FSM-test generation

Brian Nielsen bnielsen@cs.auc.dk Department of Computer Science, Aalborg University, Denmark

Menu

- Review of basic definitions and fundamental results
- Classical Deterministic Untimed (very) finite FSMs
- Conformance Testing with FSMs
 - Transition Testing
 - Synchronizing sequences
 - State identification and verification
 - State and transition covering sequences

Finite State Machine (Mealy)

Inputs = {cof-but, tea-but, coin} Outputs = {cof,tea} States: { q_1,q_2,q_3 } Initial state = q_1 Transitions= { (q_1 , coin, -, q_2), (q_2 , coin, -, q_3), (q_3 , cof-but, cof, q_1), (q_3 , tea-but, tea, q_1)

condition		effect	
current state	input	output	next state
q ₁	coin	-	q ₂
q ₂	coin	-	q ₃
q ₃	cof-but	cof	q ₁
q ₃	tea-but	tea	q ₁

Sample run:

Finite State Machine (Moore)

Input sequence: coin.coin.cof-but.coin.coin.cof-but Output sequence: need2.need1.select.cof. need2.need1.select.cof

need2=display shows "insert two coins"

IO-FSM

Inputs = {cof-but, tea-but, coin} Outputs = {cof,tea} States: { q_1,q_2,q_3 } Initial state = q_1 Transitions= { (q_1 , coin, q_2), (q_2 , coin, q_3), (q_3 , cof-but, q_5), (q_4 , tea, q_1), (q_2 , cof, q_3)

condition		effect	
current state	action	next state	
q ₁	coin?	q ₂	
q ₂	coin?	q ₃	
q ₃	cof-but!	q ₅	
q ₃	tea-but!	q ₄	
q ₄	cof?	q ₁	
q_5	tea!	q ₁	

Sample run:

$$q_1 \xrightarrow{\text{coin?}} q_2 \xrightarrow{\text{coin?}} q_3 \xrightarrow{\text{cof-but?}} q_5 \xrightarrow{\text{cof}}$$

 $q_1 \xrightarrow{\text{coin?}} q_2 \xrightarrow{\text{coin}} q_3 \xrightarrow{\text{cof-but?}} q_5 \xrightarrow{\text{cof}} q_5$

action trace: coin?.coin?.cof!-coin?.coin?.cof! input sequence: coin.coin.coin.coin Output sequence: cof.cof

Fully Specified FSM

condition		effect	
current state	input	output	next state
q ₁	coin	-	q ₂
q ₂	coin	-	q ₃
q ₃	cof-but	cof	q ₁
q ₃	tea-but	tea	q ₁
q ₁	cof-but	-	q ₁
q ₁	tea-but	-	q ₁
q ₂	cof-but	_	q ₂
q ₂	tea-but	_	q ₂
q ₃	coin	coin	q ₃

FSM as program 1

```
enum currentState {q1,q2,q3};
enum input {coin, cof_but,tea_but};
int nextStateTable[noStates][noInputs] = {
    q2,q1,q1,
    q3,q2,q2,
    q3,q1,q1 };
```

int outputTable[noStates][noInputs] = {

```
0,0,0,
0,0,0,
coin,cof,tea};
```

```
While(Input=waitForInput()) {
   OUTPUT(outputTable[currentState,input])
   currentState=nextStateTable[currentState,input];
```

FSM as program 2

enum currentState {q1,q2,q3}; enum input {coin,cof,tea_but,cof_but};

```
While(input=waitForInput) {
  Switch(currentState) {
  case q1: {
      switch (input) {
        case coin: currentState=q2; break;
        case cuf but:
        case tea but: break;
        default: ERROR("Unexpected Input");
        }
       break;
  case q3: {
      switch(input) {
        case cof buf: {currentState=q3;
                        OUTPUT (cof);
                        break; }
```

...

Spontaneous Transitions

condition		effect	
current state	input	output	next state
q ₁	coin	-	q ₂
q ₂	coin	-	q ₃
q ₃	cof-but	cof	q ₁
q ₃	tea-but	tea	q ₁
q ₃	_	-	Q ₄
q ₄	fix	_	q ₁

alias internal transitions alias unobservable transisions

Non-deterministic FSM

condition		effect	
current state	input	output	next state
q ₁	coin	-	q ₂
q ₁	coin	-	q ₁
q ₂	coin	-	q ₃
q ₃	tea-but	tea	q ₁
q ₃	cof-but	cof	q ₁
q ₃	cof-but	mocca	q ₁

Extended FSM

•EFSM = FSMs + variables + enabling conditions + assignments
•Easier way of expressing an FSM
•Can be translated into FSM if variables have bounded domain

