
FSM-test generation

Brian Nielsen
bnielsen@cs.auc.dk

Department of Computer Science,
Aalborg University, Denmark

C SS
1010111011010101
1011010101110111

Menu
• Review of basic definitions and

fundamental results
• Classical Deterministic Untimed (very)

finite FSMs
• Conformance Testing with FSMs

• Transition Testing
• Synchronizing sequences
• State identification and verification
• State and transition covering sequences

Finite State Machine (Mealy)
q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q1,q2,q3}
Initial state = q1
Transitions= {

(q1, coin, -, q2),
(q2, coin, -, q3),
(q3, cof-but, cof, q1),
(q3, tea-but, tea, q1)
}

q1teatea-butq3

q1cofcof-butq3

q3-coinq2

q2-coinq1

next
state

outputinputcurrent
state

effectcondition

Sample run:

coin/ - coin/- coin/ -cof-but / cof

coin/ -

q1 q2 q3 q1

q2
cof-but / cof q1q3

Finite State Machine (Moore)
q1

q2

q3

coin

tea-butcof-but q4selecttea-butq3

q1cofcup-takenq5

q1teacup-takenq4

q5selectcof-butq3

q3need1coinq2

q2need2coinq1

next
state

Activityinputcurrent
state

effectcondition

q4q5

coin

cup-taken

teacof

cup-taken

select

need1

need2

Input sequence: coin.coin.cof-but.coin.coin.cof-but
Output sequence: need2.need1.select.cof. need2.need1.select.cof

need2=display shows “insert two coins”

IO-FSM

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q1,q2,q3}
Initial state = q1
Transitions= {

(q1, coin, q2),
(q2, coin, q3),
(q3, cof-but, q5),
(q3, tea-but, q4),
(q4, tea, q1),
(q5, cof, q1)
}

q4tea-but!q3

q1cof?q4

q1tea!q5

q5cof-but!q3

q3coin?q2

q2coin?q1

next stateactioncurrent
state

effectcondition

Sample run:

coin? coin? cofcof-but?

coin

q1 q2 q3 q5

cof q1q3

action trace: coin?.coin?.cof!-coin?.coin?.cof!
input sequence: coin.coin.coin.coin
Output sequence: cof.cof

q1

q2

q3

coin?

tea-but?cof-but?
q4q5

coin?

cof! tea!

cof-but? q5
coin?q1 q2

Fully Specified FSM

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

q2-tea-butq2

q2-cof-butq2

q1-tea-butq1

q1teatea-butq3

q3coincoinq3

q1-cof-butq1

q1cofcof-butq3

q3-coinq2

q2-coinq1

next
state

outputinputcurrent
state

effectcondition

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -

FSM as program 1
enum currentState {q1,q2,q3};
enum input {coin, cof_but,tea_but};
int nextStateTable[noStates][noInputs] = {

q2,q1,q1,
q3,q2,q2,
q3,q1,q1 };

int outputTable[noStates][noInputs] = {
0,0,0,
0,0,0,
coin,cof,tea};

While(Input=waitForInput()) {
OUTPUT(outputTable[currentState,input])
currentState=nextStateTable[currentState,input];

}

FSM as program 2
enum currentState {q1,q2,q3};
enum input {coin,cof,tea_but,cof_but};

While(input=waitForInput){
Switch(currentState){
case q1: {

switch (input) {
case coin: currentState=q2; break;
case cuf_but:
case tea_but: break;
default: ERROR(”Unexpected Input”);
}

break;
case q3: {

switch(input) {
case cof_buf: {currentState=q3;

OUTPUT(cof);
break;}

…
default: ERROR(”unknown currentState}

Spontaneous Transitions
q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

q4--q3

q1teatea-butq3

q1-fixq4

q1cofcof-butq3

q3-coinq2

q2-coinq1

next
state

outputinputcurrent
state

effectcondition

q4

fix / -

cof-but / -
tea-but / -
coin / -

- / -

alias internal transitions alias unobservable transisions

Non-deterministic FSM

q1cofcof-butq3

q1-coinq1

q1moccacof-butq3

q1 teatea-butq3

q3-coinq2

q2-coinq1

next
state

outputinputcurrent
state

effectcondition

q1

q2

q3

coin / -
tea-but / teacof-but / cof

coin / -

coin / -

cof-but / mocca

Extended FSM

q1

coin / -
total++

total>=2 and cap > 1
cof-but / cof
capacity--, total:=0

•EFSM = FSMs + variables + enabling conditions + assignments
•Easier way of expressing an FSM
•Can be translated into FSM if variables have bounded domain
•State: control location+variable states: (q,total,capacity)

total>=1 and capacity > 1
tea-but / tea

capacity--, total:=0

coin / -(q1,0,10) (q1,1,10) coin / - (q1,2,10) cof-but / cof (q1,0,9)

