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Preface

This thesis investigates the applicability of techniques known from the world
of process calculi to reason about properties of object-oriented programs.

The investigation is performed upon a small object-oriented language —
The ς-calculus of Abadi and Cardelli. The investigation is twofold: First, we
investigate translations of ς-calculi into process calculi, with idea that one
should be able to show properties of ς-calculus program by showing properties
about their translation. Next, we use a labelled transition system adapted
to the ς-calculus to investigate the use of process calculi techniques directly
on the ς-calculus.

Chapters 1 to 4 contains introduction and background.
In Chapter 5 and 6 we present translations of two ς-calculi into π-calculi.

The translation of the untyped Functional ς-calculus in Chapter 5 turns out
to be insufficient. Based on our experiences in Chapter 5, we present a trans-
lation of a typed Imperative ς-calculus in Chapter 6 that looks promising.
We are able to provide simple proofs of the equivalence of different ς-calculus
objects using the translation.

In Chapter 7 and 8 we look at direct adaptations of process calculi tech-
niques to the ς-calculus. The work presented in these chapters are of a fairly
theoretical nature. In Chapter 7 we investigate the connection between the
operational and denotational semantics for a typed Functional ς-calculus.
The result is that Abadi and Cardelli’s denotational model is sound but not
complete with respect to the operational semantics. In Chapter 8 we con-
struct a modal logic for the typed Functional ς-calculus used in the previous
chapter. We construct a translation of types to a sub-logic and prove the
translation is sound and complete.

Finally, Chapter 9 contains conclusion and directions for further work.
Chapter 5 is based on a paper [HK96] written together with Hans Hüttel,

Chapter 6 is based on [KS98] written together with Davide Sangiorgi, Chap-
ter 7 is based on [AHIK97] written together with Luca Aceto, Hans Hüttel
and Anna Ingólfsdóttir and Chapter 8 is based on [AHKP97] written together
with Dan S. Andersen, Hans Hüttel og Lars H. Pedersen.
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Dansk Sammenfatning

Ræssonering om objekt orienterede programmer ved
hjælp af proces kalkyle teknikker.

Denne afhandling undersøger anvendeligheden af teknikker fra proces kalkyle
verdenen til at vise egenskaber ved objekt orienterede programmer.

Undersøgelsen sker p̊a et lille objekt orienteret sprog — Abadi og Car-
dellis ς-kalkyle. Undersøgelsen er todelt: Først undersøges oversættelser af
ς-kalkylen til proces kalkyler med det formål at ræssonere om ς-kalkyle pro-
grammer ved hjælp af oversættelsen. Dernæst bruges et mærket transitions
system tilpasset ς-kalkylen til at undersøge brugen af proces kalkyle teknikker
direkte p̊a ς-kalkylen.

Kapitlerne 1 til 4 indeholder introduktion og baggrundsstof.
I kapitlerne 5 og 6 giver vi en generel oversættelse af programmer skrevet i

ς-kalkylen til π-kalkylen. Oversættelsen af den utypede funktionelle ς-kalkyle
i kapitel 5 viser sig at være utilstækkelig. P̊a basis af erfaringerne konstrueres
en oversættelse af en typet imperativ ς-kalkyle i kapitel 6. Denne oversæt-
telse viser sig at være ret lovende, specielt s̊a giver vi eksempler p̊a hvordan
den kan bruges til p̊a relativ simpel vis at vise forskellige ς-kalkyle objekter
ækvivalente.

I kapitlerne 7 og 8 ser vi p̊a en direkte tilpasning proces kalkyle teknik-
kerne til semantikken for ς-kalkylen. Arbejdet i disse kapitler er af ret teore-
tisk karakter. I kapitel 7 undersøges sammenhængen mellem den operationelle
og denationelle semantik for en typet funktionel ς-kalkyle. Resultatet er, at
Abadi og Cardelli’s denotationelle semantik er sund, men ikke fuldstændig i
forhold til den operationelle semantik. I kapitel 8 konstrueres en modal logik
til den typede ς-kalkyle fra det forrige kapitel og sammenhængen mellem lo-
gikken og type systemet undersøges. Der konstrueres en oversættelse af typer
til en del-logik, og det vises at denne oversættelse er sund og fuldstændig.

Endeligt indeholder kapitel 9 konklusioner.
Indholdet i kapitel 5 er skrevet p̊a basis af [HK96] skrevet sammen med

Hans Hüttel, kapitel 6 p̊a [KS98] skrevet sammen med Davide Sangiorgi,
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kapitel 7 p̊a [AHIK97] skrevet sammen med Luca Aceto, Hans Hüttel og
Anna Ingólfsdóttir og kapitel 8 p̊a [AHKP97] skrevet sammen med Dan S.
Andersen, Hans Hüttel og Lars H. Pedersen.

Nøgleord og Begreber Objekt orientering, objekt kalkykler, proces kal-
kyler, ς-kalkylen, π-kalkylen, bisimulering, modal logik, semantik gennem
oversættelse, relation mellem semantikker, sammenhæng mellem logik og ty-
per.
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Chapter 1

Introduction

Object: Something material that may be perceived by the senses.
(Webster’s Dictionary).

In computer science, an object is, roughly speaking, an encapsulation of state
and behavior. Objects provide a uniform view on elements in a program;
objects can be small, for instance, representing integers, or large, representing
a file system. The use of objects has turned out to be a natural way to
structure programs and systems.

In recent years, object-oriented techniques have gained wide acceptance
in the software industry as a way to structure and develop large and complex
systems. This is manifest in the widespread use of C++ [Str91] and the large
interest in the Java programming language [GJS96]. The use of objects is not
limited to programming languages. There is also a trend towards building
distributed systems in an object-oriented manner. For instance, the two
most prominent systems for building distributed systems CORBA [OMG]
and DCOM [Mic] are both based on communicating objects.

In this thesis, we address the theoretical foundations of object-orientation,
especially the use of formal semantics for reasoning about programs. A firm
theoretical foundation of a programming language is important because it
(hopefully) provides insight into the fundamental concepts of the language
in question. A thorough understanding of the semantics of a programming
language is vital for writing correct programs in the language. First, this
understanding is needed by those implementing the compiler or interpreter
for the language. Second, when writing programs, it is important to ensure
that they are correct. This not only requires a correct specification of the
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2 1. Introduction

application that is being developed, but also requires knowledge about the
semantics of the programming constructs being used. Implicit in these two
main reasons for focusing on the semantics issues of programming languages
are the concepts of program transformation and verification. Program trans-
formation is the process of modifying a program, preferably to a more efficient
program, in such a way that the actual result of running the program remains
the same. Program transformation can happen behind the scenes performed
by the compiler or interpreter. Or, it can be performed by the programmer
implementing the application. Verification is the process of ensuring that an
implementation meets its specification. This can be done either using infor-
mal arguments or using semi-automatic or automatic tools such as theorem
provers or model checkers. Semi-automatic or automatic proofs, of course,
require that both the specification and the implementation are given in a
formal way.

Although the basic concepts in object-orientation appear to be simple,
there has been little agreement as to what constitutes the basic parts of an
object-oriented language. In fact, it is difficult to distinguish between mere
language idioms and real language concepts. This confusion can be seen by
regarding the large number of object-oriented languages each having their
own sets of features. Also when looking at specific languages there appears
to be some sort of confusion. The features included in a language can be
quite disparate and might seem to have been added in an ad hoc manner.

These problems are central to the ongoing research in the theoretical foun-
dations of object-oriented programming languages. For procedural and func-
tional languages the theoretical foundations are well-established, supporting
the design of, implementation of, and reasoning about programs written in
these languages. A similar treatment of object-oriented languages has lacked
until recently, but is now emerging. In the following section we give a short
overview of some of the theoretical work on object-orientation.

1.1 Theoretical work on object-orientation

We can divide the existing theoretical work on object-oriented languages into
three interconnected themes:

i. Semantics of object-oriented languages.

ii. Type systems for object-oriented languages.

iii. Techniques for reasoning about objects.



1.1. Theoretical work on object-orientation 3

Semantics The semantics of programming constructs in object-oriented
languages is often only described textually (for instance, C++ [Str91], Beta
[LMMPN93] and SmallTalk [GR83]). Another technique has been to describe
the language through an implementation on some sort of byte-machine (with
Java [GJS96] being the most well-known example). More formal methods,
such as denotational or operational semantics, also tend to be very low-level,
looking more like a description of an implementation.

The aforementioned methods for giving semantics to programming lan-
guages have not been entirely successful: The informal textual description
often allows several possible contradictory interpretations. The low-level for-
mal descriptions are difficult to use because of their low-level nature, but also
because they do not take types (see below) into account. The problem with
not considering types in the semantics of object-oriented languages is that
a lot of useful properties in object-oriented languages only hold in a typed
setting. The type systems of object-oriented languages are also interesting
in their own right because of their somewhat peculiar typing rules (at least
compared to type systems for functional and imperative languages).

Types In a statically typed language different syntactic entities are given a
type, and it is checked that the composition of entities follows certain typing
rules. For instance, assuming that addition only works on real numbers, it
is checked that + is only used on arguments that are given the type real. A
program is well-typed if we can check that there are no violations of the typing
rules. And a type system is sound if no type-error can occur at run-time in
a well-typed program.

The study of type systems is usually closely related to that of operational
semantics. This is often done in a two-level manner. First, the language
is given an untyped operational semantics. Secondly, the type system is
defined and proven sound with respect to the operational semantics. For
reasoning about the type system this approach is fine, but when it comes to
reason about properties of programs that rely on types it quickly becomes
cumbersome because the operational semantics is untyped, and it is therefore
difficult to do “typed reasoning” on the semantics.

1.1.1 Calculi

Instead of using operational and denotational semantics directly, the current
trend in theoretical work on object-orientation is to use some sort of calculus.
The semantics of a programming language is then given as a translation of
the programming language constructs into the calculus. If the translation is
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“well-behaved”, one can then use the calculus as a tool for reasoning about
the programming language.

A calculus can be thought of as a notation that expresses essential prop-
erties of a language or language paradigm. For instance, the (untyped) λ-cal-
culus describes computation as function application through the β-reduction
rule:

(λ(x).M)N → M{N/x}

expressing that the (nameless) function λ(x).M , when given the argument
N , will reduce to M with N taking the place of x. The untyped λ-calculus
can be equipped with different kinds of type systems that allow us to use the
calculus to reason about aspects of typed functional languages.

Various incarnations of the λ-calculus provide a firm theoretical basis for
functional programming languages. Most, if not all, aspects of functional
programming can be described through extensions of the λ-calculus.

The λ-calculus has also been used to describe object-orientation by among
other Compagnoni, Hofmann, Pierce and Turner [CP96, PT93, HP94]. This
approach can give a natural understanding of untyped objects as records of
functions, but as soon as types are considered, use of the λ-calculus gets
extremely complicated.

1.1.2 Object-calculi

The complications of using the λ-calculus as the theoretical foundation of
object-oriented languages have led to the development of so-called object
calculi, that is, calculi that are designed to express the central aspects of
object-orientation directly. We can group these calculi according to which
features they have. One way to discern the different object-calculi is to see
whether they come equipped with a type system or not. Another is to group
them according to whether they are sequential or concurrent.

Untyped sequential object-calculi are not seen very often, except as the
untyped part of a typed object-calculus. One reason for this is that the
untyped λ-calculus can account for most features of untyped objects. (One
exception is OPUS [MMS94] that is intended to account for inheritance and
encapsulation.)

In a concurrent setting, untyped object-calculi become more interesting
since the concurrency aspects themselves pose problems. One such untyped
concurrent object-calculus is Nierstrasz’ Object Calculus [Nie92], which can
be seen as a merge between the λ-calculus and the π-calculus (we will discuss
the π-calculus in detail later) plus some additional features for expressing
encapsulation.
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Of the typed sequential object-calculi, the two most noteworthy are Fisher’s
Object Calculus [Fis96] and the ς-calculus by Abadi and Cardelli [AC96].
These two calculi are closely related.

The motivations for Fisher’s Object Calculus and Abadi and Cardelli’s
ς-calculus are also the same — to investigate the type systems of object-
oriented languages. They both model objects as records of named methods
and build method activation the same way. A main difference between them
is that Fisher’s Object Calculus admits dynamic extension of objects with
new methods, whereas the ς-calculus only allows redefinition of already exist-
ing methods. This might seem like a minor difference, but it turns out that
dynamic extension of objects makes typing much more complicated. Both
calculi have already shown their ability to express a large set of features
found in object-oriented languages. In Chapter 3 we have a closer look at
the ς-calculus, since it will be our model of object-orientation throughout
this thesis.

Typed concurrent object-calculi, as the name suggests, aim at describing
features of typed concurrent object-oriented languages. The most well-known
is probably TyCO [Vas94], for which some theoretical work exist. One par-
ticular strand of work on typed concurrent object-calculi is the study of
non-uniform type-systems. A non-uniform type-system is a type-system that
captures the fact, that it might not make sense to call some methods at par-
ticular moments during program execution (for instance, it does not make
sense to call the pop method on an empty stack object). Non-uniform type-
systems are still in their infancy, and we shall in this thesis only consider
conventional (uniform) types-systems.

1.1.3 Process-calculi

Concurrent object-calculi have a lot in common with another family of calculi,
namely process-calculi and, in particular, the π-calculus.

Process-calculi have been developed to support reasoning about concur-
rent systems. Common to all process-calculi are therefore syntactic con-
structs that express parallelism and some kind of synchronization between
parallel processes. To support the reasoning about concurrent systems one
can use some notion of behavioral relation between processes or logical spec-
ification.

A prototypical process-calculus is Milner’s Calculus of Communicating
Systems (CCS) [Mil89]. We shall give a brief review of CCS, since its sim-
plicity allows an easy introduction to the basic principles behind a process-
calculus. In CCS, parallel processes (or systems) are built from simple syn-
tactic constructors including action prefixing (a.P denotes the process P
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prefixed with the action a) and parallel composition (P | Q is the process
P put in parallel with Q). The semantics of CCS is given as a labelled
transition system with labels taken from the set of actions (and coactions)
plus the special label τ . The basic rules of the operational semantics are the
following:

(Act)
−

a.P
a−−→ P

(ParL)

P
a−−→ P ′

P | Q a−−→ P ′ | Q

(Com)

P
a−−→ P ′ Q

a−−→ Q′

P | Q τ−−→ P ′ | Q′

(Act) expresses that the process a.P can do an action a and become the
process P . (ParL) says that if a process P can do an action a and by
doing so become P ′, then it is free to do so, also if it is put in parallel with
the process Q (there is of course a similar rule for the component Q of the
parallel composition). Finally, (Com) says that if P and Q can perform
complementary actions, then they have the possibility of synchronizing (or
we could say communicate) resulting in an internal transition, denoted by
the label τ .

Behavioral relations Behavioral relations relate processes according to
some criteria, usually based on a requirement that related processes must
have the same kind of observable behavior. These relations are normally
either equivalence relations or preorders. Equivalences allow us to express
that two systems are equal from the point of view of the equivalence, and
preorders usually express that one system has a more refined behavior than
the other.

Equivalences and preorders for process-calculi have been studied exten-
sively and there is a large number of them. The labelled transition semantics
allows a very elegant definition of equivalence between processes — called
bisimulation [Par81, Mil89]. A strong bisimulation is a symmetric binary re-
lation R over pairs of processes, where it holds that for all pairs (P,Q) ∈ R,
if P

a−−→ P ′ then there exists a Q′ such that Q
a−−→ Q′ and (P ′, Q′) ∈ R.

In other words two processes P and Q are bisimilar if all actions P can do
can be matched by Q and the resulting pairs of processes are again bisimilar
(and vice versa).

Not only is bisimulation an elegant way of defining equivalence; bisimula-
tion also provides a nice technique for proving two processes equivalent; that
of co-induction. To establish the bisimulation equivalence of two processes
P and Q, we simply have to come up with a relation R containing the pair
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(P, Q), and show that R meets the bisimulation criteria (by showing that
the relation is closed under transitions).

Another characteristic of process-calculi is that they often come equip-
ped with an algebraic theory. This theory allows us to prove the equivalence
of processes by applying algebraic laws instead of having to resort to the
definition of equivalence.

Behavioral relations can be used to specify properties of a parallel sys-
tem by coming up with a specification as a system and then relating the
implementation to the specification using some suitable notion of preorder
or equivalence. This way of specifying systems is not always very practical
since we must come up with one specification system covering all aspects of
the systems at a chosen level of detail. Instead it is often easier to specify the
system by having several specifications, each dealing with specific properties
of the systems.

Logical specifications One way to do this is to use a logical specification
language. For CCS, Hennesy and Milner introduced a modal logic with the
aim of giving an alternative characterization of bisimulation equivalence. The
characterization is that two processes are bisimulation equivalent if and only
if they satisfy the same set of formulae (have the same properties). Hennesy-
Milner-Logic only allows one to state finite properties of a system, but it
was later extended by Larsen [Lar90] to allow the specification of infinite
properties by adding recursion to the logic.

As a simple example of how modal logic allow us to create a loose speci-
fication, assume we want to specify that a system on reception of a coin can
return some coffee. Such a property can be specified as: X

4
= [coin]〈coffee〉X.

A system satisfying the property X should have the behavior that all obser-
vations of a coin transition can be followed by a coffee transition leading to
a system satisfying X again. ([act ]F is satisfied by a system P if for all act
transitions the resulting system satisfies F , and 〈act〉F is satisfied by P if
there exists an act transition leading to a system satisfying F .)

The property X is satisfied by the system: M
4
= coin.coffee .M , but also

by the system N
4
= coin.(coffee .N + tea .N). This is because the specification

only specifies a part of the behavior of a system.