•State: control location+variable states: (q,total,capacity)

$$(q_1,0,10) \xrightarrow{\text{coin / -}} (q_1,1,10) \xrightarrow{\text{coin / -}} (q_1,2,10) \xrightarrow{\text{cof-but / cof}} (q_1,0,9)$$

Concepts

- Two states s and t are (language) equivalent iff
 - s and t accepts same language
 - has same traces: tr(s) = tr(t)
- Two Machines M0 and M1 are equivalent iff initial states are equivalent
- A minimized / reduced M is one that has no equivalent states
 - for no two states *s*,*t*, *s*!=*t*, *s* equivalent t

Fundamental Results

- Every FSM may be determinized accepting the same language (potential explosion in size).
- For each FSM there exist a language-equivalent *minimal* deterministic FSM.
- FSM's are closed under \cap and \cup
- FSM's may be described as regular expressions (and vise versa)

Conformance Testing

Given a specification FSM M_S an (unknown, black box) implementation FSM M_I determine whether M_I conforms to M_S.
i.e., M_I behaves in accordance with M_S
i.e., whether outputs of M_I are the same as of M_S
i.e., whether the reduced M_I is equivalent to M_S

Possible Errors

q

output fault
extra or missing states
transition fault

to other state
to new state

FSM - Finite State Machine - or Mealy Machine is 5-tuple

FSM - Finite State Machine - or Mealy Machine is 5-tuple

 $M = (S, I, O, \delta, \lambda)$

FSM - Finite State Machine - or Mealy Machine is 5-tuple

 $M = (S, I, O, \delta, \lambda)$

finite set of states

S

FSM - Finite State Machine - or Mealy Machine is 5-tuple

 $M = (S, I, O, \delta, \lambda)$

Sfinite set of statesIfinite set of inputs

FSM - Finite State Machine - or Mealy Machine is 5-tuple

 $M = (S, I, O, \delta, \lambda)$

S finite set of statesI finite set of inputsO finite set of outputs

FSM - Finite State Machine - or Mealy Machine is 5-tuple

 $M = (S, I, O, \delta, \lambda)$

Sfinite set of statesIfinite set of inputsOfinite set of outputs $\delta: S \times I \rightarrow S$ transfer function

FSM - Finite State Machine - or Mealy Machine is 5-tuple

 $M = (S, I, O, \delta, \lambda)$

Sfinite set of statesIfinite set of inputsOfinite set of outputs $\delta: S \times I \rightarrow S$ transfer function $\lambda: S \times I \rightarrow O$ output function

FSM - Finite State Machine - or Mealy Machine is 5-tuple

 $M = (S, I, O, \delta, \lambda)$

Sfinite set of statesIfinite set of inputsOfinite set of outputs $\delta: S \times I \rightarrow S$ transfer function $\lambda: S \times I \rightarrow O$ output function

Natural extension to sequences :

 $\begin{array}{rcl} \delta : & \mathsf{S} \times \mathsf{I}^* \to \mathsf{S} \\ \lambda : & \mathsf{S} \times \mathsf{I}^* \to \mathsf{O}^* \end{array}$

FSM restrictions:

FSM restrictions:

• deterministic

 δ : S x I \rightarrow S and λ : S x I \rightarrow O are *functions*

FSM restrictions:

- deterministic
 - δ : S x I \rightarrow S and λ : S x I \rightarrow O are *functions*
- completely specified

 δ : S x I \rightarrow S and λ : S x I \rightarrow O are *complete* functions

(empty output is allowed; sometimes implicit completeness)

FSM restrictions:

- deterministic
 - δ : S x I \rightarrow S and λ : S x I \rightarrow O are *functions*
- completely specified
 - δ : S x I \rightarrow S and λ : S x I \rightarrow O are *complete* functions

(empty output is allowed; sometimes implicit completeness)

strongly connected

from any state any other state can be reached

FSM restrictions:

- deterministic
 - δ : S x I \rightarrow S and λ : S x I \rightarrow O are *functions*
- completely specified
 - δ : S x I \rightarrow S and λ : S x I \rightarrow O are *complete* functions

(empty output is allowed; sometimes implicit completeness)

strongly connected

from any state any other state can be reached

• reduced

there are no equivalent states

Desired Properties

- Nice, but rare / problematic
 - status messages: Assume that tester can ask implementation for its current state (reliably!!) without changing state
 - reset: reliably bring SUT to initial state
 - set-state: reliably bring SUT to any given state

- Test transition :
 - 1. Go to state S1
 - 2. Apply input a?
 - 3. Check output x!
 - 4. Verify state S2 (optionally)