Concepts
• Two states s and t are (language)

equivalent iff
• s and t accepts same language
• has same traces: tr(s) = tr(t)

• Two Machines M0 and M1 are
equivalent iff initial states are equivalent

• A minimized / reduced M is one that has
no equivalent states
• for no two states s,t, s!=t, s equivalent t

Fundamental Results

• Every FSM may be determinized accepting the
same language (potential explosion in size).

• For each FSM there exist a language-equivalent
minimal deterministic FSM.

• FSM’s are closed under ∩ and ∪

• FSM’s may be described as regular expressions
(and vise versa)

Conformance Testing

Given a specification FSM MS

an (unknown, black box) implementation FSM MI

determine whether MI conforms to MS.

i.e., MI behaves in accordance with MS

i.e., whether outputs of MI are the same as of MS

i.e., whether the reduced MI is equivalent to MS

SUT
FSM MI

TesterReference
FSM Ms

test
sequence

Possible Errors
q1

q2

q3

coin / -
tea-but / vodka

cof-but / -

coin / -

•output fault

•extra or missing states

•transition fault
•to other state
•to new state

q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

q4

coin / -

State Machine : FSM Model

State Machine : FSM Model
FSM - Finite State Machine - or Mealy Machine is 5-tuple

State Machine : FSM Model
FSM - Finite State Machine - or Mealy Machine is 5-tuple

M = (S, I, O, δ, λ)

State Machine : FSM Model
FSM - Finite State Machine - or Mealy Machine is 5-tuple

M = (S, I, O, δ, λ)

S finite set of states

State Machine : FSM Model
FSM - Finite State Machine - or Mealy Machine is 5-tuple

M = (S, I, O, δ, λ)

S finite set of states

I finite set of inputs

State Machine : FSM Model
FSM - Finite State Machine - or Mealy Machine is 5-tuple

M = (S, I, O, δ, λ)

S finite set of states

I finite set of inputs

O finite set of outputs

State Machine : FSM Model
FSM - Finite State Machine - or Mealy Machine is 5-tuple

M = (S, I, O, δ, λ)

S finite set of states

I finite set of inputs

O finite set of outputs

δ : S x I → S transfer function

State Machine : FSM Model
FSM - Finite State Machine - or Mealy Machine is 5-tuple

M = (S, I, O, δ, λ)

S finite set of states

I finite set of inputs

O finite set of outputs

δ : S x I → S transfer function

λ : S x I → O output function

State Machine : FSM Model
FSM - Finite State Machine - or Mealy Machine is 5-tuple

M = (S, I, O, δ, λ)

S finite set of states

I finite set of inputs

O finite set of outputs

δ : S x I → S transfer function

λ : S x I → O output function

Natural extension to sequences : δ : S x I* → S
λ : S x I* → O*

Restrictions

Restrictions
FSM restrictions:

Restrictions
FSM restrictions:

• deterministic

δ : S x I → S and λ : S x I → O are functions

Restrictions
FSM restrictions:

• deterministic

δ : S x I → S and λ : S x I → O are functions

• completely specified

δ : S x I → S and λ : S x I → O are complete functions

(empty output is allowed; sometimes implicit completeness)

Restrictions
FSM restrictions:

• deterministic

δ : S x I → S and λ : S x I → O are functions

• completely specified

δ : S x I → S and λ : S x I → O are complete functions

(empty output is allowed; sometimes implicit completeness)

• strongly connected

from any state any other state can be reached

Restrictions
FSM restrictions:

• deterministic

δ : S x I → S and λ : S x I → O are functions

• completely specified

δ : S x I → S and λ : S x I → O are complete functions

(empty output is allowed; sometimes implicit completeness)

• strongly connected

from any state any other state can be reached

• reduced

there are no equivalent states

Desired Properties
• Nice, but rare / problematic

• status messages: Assume that tester can ask
implementation for its current state (reliably!!)
without changing state

• reset: reliably bring SUT to initial state
• set-state: reliably bring SUT to any given state

SUT
FSM MI

status?

currentState=S10!

reset?

set-state S10?

