Semantics and Verification 2005

Lecture 10

- Equivalence Checking Problems
- Region Graph and Reachability
- Networks of Timed Automata
- Timed Hennessy Milner Logic

Timed Bisimilarity Untimed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Timed Bisimilarity

Let A_1 and A_2 be timed automata.

Timed Bisimilarity

We say that A_1 and A_2 are timed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 are strongly bisimilar.

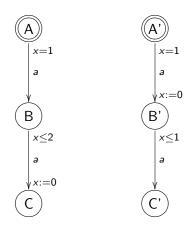
Remark: both

- \xrightarrow{a} for $a \in Act$ and
- $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$

are considered as normal (visible) transitions.

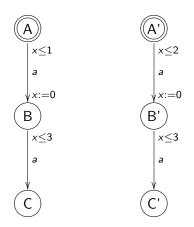
Equivalence Checking Problems Regions Region Graph Networks of Timed Automata Timed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Example of Timed Bisimilar Automata



Equivalence Checking Problems Regions Region Graph Networks of Timed Automata Timed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Example of Timed Non-Bisimilar Automata



Equivalence Checking Problems Regions Region Graph Networks of Timed Automata Timed Bisimilarity Untimed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Untimed Bisimilarity

Let A_1 and A_2 be timed automata. Let ϵ be a new (fresh) action.

Untimed Bisimilarity

We say that A_1 and A_2 are untimed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 where every transition of the form $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ is replaced with $\stackrel{\epsilon}{\longrightarrow}$ are strongly bisimilar.

Remark:

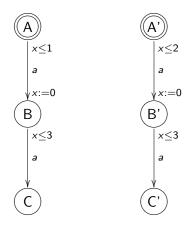
- \xrightarrow{a} for $a \in N$ is treated as a visible transition, while
- $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ are all labelled by a single visible action $\stackrel{\epsilon}{\longrightarrow}$.

Corollary

Any two timed bisimilar automata are also untimed bisimilar.

Timed Bisimilarity Untimed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Timed Non-Bisimilar but Untimed Bisimilar Automata



Timed Bisimilarity Untimed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Decidability of Timed and Untimed Bisimilarity

Theorem [Cerans'92]

Timed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

Theorem [Larsen, Wang'93]

Untimed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

Timed Bisimilarity Untimed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Weak Timed Bisimulation

Weak Transition Relation

We introduce the following derived transition relations:

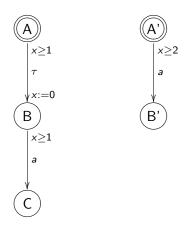
•
$$s \stackrel{a}{\Longrightarrow} s'$$
 iff $s \stackrel{\tau}{\longrightarrow} \stackrel{*}{\longrightarrow} \stackrel{a}{\longrightarrow} \stackrel{\tau}{\longrightarrow} \stackrel{*}{s'}$ when a is a discrete action.
• $s \stackrel{d}{\Longrightarrow} s'$ iff $s \stackrel{\tau}{\longrightarrow} \stackrel{*}{\longrightarrow} \stackrel{d_1}{\longrightarrow} \stackrel{\tau}{\longrightarrow} \stackrel{*}{\cdots} \stackrel{\tau}{\longrightarrow} \stackrel{*}{\longrightarrow} \stackrel{d_n}{\longrightarrow} \stackrel{\tau}{\longrightarrow} \stackrel{*}{x'} s'$ with $d = d_1 + d_2 + \cdots + d_n$.

Weak Timed Bisimilarity

Let A_1 and A_2 be two timed automata. We say that A_1 and A_2 are weakly timed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 using weak transitions $\stackrel{a}{\Longrightarrow}$ and $\stackrel{d}{\Longrightarrow}$ are strongly bisimilar.

