
Schedulability & WCETSchedulability & WCET
Analysisy

Task Scheduling
utilization of CPU

P(i), [E(i), L(i)], .. : period or
earliest/latest arrival or .. for Ti

C(i): execution time for Ti
D(i): deadline for Ti

T1T1

SchedulerScheduler
ready
done

D(i): deadline for Ti

T2T2

TT

2 14 3

stop
run

T2 is running
{ T4 , T1 , T3 } ready
ordered according to some
given priority:

TnTn

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [2]

g p y
(e.g. Fixed Priority, Earliest Deadline,..)

Classical Scheduling Theory

Utilisation-Based Analysis

• A simple sufficient but not necessary
schedulability test exists

Quasimodo
Classical WCRT Analysis

 “Classical” scheduling analysis technique
 For all tasks i: WCRTi Deadlineischedulability test exists

)12(/1

1

N
N

i i

i N
T
CU

NU 690

For all tasks i: WCRTi Deadlinei

 Ci Worst-Case Execution Time
 Bi Blocking time by lower-pri tasks (shared resources)

41

 NU as 69.0
Where C is WCET and T is period

Response Time Equation

 hp(i) tasks with higher priority than i

Quasimodo Workshop, Eindhoven, Nov 6, 2009 Page 21

p q

j
ihpj

j

i
ii C

T
RCR

)(

Where hp(i) is the set of tasks with priority higher than task i

Solve by forming a recurrence relationship:

 Simple to perform

Overly conservativey g p

j
ihpj

j

n
i

i
n
i C

T
wCw

)(

1

The set of values is monotonically non decreasing
When the solution to the equation has been found,
must not be greater that (e g 0 or)

1 n
i

n
i ww

,..,...,,, 210 n
iiii wwww

0
iw

R C

– Overly conservative
– Limited settings
– Single-processor

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [3]

42
must not be greater that (e.g. 0 or)iR iC

Modeling Task

TT readyT1T1

T2T2

SchedulerScheduler

2 14 3

done

TnTn

stop
run

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [4]

Modeling Scheduler

TT readyT1T1

T2T2

SchedulerScheduler

2 14 3

done

TnTn

stop
run

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [5]

Modeling Queue In UPPAAL 4.0
User Defined Function

TT readyT1T1

T2T2

SchedulerScheduler

2 14 3

done

TnTn

stop
run

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [6]

……

Schedulability = Safety Property

May be extended with preemption

(T k0 E T k1 E)¬(Task0.Error or Task1.Error or …)

A ¬(Task0.Error or Task1.Error or …)

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [7]

Dealing with Resources

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [8]

Preemption – Stopwatches!

Scheduler

Task D f ti d id bilit

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [9]

Task Defeating undecidability

Multi-Processor

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [10]

Handling realistic applications?

Smart phone:

0

2 1

MP3 Decoder

4 3

6 5

7

8 9

10 11

12 13

Jan Madsen
Aske Brekling

Michael R. Hansen/ DTU

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [11]

14 15

[Application from Marcus Schmitz, TU Linkoping]

Timed Automata for a task

12ARTIST Design PhD School, Beijing, 2011

Smart phone

 Tasks: 114
 Deadlines: [0 02: 0 5] sec Deadlines: [0.02: 0.5] sec
 Execution: [52 : 266.687]

cyclescycles
 Platform:
 6 processors 25 MHz

0

2 1

MP3 Decoder

 6 processors, 25 MHz
 1 bus

 Verified in 1 5 hours!

4 3

6 5

7

Verified in 1.5 hours!8 9

10 11

12 13

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [13]

14 15

ESA Missions Quasiomodo

 Solar System, cold dust clouds and cores, star and galaxy
formations cataloging galaxies gravitational lensing cosmicformations, cataloging galaxies, gravitational lensing, cosmic
microwave background, topology of the universe...

 Terma: Develop software for Attitude and Orbit Control System
Kim Larsen [14]ARTIST Design PhD School, Beijing, 2011

Herschel & Planck Satelites

 Application software (ASW)
 built and tested by Terma:y
 does attitude and orbit control, tele-

commanding, fault detection isolation and
recovery.