FSM Transition Testing

FSM Transition Testing
• Make a test case for every transition in spec separately:

FSM Transition Testing
• Make a test case for every transition in spec separately:

S1 S2a? / x!

FSM Transition Testing
• Make a test case for every transition in spec separately:

S1 S2a? / x!

• Test transition :
1. Go to state S1
2. Apply input a?
3. Check output x!
4. Verify state S2 (optionally)

FSM Transition Testing
• Make a test case for every transition in spec separately:

S1 S2a? / x!

• Test transition :
1. Go to state S1
2. Apply input a?
3. Check output x!
4. Verify state S2 (optionally)

• Test purpose: “Test whether the system, when in state S1,
produces output x! on input a? and goes to state S2”

Coffee Machine FSM Model

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Transition Testing –1

Transition Testing –1

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

Transition Testing –1

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

•To test token? / coin! :
go to state 5 : reset . set-state 5
give input token? check output coin!
verify state: send status? check status=10

Transition Testing –1

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

•To test token? / coin! :
go to state 5 : reset . set-state 5
give input token? check output coin!
verify state: send status? check status=10

Test case : set-state 5/ * - token? / coin! - status? / 10!

Transition Testing –1

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

•To test token? / coin! :
go to state 5 : reset . set-state 5
give input token? check output coin!
verify state: send status? check status=10

Test case : set-state 5/ * - token? / coin! - status? / 10!

a test case per state per input event: total length 4 * |S| * | I |

FSM Transition Tour

FSM Transition Tour
• Make Transition Tour that covers every transition (in spec)

FSM Transition Tour
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

FSM Transition Tour
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

FSM Transition Tour
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!
Test input sequence :

reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coffee?

FSM Transition Tour
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!
Test input sequence :

reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coffee?

+ check expected outputs and target state by status message

Transition Testing -1

Transition Testing -1
• Go to state S5 :

Transition Testing -1
• Go to state S5 :

• No Set-state property???

Transition Testing -1
• Go to state S5 :

• No Set-state property???
• use reset property if available

Transition Testing -1
• Go to state S5 :

• No Set-state property???
• use reset property if available

• go from S0 to S5
(always possible because of determinism and completeness)

Transition Testing -1
• Go to state S5 :

• No Set-state property???
• use reset property if available

• go from S0 to S5
(always possible because of determinism and completeness)

• or:

Transition Testing -1
• Go to state S5 :

• No Set-state property???
• use reset property if available

• go from S0 to S5
(always possible because of determinism and completeness)

• or:

• synchronizing sequence brings machine to particular known state,
say S0, from any state

Transition Testing -1
• Go to state S5 :

• No Set-state property???
• use reset property if available

• go from S0 to S5
(always possible because of determinism and completeness)

• or:

• synchronizing sequence brings machine to particular known state,
say S0, from any state

• (but synchronizing sequence may not exist)

Transition Testing -1
• Go to state S5 :

• No Set-state property???
• use reset property if available

• go from S0 to S5
(always possible because of determinism and completeness)

• or:

• synchronizing sequence brings machine to particular known state,
say S0, from any state

• (but synchronizing sequence may not exist)
• A preset homing sequence is an input sequence x whose output on

x (applied in any state) uniquely identifies the reached state after x!

Transition Testing -1
token? coffee?

To test token? / coin! : go to state 5 by : token? coffee? coin?

Transition Testing -1
synchronizing sequence : token? coffee?

To test token? / coin! : go to state 5 by : token? coffee? coin?

Transition Testing -1
synchronizing sequence :

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

token? coffee?

To test token? / coin! : go to state 5 by : token? coffee? coin?

Transition Testing -1
synchronizing sequence :

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

token? coffee?

To test token? / coin! : go to state 5 by : token? coffee? coin?

Transition Testing -1
synchronizing sequence :

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

coffee? / -

token? coffee?

To test token? / coin! : go to state 5 by : token? coffee? coin?

Transition Testing -1
synchronizing sequence :

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -
coffee? / -

token? / token!

token? coffee?

