

Energy Automata

ロロリヒ

Managing Resources

Example

In some cases, resources can both be consumed and regained.

The aim is then to keep the level of resources within given bounds.

Consuming \& Harvesting Energy

Maximize throughput
while respecting: $0 \leq E \leq M A X$

Energy Constrains

- Energy is not only consumed but may also be regained - The aim is to continously satisfy some energy constriants

lower-weak-upper-bound problem

Results (so far)

Bouyer, Fahrenberg, Larsen, Markey, Srba: FORMATS 2008

Untimed
L games existential problem universal problem $L+W \cap \operatorname{loUP}$ $\in P$ $\in P$ $L+$NP $\cap \operatorname{coNP}$ $P-h$ $\in P$ $\in P$ $L+U$ EXPTIME-c \in PSPACE NP-h $\in P$

1 Clock

	games	existentia Corner Point Abstraction Suffice	
L	$?$	$\in \mathrm{E}$	universal problem
$\mathrm{L}+\mathrm{W}$	$?$	$\in \mathrm{P}$	$\in \mathrm{P}$
$\mathrm{L}+\mathrm{U}$	undecidable	$?$	$?$

Discrete Updates on Edges

New Approach:

Functions

- Maximize energy along paths
- Use this information to solve general problem

Function

Exponential PTA

General Strategy

Spend just enough time
to survive the next negative update
so that after next negative update there is a certain positive amount!

Minimal Fixpoint:

$$
\frac{3}{e^{2}-1} \approx 0.47
$$

Exponential PTA

Conclusion

- Priced Timed Automata a uniform framework for modeling and solving dynamic ressource allocation problems!
- Not mentioned here:
- Model Checking Issues (ext. of CTL and LTL).
- Future work:
- Zone-based algorithm for optimal infinite runs.
- Approximate solutions for priced timed games to circumvent undecidablity issues.
- Open problems for Energy Automata.
- Approximate algorithms for optimal reachability

