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Timed Bisimilarity

Let A1 and A2 be timed automata.

Timed Bisimilarity

We say that A1 and A2 are timed bisimilar iff the transition systems
T (A1) and T (A2) generated by A1 and A2 are strongly bisimilar.

Remark: both
a−→ for a ∈ Act and
d−→ for d ∈ R≥0

are considered as normal (visible) transitions.
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Example of Timed Bisimilar Automata
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Example of Timed Non-Bisimilar Automata
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Untimed Bisimilarity

Let A1 and A2 be timed automata. Let ε be a new (fresh) action.

Untimed Bisimilarity

We say that A1 and A2 are untimed bisimilar iff the transition
systems T (A1) and T (A2) generated by A1 and A2 where every

transition of the form
d−→ for d ∈ R≥0 is replaced with

ε−→ are
strongly bisimilar.

Remark:
a−→ for a ∈ N is treated as a visible transition, while
d−→ for d ∈ R≥0 are all labelled by a single visible action

ε−→.

Corollary

Any two timed bisimilar automata are also untimed bisimilar.
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Timed Non-Bisimilar but Untimed Bisimilar Automata
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Decidability of Timed and Untimed Bisimilarity

Theorem [Cerans’92]

Timed bisimilarity for timed automata is decidable in EXPTIME
(deterministic exponential time).

Theorem [Larsen, Wang’93]

Untimed bisimilarity for timed automata is decidable in EXPTIME
(deterministic exponential time).
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Weak Timed Bisimulation

Weak Transition Relation

We introduce the following derived transition relations:

s
a

=⇒ s ′ iff s
τ−→

∗ a−→ τ−→
∗

s ′ when a is a discrete action.

s
d

=⇒ s ′ iff s
τ−→

∗ d1−→ τ−→
∗
· · · τ−→

∗ dn−→ τ−→
∗

s ′ with
d = d1 + d2 + · · ·+ dn.

Weak Timed Bisimilarity

Let A1 and A2 be two timed automata. We say that A1 and A2 are
weakly timed bisimilar iff the transition systems T (A1) and T (A2)

generated by A1 and A2 using weak transitions
a

=⇒ and
d

=⇒ are
strongly bisimilar.
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Weakly Timed Bisimilar Automata
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Timed Traces

Let A = (L, `0,E , I ) be a timed automaton over a set of clocks C
and a set of labels N.

Timed Traces

A sequence (t1, a1)(t2, a2)(t3, a3) . . . where ti ∈ R≥0 and ai ∈ N is
called a timed trace of A iff there is a transition sequence

(`0, v0)
d1−→ .

a1−→ .
d2−→ .

a2−→ .
d3−→ .

a3−→ . . .

in A such that v0(x) = 0 for all x ∈ C and

ti = ti−1 + di where t0 = 0.

Intuition: ti is the absolute time (time-stamp) when ai happened
since the start of the automaton A.
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Timed and Untimed Language Equivalence

The set of all timed traces of an automaton A is denoted by L(A)
and called the timed language of A.

Theorem [Alur, Courcoubetis, Dill, Henzinger’94]

Timed language equivalence (the problem whether L(A1) = L(A2)
for given timed automata A1 and A2) is undecidable.

We say that a1a2a3 . . . is an untimed trace of A iff there exist
t1, t2, t3, . . . ∈ R≥0 such that (t1, a1)(t2, a2)(t3, a3) . . . is a timed
trace of A.

Theorem [Alur, Dill’94]

Untimed language equivalence for timed automata is decidable.
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Automatic Verification of Timed Automata

Fact

Even very simple timed automata generate timed transition
systems with infinitely (even uncountably) many reachable states.

Question

Is any automatic verification approach (like bisimilarity checking,
model checking or reachability analysis) possible at all?

Answer

Yes, using region graph techniques.

Key idea: infinitely many clock valuations can be categorized into
finitely many equivalence classes.
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Intuition

Let v , v ′ : C → R≥0 be clock valuations.
Let ∼ denote untimed bisimilarity of timed transition systems.

Our Aim

Define an equivalence relation ≡ over clock valuations such that

1 v ≡ v ′ implies (`, v) ∼ (`, v ′) for any location `

2 ≡ has only finitely many equivalence classes.
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Preliminaries

Let d ∈ R≥0. Then

let bdc be the integer part of d , and

let frac(d) be the fractional part of d .

Any d ∈ R≥0 can be now written as d = bdc+ frac(d).

Example: b2.345c = 2 and frac(2.345) = 0.345.

Let A be a timed automaton and x ∈ C be a clock. We define

cx ∈ N

as the largest constant with which the clock x is ever compared
either in the guards or in the invariants present in A.
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Clock (Region) Equivalence

Equivalence Relation on Clock Valuations

Clock valuations v and v ′ are equivalent (v ≡ v ′) iff

1 for all x ∈ C such that v(x) ≤ cx or v ′(x) ≤ cx we have

bv(x)c = bv ′(x)c

2 for all x ∈ C such that v(x) ≤ cx we have

frac(v(x)) = 0 iff frac(v ′(x)) = 0

3 for all x , y ∈ C such that v(x) ≤ cx and v(y) ≤ cy we have

frac(v(x)) ≤ frac(v(y)) iff frac(v ′(x)) ≤ frac(v ′(y))

Lecture 10 Semantics and Verification 2005



Equivalence Checking Problems
Regions

Region Graph
Networks of Timed Automata

Motivation
Intuition
Clock Equivalence

Regions

Let v be a clock valuation. The ≡-equivalence class represented by
v is denoted by [v ] and defined by [v ] = {v ′ | v ′ ≡ v}.