The large number of equivalences and the rich algebraic theory for process-
calculi plus the use of logics for specifying properties of systems have at-
tracted the interest of researchers in the field of programming language se-
mantics. An early example was given in [Mil89] where Milner uses CCS to
give a semantics for a procedural concurrent language.
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CCS is a static calculus in that the communication patterns are fixed.
An offspring of CCS, the π-calculus [MPW92] remedies this by allowing the
transmission of channels over channels (or names as they are called in the
π-calculus). This allows a much more dynamic or mobile behavior of a sys-
tem and makes the π-calculus a lot more useful for modelling object-oriented
languages where the behavior also changes as references are passed around.
The π-calculus has already been used to give semantics to concurrent object-
oriented languages by, among others, Walker [Wal95] and Jones [Jon93]. The
problem with these translations is that they do not translate types, and this
makes reasoning about the languages in the π-calculus difficult. The typed
concurrent object-calculi, as for instance TyCO [Vas94] and the concurrent
ς-calculus [GH98], can be seen as an attempt to come up with a way to rea-
son about typed languages using process-calculi. Another solution brought
forward by Pierce and Sangiorgi [PS96] is to equip the π-calculus with a
type-system. Such a type-system can, if it is advanced enough, make the
π-calculus more useful for expressing features of typed object-oriented lan-
guages.

Another way to get the advantages of process-calculi into the world of objects
is to adopt the techniques directly to the object-calculus. For instance, Gor-
don and Rees [GR96] have successfully adopted bisimulation to the ς-calculus,
resulting in considerably simpler proofs of properties in the ς-calculus.

1.2 This thesis

The goal of this thesis is to deepen the investigation of the applicability
of process calculus techniques for reasoning about object-oriented languages
and programs. The question we try to answer is:

Can one successfully adapt and use process calculus techniques to
reason about object-oriented languages?

Our approach is:

i. To consider the use of the π-calculus to give semantics to variants of
the ς-calculus, and examine the usability of this semantics to reason
about properties in the ς-calculus.

ii. To work on the adaptation of process calculi to the ς-calculus.

This thesis is divided into three parts. Chapters 2 to 4 form an introductory
part, discussing features of object-oriented languages in Chapter 2, introduc-
ing the ς-calculus in Chapter 3, and the π-calculus in Chapter 4. Chapters
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5 and 6 consider the use of the π-calculus to reason about the ς-calculus. In
Chapter 5, we translate the untyped Functional ς-calculus, discovering that
the translation we come up with, although correct, does not support reason-
ing about programs well. In Chapter 6, we turn our attention to the Impera-
tive ς-calculus with a first-order type system, and develop a translation that
is more amenable for reasoning about programs. Next, in Chapters 7 and 8,
we consider the adaptation of process calculus techniques to the ς-calculus.
Chapter 7 considers the relation between Gordon and Rees’ labelled transi-
tion system for the Functional ς-calculus and Abadi and Cardelli’s denota-
tional model. And, in Chapter 8, we build a modal logic on top of Gordon
and Rees’ labelled transition system and investigate its relation to one of the
type-systems for the ς-calculus. Finally, Chapter 9 contains conclusions and
directions for further work.





Chapter 2

Object-Orientation in Program-
ming Languages

During the last decade the term object-oriented has been used within most
areas of computing. There exist object-oriented languages, databases, op-
erating systems, file systems etc. This not only shows the applicability
of object-orientation but also creates confusion as to what it means to be
object-oriented. This chapter gives a brief introduction to the basic concepts
and terminology of object-orientation as it is used within the programming
language community. Readers familiar with object-orientation are invited to
skip this chapter and proceed to Chapter 3, where we introduce the model
for object-orientation that we shall be working with.

2.1 Advantages of object-orientation

So why use object-orientation and not some other programming paradigm,
such as functional or procedural paradigms where there already exists a well
developed understanding of the programming concepts? According to Lehr-
mann Madsen, Møller-Pedersen, and Nygaard [LMMPN93], there are three
main benefits of object-orientation. Namely, real world apprehension, stabil-
ity of design and reusability of both design and implementations.

Real world apprehension. Object-oriented programming is based on the
principle that programs, as far as possible, should reflect the part of reality
that the programs deal with. This makes it easier to write and understand
programs as humans naturally have training in understanding the real world.

This principle applies to most programming paradigms but object-orien-
tation has proven to fit this principle particularly well.

11
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Stability of design. The design of an object-oriented program is often
based on a model, called the physical model in [Jac83], of the system that
the program is meant to deal with, and it is on top of this model that the
functionality of the system is built. As a consequence of the real world
apprehension one more easily gets a stable design, because although the
functional demands to a system might change several times in the course
the program design process, the underlying physical model normally remains
stable. And since it is the physical model that forms the scaffolding for the
program, major restructuring of the design is not normally needed.

Reusability. In most development organizations there is a desire to reuse
existing code in new programs. But often the existing code needs to be
modified to fit its new use. This calls for language support for incremental
program modification and flexible ways of embedding the reusable parts into
their new environment. There seems to be a common agreement that object-
oriented languages at least have some features supporting reusability.

2.2 What are objects?

Conceptually, object-orientation is based on an understanding of the world as
consisting of objects. A real-world object (such as a car) can consist of other
objects (wheels, engine etc.). Objects have properties or uses (for instance a
car can be used to drive from one place to another). In analogy with this view
of the world, objects in object-oriented languages consist of variables holding
(references to) other objects and methods that perform computations on the
object. The set of methods and variables in an object are commonly referred
to as the attributes of the object. To refer to an attribute within an object
the most common notation is the dot-notation, e.g. writing a.m(b1, . . . , bn)
to activate the method named m in the object a with parameters b1 to bn.
The expression a.m(b1, . . . bn) is also often referred to as sending to a the
message m, indicating that an object is an autonomous entity that we from
the outside can request to perform certain operations.

The reason why variables hold references to other objects instead of ob-
jects themselves, is that it can be advantageous to share objects. For instance,
consider a set of objects representing bank-accounts with each account hav-
ing an owner. Here it would be rather inexpedient if the variable in an object
holding information about the owner denoted an embedded object. For if two
accounts had the same owner, the data for the owner would be duplicated and
for instance an address change would result in that all accounts belonging
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to the person would need to be updated. Therefore, in most object-oriented
languages variables denote references to objects and assignment and param-
eter passing work at the level of references (some languages like C++ also
allow objects to be embedded directly into other objects). Ideally, all vari-
ables are reference variables, but for efficiency reasons most languages treat
basic entities such as integers as embedded objects.

The first two benefits of object-orientation, real world apprehension and
stability of design, come from the foundation of object-oriented languages
in our perception of the real world. The third benefit, reusability, does not
follow directly from having the programming language based on the notion
of objects. Although objects may prepare the ground for reuse some extra
language support is needed. As we shall see later in this chapter, when we
discuss different kinds of object-oriented languages, it appears that some of
the differences between object-oriented languages stem from the way incre-
mental program modification is realized.

In object-oriented languages incremental program modification is sup-
ported by two mechanisms: method update (also called override) and inher-
itance. Existing methods are reused via inheritance, while method override
supports modification of code to its new use. Of course, one must ensure
that incremental program modification does not lead to run-time errors; the
task of ensuring this is usually left to the type system of the language.

A consequence of incremental program modification is that a method
cannot necessarily know what siblings it may have at run-time as they may
have been modified. This calls for a dynamic and flexible way for a method to
refer to its siblings. For this reason, almost all object-oriented languages have
a special identifier, called the self-identifier, or just self (in C++ and Java
called this), that always denotes the object that a method is embedded in1. If
we, in a method m, activate a sibling method through self, then the associated
method-body is dynamically looked up in the object and evaluated. This is
often called late binding or dynamic dispatch, in contrast to static binding
of methods, where the method call would result in the evaluation of the
method-body that was available at the time when m was defined.

1Note that in some languages, called delegation based languages, discussed in Sec-
tion 2.5.1, the self of a method can be bound to a different object than the one where the
method is embedded
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2.3 Type systems

When an object (or set of objects) is to be used, it must fit into a context.
This context expects the object to have certain attributes for the program
to function. The task of ensuring this is performed by the type system.

Let us briefly discuss the basic principles behind typing in object-oriented
languages. In general, one can define type error in an object-oriented lan-
guage as the operation of trying to access a non-existing attribute within
some object. Object-oriented languages can be either statically or dynam-
ically typed ; a static type system will ensure the no type error will occur
at run-time whereas a dynamic type-system will generate a run-time error
that the programmer can anticipate and ensure is handled when a type error
occurs.

In order to allow code to be reused, it is often too restrictive to require
an exact match on the required attributes and the ones that the object have.
Instead it is enough to require that the object has at least the attributes
required by the context (with extra attributes hidden from the context).

To facilitate our discussion, let us introduce some notation. If a is an
object and A a type we shall write a : A to denote that a has the type A.
If B is another type we write A <: B if all objects of type A can be used
in contexts expecting objects of type B and we say that A is a subtype of B
(and conversely is B a supertype of A). The mechanism used to ensure that
a can be used in contexts requiring object of type B is called subsumption
and states that if A is a subtype of B and a has type A then a also has type
B . We write the type of methods as m(A1, . . . ,An) : B , denoting that m is
a method accepting n arguments of type A1 to An, returning a result of type
B .

Types can be composite, for instance the type of a tuple (a, b), where
a:A and b:B , would be (A,B). The subtype relation between two composite
types is usually derived from the subtype relation between the components
of the types. Let A(X ) denote a composite type that has X as one of its
components. We say that A(X ) is covariant in the component X , if B <: C
implies A(B) <: A(C ), contravariant if C <: B implies A(B) <: A(C ), and
invariant if B <: C and C <: B implies A(B) <: A(C ). For instance, for
tuples is (A,B) <: (A′,B ′) if A <: A′ and B <: B ′, that is tuple types are
covariant in both components.

As mentioned, one wants a flexible a type system such that objects can
be used in as many contexts as possible.

Example 2.1 Consider the following two object types below. What require-
ments must we make to ensure that A′ <: A?
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objectType A{ objectType A′{
var v :B var v :B ′

method m(C ):D method m:(C ′):D ′

method n(E ):F
} }

Since A′ should be a subtype of A, objects of type A′ should work in contexts
expecting objects of type A. This implies that the method m in A′ must be
able to accept objects that have type C ; therefore the type C ′ must be a
supertype of C . What about the result type? Applying the argument as
before we can deduce that D ′ must be a subtype of D . The method n is not
used in contexts expecting objects of type A, so we do not need to impose
any restrictions on the types E and F .

With respect to the variable v , it can both be read and updated, so this
implies that B ′ must both be a sub- and a supertype of B , meaning B ′ must
denote the same type as B . 2

Observe that requirements for methods are only valid if we cannot update
methods at run-time. To see the problem with dynamic method update,
assume a:A′ and A′ <: A. By subsumption, a also has type A and can be
used in contexts expecting an object of type A. In such a context, we could
update the method m with a method returning an argument of type D (not
D ′). But such an update could result in a type error if we later used a.m(c)
assuming that a had type A′ and therefore expecting m to return an object
of type D ′. Therefore, in the presence of dynamic method update we must
in general require invariance in the type of methods.

Although subtyping and subsumption allow a great deal of flexibility in
the way we can use objects, in a statically strongly typed object-oriented
language it can also cause trouble — in the sense that we can lose type in-
formation. To solve this problems, most object-oriented languages includes
facilities, called typecase (or typecast), to reveal the real type of an object
and react according to that. Typecase is normally only used as a last re-
sort, because its use constrains the extensibility of programs by requiring
knowledge of which types one can encounter a run-time.

2.4 Class-based languages

The most common object-oriented languages are all class-based; these include
languages such as C++ [Str91], Java [GJS96] and SmallTalk [GR83].
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Classes serve as skeletons or templates for creating objects, which means
that they describe which attributes an object created from a class will have.
If an object a is created from a class A we say that a is an instance of A.

Example 2.2 Consider the following class:

class Account {
var owner :Person;
var balance:Real := 0;

method deposit(amount :Real) {
self.balance := self.balance+amount ;

}

method withdraw(amount :Real) {
self.balance := self.balance−amount ;

}

method getOwner( ):String {
return self.owner .name( );

}
}

This class can be used to create objects representing (simple) bank accounts.
To create instances of classes one uses the new operator that from a class
name will return a reference to a fresh instance of that class. 2

Because the code for methods is immutable, the code can be moved from
residing within objects into a method table shared between all instances of
a class, as shown in Figure 2.1. This factorization is often described when
discussing class-based languages; but can to some extent be regarded as
an implementation technique and, logically, one can just as well consider
methods as being embedded directly into the objects (there are other issues,
such as variables shared between instances of a class, that might imply that
the factorized view is appropriate).

We still have not described how incremental program modification is done
in class-based languages. The mechanism used to realize reuse is inheritance
of classes, where a class can be defined as being an extension of an existing
class. If the class A is defined as an extension of B , we say that A is a subclass
of B . A subclass will contain all the attributes of its superclass and can add
new attributes. Furthermore, it is possible to redefine methods inherited
from the superclass, such that the methods can take advantage of the new
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Figure 2.1: Layout model for class-based object-oriented languages

attributes. When redefining a method it can be advantageous to be able to
redefine the interface of the method, in most statically typed languages this
is disallowed but there exist languages that allow redefinition of signatures.

Example 2.3 Below we create a new class to represent check accounts by
extending the account class of Example 2.2.

class CheckAccount inherits Account {
var nbChecks:Integer := 0;

method cashCheck(amount :Real) {
self.nbChecks := self.nbChecks+1;
self.withDraw(amount);

}
}

2

When redefining a method, one might want to refer to the old definition
of the method; to this end, most languages have a way to refer to methods in
superclasses. There is no common agreement on how do this — for instance in
some languages the keyword super is used to refer to the immediate superclass
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and in other languages one prepends the method name with the name of the
class where the older definition are found. This feature is normally only
available within the method definitions, and we can therefore still keep the
view that methods are embedded within objects.

Some languages permit inheritance from more than one direct ancestor,
called multiple inheritance. Multiple inheritance is, in principle, not more dif-
ficult than single inheritance except for two minor complications. Firstly, one
needs a way to handle name-clashes if two different superclasses use the same
name. Secondly, there is the possibility of inheriting a superclass through
two different branches in the class-hierarchy, as depicted in Figure 2.2. This
gives the problem of whether one gets the variables of the common superclass
duplicated or not.

class C

class B1

class A

class B2

Figure 2.2: Two different branches inheriting the same superclass.

2.4.1 Types in class-based languages

As mentioned earlier in this chapter, one wants a flexible a type system. For
instance can instances of the CheckAccount class without problems be used in
programs designed to work on instances of the BankAccount class. Most class
based languages permit such cases identifying subclassing and subtyping by
having the following rule in their type-system: If B is a subclass of A, then
the type of instances of B is a subtype of the type of instances of A. That is,
the type-system must conform to the class hierarchy. As it is common, we
shall in the following identify the type of instances of a given class with its
class name.

Identifying subclassing and subtyping naturally implies that the require-
ments necessary to ensure soundness of subtyping, stated in Section 2.3,
now becomes requirements to what modifications we can make to inherited
methods.
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Flexibility in the way we allow to redefine methods is one way to support
reuse of code. Another possibility is to extend the type system to allow
existing code to be used more freely.

One such extension has to do with objects that have methods returning
self as result. Consider the following two point classes:

class Point { class CPoint inherits Point {
var x ,y :Real ; var color :Integer ;

method movex(offset :Real):Point { method setColor(newColor :Integer){
self.x := self.x+offset ; self.color :=newColor ;
return self; }

}
} method movex(offset :Real):CPoint{

. . .
}

}

In Point , we have defined the movex method to return self. There is one
slight problem with the definition of the movex method — that the type of
the result is declared to be Point . This implies that one cannot, for instance,
call the setColor method after a movex operation on a CPoint (colored point)
instance. As we have argued in Section 2.3, it would be sound to redefine
the signature of the movex method in the CPoint class to return a CPoint
instance. But doing so would be inappropriate, since one would have to
redefine the movex method in every new class that inherits from Point . To
remedy this problem some languages, of which the most well-known is Eiffel
[Mey92], introduce the notion of self-types. If we let Self denote the type of
the current self we can define the movex method as:

method movex(offset :Real):Self{
self.x := self.x+offset ;
return self;

}

and now the movex method will return a CPoint object when invoked on a
CPoint object. Self-types work fine with the result type of methods, but in
general it would be unsound to allow self-types in method arguments and as
the type of variables if we require that the subtype relation conforms to the
inheritance relation. This has lead to proposals where subtyping does not
follow subclassing [CHC90].

One should be aware that the use of self-type requires special care when
used in combination with reuse of methods. If, for instance, the movex
method instead of returning self returned a new instance of the Point class,
as in
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method moveWrongx(offset :Real):Self{
self.x := self.x+offset ;
return new Point ;

}

Obviously, this is all very fine when the moveWrongx method resides in the
Point class. But, when we inherit the moveWrongx method to the CPoint
class, the result generated by the method is no longer of type Self. In order
to avoid such problems, the type system therefore needs to ensure that if
a method has result type Self, then the result returned is either self or a
modified self.

2.5 Object-based languages

The main difference between class- and object-based languages is that object-
based languages have objects as the only basic concept; there are no classes
around to act as schemas for creating objects.

Object-based languages have not been around as long as class-based ones
and there is therefore still some disagreement as to what the basic features
of an object-based language are. In this section, we shall describe the most
common features of object-based languages. For a thorough overview of
possible design decisions see [CDM92].

Without classes to facilitate the creation of objects, object-based lan-
guages must be able to create objects directly, as shown the following exam-
ple.

Example 2.4 Below we create an object in an object-based language and
bind it to a variable named account .

var account :Account := object {
var owner :Person;
var balance:Real := 0;

method deposit(amount :Real) {
self.balance := self.balance+amount ;

}

method withdraw(amount :Real) { . . . }
method getOwner( ):String { . . . }

}

2



2.5. Object-based languages 21

Most object-based languages have originated in the SmallTalk and AI
communities, which have a tradition for favoring flexibility instead of secu-
rity at run-time, and most object-based languages are therefore dynamically
typed, but statically typed object-based languages are emerging. Strongly
typed object-based languages have very simple type-systems; normally only
supporting object-types, subtyping and subsumption. In our examples, we
shall assume the existence of such a type-system and will therefore annotate
variables with their types.

