
Schedulability & WCETSchedulability & WCET
Analysisy

Task Scheduling
utilization of CPU

P(i), [E(i), L(i)], .. : period or
earliest/latest arrival or .. for Ti

C(i): execution time for Ti
D(i): deadline for Ti

T1T1

SchedulerScheduler
ready
done

D(i): deadline for Ti

T2T2

TT

2 14 3

stop
run

T2 is running
{ T4 , T1 , T3 } ready
ordered according to some
given priority:

TnTn

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [2]

g p y
(e.g. Fixed Priority, Earliest Deadline,..)

Classical Scheduling Theory

Utilisation-Based Analysis

• A simple sufficient but not necessary
schedulability test exists

Quasimodo
Classical WCRT Analysis

 “Classical” scheduling analysis technique
 For all tasks i: WCRTi Deadlineischedulability test exists

)12(/1

1

 


N
N

i i

i N
T
CU

NU 690

For all tasks i: WCRTi Deadlinei

 Ci Worst-Case Execution Time
 Bi Blocking time by lower-pri tasks (shared resources)

41

 NU as 69.0
Where C is WCET and T is period

Response Time Equation

 hp(i) tasks with higher priority than i

Quasimodo Workshop, Eindhoven, Nov 6, 2009 Page 21

p q

j
ihpj

j

i
ii C

T
RCR  









)(

Where hp(i) is the set of tasks with priority higher than task i

Solve by forming a recurrence relationship:

 Simple to perform

Overly conservativey g p

j
ihpj

j

n
i

i
n
i C

T
wCw  














)(

1

The set of values is monotonically non decreasing
When the solution to the equation has been found,
must not be greater that (e g 0 or)

1 n
i

n
i ww

,..,...,,, 210 n
iiii wwww

0
iw

R C

– Overly conservative
– Limited settings
– Single-processor

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [3]

42
must not be greater that (e.g. 0 or)iR iC

Modeling Task

TT readyT1T1

T2T2

SchedulerScheduler

2 14 3

done

TnTn

stop
run

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [4]

Modeling Scheduler

TT readyT1T1

T2T2

SchedulerScheduler

2 14 3

done

TnTn

stop
run

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [5]

Modeling Queue In UPPAAL 4.0
User Defined Function

TT readyT1T1

T2T2

SchedulerScheduler

2 14 3

done

TnTn

stop
run

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [6]

……

Schedulability = Safety Property

May be extended with preemption

(T k0 E T k1 E)¬(Task0.Error or Task1.Error or …)

A� ¬(Task0.Error or Task1.Error or …)

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [7]

Dealing with Resources

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [8]

Preemption – Stopwatches!

Scheduler

Task D f ti d id bilit 

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [9]

Task Defeating undecidability 

Multi-Processor

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [10]

Handling realistic applications?

Smart phone:

0

2 1

MP3 Decoder

4 3

6 5

7

8 9

10 11

12 13

Jan Madsen
Aske Brekling

Michael R. Hansen/ DTU

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [11]

14 15

[Application from Marcus Schmitz, TU Linkoping]

Timed Automata for a task

12ARTIST Design PhD School, Beijing, 2011

Smart phone

 Tasks: 114
 Deadlines: [0 02: 0 5] sec Deadlines: [0.02: 0.5] sec
 Execution: [52 : 266.687]

cyclescycles
 Platform:
 6 processors 25 MHz

0

2 1

MP3 Decoder

 6 processors, 25 MHz
 1 bus

 Verified in 1 5 hours!

4 3

6 5

7

Verified in 1.5 hours!8 9

10 11

12 13

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [13]

14 15

ESA Missions Quasiomodo

 Solar System, cold dust clouds and cores, star and galaxy
formations cataloging galaxies gravitational lensing cosmicformations, cataloging galaxies, gravitational lensing, cosmic
microwave background, topology of the universe...

 Terma: Develop software for Attitude and Orbit Control System
Kim Larsen [14]ARTIST Design PhD School, Beijing, 2011

Herschel & Planck Satelites

 Application software (ASW)
 built and tested by Terma:y
 does attitude and orbit control, tele-

commanding, fault detection isolation and
recovery.

