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Real Time Scheduling

UNSAFE• Only 1 “Pass”
• Cheat is possible
• Only 1 “Pass”
• Cheat is possible

5(drive close to car with “Pass”)(drive close to car with “Pass”)
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SAFE The Car & Bridge ProblemCAN THEY  MAKE IT TO SAFE
WITHIN 70 MINUTES ???WITHIN 70 MINUTES ???
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Let us play!
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Real Time Scheduling
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Resources & Tasks

Resource

Synchronization

TaskTask

Shared variable
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Task Graph Scheduling – Example
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Experimental Results

Symbolic A*
Branch-&-Bound

60 sec60 sec
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EXAMPLE: Optimal rescue plan for cars with
different subscription rates for city driving !

SAFEGolf Citroen
5

9 2
10

20

BMW Datsun

25

BMW   Datsun

3 10

OPTIMAL PLAN HAS ACCUMULATED COST=195  and TOTAL TIME=65! 
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Experiments
COST-rates

SCHEDULE COST TIME #Expl #Pop’d

G C B DG C B D

Min Time CG>   G<   BD>   C<   
CG> 60 1762

1538
2638

CG>   G<   BG>   G<  1 1 1 1 CG>   G<   BG>   G<  
GD> 55 65 252 378

9 2 3 10 GD>   G<   CG>   G<  
BG> 195 65 149 233

1 2 3 4 CG>   G<   BD>   C<  
CG> 140 60 232 350

1 2 3 10 CD>   C<   CB>   C<  
CG> 170 65 263 4081 2 3 10 CG> 170 65 263 408

1 20 30 40 BD>   B<   CB>   C<  
CG>
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time<85
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0 0 0 0 0 406 4470 0 0 0 - 0 - 406 447
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Task Graph Scheduling – Revisited
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A simple example

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [18]



A simple example

Q: What is cheapest cost for reaching ? 

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [19]



Corner Point Regions

THM [Behrmann, Fehnker ..01] [Alur,Torre,Pappas 01]
Optimal reachability is decidable for PTA

3

THM [Bouyer, Brojaue, Briuere, Raskin 07]
Optimal reachability is PSPACE-complete
for PTA

03 0 0

3for PTA

0

0 0
0

0
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Priced Zones [CAV01]

A zone Z:  
1≤ x ≤ 2   Æ 
0≤ y ≤ 2   Æ 
x - y ≥ 0

A cost function C

x - y ≥ 0

A cost function C
C(x,y)=

2·x - 1·y + 3

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [21]



Priced Zones – Reset [CAV01]

A zone Z:  
1≤ x ≤ 2   Æ 
0≤ y ≤ 2   Æ 
x - y ≥ 0

Z[x=0]:
x=0 Æ

A cost function C

x - y ≥ 0x 0 Æ
0≤ y ≤ 2

C = 1·y + 3 A cost function C
C(x,y) = 

2·x - 1·y + 3

C  1 y + 3

C= -1·y + 5

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [22]



Symbolic Branch & Bound Algorithm

Z’  is bigger & 
cheaper than Z

ZZ '

cheaper than Z

≤ is a well-quasi≤ is a well quasi
ordering which

guarantees
termination!

Kim Larsen [23]ARTIST Design PhD School, Beijing, 2011



Example: Aircraft Landing

tcost E  earliest landing time
T  target time
L  latest timee*(T-t)

d+l*(t-T)

t
E

e cost rate for being early
l cost rate for being late
d fixed cost for being late

E LT

Planes have to keep separation 
distance to avoid turbulences 
caused  by  preceding planes

RunwayKim Larsen [24]ARTIST Design PhD School, Beijing, 2011



Example: Aircraft Landing

x <= 5

land!
x >= 4 x=5

x <= 5 x <= 9
cost+=2

4  earliest landing time
5  target time
9  latest time

x=5

x  5

land!

x <= 9cost’=3 cost’=1 3 cost rate for being early
1 cost rate for being late
2 fixed cost for being late

Planes have to keep separation 
distance to avoid turbulences 
caused  by  preceding planes