It is quite simple to simulate the way classes are used as a schema for
creating objects, we can simply wrap the code that creates anonymous objects
into a procedure that on invocation returns a new object, this way replacing
the new operation with a procedure-call.

If all we could do in an object-based language was to create objects from
scratch, possibly wrapping them into a procedure in order to create several
objects of a certain shape, an object-based language would be nothing more
than a class-based language without inheritance to support incremental pro-
gram modification. Therefore, most object-based languages offer the ability
to clone existing objects and to modify the attributes of objects. Cloning
creates a shallow copy of an object with sharing of attributes between the
clone and the original object. Languages supporting cloning and attribute
modification are called prototype-based languages because of a very distinc-
tive manner of writing programs. In prototype-based languages, one has a
set of prototypes from where one creates clones and these clones can then be
modified.

Cloning and attribute override is one way to support incremental pro-
gram modification, but its not necessarily flexible enough, because one can-
not change the number of attributes in the object one clones from. Several
proposals exists to allow more flexibility in the way one can define the be-
havior of objects, we shall in the following discuss two of these possibilities:
delegation and embedding.

2.5.1 Delegation-based languages

Most object-based languages have some form of delegation, including the
language Self [US91] which is one of the most well-known object-based lan-
guages. Delegation can be thought of as a message send, but without having
the self identifier bound to the receiver of the message. This implies that on
subsequent activation through self the activation will be performed on the
original receiver.

Delegation can happen either implicit or explicit. In a language support-
ing implicit delegation, an object can appoint an object as its parent object,
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and if an attribute is not found in an object, the search continues following
the parent link.

Example 2.5 Consider the following two objects ob1 and ob2.

var ob1:OB1 := object{
method m1( ){

. . .
self.m2( );
. . .

}
method m2( ){ . . . }

};

var ob2:OB2 := object delegates to ob1 {
method m2( ){ . . . }

};

ob2.m1( );

The object ob2 delegates to ob1. The final line in the program example
requests for the activation of the m1 method in ob2. Since the method is not
present in ob2, the request is delegated to ob1 where the method is found
and activated.

As we have sketched, the code of m1 contains an activation of m2 on self.
Since ob2 delegates to ob1 and the original activation of m1 was on ob2, self
is bound to ob2. Therefore, the activation of m2 in m1 will result in the
activation of m2 in ob2. 2

A possible extension of implicit delegation is the ability to dynamically
change which object one delegates to.

If a language has explicit delegation, the programmer can explicitly del-
egate a message. This gives the programmer more control over when delega-
tion is performed. Explicit delegation can also be used to achieve an effect
similar to that of calling a method in a superclass in a class-based language.

Example 2.6 Below we sketch how to create prototype objects that create
bank- and check-accounts in a language based on implicit delegation.

var accountProto:Account := object {
var balance:Real := 0;
var owner :Person;
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method withdraw(. . . ){ . . . }
. . .

}

var checkProto:CheckAccount := object delegates to accountProto {
var balance:Real := 0;
var owner :Person;
var nbChecks:Integer ;

method cashCheck(amount :Real) {
self.nbChecks := self.nbChecks+1;
self.withDraw(amount);

}

}

What is interesting about this example is, that in order to make the checkProto
object work, we need to redeclare the owner and balance variables, if we did
not, then all clones of checkProto would end up having the same owner and
balance. It is also worth noting, that with this structure we cannot, for in-
stance, change the behavior of the withdraw method for all objects cloned
from accountProto. This can be solved by having a special prototype ob-
ject containing only the variables from accountProto that then delegates to
accountProto and clone new objects from this prototype object. We can carry
this even further by removing the variables from accountProto since they will
no longer be used. Eventually, we end up with a definition of accountProto
that is similar a method table from a class-based language. 2

Delegation gives the programmer extreme flexibility, because by changing
the behavior of one object that other objects delegates to, the programmer
will change the behavior of these objects. But its expressiveness does not
come without a price: Delegation creates a web of dependencies between
objects, making it difficult to anticipate the consequences of program changes
and difficult to reason about the behavior of programs.

2.5.2 Embedding-based languages

The previous section showed that delegation is a very powerful mechanism;
perhaps too powerful. This leads us to consider a principle for reuse of
objects, called embedding, that does not create this dependency between the
donor object and the one receiving the donation.
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One of the advantages of languages based on embedding is that pro-
grams written in these languages are easier to implement on a distributed
machine architecture, since objects do not need links to their parent or class.
Embedding-based languages are relatively new and only a few have emerged,
among them Obliq [Car95] which is a distributed object based language.

Just as for delegation-based languages, we can talk about implicit and
explicit embedding. Implicit embedding states an object as donor object
and creates the new object as an extension of the donor object, possibly
redefining some of the donor objects attributes.

Example 2.7 The following program shows how our checkAccount object
could be created by embedding the account object and thereby inheriting all
its attributes.

var account :Account :=
object {

var owner :Person;
var balance:Real := 0;

method deposit(amount :Real) {
self.balance := self.balance+amount ;

}

method withdraw(amount :Real) { . . . }

method getOwner( ):String { . . . }
}

var checkAcc:CheckAccount :=
object embeds account {

var nbChecks:Integer := 0;
method cashCheck(amount :Real) { . . . }

}

2

Explicit embedding gives more flexibility on what is embedded. For in-
stance, if we would like to redefine the withdraw method in the checkAccount
object, using implicit embedding, we would have to override the withdraw
method we got from the account object without the ability to refer to it.
Instead explicit embedding allows us to refer to embedded attributes in the
code of our object, much like we can do in class-based languages when refer-
ring to methods defined in superclasses.
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Embedding based languages lacks, compared to delegation based lan-
guages, the ability to share methods between several objects and make changes
to such methods that affect all objects. To remedy this, some languages like
Obliq have a feature called aliasing or redirection. Redirection is almost like
delegation, except that self is rebound in the target method. To see the dif-
ference between delegation and redirection, assume that we have two objects
a and b both having methods m1 and m2, and that the method m1 in b calls
m2. Furthermore, assume that a redirect m1 to m1 in b. Let us consider the
term a.m1. The difference between redirection and delegation is that, with
redirection, when evaluating m1’s body of b, self is bound to b, whereas with
delegation self is bound to a. This implies that when a call of m2 in m1 in
b happens, it is the body found in b that is evaluated. So, with redirection
the expression a.m1 behaves as if it was b.m1.

One might think that redirection of a method m1 in an object a to a
method m2 in an object b, could be done just by letting the body of m1 in a
be a call b.m2. But this is not true in the presence of method update, because
if we update m1 in a then we really change m1 and not m2 in b.

2.6 Summary

In the previous discussion, the reader might feel that there are topics missing
from the discussion that are also important when considering object-oriented
languages. One such topic is encapsulation mechanisms. The reason why
we have omitted encapsulation is that, although encapsulation is important
for object-oriented languages, encapsulation is related not only to object-
oriented languages. Another interesting topic, that we have not discussed, is
concurrency. This topic has been omitted for the same reason as encapsula-
tion. Namely, that the concurrency features of object-oriented languages are
not that different from those found in other languages supporting concurrent
programming2.

There is one class of object-oriented languages that we have not discussed.
It is languages with multiple dispatch such as CLOS [KG89]. The reason for
not discussing them is that their model of objects is somewhat different from
the view presented in Section 2.2.

All the examples of different object-oriented languages show at least one
common pattern: At run-time, we can (or at least would like to) think of
objects as being autonomous entities. The class of languages that seems to
be farthest away from this pattern is the delegation-based ones. However, it

2We deliberately disregard the debate on whether objects are just special kinds of
concurrent processes or the other way around.
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appears that most delegation-based programs have a structure, where del-
egation is used as a shared repository for methods, thereby resembling the
structure of programs written in class-based languages.

It does therefore seem natural, when we want to assess, whether process
calculus techniques can be used to reason about object-oriented programs,
to consider a setting where we deal directly with objects. Instead of coming
up with our own model, we choose to work with one of the already developed
calculi for object-orientation, which is the topic of the following chapter.



Chapter 3

The ς-calculus

3.1 Formalizing object-orientation

As our aim is to study the applicability of process calculus techniques to
reason about object-oriented programs, we need to be precise about our
representation of object-oriented programs. Generally, we have three possi-
bilities:

• An existing object-oriented language.

• An existing object calculus.

• Building our own formalism.

With the large number of existing languages and calculi, building our own no-
tation seems to be unnecessary and uncalled for. This leaves us with a choice
between using a fully-fledged programming language or an object calculus.
Working with a programming languages is problematic for several reasons.
First of all, most real world object-oriented programming languages contains
a lot features that have nothing to do with object-orientation, but which
are useful when programming in the language. If we are to consider also
these features, this would lead to an unnecessary complication of our work.
Secondly, most object-oriented languages lack the formally defined semantics
that is needed in order to reason formally about properties of programs writ-
ten in the languages. Furthermore, in the previous chapter, we have argued
that objects are the important entities, when we want to consider techniques
for reasoning about object-oriented programs. It does therefore seem nat-
ural to consider process-calculi in a pure object-based setting. This could,

27
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of course, be done using some object-based language, but especially for the
object-based languages there is no agreement on what the basic constructs
are. So, for our study, we choose to work with variations of the ς-calculus
[AC96].

Working with an object calculus simplifies things a lot, and one may
argue that techniques developed in this setting might not be adaptable to
problems in real programming languages. On the other hand, any problem
that we encounter in this simple setting, we will most likely also encounter
when considering real programming languages.

We have chosen the ς-calculus as our basic object-oriented model pri-
marily because of its clearly object-oriented features and that it has already
shown its ability to model features of both object- and class-based languages.
A second, more pragmatic reason is that the ς-calculus is actually a family of
several calculi built on top of a common untyped core calculus. This allows
us to start our study in a simple untyped setting and then, building on top of
the knowledge obtained there, continue with typed versions of the ς-calculus.

In the following sections we shall give a brief introduction to the basic
parts of the ς-calculus. Our overview is based on the presentation in Abadi
and Cardelli’s monograph: A Theory of Objects [AC96]. We start out by
introducing the untyped ς-calculus, then proceed by adding types and finally
discuss the algebraic theory developed by Abadi and Cardelli to reason about
ς-calculus expressions.

3.2 The untyped ς-calculus

3.2.1 Syntax and informal semantics

The ς-calculus is very simplistic; the basic ingredients are objects consisting
of named methods, method activation and method update. We do not even
have variables in objects, but they can be seen as a derived concept, since we
can model variables as methods that do not use self. The only extra syntactic
construct we need in the ς-calculus is a variable in methods to denote self.
Terms in the ς-calculus are built according to the syntax found in Table 3.1

Here xi ∈ SVar ranges over self variables and li ∈ MNames ranges over
method names. We let m(a) denote the set of method names and fv(a) the
set of free self variables in a. Objects and self variables are the values of
the ς-calculus, and we let v range over these. We shall identify terms up to
alpha-conversion of bound variables.

Informally, a method activation a.lj is evaluated by first reducing a to
some object (value) [li=ς(xi)bi

i∈I ] and then evaluating the method bj bound
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a ::= [li=ς(xi)bi
i∈I ] object (value)

| x self variable
| a.l method activation
| a.l⇐ς(x)b method update

Table 3.1: The syntax of the ς-calculus.

to lj with the enclosing object bound to the self variable xj. A method
update (also called method override) a.lj⇐ς(x)b also first reduces a to an
object and then updates the method bound to lj with the new method ς(x)b.

As mentioned earlier, we can regard object variables as a method that
do not use self. We call such a method a field, using the notation l=b to
denote l=ς(x)b for some x 6∈ fv(b). We write field update as a.l:=b, denoting
a.l⇐ς(x)b for some x 6∈ fv(b).

3.2.2 Semantics

The semantics of the ς-calculus, that we consider, departs from that of Abadi
and Cardelli in that we use a small-step reduction semantics, since it will
make reasoning about objects easier later on.

We first give the semantics of the basic reductions for objects, shown in
Table 3.2.

Let a denote the object [li=ς(xi)bi
i∈I ] , then:

a.lj ; bj{a/xj} j ∈ I

a.lj⇐ς(x)b ; [li=ς(xi)bi, lj=ς(x)b i∈I\{j}] j ∈ I

Table 3.2: The reduction semantics for the Functional ς-calculus

The activation of the method lj results in the method body being acti-
vated with the self variable being replaced with the enclosing object. Method
override results in an object with the overridden method replaced with the
new method.

For composite expressions we use a leftmost-innermost reduction strategy.
This is expressed using reduction contexts [FF86]. A context C[·] denotes
a ς-calculus term with a hole, where a term a can be plugged into, written
C[a]. The syntax of contexts is given by:
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C[·] ::= C[·].l | C[·].l⇐ς(x)b | [·]

Leftmost-innermost reduction can then be specified using the following rule:

a ; a′

C[a] ; C[a′]

Leftmost-innermost reduction implies that in a term a.l or a.l⇐ς(x)b, a is
always reduced to an object value before activating or overriding a method.
If a ;∗ [li=ς(xi)bi

i∈I ] for some object value, we say that a converge, written
a⇓. If a has an infinite reduction sequence, we say that a diverge, written
a⇑. Finally, if a term that is not a value cannot reduce, such as the term [].l,
we say that the term is stuck.

In the basic reductions, we require that method update on a label l is only
performed if the object already contains a method bound to l. In an untyped
setting it would not lead to problems if we allowed addition of methods to
an object. However, as we shall see later, this would lead to problems when
we start considering typing issues.

Example 3.1 To give an intuition of how the ς-calculus works, we shall
present a few simple examples (taken from [AC96])

let a = [l=ς(x)x.l] then a.l ; x.l{a/x} = a.l ; · · ·
let a′ = [l=ς(x)x] then a′.l ; x{a′/x} = a′

let a′′ = [l=ς(y)y.l⇐ς(x)x] then a′′.l ; a′′.l⇐ς(x)x ; a′

The object a shows how we can get infinite behavior through the use of self
variables. The object a′ is a kind of “identity object”, where a′.l evaluates
to a′. The object a′′ shows how an object can modify itself by performing a
method override on a self variable. 2

The semantics of objects given in this section is called stateless or func-
tional, because a method update creates a new object instead of modifying
the existing. This is in contrast to most object-oriented languages, which are
called statebased or imperative, where update modifies the object directly.
We shall later in this thesis (in Chapter 6) consider an imperative semantics
for the ς-calculus, but we start out with the functional semantics, as it is
simpler to understand.

Although the ς-calculus is simple, it is in fact Turing-powerful as shown
by the following translation of the untyped lazy λ-calculus into the ς-calculus.
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[[x]]
4
= x

[[b(a)]]
4
= [[b]] · [[a]] with p · q 4

= (p.arg:=q).val

[[λ(x)b]]
4
= [arg=ς(x)x.arg, val=ς(x)[[b]]{x.arg/x}]

The translations builds upon the idea that we represent a function λ(x)b as
an object having a field arg and a method val. The field val contains the
function body and the field arg is used to hold the argument to the function.
Upon application, first the field arg is updated to contain the argument to the
function and then the method val containing the function body is activated.
This translation is sound in the sense, that β-reduction (λ(x)b)(a) → b{a/x}
is mimicked (up-to extraction of a from the field arg) by the translation (see
[AC96, Section 6.3]).

Knowing that we can represent the λ-calculus in the ς-calculus allows us
to use λ-notation to give arguments to methods, as in

a = [xp=0, mvx=ς(s)λ(x).(s.xp := s.xp + x)]

where a.mvx(7) ;∗ [xp=7, mvx=ς(s)λ(x).(s.xp := s.xp + x)] .

3.3 Type systems

One of the main motivation for the ς-calculus is the study of various type
systems for object-oriented programming languages within a unified frame-
work. In this thesis, we consider two basic type systems: a simple first order
type system with subtyping, named Ob1<:, and an extension where we add
recursive types, named Ob1<:µ.

3.3.1 The first order type system

The first type system for the ς-calculus is a very simple one. The only types
are object types given by the grammar:

A ::= [li:Bi
i∈I ]

Essentially, an object has type [li:Bi
i∈I ], if it has methods labelled li for i ∈ I

and on activation of a method lj the result is of type Bj.
To simplify reasoning about the type system, we extend the grammar of

objects to contain type annotations on the binding of self-variables, such that
an object now is written as [li=ς(xi:Ai)bi

i∈I ] and method update is written
as a.l⇐ς(x:A)b.
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3.3.2 Assigning types to objects

Ob1<: has two kinds of judgments: Type judgments and subtyping judg-
ments.

Type judgments, shown in Table 3.3, are of the form Γ ` a:A and state
that the object a has type A under the assumptions in Γ, where Γ describes
typing assumptions for free self variables. For instance, Γ(x) = A states that
we assume that the free self variable x has type A. If Γ is empty, we sometimes
just write a:A instead of ∅ ` a:A. Whenever the typing assumptions in Γ
are extended with the additional assumption x:A, we write this as Γ[x:A]
(assuming here that no assumption about the type of x occurs in Γ).

An object a has type A under the set of assumptions Γ, if Γ ` a:A can
be inferred from the type assignment rules. The most interesting rule of the
type system is the rule (Object), which states that in order to give an object
a = [li=ς(xi:A)bi

i∈I ] the type A = [li:Bi
i∈I ], we must be able to give each

method within a its corresponding result type in a type environment, where
we assume that the self variable of the method already has the type A.

The type system Ob1<: also incorporates a notion of subtyping, which
intuitively captures the idea that some types are more general than others.
The expression ` A <: B denotes that A is a subtype of B and thus that
objects of type A may be used in lieu of objects of type B (as stated in rule
(Subsump)). The subtype judgment for Ob1<: is very simple, simply stating
using the following rule

(Sub Obj)
J ⊆ I

` [li:Bi
i∈I ] <: [li:Bi

i∈J ]

that when A = [li:Bi
i∈I ] is a subtype of B = [li:Bi

i∈J ] then A is a “longer”
type.

The soundness of the type system is proved as a subject reduction theorem:

Theorem 3.1 (Subject reduction for Ob1<:) Let a be a closed term. If
∅ ` a:A and a ; b then ∅ ` b:A.

