# FSM-test generation 

## Brian Nielsen

bnielsen@cs.auc.dk
Department of Computer Science,
Aalborg University, Denmark


## Menu

- Review of basic definitions and fundamental results
- Classical Deterministic Untimed (very) finite FSMs
- Conformance Testing with FSMs
- Transition Testing
- Synchronizing sequences
- State identification and verification
- State and transition covering sequences


## Finite State Machine (Mealy)



| condition |  | effect |  |
| ---: | ---: | :--- | :--- |
| current <br> state | input | output | next <br> state |
| $\mathrm{q}_{1}$ | coin | - | $\mathrm{q}_{2}$ |
| $\mathrm{q}_{2}$ | coin | - | $\mathrm{q}_{3}$ |
| $\mathrm{q}_{3}$ | cof-but | cof | $\mathrm{q}_{1}$ |
| $\mathrm{q}_{3}$ | tea-but | tea | $\mathrm{q}_{1}$ |

Inputs = \{cof-but, tea-but, coin\}
Outputs $=\{$ cof,tea $\}$
States: $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
Initial state $=\mathrm{q}_{1}$
Transitions= \{
$\left(\mathrm{q}_{1}\right.$, coin,,$\left.- \mathrm{q}_{2}\right)$,
$\left(\mathrm{q}_{2}\right.$, coin,,$\left.- \mathrm{q}_{3}\right)$,
( $q_{3}$, cof-but, cof, $q_{1}$ ),
$\left(q_{3}\right.$, tea-but, tea, $\left.q_{1}\right)$
Sample run:

$$
\begin{gathered}
\mathrm{q}_{1} \xrightarrow{\text { coin } /-} \mathrm{q}_{2} \xrightarrow{\text { coin } /-} \mathrm{q}_{3} \xrightarrow{\text { cof-but } / \text { cof }} \mathrm{q}_{1} \xrightarrow{\text { coin } /-} \\
\mathrm{q}_{2} \xrightarrow{\text { coin } /-} \mathrm{q}_{3} \xrightarrow{\text { cof-but } / \text { cof }} \mathrm{q}_{1}
\end{gathered}
$$

## Finite State Machine (Moore)



Input sequence: coin.coin.cof-but.coin.coin.cof-but
Output sequence: need2.need1.select.cof. need2.need1.select.cof

## IO-FSM



Inputs = \{cof-but, tea-but, coin\}
Outputs = \{cof,tea\}
States: $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
Initial state $=q_{1}$
Transitions= \{

$$
\begin{aligned}
& \left(q_{1}, \text { coin, } q_{2}\right), \\
& \left(q_{2}, \text { coin, } q_{3}\right), \\
& \left(q_{3}, \text { cof-but, } q_{5}\right), \\
& \left(q_{3}, \text { tea-but, } q_{4}\right), \\
& \left(q_{4}, \text { tea, } q_{1}\right), \\
& \left(a_{1}\right)
\end{aligned}
$$

| condition |  | effect |
| ---: | ---: | ---: |
| current <br> state | action | next state |
| $\mathrm{q}_{1}$ | coin? | $\mathrm{q}_{2}$ |
| $\mathrm{q}_{2}$ | coin? | $\mathrm{q}_{3}$ |
| $\mathrm{q}_{3}$ | cof-but! | $\mathrm{q}_{5}$ |
| $\mathrm{q}_{3}$ | tea-but! | $\mathrm{q}_{4}$ |
| $\mathrm{q}_{4}$ | cof? | $\mathrm{q}_{1}$ |
| $\mathrm{q}_{5}$ | tea! | $\mathrm{q}_{1}$ |