RunwayKim Larsen [25]ARTIST Design PhD School, Beijing, 2011



Aircraft Landing Source of examples:
Baesley et al’2000

Kim Larsen [26]ARTIST Design PhD School, Beijing, 2011



Symbolic Branch & Bound Algorithm

Zone based
Linear ProgrammingLinear Programming
Problems
(dualize)
Min Cost FlowMin Cost Flow

Kim Larsen [27]ARTIST Design PhD School, Beijing, 2011



Aircraft Landing (revisited) 
Using MCF/Netsimplex

[TACAS04]

g / p

Kim Larsen [28]ARTIST Design PhD School, Beijing, 2011



Optimal Infinite Schedule

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [29]



EXAMPLE: Optimal WORK plan for cars with
different subscription rates for city driving !

g
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different subscription rates for city driving !
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Workplan II
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Optimal Infinite Scheduling

Maximize throughput:
i.e. maximize Reward / Time in the long run!

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [33]



Optimal Infinite Scheduling

Minimize Energy Consumption:
i.e. minimize Cost / Time in the long run

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [34]



Optimal Infinite Scheduling

Maximize throughput:
i.e. maximize Reward / Cost in the long run

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [35]



Mean Pay-Off Optimality

Bouyer, Brinksma, Larsen: 
HSCC04,FMSD07

Bouyer, Brinksma, Larsen: 
HSCC04,FMSD07

Accumulated cost

c c
c3 cn

c1 c2

r1 r2
r3 rn

 Accumulated reward
¬ BAD

Value of path :   val() = limn→∞ cn/rn

Optimal Schedule *: val(*) = inf val()

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [36]

Optimal Schedule  :  val( )  inf val()



Discount Optimality  1 :  discounting factor

Larsen, Fahrenberg:
INFINITY’08
Larsen, Fahrenberg:
INFINITY’08

Cost of time tn

(t ) c(t )
c(t3) c(tn)

c(t1) c(t2)

t1 t2
t3 tn

 Time of step n
¬ BAD

Value of path :   val() = 

Optimal Schedule *: val( *) inf val( )
ARTIST Design PhD School, Beijing, 2011 Kim Larsen [37]

Optimal Schedule  :  val( ) = inf val()



Soundness of 
Corner Point Abstraction

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [38]



Application 
Dynamic Voltage Scaling
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Multiple Objective Scheduling

P2 P1
16,10

2,3

P6 P3 P42,3
6,6 10,16

cost1’==4 cost2’==3

cost2

Pareto Frontier

P P2 2

1

P7 P52,2 8,2

4W 3W cost1

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [40]
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”Experimental” Results

Warehouse
iTunes

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [41]



”Experimental” Results

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [42]



Energy Automata



Managing Resources

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [44]



Consuming & Harvesting Energy

Maximize throughput
while respecting:  0 ≤ E ≤ MAX

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [45]



Energy Constrains

 Energy is not only consumed but may also be regained
 The aim is to continously satisfy some energy constriants

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [46]



Results (so far) Bouyer, Fahrenberg,
Larsen, Markey, Srba:

FORMATS 2008

Bouyer, Fahrenberg,
Larsen, Markey, Srba:

FORMATS 2008FORMATS 2008FORMATS 2008

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [47]



Discrete Updates on Edges
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New Approach: Energy Functions

 Maximize energy
along paths

 Use this information 
to solve
general problem

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [49]



Energy Function

General Strategy
Spend just enough time
to survive the next negativeto survive the next negative
update

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [50]



Exponential PTA

General StrategyGeneral Strategy
Spend just enough time
to survive the next negative
updateupdate
so that after next negative 
update there is a certain positive 
amount !

Minimal Fixpoint:

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [51]



Exponential PTA

Thm [HSCC10]: 
Lower-bound problem is decidable

Energy Function

Lower-bound problem is decidable
for linear and exponential 1-clock PTAs with
negative discrete updates. 

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [52]



Conclusion

 Priced Timed Automata a uniform framework
for modeling and solving dynamic ressourcefor modeling and solving dynamic ressource 
allocation problems!

 Not mentioned here:
 Model Checking Issues (ext. of CTL and LTL).

 Future work:
Z b d l i h f i l i fi i Zone-based algorithm for optimal infinite runs.

 Approximate solutions for priced timed games to 
circumvent undecidablity issues.y

 Open problems for Energy Automata.
 Approximate algorithms for optimal reachability

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [53]