This theorem ([AC96, Th. 8.3-7] adapted to a small-step semantics) states
that types are preserved under reduction — if a closed term a has a type A,
and a reduces to b, then b will also have the type A.

Subject reduction guarantees that a well-typed ς-calculus term cannot
get stuck. Because the only way an expression can get stuck is if we try to
call or override a non-existing method. But if an expression a is given a type
A, stating that the object has some method labelled l, and a ;∗ v, then v
also has type A, and from the rule (Object) we see that this can only be
the case if v has a method labelled l.
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(Var)
Γ(x) = A
Γ ` x:A

(Select)
Γ ` a:[li:Bi

i∈I ] j ∈ I
Γ ` a.lj:Bj

(Object)
∀i ∈ I Γ[xi:A] ` bi:Bi A = [li:Bi

i∈I ]
Γ ` [li=ς(xi:A)bi

i∈I ] : A

(Update)
Γ ` a:A Γ[x:A] ` b:Bj j ∈ I A = [li:Bi

i∈I ]
Γ ` a.lj⇐ς(x:A)b : A

(Subsump)
Γ ` a:A ` B <: A

Γ ` a : B

Table 3.3: Type assignment rules for Ob1<:

We can now use the type system Ob1<: to give a more precise explanation
of the constraints on typing outlined in Section 2.3. The subtype rule (Sub
Obj) requires that for an object type A to be a subtype of B, the types of
common methods must be the same, called invariance. This requirement is
necessary to ensure soundness of the type system.

Example 3.2 To see the importance of the invariance constraint, let us try
the following rule:

(Sub Obj CoVar)
∀i ∈ J ` Ai <: Bi J ⊆ I
` [li:Ai

i∈I ] <: [li:Bi
i∈J ]

where we allow subtyping of common methods. This rule is covariant in
the method types. If we assuming (Sub Obj CoVar) to be sound, we can
derive a contradiction. Let B1 = [l1:A1, l2:A2] and B2 = [l1:A1], by (Sub
Obj) we have B1 <: B2. We now use these two types to construct the types
C1 = [l:B1, l′ :A2] and C2 = [l:B2, l′ :A2]. By rule (Sub Obj CoVar) (but
not by (Sub Obj)) we have C1 <: C2. Let b1 have type B1; then the object
c = [l=ς(x:C1)b1, l′=ς(x:C1)x.l.l2] has type C1. By subsumption c also has
type C2, so the expression (c.l⇐ς(x:C2)b2).l′ is well-typed, if b2 has type B2.
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But this could lead to a run-time error since b2 might not contain the l2
method. 2

This rule for subtyping is sound in the typed λ-calculus, so the example
indicates why the use of typed λ-calculus to give semantics to typed object-
oriented languages has turned out to be difficult.

We could also try a rule for subtyping of objects where we allowed the
type of methods to be supertypes, called contravariant subtyping. But here
it is even easier to create an example showing the rule to be unsound.

Example 3.3 Assuming contravariant subtyping, the type C2 (from the pre-
vious example) would be a subtype of C1. Now, given an object c of type C2,
we use subsumption to give c the type C1, which leads us to believe that c.l
returns a result of type B1 on which we can activate the l2 method. But the
l2 method might not be there since c.l might return a result of type B2. 2

For covariant subtyping the problem is the interplay between subsump-
tion and method update, and for contravariant subtyping the problem is
subsumption and method activation. A solution is to use variance anno-
tations (c.f. [AC96, Section 8.7]) to get covariant subtyping by forbidding
override of a method and contravariant typing by forbidding activation of a
method.

The encoding of the λ-calculus into the ς-calculus gives rise to a type
discipline with subtyping for λ-calculus terms. But unfortunately this is
not the same as the type discipline normally used for the λ-calculus with
subtyping. In the λ-calculus with subtyping, we have the following rule for
subtyping of function types:

A′ <: A B <: B′

A → B <: A′ → B′

But because of the invariance of the method types, the translation into the
ς-calculus with the type system Ob1<:, blocks subtyping of functions. One
solution to this would be to take functions as primitives in the ς-calculus
adding type rules to deal with them. Abadi and Cardelli do this in the type
system FOb1<: [AC96, Chapter 8]. Another solution is to use variance anno-
tations in the translation to recover the subtype relation between functions
[AC96, Section 8.7-2].

The type systems for the ς-calculus only allow us to update existing meth-
ods. One might think it would be easy to incorporate addition of methods
to objects into the type system Ob1<:, but as shown by Fisher [Fis96] this
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is not without complications. If we assumed the following rule for typing
addition of methods:

(Method Add)
Γ ` a:[li:Bi

i∈I ] Γ[x:A] ` b:B k 6∈ I A = [li:Bi, lk:B i∈I ]
Γ ` a.lk⇐ς(x:A)b : A

We would discover that this would lead to an unsound type system. Because
we might have used subsumption to give a the type [li:Bi

i∈I ] and one of
the methods visible in a might rely on a method with the label lk hidden
by subsumption. So in order to handle method addition soundly, it requires
that the use of subsumption is limited.

3.3.3 Adding recursion

The type system Ob1<: is not very expressive. For instance, it is difficult
to find useful types for objects which contain methods that return self or a
modified self. To see the weakness of Ob1<: consider the following example:

Example 3.4 Let a denote the object [l=ς(x:A)x] that on activation of the
method l returns self. What type can we assign to this object in Ob1<:? Since
a contains only one method, the type of a must be on the form [l:B] for some
unknown B. To see what B can be, consider the following derivation:

` [l:B] <: B
x:[l:B] ` x:B

∅ ` [l=ς(x:[l:B])x] : [l:B]

From this we can conclude that B must be a subtype of [l:B]. This can only
be true if B is either the empty object type [ ] or the type [l:B]. The second
type it cannot be, because this would lead to an infinite type expression.
Therefore the type of a must be [l:[ ]], implying that the result of an activation
of l on a is the empty object (although the actual result is the object a). 2

The type we would like to give a is in fact the “infinite type”:

[l:[l:[l:[l:[. . .]]]]],

or, in other words, a solution to the type equation A = [l:A] To this end, we
create an extended type system Ob1<:µ by adding recursive types to Ob1<:.
[AC96, Chapter 9] describes the type system Ob1<:µ for the ς-calculus that
we have shown so far. In the Chapters 7 and 8, we work with a slight
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extension of the ς-calculus due to Gordon and Rees [GR96]. So instead of
introducing Ob1<:µ for the version of the ς-calculus we have already seen
and then later extend the calculus and the type system, we shall already
now give the extended calculus and introduce the recursive type system for
that calculus.

The extension made by Gordon and Rees in [GR96] to the ς-calculus is
the addition of boolean values and a conditional construct to the ς-calculus.
The set of object terms is defined by the abstract syntax in Table 3.4.

a ::= [li=ς(xi:Ai)bi
i∈I ] objects

| x self variables
| a.l method activation
| a.l⇐ς(x:A)b method override
| fold(A, a) | unfold(a) recursive fold/unfold
| if(a, b1, b2)
| true | false booleans

Table 3.4: The ς-calculus extended with booleans and recursive types.

A value, denoted by v, is either an object ([li=ς(xi:Bi)bi
i∈I ]), a boolean

value (true, false) or a folded value (fold(A, v)). The fold and unfold operations
are used to explicitly handle the isomorphism between a recursive type and
its unfolding.

The set of reduction rules is extended to include the reductions found in
Table 3.5.

if(true, b1, b2) ; b1 if(false, b1, b2) ; b2

unfold(fold(A, v)) ; v

Table 3.5: Additional reduction rules for the extended ς-calculus.

We also need to extend the set of reduction contexts to:

C[·] ::= C[·].l | C[·].l⇐ς(x)b | if(C[·], b1, b2) | unfold(C[·]) | fold(A,C[·]) | [·]

The set of Ob1<:µ type expressions is defined via the following abstract
syntax:

A ::= Bool | [li:Ai
i∈I ] | Top | µ(X)A | X
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Here Bool denotes the only ground type, namely that of truth values. The
type [li:Ai

i∈I ] as usual denotes an object record type, where the method li
has type Ai. Top denotes the most general or unspecified type, µ(X)A is a
recursive type and X ranges over TypeVar, the set of type variables.

In order to ensure uniqueness of recursively defined types, Abadi and
Cardelli define a syntactic predicate of formal contractivity on type vari-
ables. A � Y should be read as ‘variable Y is formally contractive in type
expression A’. Informally, this means that any occurrence of Y occurs within
the scope of a method label in the type expression A. The rules defining the
predicate are shown in Table 3.6. We let Types denote the set of type expres-
sions that meets this criteria and shall, when assigning types to expressions,
only use types from Types.

X 6= Y
X � Y Top � Y [li:Ai

i∈I ] � Y
A � Y

µ(X)A � Y

Table 3.6: Formal contractivity

The rules for typing expressions are the ones for Ob1<: from Table 3.3
plus the new ones found in Table 3.7. As mentioned earlier, the operations
fold and unfold are used to handle the isomorphism between a type and its
unfolding in an explicit manner (c.f. [AC96, Chapter 9] for details). The rule
(Unfold) states that if an expression a has the recursive type µ(X)B then
unfold(a) will have the unfolded type B{µ(X)B/X}.

Subtyping in Ob1<:µ is somewhat more complicated than in Ob1<: since
we now have to deal with recursive types. Subtyping now requires an en-
vironment Γ that describes constraints on type variables, where Γ(X) = A
states that we assume X <: A. A subtype judgment is consequently written
as Γ ` A <: B, and states that the type A is a subtype of B, given the sub-
typing assumptions in Γ. The subtyping relation is defined by the inference
rules of Table 3.8 plus the rule (Sub Obj) on page 32.

Example 3.5 We can now use Ob1<:µ to give the expression [l=ς(x:A)x]
the type A = µ(X)[l:X] (with an occurrence of an operation fold to deal
with the recursive type) using the following derivation:

x:A ` x:A
∅ ` [l=ς(x:[l:A])x]:[l:A]

∅ ` fold(A, [l=ς(x:[l:A])x]):A
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(Fold)
Γ ` a:B{A/X} A = µ(X)B

Γ ` fold(A, a) : A

(Unfold)
Γ ` a:A A = µ(X)B

Γ ` unfold(a) : B{A/X}

(If )
Γ ` b:Bool Γ ` a1, a2 : A

Γ ` if(b, a1, a2) : A

(Bool)
b ∈ {true, false}

Γ ` b:Bool

(Subsump)
Γ ` a:A1 Γ ` A1 <: A2

Γ ` a : A2

Table 3.7: Type assignment rules for Ob1<:µ

(Sub Refl)
−

Γ ` A <: A

(Sub Trans)
Γ ` A1 <: A2 Γ ` A2 <: A3

Γ ` A1 <: A3

(Sub X)
Γ(X) = A

Γ ` X <: A

(Sub Top)
−

Γ ` A <: Top

(Sub Rec)
Γ[X2 <: Top, X1 <: X2] ` A1 <: A2

Γ ` µ(X1)A1 <: µ(X2)A2

Table 3.8: The subtyping relation for Ob1<:µ
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2

Another property of the type system Ob1<: and Ob1<:µ is that for any
type A, there is a divergent object expression ΩA definable as:

ΩA
4
= [l=ς(x:[l:A])x.l].l.

In some sense, this property relies on the fact that a divergent object never
evaluates to a value. If an object never reduces to a value, we never get in a
position, where we actually try to activate or update a method.

Although more expressive then Ob1<:, the type system Ob1<:µ is not as
expressive as we would like it to be, as illustrated by considering an adap-
tation of the Point/CPoint problem from Section 2.4 to the ς-calculus (this
example is taken from [AC96, Section 9.5]).

Example 3.6 Assuming the addition of functions to the ς-calculus we can
build a one-dimensional Point object (modulo some fold/unfold operations)
as:

[xp=0, movex=ς(s:Pt)λx.(s.xp := x)]

having type
Pt = µ(X1)[xp:Real , movex:Real→X1]

In a similar manner we could create a one-dimensional CPoint having type

CPt = µ(X2)[xp:Real , color:Integer , movex:Real→X2]

We would like the relation CPt <: Pt to hold. But if we try to derive this
in Ob1<:µ we get stuck, when trying to show subtyping between the object
types, as shown be the partial inference tree:

X1 <: Top, X2 <: X1 ` [xp:Real , color:Integer , movex:Real→X2] <:
[xp:Real , movex:Real→X1]

∅ ` µ(X2)[xp:Real , color:Integer , movex:Real→X2] <:
µ(X1)[xp:Real , movex:Real→X1]

Where the type Real→X2 should be equal to the type Real→X1 in order for
the inference to complete.

By an example similar to the one from Example 3.2, we can see that CPt
in fact cannot be a subtype of Pt if Ob1<:µ is to sound. 2

The problem outlined in the above example can be solved by a more
advanced type system as shown in [AC96]. Since we in this thesis only use
the type systems presented so far, we refer the interested reader to [AC96]
for a detailed description of more advanced type systems for the ς-calculus.
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3.4 Equational theories

Abadi and Cardelli do not only study type systems for the ς-calculus; they
also give typed equational theories for reasoning about ς-calculus expressions
in a purely syntactic way. In this section, we present the equational theory
for Ob1<:µ.

All judgments are of the form Γ ` a ↔ b : A, where Γ is a type environ-
ment mapping self variables to types, a and b are objects, and A is a type.
The intended interpretation of this judgment is that the expressions a and b
are considered equal as objects of type A, given the assumptions in Γ about
the free variables in a and b. That the equational theory is a typed the-
ory (we equate objects under an assumption about their type), also stresses
the importance of types when one wants to reason about the behavior of
object-oriented programs.

The rules in Table 3.9 establish symmetry and transitivity, plus a limited
form of reflexivity on variables; a general rule for reflexivity is not needed,
as it follows as a derived rule. Table 3.10 collects congruence rules for

(Eq Symm)
Γ ` a ↔ b : A
Γ ` b ↔ a : A

(Eq Trans)
Γ ` a ↔ b : A, b ↔ c : A

Γ ` a ↔ c : A

(Eq x)
Γ(x) = A

Γ ` x ↔ x : A

Table 3.9: Equivalence-inducing equational rules

objects and rules corresponding to the clauses of the reduction semantics.
Finally, we have in Table 3.11 the rules for subtyping. The most interesting
rule is (Eq Sub Object), defined in Table 3.11 which allows one to prove
equalities between objects with different collections of methods. To prove
two objects of different length equal we need to prove their common methods
equal assuming the “shorter” object type; for the rest of the methods we are
allowed to use the “longer” object type.

The equational theory allows us to prove many interesting equalities be-
tween objects. Consider the following example (from [AC96]), to see what
we can prove in the equational theory, its limitations and why it is important
to consider types when reasoning about objects.

Example 3.7 Consider the following two objects.

a = [l1=true, l2=true] b = [l1=true, l2=ς(x:[l1:Bool, l2:Bool])x.l1]
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(Eq Object) where A = [li:Bi
i∈I ]

∀i ∈ I Γ, xi:A ` bi ↔ b′i : Bi

Γ ` [li=ς(xi:A)bi
i∈I ] ↔ [li=ς(xi:A)b′i i∈I ] : A

(Eq Select)
Γ ` a ↔ b : [li:Bi

i∈I ] j ∈ I
Γ ` a.lj ↔ b.lj : Bj

(Eq Override) where A = [li:Bi
i∈I ]

Γ ` a ↔ a′ : A Γ, x:A ` b ↔ b′ : Bj j ∈ I
Γ ` a.lj⇐ς(x:A)b ↔ a′.lj⇐ς(x:A)b′ : A

(Eq If)
Γ ` b ↔ b′ : Bool Γ ` a1 ↔ a′1 : A, a2 ↔ a′2 : A

Γ ` if(b, a1, a2) ↔ if(b′, a′1, a′2) : A

(Eq Fold) where A = µ(X)B
Γ ` a ↔ b : B{A/X}

Γ ` fold(A, a) ↔ fold(A, b) : A

(Eq Unfold) where A = µ(X)B
Γ ` a ↔ b : A

Γ ` unfold(a) ↔ unfold(b) : B{A/X}

(Eval Select)
Γ ` a:A j ∈ I

Γ ` a.lj ↔ bj{a/xj} : Bj

where
A = [li:Bi

i∈I ]
a = [li=ς(xi:A)bi

i∈I∪J ]

(Eval Override) where A = [li:Bi
i∈I ]

a = [li=ς(xi:A)bi
i∈I∪J ]

Γ ` a:A Γ, x:A ` b:Bj j ∈ I
Γ ` a.lj⇐ς(x:A)b ↔ [li=ς(xi:A′)bi, lj=ς(x:A)b i∈I∪J\{j}] : A

(Eval Fold) where A = µ(X)B
Γ ` a : A

Γ ` fold(A, unfold(a)) ↔ a : A

(Eval Unfold) where A = µ(X)B
Γ ` a : B{A/X}

Γ ` unfold(fold(A, a)) ↔ a : B{A/X}

(Eval If1)
Γ ` b1, b2 : B

Γ ` if(true, b1, b2) ↔ b1 : B

(Eval If2)
Γ ` b1, b2 : B

Γ ` if(false, b1, b2) ↔ b2 : B

Table 3.10: Equational rules specific to the calculus
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(Eq Subsump)
Γ ` a ↔ b : A Γ ` A<:B

Γ ` a ↔ b : B

(Eq Top)
Γ ` a:A, b:B

Γ ` a ↔ b : Top

(Eq Sub Object) where A = [li:Bi
i∈I ]

A′ = [li:Bi
i∈J ] I ⊆ J

∀i ∈ I Γ, xi:A ` bi:Bi ∀j ∈ J \ I Γ, xj:A′ ` bj:Bj

Γ ` [li=ς(xi:A)bi
i∈I ] ↔ [li=ς(xi:A′)bi

i∈J ] : A

Table 3.11: Equational rules for subtyping

If we consider a and b to be objects of type A = [l1:Bool, l2:Bool], we do
not want them to be equal because we can override the l1 method with for
instance false, and obtain two different results from the activation of l2.

Now consider the following two types B1 = [l1:Bool] and B2 = [l2:Bool];
both are supertypes of A.

