Tutorial 13

Exercise 1

Show that all the usual boolean operations $(\neg t, t_1 \land t_2, t_1 \lor t_2, t_1 \Rightarrow t_2 \text{ and } t_1 \Leftrightarrow t_2)$ can be expressed using only the if-then-else construct.

Exercise 2*

• Use Shannon's expansion law to translate the following boolean expression

$$(\neg x_1 \lor x_2) \land \neg (x_3 \lor x_1) \land \neg x_3$$

into if-then-else normal form (assume the ordering $x_1 < x_2 < x_3$).

• Draw the resulting if-then-else expression as a decision graph and apply the reduction rules in order to achieve ROBDD.

Exercise 3

Construct the ROBDD for $\neg x_1 \land (x_2 \Leftrightarrow \neg x_3)$ with ordering $x_1 < x_2 < x_3$ using the function **Build** and show its internal representation as an array (table *T*).

Exercise 4

Construct three ROBDDs for $x_1, x_1 \Rightarrow x_2$ and $x_2 \Rightarrow x_1$ with ordering $x_1 < x_2$. Compute the ROBDD representing the three pair-wise conjunctions the function **Apply**.

Exercise 5 (optional)

Recall the notion of *conjunctive/disjunctive normal form* as defined e.g. in "An introduction to Binary Decision Diagrams" on page 7.

- Describe a polynomial time algorithm for determining whether a formula in DNF is satisfiable.
- Describe a polynomial time algorithm for determining whether a formula in CNF is a tautology.