Sample run:
$\mathrm{q}_{1} \xrightarrow{\text { coin? }} \mathrm{q}_{2} \xrightarrow{\text { coin? }} \mathrm{q}_{3} \xrightarrow{\text { cof-but? }} \mathrm{q}_{5} \xrightarrow{\text { cof }}$
$\mathrm{q}_{1} \xrightarrow{\text { coin? }} \mathrm{q}_{2} \xrightarrow{\text { coin }} \mathrm{q}_{3} \xrightarrow{\text { cof-but? }} \mathrm{q}_{5} \xrightarrow{\text { cof }} \mathrm{q}$
action trace: coin?.coin?.cof!-coin?.coin?.cof! input sequence: coin.coin.coin.coin Output sequence: cof.cof

## Fully Specified FSM



| condition |  | effect |  |
| ---: | ---: | :--- | :--- |
| current <br> state | input | output | next <br> state |
| $\mathrm{q}_{1}$ | coin | - | $\mathrm{q}_{2}$ |
| $\mathrm{q}_{2}$ | coin | - | $\mathrm{q}_{3}$ |
| $\mathrm{q}_{3}$ | cof-but | cof | $\mathrm{q}_{1}$ |
| $\mathrm{q}_{3}$ | tea-but | tea | $\mathrm{q}_{1}$ |
| $\mathrm{q}_{1}$ | cof-but | - | $\mathrm{q}_{1}$ |
| $\mathrm{q}_{1}$ | tea-but | - | $\mathrm{q}_{1}$ |
| $\mathrm{q}_{2}$ | cof-but | - | $\mathrm{q}_{2}$ |
| $\mathrm{q}_{2}$ | tea-but | - | $\mathrm{q}_{2}$ |
| $\mathrm{q}_{3}$ | coin | coin | $\mathrm{q}_{3}$ |

## FSM as program 1

```
enum currentState {q1,q2,q3};
enum input {coin, cof_but,tea_but};
int nextStateTable[noStates][noInputs] = {
    q2,q1,q1,
    q3,q2 , q2 ,
    q3,q1,q1 };
int outputTable[noStates][noInputs] = {
    0,0,0,
    0,0,0,
    coin,cof,tea};
```

While(Input=waitForInput()) \{
OUTPUT (outputTable[currentState, input])
currentState=nextStateTable[currentState, input];
\}

## FSM as program 2

```
enum currentState {q1,q2,q3};
enum input {coin,cof,tea_but,cof_but};
While(input=waitForInput) {
    Switch(currentState) {
    case q1: {
        switch (input) {
        case coin: currentState=q2; break;
        case cuf_but:
        case tea_but: break;
        default: ERROR("Unexpected Input");
        }
        break;
    case q3: {
    switch(input) {
        case cof_buf: {currentState=q3;
        OUTPUT(cof);
                break; }
```


## Spontaneous Transitions



| condition |  | effect |  |
| ---: | ---: | :--- | :--- |
| current <br> state | input | output | next <br> state |
| $\mathrm{q}_{1}$ | coin | - | $q_{2}$ |
| $\mathrm{q}_{2}$ | coin | - | $q_{3}$ |
| $\mathrm{q}_{3}$ | cof-but | cof | $\mathrm{q}_{1}$ |
| $\mathrm{q}_{3}$ | tea-but | tea | $\mathrm{q}_{1}$ |
| $\mathrm{q}_{3}$ | - | - | $q_{4}$ |
| $\mathrm{q}_{4}$ | fix | - | $q_{1}$ |

alias internal transitions alias unobservable transisions

## Non-deterministic FSM



| condition |  | effect |  |  |
| ---: | ---: | :--- | :--- | :---: |
| current <br> state | input | output | next <br> state |  |
| $q_{1}$ | coin | - | $q_{2}$ |  |
| $q_{1}$ | coin | - | $q_{1}$ |  |
| $q_{2}$ | coin | - | $q_{3}$ |  |
| $q_{3}$ | tea-but | tea | $q_{1}$ |  |
| $q_{3}$ | cof-but | cof | $q_{1}$ |  |
| $q_{3}$ | cof-but | mocca | $q_{1}$ |  |
|  |  |  |  |  |