Basic soft are (BSW) Basic software (BSW)
 low level communication and scheduling

periodic events.
 Real-time operating system (RTEMS) Real time operating system (RTEMS)

 Priority Ceiling for ASW,
 Priority Inheritance for BSW

 HardwareHardware
 single processor, a few communication

buses, sensors and actuators.
Requirements:

Software tasks should be schedulable.
CPU utilization should not exceed 50% load

Kim Larsen [15]ARTIST Design PhD School, Beijing, 2011

UPPAAL Model

Kim Larsen [16]ARTIST Design PhD School, Beijing, 2011

Modeling in UPPAAL

UPPAAL 4.1 Framework
ISoLA 2010

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [17]

Gantt Chart 1. cycle

Kim Larsen [18]ARTIST Design PhD School, Beijing, 2011

Blocking & WCRT

ARTIST Design PhD School, Beijing, 2011 Page 19

Marius Micusionis

Effort and Utilization

ARTIST Design PhD School, Beijing, 2011 Page 20

Marius Micusionis

Safety Critical JavaSafety Critical Java
SARTS: Schedulability Analysisy y

With
Bent Thomsen, Anders P. Ravn,
Thomas Bøgholm, Henrik Kragh-Hansen,
Petur Olsen, Rene R. Hansen,
Lone Leth Thomsen, Hans Søndergaard,

Java Object – Regional IKT Korridor

 Center for Embedded
Software Systems

 Vitus Bering Denmark

 Productivity of a
programmer is increased
with up to 700 % by Vitus Bering Denmark

 Polycom (Kirk Telecom A/S)
 Wirtek A/S
 Mechatronic Brick ApS

p y
changing from C/C++ to
Java !

 Number of well-educated
Java programmers p

 Aalborg Industries A/S
 Prevas A/S
 Teknologisk Institut

Java programmers
increasing !

 Java for hard real-time
t ?

 Tekkva Consult (project
coordinator).

systems ?
 Java and C/Assembler legacy

code ?

 Emerging new profiles and
hardware implementations !

 Eclipse framework !

Kim Larsen [22]ARTIST Design PhD School, Beijing, 2011

A Safety Critical System

Kim Larsen [23]ARTIST Design PhD School, Beijing, 2011

Hardware

 JOP (Java Optimized
Processor)Processor)

 Native execution of Java
Bytecode
B t d i l t d Bytecode implemented
in Microcode

 Avoid unpredictable
data-cache

 Time predictable
 Developed new method Developed new method

and stack cache
 Implemented in FPGA

Kim Guldstrand Larsen [24]ARTIST Design PhD School, Beijing, 2011

Java Optimizing Processor

FPGA

Martin Schöberl
University of Tech., Vienna

Kim Larsen [25]ARTIST Design PhD School, Beijing, 2011

Safety Critical Java

public static void main(String[] args) {
new SporadicPushMotor(

Min interarrival

new SporadicParameters(4, 4000, 60), 0);
new SporadicPushMotor(

new SporadicParameters(2, 4000, 60), 1);

PeriodicMotorSpooler motorSpooler =

Deadline
e od c oto Spoo e oto Spoo e

new PeriodicMotorSpooler(
new PeriodicParameters(4000));

new PeriodicReadSensor(
P i di P t (2000)new PeriodicParameters(2000),

motorSpooler);

RealtimeSystem.start();
}

 Periodic Threads
 Sporadic Threads
 RunTimeSystem

IMPLEMENTATIONS of SC Java
On JOP and Ajile aJ 100 RunTimeSystem

 Relative Time
 Immortal and Raw Memory
 Preemptive FP Scheduling

On JOP and Ajile aJ-100
Use existing schedulers and threads

On Mechatronic Brick and Polycom (Kirk)
Currently experimenting with JamVM

Kim Larsen [26]ARTIST Design PhD School, Beijing, 2011

p g
 Priority Ceiling

SARTS – Overview

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [27]

SARTS – TA Templates

TA for RM Scheduler

S di T k P i di T k

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [28]

Sporadic Tasks Periodic Tasks

SARTS – TA Templates

 Translation of Basic
Blocks into states and
transitions

 Patterns for: Patterns for:
 Loops
 Monitor statements
 If statements
 Method invoke
 Sporadic task releasep