Timed Bisimilarity Untimed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Weakly Timed Bisimilar Automata



Equivalence Checking Problems Regions Region Graph Networks of Timed Automata Timed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Timed Traces

Let $A = (L, \ell_0, E, I)$ be a timed automaton over a set of clocks C and a set of labels N.

Timed Traces

A sequence $(t_1, a_1)(t_2, a_2)(t_3, a_3) \dots$ where $t_i \in \mathbb{R}^{\geq 0}$ and $a_i \in N$ is called a timed trace of A iff there is a transition sequence

$$(\ell_0, v_0) \xrightarrow{d_1} . \xrightarrow{a_1} . \xrightarrow{d_2} . \xrightarrow{a_2} . \xrightarrow{d_3} . \xrightarrow{a_3} ..$$

in A such that $v_0(x) = 0$ for all $x \in C$ and

 $t_i = t_{i-1} + d_i$ where $t_0 = 0$.

Intuition: t_i is the absolute time (time-stamp) when a_i happened since the start of the automaton A.

Timed Bisimilarity Untimed Bisimilarity Weak Timed Bisimulation Timed and Untimed Language Equivalence

Timed and Untimed Language Equivalence

The set of all timed traces of an automaton A is denoted by L(A) and called the timed language of A.

Theorem [Alur, Courcoubetis, Dill, Henzinger'94]

Timed language equivalence (the problem whether $L(A_1) = L(A_2)$ for given timed automata A_1 and A_2) is undecidable.

We say that $a_1a_2a_3...$ is an untimed trace of A iff there exist $t_1, t_2, t_3, ... \in \mathbb{R}^{\geq 0}$ such that $(t_1, a_1)(t_2, a_2)(t_3, a_3)...$ is a timed trace of A.

Theorem [Alur, Dill'94]

Untimed language equivalence for timed automata is decidable.

Motivation Intuition Clock Equivalence

Automatic Verification of Timed Automata

Fact

Even very simple timed automata generate timed transition systems with infinitely (even uncountably) many reachable states.

Question

Is any automatic verification approach (like bisimilarity checking, model checking or reachability analysis) possible at all?

Answer

Yes, using region graph techniques.

Key idea: infinitely many clock valuations can be categorized into finitely many equivalence classes.

Motivation Intuition Clock Equivalence

Intuition

Let $v, v' : C \to \mathbb{R}^{\geq 0}$ be clock valuations. Let \sim denote untimed bisimilarity of timed transition systems.

Our Aim

Define an equivalence relation \equiv over clock valuations such that

•
$$v \equiv v'$$
 implies $(\ell, v) \sim (\ell, v')$ for any location ℓ

$$2 \equiv$$
 has only finitely many equivalence classes.

Motivation Intuition Clock Equivalence

Preliminaries

- Let $d \in \mathbb{R}^{\geq 0}$. Then
 - let $\lfloor d \rfloor$ be the integer part of d, and
 - let frac(d) be the fractional part of d.

Any $d \in \mathbb{R}^{\geq 0}$ can be now written as $d = \lfloor d \rfloor + frac(d)$.

Example: $\lfloor 2.345 \rfloor = 2$ and frac(2.345) = 0.345.

Let A be a timed automaton and $x \in C$ be a clock. We define

 $c_x \in \mathbb{N}$

as the largest constant with which the clock x is ever compared either in the guards or in the invariants present in A.

Motivation Intuition Clock Equivalence

Clock (Region) Equivalence

Equivalence Relation on Clock Valuations

Clock valuations v and v' are equivalent ($v \equiv v'$) iff

 $\bullet \ \ \text{for all } x\in C \ \text{such that } v(x)\leq c_x \ \text{or } v'(x)\leq c_x \ \text{we have}$

 $\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor$

② for all
$$x \in C$$
 such that $v(x) \leq c_x$ we have

frac(v(x)) = 0 iff frac(v'(x)) = 0

◎ for all $x, y \in C$ such that $v(x) \leq c_x$ and $v(y) \leq c_y$ we have

 $frac(v(x)) \leq frac(v(y))$ iff $frac(v'(x)) \leq frac(v'(y))$

Motivation Intuition Clock Equivalence

Regions

Let v be a clock valuation. The \equiv -equivalence class represented by v is denoted by [v] and defined by $[v] = \{v' \mid v' \equiv v\}$.