## Extended FSM


-EFSM = FSMs + variables + enabling conditions + assignment
-Easier way of expressing an FSM
-Can be translated into FSM if variables have bounded domain
-State: control location+variable states: (q,total,capacity)

$$
\left(q_{1}, 0,10\right) \xrightarrow{\text { coin } /-}\left(q_{1}, 1,10\right) \xrightarrow{\text { coin } /-}\left(q_{1}, 2,10\right) \xrightarrow{\text { cof-but } / \operatorname{cof}}\left(q_{1}, 0,9\right)
$$

## Concepts

- Two states $s$ and $t$ are (language) equivalent iff
- $s$ and $t$ accepts same language
- has same traces: $\operatorname{tr}(s)=\operatorname{tr}(t)$
- Two Machines M0 and M1 are equivalent iff initial states are equivalent
- A minimized / reduced M is one that has no equivalent states
- for no two states $s, t, s!=t$, s equivalent $t$


## Fundamental Results

- Every FSM may be determinized accepting the same language (potential explosion in size).
- For each FSM there exist a language-equivalent minimal deterministic FSM.
- FSM's are closed under $\cap$ and $\cup$
- FSM's may be described as regular expressions (and vise versa)


## Conformance Testing



Given a specification FSM $M_{S}$
an (unknown, black box) implementation FSM $M_{I}$ determine whether $M_{l}$ conforms to $M_{S}$.
i.e., $M_{l}$ behaves in accordance with $M_{s}$
i.e., whether outputs of $M_{I}$ are the same as of $M_{S}$
i.e., whether the reduced $M_{l}$ is equivalent to $M_{S}$

## Possible Errors


-output fault


- extra or missing states
-transition fault
oto other state
oto new state


## State Machine : FSM Model

## State Machine : FSM Model

FSM - Finite State Machine - or Mealy Machine is 5-tuple

## State Machine : FSM Model

FSM - Finite State Machine - or Mealy Machine is 5-tuple

$$
M=(S, I, O, \delta, \lambda)
$$

## State Machine : FSM Model

FSM - Finite State Machine - or Mealy Machine is 5-tuple

$$
M=(S, I, O, \delta, \lambda)
$$

finite set of states

## State Machine : FSM Model

FSM - Finite State Machine - or Mealy Machine is 5-tuple

$$
M=(S, I, O, \delta, \lambda)
$$

finite set of states
finite set of inputs

## State Machine : FSM Model

FSM - Finite State Machine - or Mealy Machine is 5-tuple

$$
M=(S, I, O, \delta, \lambda)
$$

S
I
0
finite set of states
finite set of inputs
finite set of outputs

## State Machine : FSM Model

FSM - Finite State Machine - or Mealy Machine is 5-tuple

$$
M=(S, I, O, \delta, \lambda)
$$

finite set of states
finite set of inputs
finite set of outputs
$\delta: S \times I \rightarrow S$
transfer function

## State Machine : FSM Model

FSM - Finite State Machine - or Mealy Machine is 5-tuple

$$
M=(S, I, O, \delta, \lambda)
$$

finite set of states
finite set of inputs
finite set of outputs
$\delta: S x I \rightarrow S$
$\lambda: \mathrm{SxI} \rightarrow \mathrm{O}$
transfer function
output function

## State Machine : FSM Model

FSM - Finite State Machine - or Mealy Machine is 5-tuple

$$
\mathrm{M}=(\mathrm{S}, \mathrm{I}, \mathrm{O}, \delta, \lambda)
$$

S finite set of states
I
0
$\delta: S \times I \rightarrow S$
$\lambda: \mathrm{SxI} \rightarrow \mathrm{O}$
finite set of inputs
finite set of outputs
transfer function
output function

Natural extension to sequences :

$$
\begin{aligned}
& \delta: \mathrm{SxI}^{*} \rightarrow \mathrm{~S} \\
& \lambda: \mathrm{SxI}^{*} \rightarrow \mathrm{O}^{*}
\end{aligned}
$$