To test token? / coin! : go to state 5 by : token? coffee? coin?

Transition Testing -1
synchronizing sequence :

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

token? coffee?

To test token? / coin! : go to state 5 by : token? coffee? coin?

Transition Testing –2,3

Transition Testing –2,3

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

Transition Testing –2,3

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

•To test token? / coin! :
1. go to state 5 by : token? coffee? coin?
2. give input token?
3. check output coin!
4. verify that machine is in state 10

Transition Testing-4

Transition Testing-4
• No Status Messages??

Transition Testing-4
• No Status Messages??

• State identification: What state am I in??

Transition Testing-4
• No Status Messages??

• State identification: What state am I in??

• State verification : Am I in state s?
• Apply sequence of inputs in the current state of the FSM

such that from the outputs we can
• identify that state where we started; or

• verify that we were in a particular start state

• Different kinds of sequences
• UIO sequences (Unique Input Output sequence, SIOS)

• Distinguishing sequence (DS)

• W - set (characterizing set of sequences)

• UIOv

• SUIO

• MUIO

• Overlapping UIO

Transition Testing-4

Transition Testing-4
State check :

Transition Testing-4
State check :
• UIO sequences (verification)

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

• each state has its own UIO sequence

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

• each state has its own UIO sequence
• UIO sequences may not exist, is P-SPACE complete

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

• each state has its own UIO sequence
• UIO sequences may not exist, is P-SPACE complete

• Distinguishing sequence (identification)

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

• each state has its own UIO sequence
• UIO sequences may not exist, is P-SPACE complete

• Distinguishing sequence (identification)
• sequence x that produces different output for every state :

for all pairs t, s with t ≠ s : λ (s, x) ≠ λ (t, x)

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

• each state has its own UIO sequence
• UIO sequences may not exist, is P-SPACE complete

• Distinguishing sequence (identification)
• sequence x that produces different output for every state :

for all pairs t, s with t ≠ s : λ (s, x) ≠ λ (t, x)
• a distinguishing sequence may not exist

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

• each state has its own UIO sequence
• UIO sequences may not exist, is P-SPACE complete

• Distinguishing sequence (identification)
• sequence x that produces different output for every state :

for all pairs t, s with t ≠ s : λ (s, x) ≠ λ (t, x)
• a distinguishing sequence may not exist

• Characterizing Sequences (W - set of sequences) (identification)

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

• each state has its own UIO sequence
• UIO sequences may not exist, is P-SPACE complete

• Distinguishing sequence (identification)
• sequence x that produces different output for every state :

for all pairs t, s with t ≠ s : λ (s, x) ≠ λ (t, x)
• a distinguishing sequence may not exist

• Characterizing Sequences (W - set of sequences) (identification)
• set of sequences W which can distinguish any pair of states :

for all pairs t ≠ s there is xs,t ∈ W : λ (s, xs,t) ≠ λ (t, xs,t)

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

• each state has its own UIO sequence
• UIO sequences may not exist, is P-SPACE complete

• Distinguishing sequence (identification)
• sequence x that produces different output for every state :

for all pairs t, s with t ≠ s : λ (s, x) ≠ λ (t, x)
• a distinguishing sequence may not exist

• Characterizing Sequences (W - set of sequences) (identification)
• set of sequences W which can distinguish any pair of states :

for all pairs t ≠ s there is xs,t ∈ W : λ (s, xs,t) ≠ λ (t, xs,t)
• W - set always exists for reduced FSM

Transition Testing-4
State check :
• UIO sequences (verification)

• sequence xs that distinguishes state s from all other states :
for all t ≠ s : λ (s, x s) ≠ λ (t, xs)

• each state has its own UIO sequence
• UIO sequences may not exist, is P-SPACE complete

• Distinguishing sequence (identification)
• sequence x that produces different output for every state :

for all pairs t, s with t ≠ s : λ (s, x) ≠ λ (t, x)
• a distinguishing sequence may not exist

• Characterizing Sequences (W - set of sequences) (identification)
• set of sequences W which can distinguish any pair of states :

for all pairs t ≠ s there is xs,t ∈ W : λ (s, xs,t) ≠ λ (t, xs,t)
• W - set always exists for reduced FSM
• Length O(VS3)

Transition Testing-4: UIO

Transition Testing-4: UIO
UIO sequences

Transition Testing-4: UIO
UIO sequences

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Transition Testing-4: UIO
UIO sequences

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

state 0 : coin? / - coffee? / -
state 5 : token? / coin!
state 10 : coffee? / coffee!