Definition of a Region

An \equiv -equivalence class [v] represented by some clock valuation v is called a region.

Theorem

For every location ℓ and any two valuations v and v' from the same region ($v \equiv v'$) it holds that

 $(\ell, v) \sim (\ell, v')$

where \sim stands for untimed bisimilarity.

Definition Applications Zones and Zone Graphs

Symbolic States and Region Graph

state $(\ell, v) \quad \rightsquigarrow \quad \text{symbolic state } (\ell, [v])$

Note:
$$v \equiv v'$$
 implies that $(\ell, [v]) = (\ell, [v'])$.

Region Graph

Region graph of a timed automaton A is an unlabelled (and untimed) transition system where

- states are symbolic states
- \Longrightarrow between symbolic states is defined as follows: $(\ell, [v]) \Longrightarrow (\ell', [v'])$ iff $(\ell, v) \xrightarrow{a} (\ell', v')$ for some label a $(\ell, [v]) \Longrightarrow (\ell, [v'])$ iff $(\ell, v) \xrightarrow{d} (\ell, v')$ for some $d \in \mathbb{R}^{\geq 0}$

Fact

A region graph of any timed automaton is finite.

Definition Applications Zones and Zone Graphs

Application of Region Graphs to Reachability

We write
$$(\ell, v) \longrightarrow (\ell', v')$$
 whenever
• $(\ell, v) \xrightarrow{a} (\ell', v')$ for some label *a*, or
• $(\ell, v) \xrightarrow{d} (\ell, v')$ for some $d \in \mathbb{R}^{\geq 0}$.

Reachability Problem for Timed Automata

Instance (input): Automaton $A = (L, \ell_0, E, I)$ and a state (ℓ, v) . **Question:** Is it true that $(\ell_0, v_0) \longrightarrow^* (\ell, v)$? (where $v_0(x) = 0$ for all $x \in C$)

Reduction of Reachability from Timed Automata to Region Graphs

Reachability for timed automata is decidable because

$$(l_0, v_0) \longrightarrow^* (l, v)$$
 in the timed automaton if and only if $(l_0, [v_0]) \Longrightarrow^* (l, [v])$ in its (finite) region graph.

Definition Applications Zones and Zone Graphs

Applicability of Region Graphs

Proc

Region graphs provide a natural abstraction which enables to prove decidability of e.g.

- reachability
- timed and untimed bisimilarity
- untimed language equivalence and language emptiness.

Cons

Region graphs have too large state spaces. State explosion is exponential in

- the number of clocks
- the maximal constants appearing in the guards.

Definition Applications Zones and Zone Graphs

Zones and Zone Graphs

Zones provide a more efficient representation of symbolic state spaces. A number of regions can be described by one zone.

Zone

A zone is described by a clock constraint $g \in \mathcal{B}(C)$.

$$[g] = \{v \mid v \models g\}$$

Region Graphs

symbolic state: $(\ell, [v])$ where v is a clock valuation

Zone Graphs

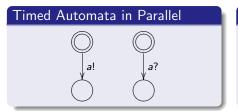
symbolic state: $(\ell, [g])$ where g is a clock constraint

A zone is usually represented (and stored in the memory) as DBM (Difference Bound Matrice).

Definition Example Logical Properties in UPPAAL

lr

Networks of Timed Automata



ntuition in CCS	
$(a.Nil \mid \overline{a}.Nil) \smallsetminus \{a\}$	

Let C be a set of clocks and *Chan* a set of channels.