## Restrictions



## Restrictions

FSM restrictions:

## Restrictions

FSM restrictions:

- deterministic

$$
\delta: S \times I \rightarrow \mathrm{~S} \text { and } \lambda: \mathrm{S} \times \mathrm{I} \rightarrow \mathrm{O} \text { are functions }
$$

## Restrictions

FSM restrictions:

- deterministic
$\delta: \mathrm{SxI} \rightarrow \mathrm{S}$ and $\lambda: \mathrm{SxI} \rightarrow \mathrm{O}$ are functions
- completely specified
$\delta: S \times I \rightarrow S$ and $\lambda: S \times I \rightarrow O$ are complete functions
(empty output is allowed; sometimes implicit completeness )


## Restrictions

FSM restrictions:

- deterministic
$\delta: \mathrm{SxI} \rightarrow \mathrm{S}$ and $\lambda: \mathrm{SxI} \rightarrow \mathrm{O}$ are functions
- completely specified
$\delta: S \times I \rightarrow S$ and $\lambda: S \times I \rightarrow O$ are complete functions ( empty output is allowed; sometimes implicit completeness )
- strongly connected from any state any other state can be reached


## Restrictions

FSM restrictions:

- deterministic
$\delta: \mathrm{SxI} \rightarrow \mathrm{S}$ and $\lambda: \mathrm{SxI} \rightarrow \mathrm{O}$ are functions
- completely specified
$\delta: S \times I \rightarrow S$ and $\lambda: S \times I \rightarrow O$ are complete functions ( empty output is allowed; sometimes implicit completeness )
- strongly connected
from any state any other state can be reached
- reduced
there are no equivalent states


## Desired Properties

- Nice, but rare / problematic
- status messages: Assume that tester can ask implementation for its current state (reliably!!) without changing state
- reset: reliably bring SUT to initial state
- set-state: reliably bring SUT to any given state



## FSM Transition Testing

## FSM Transition Testing

- Make a test case for every transition in spec separately:


## FSM Transition Testing

- Make a test case for every transition in spec separately:



## FSM Transition Testing

- Make a test case for every transition in spec separately:

- Test transition :

1. Go to state S1
2. Apply input a?
3. Check output x!
4. Verify state S2 (optionally)

## FSM Transition Testing

- Make a test case for every transition in spec separately:

- Test transition :

1. Go to state S1
2. Apply input a?
3. Check output x!
4. Verify state S2 (optionally)

- Test purpose: "Test whether the system, when in state S1, produces output x! on input a? and goes to state S2"


## Coffee Machine FSM Model



## Transition Testing -1

## Transition Testing -1



## Transition Testing -1

-To test token? / coin! :
go to state 5 : reset . set-state 5
give input token? check output coin! verify state: send status? check status=10


## Transition Testing -1

-To test token? / coin! :
go to state 5 : reset . set-state 5
give input token? check output coin! verify state: send status? check status=10


Test case: set-state 5/* - token? / coin! - status? / 10!

## Transition Testing -1

-To test token? / coin! :
go to state 5 : reset . set-state 5
give input token? check output coin! verify state: send status? check status=10


Test case: set-state $5 /$ * - token? / coin! - status? / 10! a test case per state per input event: total length 4 * |S| * | | |

## FSM Transition Tour

## FSM Transition Tour

- Make Transition Tour that covers every transition (in spec)


## FSM Transition Tour

- Make Transition Tour that covers every transition (in spec)



## FSM Transition Tour

- Make Transition Tour that covers every transition (in spec)



## FSM Transition Tour

- Make Transition Tour that covers every transition (in spec)


Test input sequence :
reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coff

## FSM Transition Tour

- Make Transition Tour that covers every transition (in spec)


Test input sequence :
reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coff


+ check exnected outnuts and taroet state bv status messaoe


## Transition Testing -1

## Transition Testing -1

- Go to state S5:


## Transition Testing -1

- Go to state S5:
- No Set-state property???


