Semantics and Verification 2006

Lecture 9

- Labelled transition systems with time
- Timed CCS; syntax and semantics
- Timed Automata; syntax and semantics
- Timed and untimed bisimilarity

Need for Introducing Time Features

- Timeout in Alternating Bit protocol:
 - In CCS timeouts were modelled using nondeterminism.
 - Enough to prove that the protocol is safe.
 - Maybe too abstract for certain questions (What is the average time to deliver the message?).
- Many real-life systems depend on timing:
 - Real-time controllers (production lines, computers in cars, railway crossings).
 - Embedded systems (mobile phones, remote controllers, digital watch).
 - ...

Labelled Transition Systems with Time

Timed (labelled) transition system (TLTS)

TLTS is a triple $(Proc, Act, \{ \stackrel{a}{\longrightarrow} | a \in Act \})$ where

- Proc is a set of states (or processes),
- $Act = N \cup \mathbb{R}^{\geq 0}$ is a set of actions (consisting of labels and time-elapsing steps), and
- for every $a \in Act$, $\stackrel{a}{\longrightarrow} \subseteq Proc \times Proc$ is a binary relation on states called the transition relation.

We write

- $s \xrightarrow{a} s'$ if $a \in N$ and $(s, s') \in \xrightarrow{a}$, and
- $s \xrightarrow{d} s'$ if $d \in \mathbb{R}^{\geq 0}$ and $(s, s') \in \xrightarrow{d}$.

Requirements to TLTS

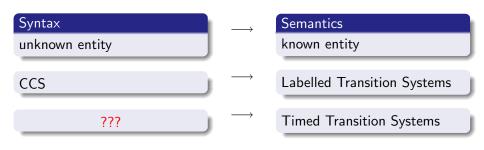
Sanity Requirements

Time additivity: If $s \xrightarrow{d} s'$ and $0 \le d' \le d$ then $s \xrightarrow{d'} s'' \xrightarrow{d-d'} s'$ for some state s'';

Zero delay: $s \xrightarrow{0} s$ for all states s;

Time determinism: If $s \xrightarrow{d} s'$ and $s \xrightarrow{d} s''$ then s' = s''.

How to Describe Timed Transition Systems?



TCCS [Yi'90]:

CCS extended with delays.

Timed Automata [Alur, Dill'90]:

Finite-state automata equipped with clocks.

TCCS = CCS + Delay Prefix

Let $d \in \mathbb{R}^{\geq 0}$ and let P be a process then $\epsilon(d).P$ is the process which after a delay of d time units will behave like P.

Rules for Delay Prefix

We expect the following transitions

•
$$\epsilon(d).P \xrightarrow{d} P$$

•
$$\epsilon(d).P \xrightarrow{d'} \epsilon(d-d').P$$
 for $d' \leq d$

•
$$\epsilon(d).P \xrightarrow{d+d'} P'$$
 if $P \xrightarrow{d'} P'$.

SOS Rules for TCCS

$$\frac{P \xrightarrow{d'} P'}{\epsilon(d).P \xrightarrow{d+d'} P'} \qquad \frac{\epsilon(d).P \xrightarrow{d'} \epsilon(d-d').P}{\epsilon(d).P \xrightarrow{d'} \epsilon(d-d').P} d' \leq d$$

$$\frac{P \xrightarrow{d} P'}{K \xrightarrow{d} P'} K = ^{def} P \qquad \frac{P \xrightarrow{d} P' Q \xrightarrow{d} Q'}{\alpha \cdot P \xrightarrow{d} \alpha \cdot P} \alpha \neq \tau \qquad \frac{P \xrightarrow{d} P' Q \xrightarrow{d} Q'}{P + Q \xrightarrow{d} P' + Q'}$$

$$\frac{P \xrightarrow{d} P'}{P[f] \xrightarrow{d} P'[f]} \qquad \frac{P \xrightarrow{d} P'}{P \setminus L \xrightarrow{d} P' \setminus L}$$

Parallel Composition

Maximal Progress:

If a process can evolve on its own, then it will do so with out any further delay, i.e. if $P \xrightarrow{\tau}$ then $P \not\stackrel{d}{\longrightarrow}$ for any d > 0.

Delay for Parallel Composition

$$\frac{P \xrightarrow{d} P' \ Q \xrightarrow{d} Q'}{P \mid Q \xrightarrow{d} P' \mid Q'} \quad \mathsf{NoSync}(P, Q, d)$$

where $\operatorname{NoSync}(P, Q, d)$ holds if for any d' < d whenever $P \xrightarrow{d'} P'$ and $\xrightarrow{d'} Q'$ then $P|Q \xrightarrow{\mathcal{T}}$.

Definition of TA: Clock Constraints

Let $C = \{x, y, \ldots\}$ be a finite set of clocks.

Set $\mathcal{B}(C)$ of clock constraints over C

 $\mathcal{B}(C)$ is defined by the following abstract syntax

$$g,g_1,g_2 ::= x \sim n \mid x-y \sim n \mid g_1 \wedge g_2$$

where $x, y \in C$ are clocks, $n \in \mathbb{N}$ and $\sim \in \{\leq, <, =, >, \geq\}$.

Example:
$$x \le 3 \land y > 0 \land y - x = 2$$

Clock Valuation

Clock valuation

Clock valuation v is a function $v: C \to \mathbb{R}^{\geq 0}$.