- Test transition :
 - 1. Go to state S1
 - 2. Apply input a?
 - 3. Check output x!
 - 4. Verify state S2 (optionally)
- Test purpose: "Test whether the system, when in state S1, produces output x! on input a? and goes to state S2"

Coffee Machine FSM Model

•To test token? / coin! :

go to state 5 : reset . set-state 5
give input token? check output coin!
verify state: send status? check status=10

•To test token? / coin! :

go to state 5 : reset . set-state 5
give input token? check output coin!
verify state: send status? check status=10

•To test token? / coin! :

go to state 5 : reset . set-state 5
give input token? check output coin!
verify state: send status? check status=10

• Make Transition Tour that covers every transition (in spec)

Make Transition Tour that covers every transition (in spec)

Make Transition Tour that covers every transition (in spec)

• Make Transition Tour that covers every transition (in spec)

Test input sequence :

reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coff

• Make Transition Tour that covers every transition (in spec)

• Go to state S5 :

- Go to state S5 :
- No Set-state property???

- Go to state S5 :
- No Set-state property???
 - use reset property if available

- Go to state S5 :
- No Set-state property???
 - use reset property if available
 - go from S0 to S5

(always possible because of determinism and completeness)

- Go to state S5 :
- No Set-state property???
 - use reset property if available
 - go from S0 to S5
 (always possible because of determinism and completeness)
 - or:

- Go to state S5 :
- No Set-state property???
 - use reset property if available
 - go from S0 to S5
 (always possible because of determinism and completeness)
 - or:
 - synchronizing sequence brings machine to particular known state, say S0, from any state

- Go to state S5 :
- No Set-state property???
 - use *reset property* if available
 - go from S0 to S5
 (always possible because of determinism and completeness)
 - or:
 - synchronizing sequence brings machine to particular known state, say S0, from any state
 - (but synchronizing sequence may not exist)

- Go to state S5 :
- No Set-state property???
 - use *reset property* if available
 - go from S0 to S5
 (always possible because of determinism and completeness)
 - or:
 - synchronizing sequence brings machine to particular known state, say S0, from any state
 - (but synchronizing sequence may not exist)
 - A preset homing sequence is an input sequence x whose output on x (applied in any state) uniquely identifies the reached state after x!

token? coffee?

synchronizing sequence : token? coffee?

synchronizing sequence : token? coffee?

synchronizing sequence : token? coffee?

synchronizing sequence : token? coffee?

synchronizing sequence : token? coffee?

synchronizing sequence : token? coffee?

•To test token? / coin! :

1. go to state 5 by : token? coffee? coin?

- 2. give input token?
- 3. check output coin!
- 4. verify that machine is in state 10

• No Status Messages??

- No Status Messages??
- State identification: What state am I in??

- No Status Messages??
- State identification: What state am I in??
- State verification : Am I in state s?
 - Apply sequence of inputs in the current state of the FSM such that from the outputs we can
 - identify that state where we started; or
 - verify that we were in a particular start state
 - Different kinds of sequences
 - UIO sequences (Unique Input Output sequence, SIOS)
 - Distinguishing sequence (DS)
 - W set (characterizing set of sequences)
 - UIOv
 - SUIO
 - MUIO

State check :

• UIO sequences (verification)

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)
 - each state has its own UIO sequence

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)
 - each state has its own UIO sequence
 - UIO sequences may not exist, is P-SPACE complete

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)
 - each state has its own UIO sequence
 - UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)
 - each state has its own UIO sequence
 - UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
 - sequence x that produces different output for every state : for all pairs t, s with t ≠ s: λ (s, x) ≠ λ (t, x)

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)
 - each state has its own UIO sequence
 - UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
 - sequence x that produces different output for every state : for all pairs t, s with t ≠ s: λ (s, x) ≠ λ (t, x)
 - a distinguishing sequence may not exist

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)
 - each state has its own UIO sequence
 - UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
 - sequence x that produces different output for every state : for all pairs t, s with t ≠ s : λ (s, x) ≠ λ (t, x)
 - a distinguishing sequence may not exist
- Characterizing Sequences (W set of sequences) (identification)

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)
 - each state has its own UIO sequence
 - UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
 - sequence x that produces different output for every state : for all pairs t, s with t ≠ s : λ (s, x) ≠ λ (t, x)
 - a distinguishing sequence may not exist
- Characterizing Sequences (W set of sequences) (identification)
 - set of sequences W which can distinguish any pair of states : for all pairs $t \neq s$ there is $x_{s,t} \in W$: $\lambda(s, x_{s,t}) \neq \lambda(t, x_{s,t})$