We can use the equational theory to prove the equality ∅ ` a ↔ b : B1

(using (Eq Sub Object)). This equality also seems reasonable, since hiding
the l2 method prevents us from detecting any difference between a and b.

Now, what about the type B2? Intuitively we want a to be equal to b
at the type B2, for on activation of the only available method l2 we get the
same result from a and b. And if we override the l2 method with the same
method on a and b, a and b become identical objects. But this equality is
not derivable in the equational theory! However, it can be shown by using
bisimulation defined on top of a labelled transition system for the ς-calculus
[GR96]. In Chapter 7 we shall consider the labelled transition system of
Gordon and Rees and compare it with the denotational foundation on which
Abadi and Cardelli build their equational theory. 2



Chapter 4

The π-calculus

In the Introduction, we mentioned the use of process calculi when giving
semantics to programming languages. Most of the languages that have been
described have either been λ-calculi and/or have incorporated some notion of
concurrency. One of the main motivations for using process calculi to give se-
mantics to concurrent languages has been the built-in notion of concurrency.
In [Mil89], Milner shows how to use CCS to give semantics to a concurrent
imperative programming language with shared variables, but CCS’ problems
with expressing dynamic change of structure makes it quite cumbersome to
express semantics of programming languages where references are an integral
part (such as most object-oriented languages). The π-calculus extends CCS
with the ability to pass channels (or names, as they are also called in the
π-calculus) over channels. Calculi based on this kind of communication are
called mobile calculi. Mobile calculi allow a natural way of expressing refer-
ences, and for this reason they have become prevalent when giving process
calculus semantics to programming languages.

In recent years, the theory of the π-calculus has been studied extensively.
Two topics are particularly interesting when using the π-calculus to give
semantics to programming languages, namely the study of subcalculi, such
as the asynchronous π-calculus [ACS98], and of type disciplines for the π-
calculus [Mil93, PS96, VH93].

Subcalculi The full π-calculus is a very expressive calculus. One way to
study its expressiveness is by examining what impact constraints of the π-cal-
culus have on its expressiveness. This study takes several forms. One way is
to give encodings of a calculus into a subcalculus or to show the non-existence

43
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of such an encoding (e.g. [Pal97]). Another way is to study equalities between
processes. A subcalculus usually allows one to equate processes that were
not equal in the supercalculus, because the set of contexts available in a
subcalculus to discriminate between processes is smaller than the similar set
in the supercalculus (e.g. [MS98]).

From the point of view of using the π-calculus to give semantics to pro-
gramming languages, it is interesting to note that we rarely need the full
π-calculus to give semantics to programming languages. Using a subcalculus
makes reasoning about a translation of a programming languages into the
π-calculus easier, because a subcalculus has less discriminating power than
the full calculus.

Type systems In the polyadic π-calculus, where it is possible to pass
several names at a time on a channel, the usage of names gives rise to a
simple typing discipline, originally called sorting, ensuring that receivers and
transmitters agree on the number of names that are passed (c.f. [Mil93]).
This type system has later been extended in several ways with for instance
subtyping [PS96] and polymorphism [Tur96].

Types in the π-calculus have proven quite useful when studying transla-
tions. The most well-known example is Milner’s optimized encoding of the
untyped call-by-value λ-calculus, that turned out to be wrong in the untyped
π-calculus but sound in a typed version of the π-calculus [PS96] (because the
type system defines a subcalculus).

In this chapter, we introduce the basic polyadic π-calculus and its the-
ory. Readers already familiar with the π-calculus can skip this chapter and
proceed to Chapter 5 where we start our study of the ς-calculus by using the
π-calculus to give semantics to the untyped ς-calculus.

4.1 The polyadic π-calculus

We have chosen to start out by presenting the full polyadic π-calculus and
then introduce interesting subcalculi later, as this makes the restrictions
easier to understand.

4.1.1 Syntax

Process terms in the polyadic π-calculus is given by the following syntax:



4.1. The polyadic π-calculus 45

P, Q, . . . ::=
∑

i∈I αi.Pi Guarded sum
| P |Q Parallel composition
| (νã)P Restriction
| !P Replication
| [a=b]P Matching
| [a6=b]P Mismatching

α ::= a〈b̃〉 Output prefix
| a(ỹ) Input prefix
| τ Silent prefix

Here we let a, b, . . . , x, y, . . . ∈ Names range over an countable infinite set
of names, b̃ denotes a tuple b1, b2 . . . bn of names. P ∈ Proc will range over
processes or agents.

A guarded choice,
∑

i∈I αi.Pi, where I is a finite index set, is a process
that can perform one of its possible actions, preempting the others. A prefix
can be an output, input or silent prefix. Output prefixing, a〈b̃〉, expresses a
process’ wish to transmit the names b̃ over the name a. We write output of
the empty tuple 〈〉 on the name a, a〈〉, as a and similarly a for a(). Input
prefixing, a(ỹ), gives the possibility of receiving over the channel a a tuple of
names, with ỹ denoting the formal parameters. Finally, the silent prefix, τ ,
can be derived from the other two using communication, but we have chosen
to include it for simplicity. A τ prefix simply denotes an internal action that
can be performed without participation of other processes. In case I = ∅,
we write

∑

∅ αi.Pi as 0, denoting the inactive process. We usually omit the
trailing 0 from processes, writing a〈b〉.0 as a〈b〉. We shall also feel free to
use + for binary choice.

Parallel composition, P |Q, denotes two processes that run in parallel. P
and Q run independently, but can also communicate over shared names.

Restriction, (νã)P , is one of the most difficult operators to understand.
Restriction is responsible for scoping in the π-calculus. For instance, in the
expression a〈b〉 | (νa)(a〈c〉 | a(y).P ) the a outside the restriction is different
from the a’s inside the restriction; we say that the restriction makes the
name a private. Therefore we can also safely rename a inside the restriction
to some other name not occurring within the restriction.

Replication, !P , can be thought of as denoting an unbounded number of
copies of the process P in parallel.

The last two operators, match and mismatch, allow us to test for equality
of names. Matching allows us to continue if the names are equal and mis-
matching if they are unequal. In most presentations of the π-calculus, match
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and mismatch are left out, but as we shall see later some sort of matching
makes it easier to encode the ς-calculus.

There are two binding constructs in the π-calculus, namely restriction
(νã)P and input prefixing a(b̃).Q. The former binds the names ã in P , the
latter binds the names b̃ in Q. In what follows, we let bn(P ), fn(P ), and
n(P ), respectively, denote the set of bound names, free names, and names of
the agent P . We identify terms up to alpha conversion of bound names.

4.1.2 Operational semantics

The semantics of the π-calculus is given as a labelled transition system
(Proc,→) where→ ⊆ (Proc×Label×Proc) denotes the transition relation
with Label denoting the set of labels. We write P

µ−−→ Q if (P, µ,Q) ∈ →,
saying that the process P can do the action µ and become the process Q.

Labels are given by the following grammar:

µ ::= (νz̃)x〈ỹ〉 | xỹ | τ

The label (νz̃)x〈ỹ〉 denotes the output of the names ỹ on the name x. The
restriction (νz̃), where z̃ is a subset of the names in ỹ, indicate that the
names z̃ are bound (restricted) names; if there are no names bound we omit
the restriction on the label. The label xỹ denotes input of the names ỹ over
the name x. Finally, τ denotes an internal action. The transition relation
→ is the smallest relation closed under the inference rules in Table 4.1 (with
the symmetric versions of (Sync-L) and (Comp-L) omitted).

The most difficult rules to comprehend are probably (Open), (Comp-L)
and (Sync-L) with their side conditions for handling scoping of restricted
names. (Open) states that if we transmit a restricted name over its restric-
tion, then we must record this in the label so that we can later (when using
(Sync-L)) put the appropriate restriction back in place. (Comp-L) must
ensure that the restricted names we carry over a parallel composition do not
by accident capture free names when we use the (Sync-L) rule. For instance,
consider the expression

a(y).P | (Q | (νb)(a〈b〉.R))

Here we want to transmit the private name b to the process a(y).P . In
order to do this we need to ensure that we do not by accident capture free
occurrences of b in the processes P and Q. So if b occurs free in P or Q, we
need to rename the bound name b to some name that does not occur free in
P or Q in order for us to infer the transmission.
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(Inp)
|ỹ| = |z̃|

a(ỹ).P
az̃−−→ P{z̃/ỹ}

(Act)
α ∈ {a〈x̃〉, τ}
α.P

α−−→ P

(Sum)

αj.Pj
µ−−→ P ′ j ∈ I

∑

i∈I αi.Pi
µ−−→ P ′

(Res) where ã ∩ n(µ) = ∅
P

µ−−→ P ′

(νã)P
µ−−→ (νã)P ′

(Open) where a 6∈ x̃, x̃ ∩ z̃ = ∅
x̃′ = x̃ \ n(b̃), z̃′ = z̃(x̃ ∩ n(b̃))

P
(νz̃)a〈b̃〉
−−−−−−→ P ′

(νx̃)P
(νz̃′)a〈b̃〉
−−−−−−−→ (νx̃′)P ′

(Comp-L) where bn(µ) ∩ fn(Q) = ∅
P

µ−−→ P ′

P |Q µ−−→ P ′|Q

(Sync-L) where z̃ ∩ fn(Q) = ∅

P
(νz̃)a〈b̃〉
−−−−−−→ P ′ Q

ab̃−−→ Q′

P |Q τ−−→ (νz̃)(P ′|Q′)

(Rep)

P |!P µ−−→ Q

!P
µ−−→ Q|!P

(Match)

P
µ−−→ P ′

[a=a]P
µ−−→ P ′

(MisM) where a 6= b

P
µ−−→ P ′

[a6=b]P
µ−−→ P ′

Table 4.1: The inference rules for the π-calculus.

The semantics given here is usually referred to as an early semantics
because we instantiate the bound variables at the moment we infer an input
action (in the rule (Inp)). Another possibility is to use a late semantics where
we instantiate bound variables when we infer a communication [MPW92]. To
do this, we would use the following two inference rules replacing (Inp) and
(Sync-L) from Table 4.1:

(InpL)
−

a(ỹ).P
a(ỹ)
−−−−→ P

(SyncL-L) where z̃ ∩ fn(Q) = ∅, |b̃| = |ỹ|

P
(νz̃)a〈b̃〉
−−−−−−→ P ′ Q

a(ỹ)
−−−−→ Q′

P |Q τ−−→ (νz̃)(P ′|Q′{b̃/ỹ})
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The (bound) input label a(ỹ) on a transition P
a(ỹ)
−−−−→ P ′ symbolizes that

the process P is willing to receive, on the name a, a tuple of names that is
bound to the names ỹ in P ′.

4.1.3 Some notational conventions

We often need to consider transitions on the form P
µ

==⇒ P ′, where the
τ -transitions have been abstracted away. We therefore define ⇒ as

τ−−→
∗

and the weak transition relation
µ

==⇒ for any label µ as ⇒ µ−−→⇒, as usual.
Furthermore, we define

bµ
==⇒ as ⇒, if µ = τ , and

µ
==⇒ otherwise.

If P
µ−−→ P ′ is the only transition P can perform (up-to alpha-conversion),

we often write P
µ−−→d P ′. We write P↓a if P can perform an input or

output action on the name a (P
(νz̃)a〈b̃〉
−−−−−−→ or P

ab̃−−→) and P⇓a if P ⇒ P ′↓a.
We use the notation P⇓ (’P may converge’) to indicate that P , after a
sequence of τ -moves, can perform an observable action and P⇑ (’P diverges’)
to indicate that P has an infinite sequence of τ -moves and P 6 ⇓. The similarity
to the notation defined for the ς-calculus in the previous chapter is entirely
deliberate.

For reasons of readability we drop the restriction of names that no longer
appear in a process. For instance, (νo)(x〈y〉) will be written as x〈y〉 — this
is valid because the two expressions are equated by all the equivalences we
use.

As it can be seen from the syntax, the present version of the π-calculus
does not contain recursive definitions. This is because they can be seen as a
derived concept. The idea is to encode a recursive definition A(x̃)

4
= P as a

replicated process located on some trigger name a, and then replace all calls
to the recursive definition with a message on a spawning of a new copy of
the replicated process (c.f. [Mil92] for details).

Example 4.1 As an example of how to encode recursive definitions consider
the simple definition A(x)

4
= x(y).A〈y〉 which we use in some process P . The

definition is translated to !a(x).x(y).a〈y〉 for some a 6∈ n(P ) and a modified
version of P , denoted ̂P , is built by exchanging all occurrences of A〈z〉 in P
with a〈z〉. Finally we put the translation of A in parallel with ̂P and restrict
a away, getting
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(νa)( ̂P | !a(x).x(y).a〈y〉)

2

4.2 Equivalences for the π-calculus

In this section, we give an overview of the two most well-known definitions of
equivalence for the π-calculus, namely bisimulation and barbed bisimulation.
We shall also briefly consider techniques for proving processes equivalent.

4.2.1 Bisimulation equivalence

The basic intuition behind equivalences defined as bisimulations is that of
button-pushing experiments. In order for two processes P and Q to be
bisimulation equivalent they must have the same set of observable transitions
(buttons). If we look at the state P ′ resulting from choosing one of P ’s
transitions (pushing a button on P ), then Q must have a transition with the
same label leading to a state Q′ that is again bisimilar to P ′ and vice versa.

Definition 4.1 (Strong early bisimulation equivalence) A symmetric
relation R is a strong bisimulation if for all P R Q:

• If P
µ−−→ P ′, then there exists a Q′ such that Q

µ−−→ Q′ and P ′ R Q′.

If P R Q for some strong bisimulation R, we say that P and Q are (strongly)
bisimilar (written P ∼̇ Q).

As the name implies bisimulation equivalence is an equivalence relation, but
unfortunately not a congruence relation for the operators of π-calculus. The
problem is that ∼̇ is not preserved by input prefix, as shown by the following
example:

x.y + y.x ∼̇ x | y but z(y)(x.y + y.x) 6∼̇ z(y).(x | y)

On input of the name x, the latter process can perform a τ -transition, which
the former cannot. In order to get the induced congruence, we need to close
∼̇ under substitutions (that is, replacements of names for names).

Definition 4.2 (Strong congruence) P and Q are strongly congruent,
written P ∼ Q, if Pσ ∼̇ Qσ for all substitutions σ.
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Strong bisimulation and congruence are sensitive to the number of in-
ternal moves by processes as two equivalent processes also must match on
τ -transitions. Weak bisimulation (≈) is defined by replacing the occurrences
of

µ−−→ in the right-hand side of the above definition with the corresponding
weak transition

bµ
==⇒, thus allowing a process to match a µ-transition by a

series of τ -transitions followed by the µ-transition and then again a series
of τ -transitions (unless µ is a τ , in which case a process can also match the
transition by doing no transitions at all).

Definition 4.3 (Weak bisimulation equivalence) A symmetric relation
R is a weak bisimulation if for all P R Q:

• If P
µ−−→ P ′, then there exists a Q′ such that Q

bµ
==⇒ Q′ and P ′ R Q′.

If P R Q for some weak bisimulation R, we say that P and Q are weakly
bisimilar (written P ≈̇ Q).

Weak bisimulation suffers from the same problem as strong bisimulation —
it is not a congruence. And just as for the strong case we get the induced
congruence, denoted ≈, by closing under all substitutions. Readers familiar
with CCS may remember that weak bisimulation in CCS fails to be a con-
gruence w.r.t. summation; this is not the case in the version of the π-calculus
presented here, as we only allow guarded summation.

The definition of bisimulation that we have shown here might seem like the
natural choice of bisimulation equivalence for the π-calculus. But, just as we
have both an early and a late semantics, we can also give another formulation
of bisimulation called late bisimulation that is more discriminating than the
(early) definition of bisimulation we have given here (c.f. [Mil93]). Although
strictly finer than early bisimulation, late bisimulation is not a congruence
either, and we still need to close under substitutions to get the congruence.
This leads to another formulation of bisimulation, namely open bisimulation
of Sangiorgi [San96] where substitutions are an integral part of the definition
of bisimulation.

4.2.2 Barbed equivalence

Another natural notion of equivalence is that of barbed bisimulation [MS92],
defined as bisimulation on τ -transitions plus the extra condition that two
processes must have the same observable actions.

Definition 4.4 (Barbed bisimulation) A symmetric relationR is a barbed
bisimulation if for all P R Q, whenever:
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• If P
τ−−→ P ′, then there exists a Q′ s.t. Q

τ−−→ Q′.

• If P↓a, then Q↓a.

Two processes P and Q are barbed bisimilar, written P ∼̇b Q, if there
exists a barbed bisimulation R such that P R Q.

The nice feature of barbed bisimulation is that it does not demand a large
machinery in its definition — only the notion of reduction (τ -transitions in
our case) and an observability predicate are needed. This makes barbed
bisimulation easily adaptable to different kinds of calculi.

Looking at Definition 4.4 we would not expect barbed bisimulation to
be a congruence, which is also not the case — barbed bisimulation is not
even preserved by parallel composition. So again we need a definition of the
induced congruence.

Definition 4.5 (L-Barbed congruence) Let L be a set of π-calculus con-
texts. We say that P and Q are L-congruent, written P ∼Lb Q, if C[P ] ∼̇b

C[Q] for all contexts C ∈ L.

The advantage of this definition of barbed congruence is that it is easy to
put constraints on the set of contexts that we require two processes to be
equivalent under. This we shall later use (in Section 6.2) to define what it
means for two typed processes to be typed equivalent.

If we consider∼C(Proc)
b , where C(Proc) is the set of all π-calculus contexts,

then it has been shown by Sangiorgi [San93] to coincide with strong (early)
bisimulation congruence for image-finite processes1. One way to look at
strong bisimulation in light of this result is as proof technique for showing
processes barbed congruent.

We can define weak barbed bisimulation and congruence, denoted ≈̇b and
≈Lb respectively, in a similar way as we did for bisimulation.