Basic soft are (BSW) Basic software (BSW)
 low level communication and scheduling

periodic events.
 Real-time operating system (RTEMS) Real time operating system (RTEMS)

 Priority Ceiling for ASW,
 Priority Inheritance for BSW

 HardwareHardware
 single processor, a few communication

buses, sensors and actuators.
Requirements:

Software tasks should be schedulable.
CPU utilization should not exceed 50% load

Kim Larsen [15]ARTIST Design PhD School, Beijing, 2011

UPPAAL Model

Kim Larsen [16]ARTIST Design PhD School, Beijing, 2011

Modeling in UPPAAL

UPPAAL 4.1 Framework
ISoLA 2010

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [17]

Gantt Chart 1. cycle

Kim Larsen [18]ARTIST Design PhD School, Beijing, 2011

Blocking & WCRT

ARTIST Design PhD School, Beijing, 2011 Page 19

Marius Micusionis

Effort and Utilization

ARTIST Design PhD School, Beijing, 2011 Page 20

Marius Micusionis

Safety Critical JavaSafety Critical Java
SARTS: Schedulability Analysisy y

With
Bent Thomsen, Anders P. Ravn,
Thomas Bøgholm, Henrik Kragh-Hansen,
Petur Olsen, Rene R. Hansen,
Lone Leth Thomsen, Hans Søndergaard,

Java Object – Regional IKT Korridor

 Center for Embedded
Software Systems

 Vitus Bering Denmark

 Productivity of a
programmer is increased
with up to 700 % by Vitus Bering Denmark

 Polycom (Kirk Telecom A/S)
 Wirtek A/S
 Mechatronic Brick ApS

p y
changing from C/C++ to
Java !

 Number of well-educated
Java programmers p

 Aalborg Industries A/S
 Prevas A/S
 Teknologisk Institut

Java programmers
increasing !

 Java for hard real-time
t ?

 Tekkva Consult (project
coordinator).

systems ?
 Java and C/Assembler legacy

code ?

 Emerging new profiles and
hardware implementations !

 Eclipse framework !

Kim Larsen [22]ARTIST Design PhD School, Beijing, 2011

A Safety Critical System

Kim Larsen [23]ARTIST Design PhD School, Beijing, 2011

Hardware

 JOP (Java Optimized
Processor)Processor)

 Native execution of Java
Bytecode
B t d i l t d Bytecode implemented
in Microcode

 Avoid unpredictable
data-cache

 Time predictable
 Developed new method Developed new method

and stack cache
 Implemented in FPGA

Kim Guldstrand Larsen [24]ARTIST Design PhD School, Beijing, 2011

Java Optimizing Processor

FPGA

Martin Schöberl
University of Tech., Vienna

Kim Larsen [25]ARTIST Design PhD School, Beijing, 2011

Safety Critical Java

public static void main(String[] args) {
new SporadicPushMotor(

Min interarrival

new SporadicParameters(4, 4000, 60), 0);
new SporadicPushMotor(

new SporadicParameters(2, 4000, 60), 1);

PeriodicMotorSpooler motorSpooler =

Deadline
e od c oto Spoo e oto Spoo e

new PeriodicMotorSpooler(
new PeriodicParameters(4000));

new PeriodicReadSensor(
P i di P t (2000)new PeriodicParameters(2000),

motorSpooler);

RealtimeSystem.start();
}

 Periodic Threads
 Sporadic Threads
 RunTimeSystem

IMPLEMENTATIONS of SC Java
On JOP and Ajile aJ 100  RunTimeSystem

 Relative Time
 Immortal and Raw Memory
 Preemptive FP Scheduling

On JOP and Ajile aJ-100
Use existing schedulers and threads

On Mechatronic Brick and Polycom (Kirk)
Currently experimenting with JamVM

Kim Larsen [26]ARTIST Design PhD School, Beijing, 2011

p g
 Priority Ceiling

SARTS – Overview

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [27]

SARTS – TA Templates

TA for RM Scheduler

S di T k P i di T k

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [28]

Sporadic Tasks Periodic Tasks

SARTS – TA Templates

 Translation of Basic
Blocks into states and
transitions

 Patterns for: Patterns for:
 Loops
 Monitor statements
 If statements
 Method invoke
 Sporadic task releasep

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [29]

Byte code – Timed Automata

protected boolean run()

Data
abstractedp ()

if i<5 {
i = i + 4;