## Transition Testing -1

- Go to state S 5 :
- No Set-state property???
- use reset property if available


## Transition Testing -1

- Go to state S5:
- No Set-state property???
- use reset property if available
- go from S0 to S5
( always possible because of determinism and completeness )


## Transition Testing -1

- Go to state S5:
- No Set-state property???
- use reset property if available
- go from S0 to S5
( always possible because of determinism and completeness )
- or:


## Transition Testing -1

- Go to state S5:
- No Set-state property???
- use reset property if available
- go from S0 to S5
( always possible because of determinism and completeness )
- or:
- synchronizing sequence brings machine to particular known state, say S0, from any state


## Transition Testing -1

- Go to state S5:
- No Set-state property???
- use reset property if available
- go from S0 to S5
( always possible because of determinism and completeness )
- or:
- synchronizing sequence brings machine to particular known state, say S0, from any state
- ( but synchronizing sequence may not exist )


## Transition Testing -1

- Go to state S5:
- No Set-state property???
- use reset property if available
- go from S0 to S5
( always possible because of determinism and completeness )
- or:
- synchronizing sequence brings machine to particular known state, say S0, from any state
- ( but synchronizing sequence may not exist )
- A preset homing sequence is an input sequence $x$ whose output on x (applied in any state) uniquely identifies the reached state after x !


## Transition Testing -1

## token? coffee?

To test token? / coin! : go to state 5 by : token? coffee? coin?

## Transition Testing -1

synchronizing sequence : token? coffee?

To test token? / coin! : go to state 5 by : token? coffee? coin?

## Transition Testing -1

synchronizing sequence : token? coffee?


To test token? / coin! : go to state 5 by : token? coffee? coin?

## Transition Testing -1

synchronizing sequence : token? coffee?


To test token? / coin! : go to state 5 by : token? coffee? coin?

## Transition Testing -1

synchronizing sequence : token? coffee?


To test token? / coin! : go to state 5 by : token? coffee? coin?

## Transition Testing -1

synchronizing sequence : token? coffee?


To test token? / coin! : go to state 5 by : token? coffee? coin?

## Transition Testing -1

synchronizing sequence : token? coffee?


To test token? / coin! : go to state 5 by : token? coffee? coin?

Transition Testing -2,3

## Transition Testing -2,3



## Transition Testing -2,3

-To test token? / coin! :

1. go to state 5 by : token? coffee? coin?
2. give input token?
3. check output coin!
4. verify that machine is in state 10


Transition Testing-4

## Transition Testing-4

- No Status Messages??


## Transition Testing-4

- No Status Messages??
- State identification: What state am I in??


## Transition Testing-4

- No Status Messages??
- State identification: What state am I in??
- State verification : Am I in state s?
- Apply sequence of inputs in the current state of the FSM such that from the outputs we can
- identify that state where we started; or
- verify that we were in a particular start state
- Different kinds of sequences
- UIO sequences (Unique Input Output sequence, SIOS)
- Distinguishing sequence (DS )
- W - set ( characterizing set of sequences )
- UIOv
- SUIO
- MUIO

Transition Testing-4

## Transition Testing-4

State check :

## Transition Testing-4

## State check :

- UIO sequences (verification)


## Transition Testing-4

## State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states :

$$
\text { for all } t \neq s: \lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)
$$

## Transition Testing-4

State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states : for all $t \neq s: \lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)$
- each state has its own UIO sequence


## Transition Testing-4

State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states : for all $t \neq s$ : $\lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)$
- each state has its own UIO sequence
- UIO sequences may not exist, is P-SPACE complete


## Transition Testing-4

State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states : for all $t \neq s$ : $\lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)$
- each state has its own UIO sequence
- UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)