Transition Testing-4: DS

Transition Testing-4: DS
DS sequence

Transition Testing-4: DS
DS sequence

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Transition Testing-4: DS
DS sequence

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

DS sequence : token? output state 0 : -
output state 5 : coin!
output state 10 : token!

Transition Testing –4 done

Transition Testing –4 done

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

Transition Testing –4 done

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

•To test token? / coin! :
go to state 5 : token? coffee? coin?
give input token? check output coin!
Apply UIO of state 10 : coffee? / coffee!

Transition Testing –4 done

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token!

•To test token? / coin! :
go to state 5 : token? coffee? coin?
give input token? check output coin!
Apply UIO of state 10 : coffee? / coffee!

Test case : token? / * coffee? / * coin? / - token? / coin! coffee? / coffee!

Transition Testing - done

Transition Testing - done

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Transition Testing - done

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

- 9 transitions / test cases for coffee machine

- if end-state of one corresponds with start-state of next then concatenate

- different ways to optimize and remove overlapping / redundant parts

- there are (academic) tools to support this

FSM Transition Testing

FSM Transition Testing
• Test transition :

• Go to state S1
• Apply input a?
• Check output x!
• Verify state S2

FSM Transition Testing
• Test transition :

• Go to state S1
• Apply input a?
• Check output x!
• Verify state S2

• Checks every output fault and transfer fault (to existing state)

FSM Transition Testing
• Test transition :

• Go to state S1
• Apply input a?
• Check output x!
• Verify state S2

• Checks every output fault and transfer fault (to existing state)

• If we assume that
the number of states of the implementation machine MI

is less than or equal to
the number of states of the specification machine to MS.

then testing all transitions in this way
leads to equivalence of reduced machines,
i.e., complete conformance

FSM Transition Testing
• Test transition :

• Go to state S1
• Apply input a?
• Check output x!
• Verify state S2

• Checks every output fault and transfer fault (to existing state)

• If we assume that
the number of states of the implementation machine MI

is less than or equal to
the number of states of the specification machine to MS.

then testing all transitions in this way
leads to equivalence of reduced machines,
i.e., complete conformance

• If not: exponential growth in test length in number of extra states.

State Coverage

State Coverage
• Make State Tour that covers every state (in spec!)

State Coverage
• Make State Tour that covers every state (in spec!)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

State Coverage
• Make State Tour that covers every state (in spec!)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

State Coverage
• Make State Tour that covers every state (in spec!)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Test sequence : coin? token? coffee?

Transition Coverage

Transition Coverage
• Make Transition Tour that covers every transition (in spec)

Transition Coverage
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Transition Coverage
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!

Transition Coverage
• Make Transition Tour that covers every transition (in spec)

0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token!
Test input sequence :

reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coffee?

FSM Testing vs. LTS Testing

FSM Testing vs. LTS Testing
• FSM based is good if IUT is implemented as FSM with known (limited)

number of states.
• FSM has “more intuitive” theory

• FSM test suite is complete
-- but only w.r.t. assumption on number of states

• FSM test theory has been around for a number of years

FSM Testing vs. LTS Testing
• FSM based is good if IUT is implemented as FSM with known (limited)

number of states.
• FSM has “more intuitive” theory

• FSM test suite is complete
-- but only w.r.t. assumption on number of states

• FSM test theory has been around for a number of years

• Restrictions on FSM:
• deterministic

• completeness

FSM Testing vs. LTS Testing
• FSM based is good if IUT is implemented as FSM with known (limited)

number of states.
• FSM has “more intuitive” theory

• FSM test suite is complete
-- but only w.r.t. assumption on number of states

• FSM test theory has been around for a number of years

• Restrictions on FSM:
• deterministic

• completeness

• Not good for an abstract design model or complex IMPs
• FSM has always alternation between input and output

• Difficult to specify interleaving in FSM

• FSM is not compositional

• IMP: Hardware, OS, Application Software: Number of states???

The Cruise Controller

Engine

User

Controller

SpeedControl

CruiseControl

speedsetThrottle

engineOff, engineOn, acc, brake
on, off, resume

enableControl,
disableControl, recordSpeed

END