4.2.3 Proof techniques

Of course, one can use the definition of bisimulation directly to argue that two
processes are equivalent by establishing a bisimulation relation containing the
two processes and then argue that the relation is preserved under substitu-
tions. But bisimulation relations can quickly become very large and difficult
to deal with. To this end it is important to have some auxiliary techniques
to establish the equivalence between processes. The two main techniques we
use in this thesis are those of algebraic laws and up-to techniques.

1The set of image-finite processes is the largest set of processes Procf in Proc, which
is closed under transitions and for all µ and P ∈ Procf , the set {P ′ : P

µ
==⇒ P ′} is finite

(up-to alpha-conversion).
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Algebraic laws allow us to prove processes equivalent in a way similar to
the way we prove algebraic equations in arithmetic — by replacing equals for
equals in the processes and thereby modifying them so that they end up as
syntactically equal processes. We shall not give a full account of the laws that
we shall be using. Most of them are fairly straightforward and intuitively
true. (In fact, these rules are so evident that, they in many presentations of
the π-calculus, such as [Mil93], they are an integral part of the semantics.)
For instance, we have laws P |Q ∼ Q|P and P |(Q|R) ∼ (P |Q)|R stating
commutativity and associativity of parallel composition.

Some of the more interesting laws govern restriction and replication. The
basic law for restriction, (νx)(P |Q) ∼ (νx)P |Q, if x 6∈ fn(Q) allows us to
move restrictions. This can be used together with laws like (νx)(x(ỹ).P ) ∼ 0
to “garbage collect” unreachable components of a system.

For replicated processes we can safely create copies or merge identical
replications (depending on how we read the law) by the laws !P ∼ !P |!P .

Up-to techniques make it possible to show two processes P and Q equiv-
alent by establishing a relation that contains the pair (P,Q) and does not
need to be a bisimulation relation. The most well-known technique is that
of (weak) bisimulation up-to bisimulation defined as:

Definition 4.6 (Bisimulation up-to bisimulation) A symmetric relation
R is a weak bisimulation up to bisimulation if for all P R Q:

• If P
µ−−→ P ′ then there exist processes P ′′, Q′ and Q′′ such that Q

bµ
==⇒

Q′ and P ′ ∼̇ P ′′ R Q′′ ∼̇ Q′

Since weak bisimulation up to bisimulation implies weak bisimulation [MS92],
we can use this to show that two processes are weakly bisimilar. This tech-
nique can be extended in several ways (see [SM92]) to give some very powerful
proof methods.

Another technique that shall later turn out to be quite useful is based on
the following preorder.

Definition 4.7 (Expansion) A relation R is an expansion if P R Q im-
plies:

i. If P
µ−−→ P ′, then there exists a Q′ s.t. Q

µ
==⇒ Q′ and P ′ R Q′.

ii. If Q
µ−−→ Q′, then there exists a P ′ s.t. P

bµ−−→ P ′ and P ′ R Q′.
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We say Q expands P , written P ≤̇Q, if P R Q for some expansion R.
As usual we need to close under substitutions to get the induced congru-

ence which we denote ≤.

It is easy to see from the definition of expansion congruence implies weak
congruence. The nice feature of expansion is that if Q ≤ P , and if we have
an upper bound on the number of τ -transitions that the term P can perform,
then we know that Q will not have more τ -transitions. This property will
turn out to be quite useful, when we want to do induction on the number of
τ -transitions that a term can perform.

It is also possible to define a barbed version of expansion, which we shall
denote ≤Lb .

Definition 4.8 (Barbed expansion) A relation R is a barbed expansion
if for all P R Q, whenever:

• If P
τ−−→ P ′, then there exists a Q′ s.t. Q τ==⇒ Q′.

• If Q
τ−−→ Q′, then there exists a P ′ s.t. P

bτ−−→ P ′.

• If P↓a, then Q⇓a.

• If Q↓a, then P↓a.

Let L be a set of π-calculus contexts. We say that Q is a L-barbed ex-
pansion of P , written P ≤Lb Q, if for all contexts C ∈ L, there exist a barbed
expansion R such that C[P ] R C[Q].

4.3 Typing in the π-calculus

With the ability to pass tuples of names around, we start encountering run-
time errors, where one process tries to send a tuple of a different arity than
expected by a receiver. This is of course quite unfortunate and something
one should try to avoid. A natural way to do this is by using some kind of
type system.

The most basic type system is the sort discipline due to Milner [Mil93],
where one partitions the set of names into sets, each set is named and is
associated with a string of set names, called the sort.

Example 4.2 As a simple example, we could have the recursive sorting

TwoPair = (TwoPair ,Nil) and Nil = ( )
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stating that names from TwoPair always are used to carry a pair of names
of which the first name is again from TwoPair and the second is a name that
can only be used to synchronize. 2

Type checking sorts is fairly straightforward: We must simply check that
the usage of names conforms to the sorting. A process judgment Γ ` P : ok
states that, with respect to the assumptions on names in Γ, the process P is
well-sorted. The most interesting rule is the following one for input:

Γ ` a:(T1 . . . Tn) Γ, x1:T1 . . . xn:Tn ` P : ok
Γ ` a(x1 . . . xn).P : ok

The rule states that the arity of the input prefix a(x1 . . . xn) must match the
arity given by the assumption on a from Γ and that we must be able to prove
that P is well-typed assuming that the use of names x1 to xn in P have sort
T1 to Tn.

This fairly simple type system can be extended in several ways. One
immediate extension is that of polarity types, based on the observation that
in most processes a name is used either for input or for output. Pierce and
Sangiorgi have constructed a type system where one can distinguish between
the ability to use a name for output, input or both [PS96]. This gives rise
to a simple subtype relation, where the capability to do both read and write
operations is a subtype of the read capability and of the write capability (see
Section 6.2 for a more detailed account).

4.4 Some subcalculi

It is interesting to notice that for most applications of the π-calculus, one
does not need the expressive power of the full π-calculus. Using subsets
of the π-calculus usually makes reasoning easier, as more equalities hold
between processes in subcalculi because of the lesser discriminating power
by observers. Another reason why we might be interested in subcalculi is
that (seen as a programming language) the π-calculus is much too difficult
to implement (especially in a distributed setting). This is witnessed by recent
proposals for programming languages based on the π-calculus such as Pict
[PT99] and Join [FG96].

The asynchronous π-calculus The crucial difference between the syn-
chronous and asynchronous π-calculus (πa) lies in the use of the output
construct. In the asynchronous π-calculus, output is non-blocking; this is
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seen in the syntax as the absence of output prefixing (a〈b̃〉.P ), instead we
only have output atoms without continuations (a〈b̃〉), called messages. The
asynchronous π-calculus was introduced by Honda and Tokoro [HT91] and
has later been studied extensively. The presentation given here follows that
of [ACS98].

The syntax for πa is simply a subset of the syntax of the full π-calculus:

P,Q, . . . ::=
∑

i∈I αi.Pi Guarded choice
| a〈b̃〉 Output
| P |Q Parallel composition
| (νã)P Restriction
| !a(ỹ).P Guarded replication
| [a=b]P Matching
| [a6=b]P Mismatching

α ::= a(ỹ) | τ

As it can be seen, we only allow choice on input and internal moves, which
seems natural, as we want output to be non-blocking. If fact, we would also
omit choice, as it can be faithfully encoded in the asynchronous π-calculus
without choice, as shown by Nestmann and Pierce [NP96].

If we interpret a〈b̃〉 as a〈b̃〉.0, we can simply use the semantics from
Table 4.1 for πa — but the syntax imposes additional constraints on possible
transitions.

Just as in the synchronous π-calculus, several definitions of bisimulation
equivalence exists (see [ACS98] for an overview). Barbed bisimulation can
be used as a guideline for what the appropriate notion of bisimulation for πa

should be. It seems natural that the observability predicate should only take
output actions into account since an asynchronous observer cannot tell if a
message has been consumed. So we can define asynchronous barbed bisimu-
lation as in Definition 4.4 but using the predicate ↓ā only checking for out-
put actions. Similarly to the synchronous case, we can define asynchronous
barbed congruence as asynchronous barbed bisimulation closed under all πa

contexts.
The definition of bisimulation from Definition 4.1 is too strong w.r.t.

asynchronous barbed congruence, since it allows us to observe input transi-
tions. The definition of bisimulation that seems to have the right power is
the following definition due to Amadio, Castallani and Sangiorgi:

Definition 4.9 (Asynchronous bisimulation) A symmetric relation R
is an asynchronous bisimulation if for all (P, Q) ∈ R, whenever:
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i. P
µ−−→ P ′ and µ is not an input, then Q

µ−−→ Q′ and P ′ R Q′.

ii. P
ab̃−−→ P ′ then either Q

ab̃−−→ Q′ and P ′ R Q′ or Q
τ−−→ Q′ and

P ′ R (Q′ | a〈b̃〉).

We write P ∼̇a Q if P R Q for some asynchronous bisimulation R.

The definition of asynchronous bisimulation is thus as the standard defini-
tion for bisimulation except for the case of input actions. This part expresses
that if a process absorbs what it has just emitted, this can be “absorbed”
in an internal action. In an asynchronous π-calculus without matching, ∼̇a

is a congruence and coincides with asynchronous barbed congruence. With
matching ∼̇a is not a congruence, and (as usual) we need to close under
substitutions to get the induced congruence which coincides with with asyn-
chronous barbed congruence (c.f. [ACS98])

Example 4.3 An example (from [ACS98]) of the significance of not being
able to observe input action is that we have the following algebraic law:

a(b).(a〈b〉 | P ) + τ.P ∼̇a τ.P with b 6∈ fn(P )

2

It is easy to see that if two asynchronous π-calculus terms are strongly
bisimilar under the ordinary definition of strong bisimulation (Definition 4.1),
then they are also asynchronous bisimilar. This will allow us in some cases
to establish that P ∼̇a Q by using the simpler definition of ∼̇.

πa has several important advantages compared to the full π-calculus. The
various notions of bisimulation equivalence which differ for the synchronous
π-calculus, coincide in the asynchronous calculus [HHK95, ACS98]. Further,
bisimulation is a congruence, a result that does not hold in the synchronous
case (or if we introduce a matching operator). Finally, the equational theory
becomes simpler — in the synchronous case, the matching operator is needed
to give an equational theory, whereas this is not needed in the asynchronous
π-calculus.

The local π-calculus In the local π-calculus of Merro and Sangiorgi [MS98],
denoted Lπ, we restrict πa to

i. only allow a recipient of a name to use that name in output actions,

ii. disallow a match or mismatch construct.



4.5. The lazy λ-calculus in the π-calculus 57

This might seem like a very degenerate version of the π-calculus but,
again, most uses of the π-calculus obey the above mentioned requirements.

The definitions of barbed bisimulation and congruence are the same as
for πa. But now, the alternative characterization using bisimulation becomes
a little more involved and we refer the reader to [MS98] for its definition.

Some of the properties of Lπ processes also hold for processes of the full
π-calculus. For instance assume that the name x in the following obeys
the requirements of Lπ and is only used for output in P1 and P2, then the
following law (from [Mil93]) holds:

(νx)(P1 | P2 | !x(ỹ).Q) ∼ (νx)(P1 | !x(ỹ).Q) | (νx)(P2 | !x(ỹ).Q)

4.5 The lazy λ-calculus in the π-calculus

Just as for the ς-calculus, there exists a simple translation of the lazy λ-calcu-
lus into the π-calculus, as first shown by Milner [Mil92]. We shall discuss the
translation in some detail since it has many similarities with the translations
we shall later show for the ς-calculus.

The following translation from [San95] maps λ-calculus terms into the
π-calculus (in fact, into Lπ):

[[x]]p
4
= x〈p〉

[[λ(x)b]]p
4
= p(x, q).[[b]]q

[[b(a)]]p
4
= (νrt)([[b]]r | r〈t, p〉 | !t(q).[[a]]q) t 6∈ fn([[b]]r | [[a]]q)

In the translation, we assume that the names p, q, r and t are different from
variables in “λ-terms”.

The core of translation is the translation of application. In the translation
of the application b(a) we first evaluate [[b]]r where r is a private name (observe
that in !t(q).[[a]]q the input prefix blocks evaluation of [[a]]q). The private name
r is used to free the evaluation of [[b]]r, and to supply [[b]]r with a trigger-name
(t), that can be used to start the translation of a. What happens is that [[b]]r
when evaluating to something like the translation of a λ-abstraction, it will
read the r〈t, p〉 message, gaining access to the argument located at t.

Example 4.4 To see how this works, consider the λ-term (λy.y(b))(a) with
y not free in b. This term can do a β-reduction and become a(b). We now
show how the translation into the π-calculus can mimic the reduction via a
series of reductions:
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[[(λy.y(b))(a)]]p
= (νrt)([[λy.y(b)]]r | r〈t, p〉 | !t(q).[[a]]q)
= (νrt)(r(y, q).[[y(b)]]q | r〈t, p〉 | !t(q).[[a]]q)

τ−−→d∼ (νt)([[y(b)]]p{t/y} | !t(q).[[a]]q)
= (νt)((νrt′)(t〈r〉 | r〈t′, p〉 | !t′(q).[[b]]q) | !t(q).[[a]]q)

τ−−→d∼ (νt)((νrt′)([[a]]r | r〈t′, p〉 | !t′(q).[[b]]q) | !t(q).[[a]]q)

In the final expression note that t does not occur free in the expression
(νrt′)([[a]]r | r〈t′, p〉 | !t′(q).[[b]]q). This implies that the expression !t(q).[[a]]q is
superfluous and can be removed, resulting in the term (νrt′)([[a]]r | r〈t′, p〉 |
!t′(q).[[b]]q) (formally the two terms are strongly congruent), which is the
translation of a(b). 2

So, what does it mean that the translation is correct? Considering the
translation as a kind of implementation of the lazy λ-calculus, we would
expect the translation to be able to match evaluations in the λ-calculus.

A first suggestion would be that if a → λx.b, then [[a]]p ⇒ [[λx.b]]p. This
is not entirely true as we can see from the above example. What instead
happens is that [[a]]p reduces to some process P that is weakly bisimilar to
[[λx.b]]p. Furthermore if [[a]]p ⇒ P and P↓q, then q = p and a → λx.b
and P ≈ [[λx.b]]p. The first statement states that the translation can mimic
the reductions of the λ-calculus, and the second that the translation does
not exhibit some extra behavior. These two results ensure what is called
operational correspondence.

Another correctness criteria for translations is that of full abstraction
w.r.t. some equivalence in the source calculus and target calculus. Let '
be some notion of equivalence defined on terms from the source calculus
and '′ an equivalence on terms of the target calculus, then a translation
is fully abstract, if a ' b implies [[a]]p '′ [[b]]p and [[a]]p '′ [[b]]p implies
a ' b. Full abstraction allows one to use equivalences defined in the target
calculus to prove equivalence between agents in the source calculus. But
because of the expressiveness of the π-calculus, full abstraction is normally
not achieved when translating sequential calculi. Instead what one gets is
that equivalence between translated terms implies equivalence between the
original terms. However, if two translated terms are inequivalent in the target
calculus, nothing conclusive can be said about their equivalence in the source
calculus.

For a detailed account of the relation between the λ-calculus and its trans-
lations into the π-calculus, we refer the reader to [San94a, San94b, San95].



Chapter 5

Translating the untyped Func-
tional ς-calculus

We start our study of the applicability of process calculus techniques to the
ς-calculus by giving a translation of the untyped Functional ς-calculus into
the π-calculus.

Such an encoding can provide us with several insights into the funda-
mentals of implementing object-oriented languages. Most object-oriented
languages are implemented using a notion of references and in particular for
the notion of self, whereas the Functional ς-calculus uses substitution (c.f.
Table 3.2). In the π-calculus references are part and parcel of the syntax in
the guise of names. Thus, an encoding of the ς-calculus into the π-calculus
directly shows how references can be used to represent substitution and the
notion of self. Furthermore, the concurrent nature of the π-calculus pro-
vides us with an idea of how to implement an object-oriented language in a
distributed setting.

There are additional benefits from the point of view of verification of
program properties, provided that the encoding is sound in the sense that
it will ‘internalize’ the object calculus by reflecting behavioral properties
of object terms. For when the encoding is sound in this sense, one can
reason about the behavior of objects at the π-calculus level, as shown for the
Imperative ς-calculus in Chapter 6.

Because subsets of the π-calculus usually allows more terms to be equated
than the full calculus, it seems natural to try to use as small a subset of the
π-calculus as possible. Therefore, we start our investigation by trying to use
the local π-calculus (Lπ) introduced in Section 4.4.

Before we start considering how to encode the ς-calculus, let us briefly
review the basic requirements of a “good” translation inspired by Palamidessi

59
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in [Pal97]:

i. Compositionality.

ii. Preservation of some intended semantics.

Compositionality means that the translation of a term [[a ⊗ b]], where ⊗ is
some operator in the source language, is given in terms of the translations
[[a]] and [[b]]. Compositionality naturally makes the use of the translation to
reason about the source language easier. Something even better, but more
difficult to obtain, is uniformity — that certain operators in the source lan-
guage translate directly to corresponding operators in the target languages.
So, if our hypothetical translation of a ⊗ b is [[a ⊗ b]]

4
= [[a]] ⊕ [[b]], then the

translation is said to be uniform w.r.t. ⊗. 1.
Requirement ii, preservation of some intended semantics, is the very basic

requirement. A translation would not be worth much if it did not respect
the intended semantics of the source language. In the case of our translation
of the ς-calculus into the π-calculus, our basic requirement is that the trans-
lation is operationally correct, meaning that the π-calculus translation can
mimic reductions in the ς-calculus. In this chapter, we shall show that the
encoding is operationally correct in the sense that it respects reductions. We
also show that our encoding is not fully abstract with respect to weak barbed
congruence in the π-calculus and consider the restrictions which we will need
to impose on terms of the π-calculus in order to achieve full abstraction.

The structure of the rest of the chapter is as follows: In Section 5.1 we
define our encoding of the ς-calculus into the asynchronous π-calculus and
discuss alternative encodings. In Section 5.2 we give a few examples showing
how the final translation works. Section 5.3 state and prove the main re-
sults concerning the operational correspondence of the encoding. Section 5.4
examines the relation between equivalences of ς-calculus terms and their en-
codings. Finally, in Section 5.5 we discuss the results of this chapter.