## Transition Testing-4

State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states : for all $t \neq s$ : $\lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)$
- each state has its own UIO sequence
- UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
- sequence $x$ that produces different output for every state : for all pairs $t, s$ with $t \neq s: \lambda(s, x) \neq \lambda(t, x)$


## Transition Testing-4

State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states : for all $t \neq s$ : $\lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)$
- each state has its own UIO sequence
- UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
- sequence $x$ that produces different output for every state : for all pairs $t, s$ with $t \neq s: \lambda(s, x) \neq \lambda(t, x)$
- a distinguishing sequence may not exist


## Transition Testing-4

State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states :

$$
\text { for all } t \neq s: \lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)
$$

- each state has its own UIO sequence
- UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
- sequence $x$ that produces different output for every state : for all pairs $t, s$ with $t \neq s: \lambda(s, x) \neq \lambda(t, x)$
- a distinguishing sequence may not exist
- Characterizing Sequences (W - set of sequences) (identification)


## Transition Testing-4

State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states :

$$
\text { for all } t \neq s: \lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)
$$

- each state has its own UIO sequence
- UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
- sequence $x$ that produces different output for every state : for all pairs $t, s$ with $t \neq s: \lambda(s, x) \neq \lambda(t, x)$
- a distinguishing sequence may not exist
- Characterizing Sequences (W - set of sequences) (identification)
- set of sequences $W$ which can distinguish any pair of states : for all pairs $t \neq s$ there is $x_{s, t} \in W: \lambda\left(s, x_{s, t}\right) \neq \lambda\left(t, x_{s, t}\right)$


## Transition Testing-4

State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states :

$$
\text { for all } t \neq s: \lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)
$$

- each state has its own UIO sequence
- UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
- sequence $x$ that produces different output for every state : for all pairs $t, s$ with $t \neq s: \lambda(s, x) \neq \lambda(t, x)$
- a distinguishing sequence may not exist
- Characterizing Sequences (W - set of sequences) (identification)
- set of sequences $W$ which can distinguish any pair of states : for all pairs $t \neq s$ there is $x_{s, t} \in W: \lambda\left(s, x_{s, t}\right) \neq \lambda\left(t, x_{s, t}\right)$
- W - set always exists for reduced FSM


## Transition Testing-4

State check :

- UIO sequences (verification)
- sequence $x_{s}$ that distinguishes state $s$ from all other states :

$$
\text { for all } t \neq s: \lambda\left(s, x_{s}\right) \neq \lambda\left(t, x_{s}\right)
$$

- each state has its own UIO sequence
- UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
- sequence $x$ that produces different output for every state : for all pairs $t, s$ with $t \neq s: \lambda(s, x) \neq \lambda(t, x)$
- a distinguishing sequence may not exist
- Characterizing Sequences (W - set of sequences) (identification)
- set of sequences $W$ which can distinguish any pair of states : for all pairs $t \neq s$ there is $x_{s, t} \in W: \lambda\left(s, x_{s, t}\right) \neq \lambda\left(t, x_{s, t}\right)$
- W - set always exists for reduced FSM
- Lenath $0(\mathrm{~V}$ (3)


## Transition Testing-4: UIO

## Transition Testing-4: UIO

UIO sequences

## Transition Testing-4: UIO

UIO sequences


## Transition Testing-4: UIO

UIO sequences

state 0 :
state 5 :
state 10 :
coin?/- coffee? /-
token? / coin!
coffee? / coffee!

## Transition Testing-4: DS

## Transition Testing-4: DS

DS sequence

## Transition Testing-4: DS

DS sequence


## Transition Testing-4: DS

DS sequence


DS sequence : token? output state 0 : output state 5 : coin! output state 10 : token!

## Transition Testing -4 done

## Transition Testing -4 done



## Transition Testing -4 done

-To test token? / coin! :
go to state 5 : token? coffee? coin?
give input token? check output coin!
Apply UIO of state 10 : coffee? / coffee!