We let $Act = N \cup \mathbb{R}^{\geq 0}$ where

• $N = \{c! \mid c \in Chan\} \cup \{c? \mid c \in Chan\} \cup \{\tau\}.$

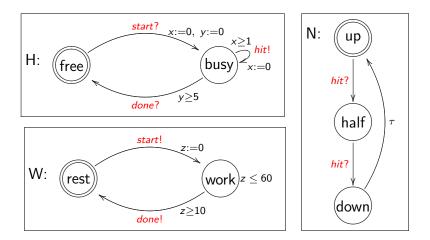
Let $A_i = (L_i, \ell_0^i, E_i, I_i)$ be timed automata for $1 \le i \le n$.

Networks of Timed Automata

We call $A = A_1 | A_2 | \cdots | A_n$ a networks of timed automata.

Definition Example Logical Properties in UPPAAL

Example: Hammer, Worker, Nail



Definition Example Logical Properties in UPPAAL

Timed Transition System Generated by $A = A_1 | \cdots | A_n$

$$T(A) = (Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$$
 where

Proc = (L₁ × L₂ × · · · × L_n) × (C → ℝ^{≥0}), i.e. states are of the form ((ℓ₁, ℓ₂, . . . , ℓ_n), v) where ℓ_i is a location in A_i

•
$$Act = \{\tau\} \cup \mathbb{R}^{\geq 0}$$

 $\bullet \longrightarrow$ is defined as follows:

$$\begin{array}{l} ((\ell_1, \dots, \ell_i, \dots, \ell_n), \nu) \xrightarrow{\tau} ((\ell_1, \dots, \ell'_i, \dots, \ell_n), \nu') \text{ if there is} \\ (\ell_i \xrightarrow{g, \tau, r} \ell'_i) \in E_i \text{ s.t. } \nu \models g \text{ and } \nu' = \nu[r] \text{ and} \\ \nu' \models I_i(\ell'_i) \land \bigwedge_{k \neq i} I_k(\ell_k) \end{array}$$

$$\begin{array}{l} ((\ell_1,\ldots,\ell_n),v) \stackrel{d}{\longrightarrow} ((\ell_1,\ldots,\ell_n),v+d) \text{ for all } d \in \mathbb{R}^{\geq 0} \text{ s.t.} \\ v \models \bigwedge_k I_k(\ell_k) \text{ and } v+d \models \bigwedge_k I_k(\ell_k) \end{array}$$

Definition Example Logical Properties in UPPAAL

Continuation

$((\ell_1, \dots, \ell_i, \dots, \ell_j, \dots, \ell_n), v) \xrightarrow{\tau} ((\ell_1, \dots, \ell'_i, \dots, \ell'_j, \dots, \ell_n), v')$ if $i \neq j$ and there are $(\ell_i \xrightarrow{g_i, a!, r_i} \ell'_i) \in E_i$ and $(\ell_j \xrightarrow{g_j, a?, r_j} \ell'_j) \in E_j$ s.t. $v \models g_i \land g_j$ and $v' = v[r_i \cup r_j]$ and $v' \models I_i(\ell'_i) \land I_j(\ell'_j) \land \bigwedge_{k \neq i, j} I_k(\ell_k)$

Definition Example Logical Properties in UPPAAL

Logics for Timed Automata in UPPAAL

Let ϕ and ψ be local properties (checkable locally in a given state).

Example: (H.busy \land W.rest \land 20 \leq z \leq 30)

UPPAAL can check the following formulae (subset of TCTL)

- A[] ϕ invariantly ϕ
- $E\langle \phi \phi \rangle \phi$ possibly ϕ
- $\mathsf{A}\langle
 angle\phi$ always eventually ϕ
- E[] ϕ potentially always ϕ
- $\phi \rightarrow \psi \phi$ always leads to ψ (same as A[]($\phi \implies A(\langle \psi)$)

Legenda:

- A and E are so called path quntifiers, and
- \bullet [] and $\langle\rangle$ quantify over states of a selected path.