5.1 The encoding

In what follows, we shall assume that the sets of method names and self
variables in the encoding coincide with the set of method names and self

1The difference in our definition compared to Palamidessi is firstly, instead of clause
ii, she requires a reasonable semantics, that is a semantics that respects divergence. Sec-
ondly, we use a more general notion of uniformity. In her terminology, uniformity means
that parallel composition and restriction in the source language are translated as parallel
composition and restriction in the target language.
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variables in the ς-calculus.
Let us start by considering how we can translate a degenerate version of

the untyped ς-calculus which does not have method override. The central
idea of the encoding is that, as soon as an object term reduces to a value (i.e.
a variable or an object record), an object reference is output on a special,
designated value channel.

An object reference is used to activate methods. In order to activate a
method, its surrounding object is passed the name of the method, and a reply
(value) channel where the location of the result of the method is returned.
We shall represent an object value as a replicated process located at some
name s, that on reception of a method name l and a reply channel r will
activate the method bound to l. When activating a method, we must ensure
that the self variable of the method is correctly bound to its enclosing object.

A first attempt at an encoding of object values might resemble something
like:

[[[li=ς(xi)bi
i∈I ]]]p

4
= (νs)

(

p〈s〉 | !s(m, r).m〈s, r〉 |
∏

i∈I

!li(xi, q).[[bi]]q
)

In this translation p denotes the value channel on which we publish a refer-
ence s, where the object can be reached. The replicated part !s(m, r).m〈s, r〉
can repeatedly receive a pair consisting of a method name (bound to m) and
a reply channel (bound to r). The received pair is used to select the correct
method by outputting on m the self s of the object and the reply channel r.
Since m should denote a method name, one of the methods located at some
li should be able to synchronize and start computing.

There is just one minor problem with this translation. A method can be
activated if an attempt is made to activate a method with the same name
in another object. This is possible, because methods are always ready to
be activated by a signal on their method name. This can not be prevented
by making the method names private to the object, for then we would not
be able to activate the methods. To remedy this we need to ensure that a
method is only ready to receive on its method name when its surrounding
object is active. To do this we move the methods beneath the input prefix
on s, and replace the replicated parallel composition with a input-guarded
choice. This ensures i) that the methods can only be activated when the
object has received a request to do so, and ii) that the methods not selected
are preempted when activating the right one. Table 5.1 presents the full
translation for the Functional ς-calculus without method override:

In the case of method activation a.l, we see how we first create a private
reply channel q, then evaluate [[a]]q while we wait for a reply to be returned
along q. The reply we receive along q is a pointer to the object resulting from
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[[[li=ς(xi)bi
i∈I ]]]p

4
= (νs)

(

p〈s〉 | !s(m, r).
(

m〈s〉 |
∑

i∈I

li(xi).[[bi]]r
))

[[a.l]]p
4
= (νq)([[a]]q | q(x).x〈l, p〉)

[[x]]p
4
= p〈x〉

Table 5.1: A translation of ς-calculus without method override.

evaluating a. Now all we need to do is to request activation of the method l
with the reply channel p. In the translation of object values we have made a
minor optimization compared to our previous, flawed translation — instead of
passing the reply channel around when selecting the right method, we now
use the fact that the method bodies are located beneath the input prefix
where we receive the reply channel.

Now all we need to do is to figure out how to deal with method over-
ride. Let us recall the semantics of method override given in Section 3.2, the
reduction rule was:

a.lj⇐ς(x)b ; [li=ς(xi)bi, lj=ς(x)b i∈I\{j}] j ∈ I

That is, a method override on an object value creates a new object with the
only difference from the old one being that we have replaced the method
bound to lj with a new body. Or, to put it differently, the only difference
between the old and the new object is the method bound to lj. So if we
can somehow modify the encoding such that we can express that an object
is just like another except for some new method, then we would be done. In
order to do this we need a ‘relay construct’ that must pass on requests for a
method call to the new body of l if l is invoked. In all other cases, the ‘relay
process’ will pass the request to the old method bodies. Of course, we need
to ensure that all occurrences of self in the old method bodies are correctly
bound to the new object.

This means that the location s of the translation of an object value no
longer needs to denote the self of its methods, since an override operation of
one of its methods leads to the creation of a new self. Therefore, we must
on activation of a method provide the location of the current self such that
method lookup can begin at the right place. This idea of the encoding is
illustrated in Figure 5.1.
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l1
l2
l3

l2

obj o

lookup starts
at the original
reciever.

activate method
l1 at object o′

obj o′

Figure 5.1: Method override and lookup.

5.1.1 An encoding into Lπ

Now that we have the basic principles of the translation, we can proceed to
give a translation of the Functional ς-calculus into Lπ extended with input-
guarded choice. We start out by giving the sorting that we want the trans-
lation to obey:

Method names l,m : Method → (ObjRef )
Reply channels p, q, r : RepCh → (ObjRef )
Object references s, t : ObjRef → (Method ,ObjRef ,RepCh)
Self variables x, y, z, u : ObjRef

In the sorting given above the clause p, q, r : RepCh → (ObjRef ) expresses
that p, q and r range over the set RepCh of reply channels and that names
from the set ObjRef of object reference names are transmitted over reply
channels. For reasons of simplicity we shall assume that m (with a possible
index or mark) does not belong to the set MNames of ς-calculus method
names (but it can be instantiated via an input action to become a method
name).

The encoding function [[·]]p is defined in Table 5.2.
Compared to the previous translation, which did not consider method

override, we see that we now on method activation pass the object reference
as a parameter on the object reference itself. In the case where there is no
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[[[li=ς(xi)bi
i∈I ]]]p

4
= (νs)

(

p〈s〉 | !s(m, y, r).
(

m〈y〉 |
∑

i∈I

li(xi).[[bi]]r
))

where y 6∈ ∪i∈I fv(bi)

[[a.l]]p
4
= (νq)([[a]]q | q(x).x〈l, x, p〉)

[[x]]p
4
= p〈x〉

[[a.l⇐ς(x)b]]p
4
= (νq)

(

[[a]]q | q(z).(νt)(p〈t〉 | !t(m, y, r).
(

m〈y〉 | l(x).[[b]]r +
∑

l′∈M\{l}

l′(x).z〈m, y, r〉)
))

where y, z 6∈ fv(b)

Table 5.2: The translation from the untyped Functional ς-calculus to Lπ.

method override present, this changes nothing compared with the previous
encoding, since all we have done is to move the installation of the self of a
method from the translation of an object value to the translation of a method
activation. But this change allows us to control where method lookup should
start, which is exactly what we need in order to deal with method override.

The interesting case is the one dealing with method override a.l⇐ς(x)b.
First, we evaluate the translation of a at a private name q where we receive
an object reference that is bound to the name z. Then, the translation
method override returns a new object reference t, and start a replicated
process located at t that receives requests for methods activations. But the
only method we have available is the overriding method bound to l, so for all
other requests we need to resend them to z. Observe that, when resending,
we do not change the object reference y that denotes the “true” self of the
object. This allows a request for method activation on self to start at the
outermost series of overrides.

The last detail of the translation is the set M in the relay
∑

l′∈M\{l}

l′(x).z〈m, y, r〉

for methods different from l. Ideally, M should be (or at least contain) the
set of method labels that the object a has. So how can we determine this
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when translating a method override? The following proposals come to mind
(unfortunately most of them do not work):

i. Let M be the set of all names having sort Method . This is not allowed,
since the sort Method must contain an infinite number of names, and
we only allow finite summation in the π-calculus.

ii. Take the set of method labels occurring in a. This might seem like a
good suggestion; however, it does not work. This is due to the fact that
we can override self as in y.l⇐ς(x)b where the expression is embedded
in some method binding y to an object.

iii. Use type information. We could consider using a typed version of the
ς-calculus and then try to use type information to figure out which
methods to relay.

The typing rule for override states that if we can deduce that a has
type A = [li:Bi

i∈I ] and assuming the self of the method to have type
A we can deduce b to have type Bj, then a.lj⇐ς(x:A)b has type A.

This might lead us to think that we simply need to relay the methods
li for i ∈ I \ {j}. But this also fails because of the subsumption rule,
that allows us to “hide” methods in an object.

iv. Forget compositionality and let M be the set of all method names in
the expression that we are translating.

The only working solution is iv, but sacrificing compositionality will compli-
cate the use of the translation for reasoning about objects. Another aspect
that makes the translation less useful is that method selection happens by
communication on free names; implying that for the translation of two terms
a and b to be, for instance, weakly bisimilar, they need to show exactly the
same sequences of method activations. This problem could be prevented
by restricting all method names from a and b at the outermost level of the
translations. But the restrictions prevents us from us from activating any
methods from the outside, resulting in an almost useless translation.

Given all these problems and disadvantages of the translation in Table 5.2
we might consider using a more powerful version of the π-calculus. From the
above discussion, we see that the problem with compositionality is caused by
the way we relay method calls in the translation of method override. Recall
what the intended meaning of the translation of method override is: Namely,
that we look at the method name received and, if the name is identical to the
method we have overridden, then activate the new method body, otherwise
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pass the request on to the old object. This description of override tells us
that the extra power we need is an if-then-else construct for testing equality
of names, which is exactly what the match and mismatch constructs can be
used for.

Another good reason for abandoning the use of communication for de-
scribing method selection, is that such a translation will not work in a concur-
rent setting where several method activations might happen simultaneously.
This might not seem as a problem with the present version of the ς-calculus.
However, in the proof of the correctness of the translation the problem might
surface, simply because of the concurrent nature of the π-calculus.

5.1.2 A translation using πa

It is straightforward to modify the translation from Table 5.2 to use match
and mismatch on method names instead of communication to select the cor-
rect method. The only minor complication in the new translation, presented
in Table 5.3, is that we need to insert an extra communication on a private
name after having selected the right method in order to install the self of
the method (in the previous translation we used the communication on the
method name to do that)2.

To make the translation more readable we write s:=[[[li=ς(xi)bi
i∈I ]]] for

the term !s(m, y, r).(νq)(q〈y〉 |
∏

i∈I [m=li]q(xi).[[bi]]r) denoting the transla-
tion of an object value located at the name s. For the translation of method
override we shall use a similar abbreviation, letting t:=s.[[l⇐ς(x)b]] denote
the term !t(m, y, r).(νq)(q〈y〉 | [m=l]q(x).[[b]]r | [m6=l]q(x).s〈m, y, r〉), that is
an override of l located at t that on activations different from l will relay
to the object located at s. We shall also, when they are obvious from the
context, omit index sets in expressions.

The internal workings of the new translation are the same as in the pre-
vious one, except for one minor detail. In the translation of method override,
in the case where the mismatch applies, we read the message located at the
private name q′ but do not use the input name for anything. This might seem
like a superfluous input that could be removed. But again, as we shall see
later, the removal of the message at q′ makes reasoning about the translation
easier.

2We could avoid the communication by ensuring that all methods in an object uses
the same self variable (by [[bi]]r{y/xi}, exchanging the self variable xi in each method bi

with the variable y common to all methods in the surrounding object), however the extra
communication makes reasoning easier (see Example 5.2).
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[[[li=ς(xi)bi
i∈I ]]]p

4
= (νs)

(

p〈s〉 | !s(m, y, r).(νq)
(

q〈y〉 |
∏

i∈I

[m=li]q(xi).[[bi]]r
))

where y 6∈ ∪i∈I fv(bi)

[[a.l]]p
4
= (νq)([[a]]q | q(x).x〈l, x, p〉)

[[x]]p
4
= p〈x〉

[[a.l⇐ς(x)b]]p
4
= (νq)

(

[[a]]q | q(z).(νt)
(

p〈t〉 | !t(m, y, r).(νq′)(q′〈y〉 |

[m=l]q′(x).[[b]]r | [m6=l]q′(x).z〈m, y, r〉)
))

where y, z 6∈ fv(b)

Table 5.3: The translation from the untyped Functional ς-calculus to πa with
match and mismatch.

5.2 Examples

Before considering how to prove that the translation is operationally correct,
we shall present a few examples showing how the translation can mimic the
reductions of ς-calculus terms

Example 5.1 Our first example is the encoding of the following simple ob-
ject:

a = [l=ς(x)x.l]

It contains only one method l, that when activated will activate itself, leading
to the infinite reduction sequence a.l ; a.l ; · · ·. In our encoding this gives
rise to the following behavior:
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[[a.l]]p

= (νq)
(

(νs)(q〈s〉 | s:=[[[l=ς(x)x.l]]]) | q(x).x〈l, x, p〉
)

τ−−→d (νs)
(

s:=[[[l=ς(x)x.l]]] | s〈l, s, p〉
)

τ−−→d (νs)
(

s:=[[[l=ς(x)x.l]]] | (νq)(q〈s〉 | [l=l]q(x).[[x.l]]p)
)

∼ (νs)
(

s:=[[[l=ς(x)x.l]]] | (νq)(q〈s〉 | q(x).(νq′)([[x]]q′ | q′(y).y〈l, y, p〉))
)

τ−−→d (νs)
(

s:=[[[l=ς(x)x.l]]] | (νq′)(q′〈s〉 | q′(y).y〈l, y, p〉)
)

∼ (νq)
(

(νs)(q〈s〉 | s:=[[[l=ς(x)x.l]]]) | q(x).x〈l, x, p〉
)

= [[a.l]]p

Here we see how one ς-calculus reduction is mimicked by three deterministic
internal communications by the translation. The first use of strong bisim-
ulation congruence is an application of the law [a=a]P ∼ P allowing us to
remove a successful match. The second instance is an application of the laws
that allow us to move restrictions around as long as we do not capture any
free names or release any bound. 2

In our next example we see how method override works in the translation.

Example 5.2 Consider the object

a = [l1=ς(x)x, l2=ς(x)b]

If we override l1 or l2, we obtain a new object with the old method replaced
by the overriding one. As mentioned earlier, the encoding describes this by
means of a ‘relay’, a process that handles activations of the overriding method
itself and resends all other method activations to the original object.

Let us consider the expression (a.l2⇐ς(x)x.l1).l2. The semantics of the
ς-calculus gives the following sequence of reductions:

(a.l2⇐ς(x)x.l1).l2 ; [l1=ς(x)x, l2=ς(x)x.l1].l2

; [l1=ς(x)x, l2=ς(x)x.l1].l1

; [l1=ς(x)x, l2=ς(x)x.l1]

Because the encoding of override behaves like a relay construct we cannot ex-
pect the translation to evaluate to something that is exactly (modulo garbage
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collection and placement of restrictions) the translation of [l1=ς(x)x, l2=ς(x)x.l1].
The following computation shows what we get instead:
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[[(a.l2⇐ς(x)x.l1).l2]]p

= (νq)
(

(νq′)
(

(νs)(q′〈s〉 | s:=[[a]]) | q′(x).(νt)(q〈t〉 |

t:=x.[[l2⇐ς(x)x.l1]])
)

| q(x).x〈l2, x, p〉
)

τ−−→
2

d (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]]
)

| t〈l2, t, p〉
)

τ−−→d (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]] |

(νq)(q〈t〉 | [l2=l2]q(x).[[x.l1]]p | [l2 6=l2]q(x).s〈l2, t, p〉)
))

∼ (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]]
)

| (νq)(q〈t〉 |

q(x).[[x.l1]]p)
)

τ−−→d (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]]
)

| (νq)(q〈t〉 |

q(x).x〈l1, x, p〉)
)

τ−−→d (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]]
)

| t〈l1, t, p〉
)

τ−−→d (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]] |

(νq)(q〈t〉 | [l1=l2]q(x).[[x.l1]]p | [l1 6=l2]q(x).s〈l1, t, p〉)
))

τ−−→d (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]] |

(νq)([l1=l2]q(x).[[x.l1]]p) | s〈l1, t, p〉
))

∼ (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]] | s〈l1, t, p〉
))

τ−−→d∼ (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]]
)

|

(νq)(q〈t〉 | [l1=l1]q(x).p〈x〉 | [l1=l2]q(x).[[b]]p)
)

τ−−→d (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]]
)

|

p〈t〉 | (νq)([l1=l2]q(x).[[b]]p)
)

∼ (νt)
(

(νs)
(

s:=[[a]] | t:=s.[[l2⇐ς(x)x.l1]]
)

| p〈t〉
)

Observe how the object reference of the original receiver is passed on when
the receiver does not have the requested method itself. This ensures that
when the correct method is found, we know where to start looking for other
methods. Looking at the translation, we see that the term (νt)((νs)(s:=[[a]] |
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t:=s.[[l2⇐ς(x)x.l1]]) represents the object [l1=ς(x)x,
l2=ς(x)x.l1] located at t. In the following section we shall show that this is
true in a precise sense.

In the above example, we apply a law saying [a6=a]P ∼ 0 to garbage
collect dead parts of the translation. One might expect a similar law to
hold for matching, as [a=b]P ∼ 0, but this is not true in all contexts. For
instance the context c(b)[·] is able to distinguish between the two terms,
as an input action can lead to the identification of a and b (of course, the
translation never creates such contexts). Therefore the omission of the term
(νq)([l1=l2]q(x).[[x.l1]]p) in the second use of ∼ relies on the fact that the
input prefix q(x) is on a name private to that term, implying that the term
is inactive. (This explains why it is advantageous to remove the message
located at q′ in the mismatch case of method override). 2

5.3 Operational correspondence

In this section we shall show the operational correctness of the encoding.
First note that our translation is more liberal than the semantics for the

untyped ς-calculus given in Table 3.2 because the translation not only works
for updates of existing methods but also for addition of new methods to
an object. For the untyped ς-calculus there is nothing wrong in allowing
this behavior, so we shall assume the following more liberal rule for method
override

a.lj⇐ς(x)b ; [li=ς(xi)bi, lj=ς(x)b i∈I\{j}]

Notice that we have dropped the requirement j ∈ J .
The examples from the previous section hint at the kind of results we can

expect. The last example makes it clear that we cannot expect to prove a
very tight operational correspondence between reductions in the ς-calculus
and its translation into the π-calculus. For instance, the ideal result would
be something like

a ; b iff [[a]]p
τ−−→

∗
d∼ [[b]]p

where ∼ is used to garbage collect unreachable parts and rearrange terms.
But this cannot hold, simply because the relay construct used to handle
method override, as in the translation of [li=ς(xi)bi

i∈I ].lj⇐ς(x)b, requires
some extra internal communication in order to mimic that of [li=ς(xi)bi, lj=ς(x)b i∈I\{j}].
This observation implies that we need something weaker than ∼ to relate re-
ductions in the ς-calculus with the behavior of the translation. So instead of
strong bisimulation congruence we shall use a weak congruence relation, for
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example weak bisimulation congruence (≈). Using a congruence relation in-
stead of just an equivalence relation will make reasoning easier. For instance,
if we know that some π-calculus term P is congruent to the translation of
the object a located at some name p, this will allow us to exchange P with
[[a]]p in every π-calculus context C[·].