Let v be a clock valuation. Then

ullet v+d is a clock valuation for any $d\in\mathbb{R}^{\geq 0}$ and it is defined by

$$(v+d)(x) = v(x) + d$$
 for all $x \in C$

• v[r] is a clock valuation for any $r \subseteq C$ and it is defined by

$$v[r](x)$$

$$\begin{cases} 0 & \text{if } x \in r \\ v(x) & \text{otherwise.} \end{cases}$$

Evaluation of Clock Constraints

Evaluation of clock constraints $(v \models g)$

```
v \models x < n iff v(x) < n

v \models x \le n iff v(x) \le n

v \models x = n iff v(x) = n

\vdots

v \models x - y < n iff v(x) - v(y) < n

v \models x - y \le n iff v(x) - v(y) \le n

\vdots

v \models g_1 \land g_2 iff v \models g_1 and v \models g_2
```

Syntax of Timed Automata

Definition

A timed automaton over a set of clocks C and a set of labels N is a tuple

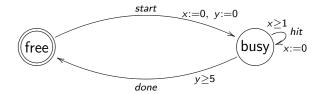
$$(L,\ell_0,E,I)$$

where

- L is a finite set of locations
- $\ell_0 \in L$ is the initial location
- $E \subseteq L \times \mathcal{B}(C) \times N \times 2^C \times L$ is the set of edges
- $I: L \to \mathcal{B}(C)$ assigns invariants to locations.

We usually write $\ell \xrightarrow{g,a,r} \ell'$ whenever $(\ell,g,a,r,\ell') \in E$.

Example: Hammer



Semantics of Timed Automata

Let $A = (L, \ell_0, E, I)$ be a timed automaton.

Timed transition system generated by A

$$T(A) = (Proc, Act, \{ \stackrel{a}{\longrightarrow} | a \in Act \})$$
 where

- $Proc = L \times (C \to \mathbb{R}^{\geq 0})$, i.e. states are of the form (ℓ, v) where ℓ is a location and v a valuation
- $Act = N \cup \mathbb{R}^{\geq 0}$
- --- is defined as follows:

$$(\ell, v) \xrightarrow{a} (\ell', v')$$
 if there is $(\ell \xrightarrow{g,a,r} \ell') \in E$ s.t. $v \models g$ and $v' = v[r]$

$$(\ell, v) \xrightarrow{d} (\ell, v + d)$$
 for all $d \in \mathbb{R}^{\geq 0}$ s.t. $v \models I(\ell)$ and $v + d \models I(\ell)$

Timed Bisimilarity

Let A_1 and A_2 be timed automata.

Timed Bisimilarity

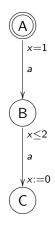
We say that A_1 and A_2 are timed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 are strongly bisimilar.

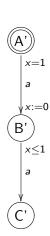
Remark: both

- $\stackrel{a}{\longrightarrow}$ for $a \in N$ and
- \xrightarrow{d} for $d \in \mathbb{R}^{\geq 0}$

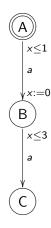
are considered as normal (visible) transitions.

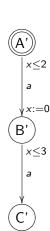
Example of Timed Bisimilar Automata





Example of Timed Non-Bisimilar Automata





Untimed Bisimilarity

Let A_1 and A_2 be timed automata. Let ϵ be a new (fresh) action.

Untimed Bisimilarity

We say that A_1 and A_2 are untimed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 where every transition of the form $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ is replaced with $\stackrel{\epsilon}{\longrightarrow}$ are strongly bisimilar.

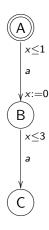
Remark:

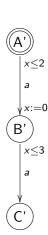
- $\stackrel{a}{\longrightarrow}$ for $a \in N$ is treated as a visible transition, while
- ullet for $d \in \mathbb{R}^{\geq 0}$ are all labelled by a single visible action $\stackrel{\epsilon}{\longrightarrow}$.

Corollary

Any two timed bisimilar automata are also untimed bisimilar.

Timed Non-Bisimilar but Untimed Bisimilar Automata





Decidability of Timed and Untimed Bisimilarity

Theorem [Cerans'92]

Timed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

Theorem [Larsen, Wang'93]

Untimed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

Timed Traces

Let $A = (L, \ell_0, E, I)$ be a timed automaton over a set of clocks C and a set of labels N.

Timed Traces

A sequence $(t_1, a_1)(t_2, a_2)(t_3, a_3)...$ where $t_i \in \mathbb{R}^{\geq 0}$ and $a_i \in N$ is called a timed trace of A iff there is a transition sequence

$$(\ell_0, \nu_0) \xrightarrow{d_1} . \xrightarrow{a_1} . \xrightarrow{d_2} . \xrightarrow{a_2} . \xrightarrow{d_3} . \xrightarrow{a_3} . \dots$$

in A such that $v_0(x) = 0$ for all $x \in C$ and

$$t_i = t_{i-1} + d_i$$
 where $t_0 = 0$.

Intuition: t_i is the absolute time (time-stamp) when a_i happened since the start of the automaton A.

Timed and Untimed Language Equivalence

The set of all timed traces of an automaton A is denoted by L(A) and called the timed language of A.

Theorem [Alur, Courcoubetis, Dill, Henzinger'94]

Timed language equivalence (the problem whether $L(A_1) = L(A_2)$ for given timed automata A_1 and A_2) is undecidable.

We say that $a_1a_2a_3...$ is an untimed trace of A iff there exist $t_1, t_2, t_3,... \in \mathbb{R}^{\geq 0}$ such that $(t_1, a_1)(t_2, a_2)(t_3, a_3)...$ is a timed trace of A.

Theorem [Alur, Dill'94]

Untimed language equivalence for timed automata is decidable.