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)
 - each state has its own UIO sequence
 - UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
 - sequence x that produces different output for every state : for all pairs t, s with t ≠ s: λ (s, x) ≠ λ (t, x)
 - a distinguishing sequence may not exist
- Characterizing Sequences (W set of sequences) (identification)
 - set of sequences W which can distinguish any pair of states : for all pairs $t \neq s$ there is $x_{s,t} \in W$: $\lambda(s, x_{s,t}) \neq \lambda(t, x_{s,t})$
 - W set always exists for reduced FSM

- UIO sequences (verification)
 - sequence x_s that distinguishes state s from all other states : for all t ≠ s : λ (s, x_s) ≠ λ (t, x_s)
 - each state has its own UIO sequence
 - UIO sequences may not exist, is P-SPACE complete
- Distinguishing sequence (identification)
 - sequence x that produces different output for every state : for all pairs t, s with t ≠ s: λ (s, x) ≠ λ (t, x)
 - a distinguishing sequence may not exist
- Characterizing Sequences (W set of sequences) (identification)
 - set of sequences W which can distinguish any pair of states : for all pairs $t \neq s$ there is $x_{s,t} \in W$: $\lambda(s, x_{s,t}) \neq \lambda(t, x_{s,t})$
 - W set always exists for reduced FSM
 - Length $O(\sqrt{S^3})$

UIO sequences

DS sequence

DS sequence

DS sequence

DS sequence : token? output state 0 : output state 5 : coin! output state 10 : token!

•To test token? / coin! :

go to state 5 : token? coffee? coin?
give input token? check output coin!
Apply UIO of state 10 : coffee? / coffee!

•To test token? / coin! :

go to state 5 : token? coffee? coin?
give input token? check output coin!
Apply UIO of state 10 : coffee? / coffee!

Test case : token? / * coffee? / * coin? / - token? / coin! coffee? / coffee!

- 9 transitions / test cases for coffee machine
- if end-state of one corresponds with start-state of next then concatenate
- different ways to optimize and remove overlapping / redundant parts
- there are (academic) tools to support this

- Test transition :
 - Go to state S1
 - Apply input a?
 - Check output x!
 - Verify state S2

- Test transition :
 - Go to state S1
 - Apply input a?
 - Check output x!
 - Verify state S2
- Checks every output fault and transfer fault (to existing state)

- Test transition :
 - Go to state S1
 - Apply input a?
 - Check output x!
 - Verify state S2
- Checks every output fault and transfer fault (to existing state)
- If we assume that

the number of states of the implementation machine $M_{\rm I}$ is less than or equal to

the number of states of the specification machine to $M_{S.}$ then testing all transitions in this way

leads to equivalence of reduced machines,

i.e., complete conformance

- Test transition :
 - Go to state S1
 - Apply input a?
 - Check output x!
 - Verify state S2
- Checks every output fault and transfer fault (to existing state)
- If we assume that

the number of states of the implementation machine M_{I} is less than or equal to

the number of states of the specification machine to $M_{S.}$

then testing all transitions in this way

leads to equivalence of reduced machines,

- i.e., complete conformance
- If not: exponential growth in test length in number of extra states.

• Make State Tour that covers every state (in spec!)

• Make State Tour that covers every state (in spec!)

• Make State Tour that covers every state (in spec!)

State Coverage

• Make State Tour that covers every state (in spec!)

Test sequence : coin? token? coffee?

- Test input sequence :
- reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coff

- FSM based is good if IUT is implemented as FSM with known (limited) number of states.
 - FSM has "more intuitive" theory
 - FSM test suite is complete
 - -- but only w.r.t. assumption on number of states
 - FSM test theory has been around for a number of years

- FSM based is good if IUT is implemented as FSM with known (limited) number of states.
 - FSM has "more intuitive" theory
 - FSM test suite is complete
 - -- but only w.r.t. assumption on number of states
 - FSM test theory has been around for a number of years
- Restrictions on FSM:
 - deterministic
 - completeness

- FSM based is good if IUT is implemented as FSM with known (limited) number of states.
 - FSM has "more intuitive" theory
 - FSM test suite is complete
 - -- but only w.r.t. assumption on number of states
 - FSM test theory has been around for a number of years
- Restrictions on FSM:
 - deterministic
 - completeness
- Not good for an abstract design model or complex IMPs
 - FSM has always alternation between input and output
 - Difficult to specify interleaving in FSM
 - FSM is not compositional
 - IMP: Hardware, OS, Application Software: Number of states???

The Cruise Controller