Definition of a Region

An ≡-equivalence class [v ] represented by some clock valuation v
is called a region.

Theorem

For every location ` and any two valuations v and v ′ from the
same region (v ≡ v ′) it holds that

(`, v) ∼ (`, v ′)

where ∼ stands for untimed bisimilarity.
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Symbolic States and Region Graph

state (`, v)  symbolic state (`, [v ])

Note: v ≡ v ′ implies that (`, [v ]) = (`, [v ′]).

Region Graph

Region graph of a timed automaton A is an unlabelled (and
untimed) transition system where

states are symbolic states

=⇒ between symbolic states is defined as follows:
(`, [v ]) =⇒ (`′, [v ′]) iff (`, v)

a−→ (`′, v ′) for some label a

(`, [v ]) =⇒ (`, [v ′]) iff (`, v)
d−→ (`, v ′) for some d ∈ R≥0

Fact

A region graph of any timed automaton is finite.
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Application of Region Graphs to Reachability

We write (`, v) −→ (`′, v ′) whenever

(`, v)
a−→ (`′, v ′) for some label a, or

(`, v)
d−→ (`, v ′) for some d ∈ R≥0.

Reachability Problem for Timed Automata

Instance (input): Automaton A = (L, `0,E , I ) and a state (`, v).

Question: Is it true that (`0, v0) −→∗ (`, v) ?

(where v0(x) = 0 for all x ∈ C )

Reduction of Reachability from Timed Automata to Region Graphs

Reachability for timed automata is decidable because

(l0, v0) −→∗ (l , v) in the timed automaton if and only if

(l0, [v0]) =⇒∗ (l , [v ]) in its (finite) region graph.
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Applicability of Region Graphs

Proc

Region graphs provide a natural abstraction which enables to prove
decidability of e.g.

reachability

timed and untimed bisimilarity

untimed language equivalence and language emptiness.

Cons

Region graphs have too large state spaces. State explosion is
exponential in

the number of clocks

the maximal constants appearing in the guards.
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Zones and Zone Graphs

Zones provide a more efficient representation of symbolic state
spaces. A number of regions can be described by one zone.

Zone

A zone is described by a clock constraint g ∈ B(C ).

[g ] = {v | v |= g}

Region Graphs

symbolic state: (`, [v ])
where v is a clock valuation

Zone Graphs

symbolic state: (`, [g ])
where g is a clock constraint

A zone is usually represented (and stored in the memory) as
DBM (Difference Bound Matrice).
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Networks of Timed Automata

Timed Automata in Parallel

?>=<89:;/.-,()*+
a!
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Intuition in CCS

(a.Nil | a.Nil) r {a}

Let C be a set of clocks and Chan a set of channels.

We let Act = N ∪ R≥0 where

N = {c! | c ∈ Chan} ∪ {c? | c ∈ Chan} ∪ {τ}.

Let Ai = (Li , `
i
0,Ei , Ii ) be timed automata for 1 ≤ i ≤ n.

Networks of Timed Automata

We call A = A1|A2| · · · |An a networks of timed automata.
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Example: Hammer, Worker, Nail

H: WVUTPQRSONMLHIJKfree

start?
x :=0, y :=0

%% WVUTPQRSbusy

done?
y≥5

ee

hit!
x≥1

x :=0
tt

W: WVUTPQRSONMLHIJKrest

start!
z:=0

%% WVUTPQRSwork

done!
z≥10

ee
z ≤ 60

N: WVUTPQRSONMLHIJKup

hit?

��

WVUTPQRShalf

hit?

��

WVUTPQRSdown

τ

XX
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Timed Transition System Generated by A = A1| · · · |An

T (A) = (Proc ,Act, { a−→| a ∈ Act}) where

Proc = (L1 × L2 × · · · × Ln)× (C → R≥0), i.e. states are of
the form ((`1, `2, . . . , `n), v) where `i is a location in Ai

Act = {τ} ∪ R≥0

−→ is defined as follows:

((`1, . . . , `i , . . . , `n), v)
τ−→ ((`1, . . . , `

′
i , . . . , `n), v

′) if there is

(`i
g ,τ,r−→ `′i ) ∈ Ei s.t. v |= g and v ′ = v [r ] and

v ′ |= Ii (`
′
i ) ∧

∧
k 6=i

Ik(`k)

((`1, . . . , `n), v)
d−→ ((`1, . . . , `n), v + d) for all d ∈ R≥0 s.t.

v |=
∧
k

Ik(`k) and v + d |=
∧
k

Ik(`k)
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Continuation

((`1, . . . , `i , . . . , `j , . . . , `n), v)
τ−→ ((`1, . . . , `

′
i , . . . , `

′
j , . . . , `n), v

′)

if i 6= j and there are (`i
gi ,a!,ri−→ `′i ) ∈ Ei and (`j

gj ,a?,rj−→ `′j) ∈ Ej s.t.
v |= gi ∧ gj and v ′ = v [ri ∪ rj ] and v ′ |= Ii (`

′
i ) ∧ Ij(`

′
j) ∧

∧
k 6=i ,j

Ik(`k)
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Logics for Timed Automata in UPPAAL

Let φ and ψ be local properties (checkable locally in a given state).

Example: (H.busy ∧ W.rest ∧ 20 ≤ z ≤ 30)

UPPAAL can check the following formulae (subset of TCTL)

A[]φ — invariantly φ

E〈〉φ — possibly φ

A〈〉φ — always eventually φ

E[]φ — potentially always φ

φ –> ψ — φ always leads to ψ
(
same as A[](φ =⇒ A〈〉ψ)

)
Legenda:

A and E are so called path quntifiers, and

[] and 〈〉 quantify over states of a selected path.
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