} else {} {
i = i * 4;

}
return true;;

}

Timing = WCET
from microcode

Kim Larsen [30]ARTIST Design PhD School, Beijing, 2011

SARTS – from Safety Critical Java

public static void main(String[] args) {
new SporadicPushMotor(

new SporadicParameters(4, 4000, 60), 0);
new SporadicPushMotor(

new SporadicParameters(2, 4000, 60), 1);

PeriodicMotorSpooler motorSpooler =
new PeriodicMotorSpooler(

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

.getBufferedSensor(1)) >> 1;

if (iti B i k) {

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

.getBufferedSensor(1)) >> 1;

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

ff d ())

private void handleBrick() {
Sensors.synchronizedReadSensors();

i t id h dl B i k() {new PeriodicMotorSpooler(
new PeriodicParameters(4000));

new PeriodicReadSensor(
new PeriodicParameters(2000), motorSpooler);

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

awaitingBrick = false;
if (lastRead > BRICK DETECTED) {

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

a aitingBrick false;

.getBufferedSensor(1)) >> 1;

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

int input = (Sensors.getBufferedSensor(0) + Sensors
.getBufferedSensor(1)) >> 1;

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

.getBufferedSensor(1)) >> 1;

if (awaitingBrick) {

private void handleBrick() {
Sensors.synchronizedReadSensors();
int input = (Sensors.getBufferedSensor(0) + Sensors

getBufferedSensor(1)) >> 1;

RealtimeSystem.start();
}

if (lastRead > BRICK_DETECTED) {
brickFound(lastRead);

}
}

awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

brickFound(lastRead);
}

}

} else if ((lastRead - input) >= TRESHOLD) {
awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

brickFound(lastRead);
}

}

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

brickFound(lastRead);
}

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {

awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

.getBufferedSensor(1)) >> 1;

if (awaitingBrick) {
if (input > lastRead) {

lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {} }

} brickFound(lastRead);
}

}

} ((p)) {
awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {

brickFound(lastRead);
}

}

TASKS

METHODS

Kim Larsen [31]ARTIST Design PhD School, Beijing, 2011

SARTS – to Timed Automata

Detection of Deadline Violation
Integrated SARTS w ECLIPSEIntegrated SARTS w ECLIPSE
Visualize WCET in ECLIPSE

18 methods + 4 tasks = 76 components

Kim Larsen [32]ARTIST Design PhD School, Beijing, 2011

SARTS – Experiments

Javac

Breadth First Search

Eclipse

Depth First Search + Agressive SS Reduction

Convex Hull Approximation

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [33]

Convex Hull Approximation

METAMOCMETAMOC
Modular Execution Time Analysis

using MOdel Checkingusing MOdel Checking

with
Andreas Dalsgaard

Mads Christian Olesen
Martin Toft

René Rydhof Hansene é yd o a se

WCET: Worst Case Execution Time

ty
In general:

hard
or impossible to

P
ro

ba
bi

li

WCETBCET
or impossible to

predict

MaximalMinimum Time
Determine
tight upper Maximal

observed
execution

time

Minimum
execution

time
observed

g pp
time bound

instead

Kim Larsen [35]ARTIST Design PhD School, Beijing, 2011

METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [36]

Overview of METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [37]

Value analysis in METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [38]

Modeling in METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [39]

Modeling in UPPAAL

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [40]

GUI for METAMOC

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [41]

Status

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [42]

Experiments

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [43]

Experiments / Future

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [44]

Conclusion & Future

CONCLUSION
 Reduction of Verification

Gap

FUTURE
 Support for more platforms

C bi d S h d l bilit &Gap

 Simplicity
 Programming languages

 Combined Schedulability &
WCET Analysis

 Loop bounds ?
 More applicationsg g g g

 Processor architecture
 Scheduling principles

 RT Model checking

More applications
 Improved Model Checker

 64 bit version
 Distributed MC

Ab t t C h i L tti RT Model checking
 Less pessimistic
 Enables more complex

settings
 Ease of use

 Abstract Caches using Lattice
Types

 Ease of use  sarts.boegholm.dk
 metamoc.martintoft.dk
 www.uppaal.com

ARTIST Design PhD School, Beijing, 2011 Kim Larsen [45]