## Transition Testing -4 done

-To test token? / coin! :
go to state 5 : token? coffee? coin?
give input token? check output coin!
Apply UIO of state 10 : coffee? / coffee!


Test case : token? /* coffee? / * coin? / - token? / coin! coffee? / coffee!

## Transition Testing - done

## Transition Testing - done



## Transition Testing - done



- 9 transitions / test cases for coffee machine
- if end-state of one corresponds with start-state of next then concatenate
- different ways to optimize and remove overlapping / redundant parts
- there are (academic) tools to support this


## FSM Transition Testing

## FSM Transition Testing

- Test transition :
- Go to state S1
- Apply input a?
- Check output x!
- Verify state S2


## FSM Transition Testing

- Test transition :
- Go to state S1
- Apply input a?
- Check output x !
- Verify state S2
- Checks every output fault and transfer fault (to existing state)


## FSM Transition Testing

- Test transition :
- Go to state S1
- Apply input a?
- Check output x!
- Verify state S2
- Checks every output fault and transfer fault (to existing state)
- If we assume that
the number of states of the implementation machine $\mathrm{M}_{1}$
is less than or equal to
the number of states of the specification machine to $\mathrm{M}_{\mathrm{s}}$.
then testing all transitions in this way leads to equivalence of reduced machines, i.e., complete conformance


## FSM Transition Testing

- Test transition :
- Go to state S1
- Apply input a?
- Check output x!
- Verify state S2
- Checks every output fault and transfer fault (to existing state)
- If we assume that
the number of states of the implementation machine $\mathrm{M}_{1}$
is less than or equal to
the number of states of the specification machine to $\mathrm{M}_{\mathrm{s}}$.
then testing all transitions in this way leads to equivalence of reduced machines, i.e., complete conformance
- If not: exoonential arowth in test lenath in number of extra states.


## State Coverage

## State Coverage

- Make State Tour that covers every state (in spec!)


## State Coverage

- Make State Tour that covers every state (in spec!)



## State Coverage

- Make State Tour that covers every state (in spec!)



## State Coverage

- Make State Tour that covers every state (in spec!)


Test sequence : coin? token? coffee?

## Transition Coverage

## Transition Coverage

- Make Transition Tour that covers every transition (in spec)


## Transition Coverage

- Make Transition Tour that covers every transition (in spec)



## Transition Coverage

- Make Transition Tour that covers every transition (in spec)



## Transition Coverage

- Make Transition Tour that covers every transition (in spec)


Test input sequence :
reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coff

## FSM Testing vs. LTS Testing

## FSM Testing vs. LTS Testing

- FSM based is good if IUT is implemented as FSM with known (limited) number of states.
- FSM has "more intuitive" theory
- FSM test suite is complete
-- but only w.r.t. assumption on number of states
- FSM test theory has been around for a number of years


## FSM Testing vs. LTS Testing

- FSM based is good if IUT is implemented as FSM with known (limited) number of states.
- FSM has "more intuitive" theory
- FSM test suite is complete
-- but only w.r.t. assumption on number of states
- FSM test theory has been around for a number of years
- Restrictions on FSM:
- deterministic
- completeness


## FSM Testing vs. LTS Testing

- FSM based is good if IUT is implemented as FSM with known (limited) number of states.
- FSM has "more intuitive" theory
- FSM test suite is complete
-- but only w.r.t. assumption on number of states
- FSM test theory has been around for a number of years
- Restrictions on FSM:
- deterministic
- completeness
- Not good for an abstract design model or complex IMPs
- FSM has always alternation between input and output
- Difficult to specify interleaving in FSM
- FSM is not compositional
- IMP: Hardware, OS, Application Software: Number of states???


## The Cruise Controller


engineOff, engineOn, acc, brake on, off, resume

## Controller

## CruiseControl

enableControl, disableControl, recordSpeed

SpeedControl
setThrottle

speed

## Engine

## END