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [29]

Byte code – Timed Automata

protected boolean run()

Data
abstractedp ()

if i<5 {
i = i + 4;

} else {} {
i = i * 4;

}
return true;;

}

Timing = WCET
from microcode

Kim Larsen [30]ARTIST Design PhD School, Beijing, 2011

SARTS – from Safety Critical Java

public static void main(String[] args) {
new SporadicPushMotor(

new SporadicParameters(4, 4000, 60), 0);
new SporadicPushMotor(

new SporadicParameters(2, 4000, 60), 1);

PeriodicMotorSpooler motorSpooler =
new PeriodicMotorSpooler(

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

.getBufferedSensor(1)) >> 1;

if (iti B i k) {

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

.getBufferedSensor(1)) >> 1;

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

ff d ())

private void handleBrick() {
Sensors.synchronizedReadSensors();

i t id h dl B i k() {new PeriodicMotorSpooler(
new PeriodicParameters(4000));

new PeriodicReadSensor(
new PeriodicParameters(2000), motorSpooler);

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

awaitingBrick = false;
if (lastRead > BRICK DETECTED) {

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

a aitingBrick false;

.getBufferedSensor(1)) >> 1;

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

int input = (Sensors.getBufferedSensor(0) + Sensors
.getBufferedSensor(1)) >> 1;

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

.getBufferedSensor(1)) >> 1;

if (awaitingBrick) {

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

getBufferedSensor(1)) >> 1;

RealtimeSystem.start();
}

if (lastRead > BRICK_DETECTED) {
brickFound(lastRead);

}
}

awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

brickFound(lastRead);
}

}

} else if ((lastRead - input) >= TRESHOLD) {
awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

brickFound(lastRead);
}

}

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

brickFound(lastRead);
}

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

.getBufferedSensor(1)) >> 1;

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {} }

} brickFound(lastRead);
}

}

} ((p)) {
awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

brickFound(lastRead);
}

}

TASKS

METHODS

Kim Larsen [31]ARTIST Design PhD School, Beijing, 2011

SARTS – to Timed Automata

Detection of Deadline Violation
Integrated SARTS w ECLIPSEIntegrated SARTS w ECLIPSE
Visualize WCET in ECLIPSE

18 methods + 4 tasks = 76 components

Kim Larsen [32]ARTIST Design PhD School, Beijing, 2011

SARTS – Experiments

Javac

Breadth First Search

Eclipse

Depth First Search + Agressive SS Reduction

Convex Hull Approximation

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [33]

Convex Hull Approximation

METAMOCMETAMOC
Modular Execution Time Analysis

using MOdel Checkingusing MOdel Checking

with
Andreas Dalsgaard

Mads Christian Olesen
Martin Toft

René Rydhof Hansene é yd o a se

WCET: Worst Case Execution Time

ty
In general:

hard
or impossible to

P
ro

ba
bi

li

WCETBCET
or impossible to

predict

MaximalMinimum Time
Determine
tight upper Maximal

observed
execution

time

Minimum
execution

time
observed

g pp
time bound

instead

Kim Larsen [35]ARTIST Design PhD School, Beijing, 2011

METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [36]

Overview of METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [37]

Value analysis in METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [38]

Modeling in METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [39]

Modeling in UPPAAL

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [40]

GUI for METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [41]

Status

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [42]

Experiments

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [43]

Experiments / Future

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [44]

Conclusion & Future

CONCLUSION
 Reduction of Verification

Gap

FUTURE
 Support for more platforms

C bi d S h d l bilit &Gap

 Simplicity
 Programming languages

 Combined Schedulability &
WCET Analysis

 Loop bounds ?
 More applicationsg g g g

 Processor architecture
 Scheduling principles

 RT Model checking

More applications
 Improved Model Checker

 64 bit version
 Distributed MC

Ab t t C h i L tti RT Model checking
 Less pessimistic
 Enables more complex

settings
 Ease of use

 Abstract Caches using Lattice
Types

 Ease of use sarts.boegholm.dk
 metamoc.martintoft.dk
 www.uppaal.com

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [45]