Since weak congruence disregards internal communication we can remove
the sequence of deterministic τ -transitions from the above correctness criteria
and instead state that operational correctness in our case is something like:

a ;∗ b iff [[a]]p ≈ [[b]]p

We need to consider (possibly empty) sequences of reductions because [[a]]p ≈
[[a]]p.

By definition, two processes are weakly congruent if they are weakly
bisimilar under all substitutions obeying the sorting of the translation. Un-
fortunately, this does not hold for the translation if we use the sorting from
Section 5.1. To see why, consider the following simple object:

a = [l1=ς(x)b, l2=ς(x)c]

We would like the translation to have the property that [[a.l1]]p ≈ [[b{a/x}]]p.
But if we use the substitution σ = {l1/l2} mapping the method name l2 to
l1 then the translation [[a.l1]]pσ will have a nondeterministic choice between
running the translation of b or c, whereas the translation [[b1{a/x}]]pσ already
has resolved this choice. This implies that the two terms cannot be weakly
congruent under the sorting given in Section 5.1.

For π-calculus terms resulting from the translation this is not a problem,
as we never bind a method name (we always use the name m that by con-
vention is not a method name). This requirement must be extended to all
π-calculus terms by a more refined sorting stating exactly that method labels
cannot be bound by an input. This solves the problem, since we then cannot
end up identifying two method labels. At first glance this requirement might
seem somewhat ad hoc, but it simply amounts to stating that the names
from MName are constants and that one cannot go around substituting
constants with other constants. This restriction translates into a constraint
on substitutions, that a substitution σ must not identify method names. It
is easy to see from the translation that in the case of closed objects we do not
need to consider substitutions at all, when we want to establish congruence
properties, since there is only one free name that is not a method label (the
reply channel). A final observation worth making is that, except for names
from Method (that are matched against each other), all other names conform
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to the requirements of Lπ. This allows us to use laws valid only for Lπ on
all names.

In the following, let ∼ς
b (≈ς

b) denote (weak) asynchronous barbed con-
gruence on contexts obeying the above-motioned requirements and similarly
≤ς and ≤ς

b denotes expansion congruence and barbed expansion congruence
respectively defined over the same set of processes.

The two following lemmas provide the basis for the proof of soundness of
method activation and method override. Our first lemma states that locating
an object at an object reference and binding the object reference to a self
variable, is equivalent to substituting the object for the self variable:

Lemma 5.1 (Substitution) Let a denote an object value [li=ς(xi)bi
i∈I ]

and let b be an arbitrary object, then the following property holds:

(νs)(s:=[[a]] | [[b]]p{s/x}) ∼ς
b [[b{a/x}]]p

Proof. We prove the property using induction on the structure of b,
applying algebraic laws to bring the left hand side into the shape of the right
hand side.

b = y : We have two cases; either y = x and we have:

(νs)(s:=[[a]] | [[x]]p{s/x}) = (νs)(s:=[[a]] | p〈s〉)
= [[a]]p
= [[x{a/x}]]p

or y 6= x and:

(νs)(s:=[[a]] | [[y]]p{s/x}) = (νs)(s:=[[a]] | p〈y〉)
∼ (νs)(s:=[[a]]) | p〈y〉
∼ p〈y〉
= [[y]]p
= [[y{a/x}]]p

b = b′.l : Assume w.l.o.g. that q 6∈ fn(s:=[[a]]) (this will allow us to move
s:=[[a]] beneath a restriction on q without capturing free occurrences of
q in s:=[[a]]). This is used in the following calculation:

(νs)(s:=[[a]] | [[b′.l]]p{s/x})
= (νs)(s:=[[a]] | (νq)([[b′]]q{s/x} | q(y).y〈l, y, p〉))
∼ (νq)((νs)(s:=[[a]] | [[b′]]q{s/x}) | q(y).y〈l, y, p〉)
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Now we can use the induction hypothesis to replace the subexpression
(νs)(s:=[[a]] | [[b′]]q{s/x}) with [[b′{a/x}]]q, and all there is left for us to
do is to observe what the resulting term is the translation of:

(νq)([[b′{a/x}]]q | q(y).y〈l, y, p〉) = [[b′{a/x}.l]]p
= [[b.l{a/x}]]p

b = [li=ς(xi)bi
i∈I ] : Assume w.l.o.g. that for all i ∈ I xi 6= x. Then expand-

ing the translation (νs)(s:=[[a]] | [[[li=ς(xi)bi
i∈I ]]]p{s/x}) we get

(νs)
(

s:=[[a]] | (νt)
(

p〈t〉 | !t(m, y, r).(νq)(q〈y〉 |
∏

i∈I [m=li]q(xi).[[bi]]r{s/x})
))

Now remember that we in Section 4.4 stated that if a name, for in-
stance s, is used only for output in the terms !s(ỹ).Q, P1 and P2 then
we can distribute a restricted occurrence of !s(ỹ).Q over P1 | P2. This
result can be strengthened to allow us also to move the replicated term
beneath matching and input prefix if s does not occur in these opera-
tors. This can be used to get the following expression, that is strongly
barbed congruent (using ∼ς

b) to the one above:

(νt)
(

p〈t〉 | !t(m, y, r).(νq)
(

q〈y〉 |
∏

i∈I [m=li]q(xi).(νs)(s:=[[a]] |

[[bi]]r{s/x})
))

We now have an expression where we can apply the induction hypoth-
esis on all subexpressions of the form (νs)(s:=[[a]] | [[bi]]r{s/x}) getting:

(νt)(p〈t〉 | !t(m, y, r).(νq)(q〈y〉 |
∏

i∈I

[m=li]q(xi).[[bi{a/x}]]r))

= [[[li=ς(xi)bi{a/x} i∈I ]]]p
= [[[li=ς(xi)bi

i∈I ]{a/x}]]p

b = b′.l⇐ς(y)c : As before, assume w.l.o.g. that x 6∈ {y, z, u}. The transla-
tion of (νs)(s:=[[a]] | [[b′.l⇐ς(y)c]]p{s/x}) is:

(νs)
(

s:=[[a]] | (νq)
(

[[b′]]q{s/x} | q(u).(νt)(p〈t〉 | !t(m, z, r).(νq′)(

q′〈z〉 | [m=l]q′(y).[[c]]r{s/x} | [m 6=l]q′(y).u〈m, z, r〉))
))
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As before we can distribute s:=[[a]] resulting in the term:

(νq)
(

(νs)(s:=[[a]] | [[b′]]q{s/x}) | q(u).(νt)
(

p〈t〉 | !t(m, z, r).(νq′)(

q′〈z〉 | [m=l]q′(y).(νs)(s:=[[a]] | [[c]]r{s/x}) | [m6=l]q′(y).u〈m, z, r〉)
))

Which puts us in a position to apply the induction hypothesis and then
we are done:

(νq)
(

[[b′{a/x}]]q | q(u).(νt)
(

p〈t〉 | !t(m, z, r).(νq′)(

q′〈z〉 | [m=l]q′(y).[[c{a/x}]]r) | [m6=l]q′(y).u〈m, z, r〉
))

= [[b′{a/x}.l⇐ς(y)c{a/x}]]p
= [[(b′.l⇐ς(y)c){a/x}]]p

2

In the above proof we use ∼ς
b to distribute s:=[[a]] over parallel composition.

Readers familiar with [Mil93] may recall that there is a similar law for the
full π-calculus stating that

(νx)(!x(ỹ).Q|P1|P2) ∼ (νx)(!x(ỹ).Q|P1) | (νx)(!x(ỹ).Q|P2)

if free occurrences of x in P1, P2 and Q are only used in output position.
The requirement on x is needed to ensure that x cannot escape its restriction
because a context receiving x may be able to “impersonate” Q by receiving
on x. For names obeying Lπ this is not a problem as we are not allowed
to receive on received names. By inspection of the translation we see that
we could not have used the law from [Mil93] because we can reveal s to the
outside (for instance if a method in a returns self as result).

The next lemma deals with the relay construct that is the core of the
translation of method override.

Lemma 5.2 (Relay) Let a denote an object value [li=ς(xi)bi
i∈I ] and let b

be an arbitrary object, then the following property holds:

(νt)(t:=[[a]] | s:=t.[[lj⇐ς(x)b]]) ≥ς s:=[[[li=ς(xi)bi, lj=ς(x)b i∈I\{j}]]]

Proof. Before we start giving the proof, observe that we do not require j
to be contained in I and therefore show that the relay construct also works
in an extended version of the ς-calculus where we allow addition of methods
(like in the object calculus of Fisher [Fis96]).
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We show this property by exhibiting an expansion relation (up-to ∼)
containing the pair:

(

(νt)(t:=[[a]] | s:=t.[[lj⇐ς(x)b]]), s:=[[[li=ς(xi)bi, lj=ς(x)b i∈I\{j}]]]
)

In principle, we have to check the property for any substitution σ but since
the relation that we come up with remains invariant under substitutions this
poses no problem.

It is easy to see that the relation must contain more pairs than the one
mentioned. Before presenting the full relation, let us try to argue what pairs
we also need to put into the relation. First of all, both processes are able
to receive requests for method invocation s〈l, s′, p〉 starting the processes
responsible for resolving which method is to be started. For the relay con-
struction the decision of which method should be activated takes place as a
three-stage process: First we check if the name l is equal to lj; if it is then we
are done. If not, the second stage relays the message on the name t. And the
third stage determines which of the methods li matches l. These three steps
are matched in one step by the object with the new method embedded. After
having resolved which method to start, say bk, it will be started, meaning
that we also need to take methods that are started into account. Finally,
since we work in a concurrent setting new requests for method activation can
arrive while we are still in the process of resolving others, implying that our
relation should contain a scenario where several requests for method activa-
tion are being handled. This leads us to propose the following relation as
our candidate:

R =
{(

(νx̃)
(

(νt)(t:=[[a]] | s:=t.[[lj⇐ς(x)b]] |
∏

m∈M

(νq)(q〈sm〉 | [lm=lj]q(x).[[b]]rm | [lm 6=lj]t〈lm, sm, rm〉) |

∏

n∈N

t〈ln, sn, rn〉) |

∏

o∈O

(νq)(q〈so〉 |
∏

i∈I

[lo=li]q(xi).[[bi]]ro) | P
)

,

(νx̃)
(

s:=[[[li=ς(xi)bi, lj=ς(x)b i∈I\{j}]]] |
∏

m∈M

(νq)(q〈sm〉 |
∏

i∈I\{lj}

[lm=li]q(xi).[[bi]]rm | [lm=lj]q(x).[[b]]rm) |

∏

n∈N

(νq)(q〈sn〉 |
∏

i∈I\{lj}

[ln=li]q(xi).[[bi]]rn | [ln=lj]q(x).[[b]]rn)
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∏

o∈O

(νq)(q〈so〉 |
∏

i∈I\{lj}

[lo=li]q(xi).[[bi]]ro | [lo=lj]q(x).[[b]]ro) | P
) )

∣

∣

∣ P ∈ Proc, lm ∈ MName, ln, lo ∈ MName \ {lj}
}

In R the processes ranged over by M represent the first part of the sequence
of actions performed by the relay construct to decide which method to acti-
vate, N represent the second and O the third. The process P denotes already
activated methods and the restriction (νx̃) needs to be there because acti-
vated methods may activate other methods recursively using a private name
as reply channel.

Now we “only” need to go through the tedious process of showing that
R is in fact an expansion relation up to ∼. To make the discussion a little
bit easier we shall use the following abbreviations:

S1
4
= t:=[[a]] | s:=t.[[lj⇐ς(x)b]]

SM
2

4
=

∏

m∈M

(νq)(q〈sm〉 | [lm=lj]q(x).[[b]]rm | [lm 6=lj]q(x).t〈lm, sm, rm〉))

SN
3

4
=

∏

m∈N

t〈ln, sn, rn〉

SO
4

4
=

∏

o∈O

(νq)(q〈so〉 |
∏

i∈I

[lo=li]q(xi).[[bi]]ro)

T1
4
= s:=[[[li=ς(xi)bi, lj=ς(x)b i∈I\{j}]]]

TW
2

4
=

∏

w∈W

(νq)(q〈sw〉 |
∏

i∈I\{j}

[lw=li]q(xi).[[bi]]rw | [lw=lj]q(x).[[b]]rw)

for W ∈ {M,N, O}

With these abbreviations we can write R as
{(

(νx̃)
(

(νt)(S1 | SM
2 | SN

3 ) | SO
4 | P

)

, (νx̃)
(

T1 | TM
2 | TN

2 | TO
2 | P

))}

We now proceed with a case analysis of the possible transitions

(νx̃)
(

(νt)(S1 | SM
2 | SN

3 ) | SO
4 | P

)

α−−→ S

by the left element of the pair. We must be able to find a matching transition

(νx̃)
(

T1 | TM
2 | TN

3 | TO
4 | P

) bα−−→ T

where S ∼R∼ T . The α-transition may have originated from:
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An observable action by P : That is P
α−−→ P ′. This transition can

be performed by both elements of the pair and the resulting pair is also
contained in R.

An observable action by S1: This can only be an input action s〈lk, sk, pk〉
resulting in the addition of an element to S2. Therefore the resulting system
is of the form:

S = (νx̃)
(

(νt)(S1 | SM∪{k}
2 | SN

3 ) | SO
4 | P

)

This transition is easily matched by the right hand system by doing exactly
the same transition resulting in

T = (νx̃)
(

T1 | TM∪{k}
2 | TN

2 | TO
2 | P

)

And the resulting pair is related by R.

An internal communication between P and S1: For this to happen
P must have performed the transition P

α−−→ P ′ with α = (νỹ)s〈l′ , s′, p′〉
resulting in the system

(νx̃ỹ)((νt)(S1 | SM∪{m′}
2 | SN

3 ) | SO
4 | P ′)

where lm′ = l′ , sm′ = s′ and rm′ = p′. Such an internal action is easily
matched by the right hand system resulting in the system

(νx̃ỹ)(T1 | TM∪{m′}
2 | TN

2 | TO
3 | P ′)

and it is easy to see that the pair consisting of these two systems is contained
in R.

An internal action by SM
2 : This can only happen by an internal action

by one of SM
2 ’s components, say m′. The transition (omitting the index)

must be of the form (νq)(q〈s〉 | [l=lj]q(x).[[b]]p | [l 6=lj]q(x).t〈l, s, p〉) τ−−→ Q.
There are two possible internal transitions depending on whether l is equal
to lj or not.

If l is equal to lj then Q = (νq)([l 6=lj]q(x).t〈lj, s, p〉) | [[b]]p{s/x}. The part
(νq)([l 6=lj]q(x).t〈lj, s, p〉) cannot do any actions, therefore S must be strongly
congruent to

(νx̃)
(

(νt)(S1 | SM\{m′}
2 | SN

3 ) | SO
4 | P | [[b]]p{s/x}

)
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By construction, there must be a component of TM
2 of the form (νq)(q〈s〉 |

∏

i∈I\{lj}[l=li]q(xi).[[bi]]p | [l=lj]q(x).[[b]]p). Again, since l is equal to lj this
process can do an internal transition to a process Q′ of the form:

(νq)(
∏

i∈I\{lj}

[l=li]q(xi).[[bi]]p) | [[b]]p{s/x}

And again the part (νq)(
∏

i∈I\{lj}[l=li]q(xi).[[bi]]p) is dead so T must be
strongly congruent to

(νx̃)
(

T1 | TM\{m′}
2 | TN

2 | TO
2 | P | [[b]]p{s/x}

)

So we have S ∼R∼ T
If l is not equal to lj then Q = t〈l, s, p〉. This means that Q now fits the

shape of S3 so we have

S = (νx̃)
(

(νt)(S1 | SM\{m′}
2 | SN∪{m′}

3 ) | SO
4 | P

)

This transition can be matched by the corresponding process in TM
2 by doing

nothing (but now we know that l is not lj so we can now move the process
to TN

3 getting

T = (νx̃)
(

T1 | TM\{m′}
2 | TN∪{m′}

3 | TO
4 | P

)

And now it is easy to see that S R T .

An internal communication between S1 and SN
3 : This is caused by the

consumption by the replicated process located at t of a message t〈ln′ , sn′ , rn′〉
for n′ ∈ N . Such a communication will spawn off a process of the shape that
fits S4, resulting in the total system:

S = (νx̃)
(

(νt)(S1 | SM
2 | SN\{n′}

3 ) | SO∪{n′}
4 | P

)

This can again be matched by the right hand system resulting in two related
systems by doing nothing, all we need to do is to rearrange the index sets to:

T = (νx̃)
(

T1 | TM
2 | TN\{n′}

2 | TO∪{n′}
2 | P

)
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An internal action by SO
4 : This case follows the same line of reasoning

as for SM
2 . The action must be caused by a one of S4’s components, say o′,

doing the transition (again we omit the index o):

(νq)(q〈s〉 |
∏

i∈I

q(xi).[[bi]]r)
τ−−→ (νq)(

∏

i∈I\{k}

q(xi).[[bi]]r) | [[bk]]r{s/xk}

This again means that the total system S is strongly congruent to:

(νx̃)
(

(νt)(S1 | SM
2 | SN

3 ) | SO\{o′}
4 | P | [[bk]]r{s/x}

)

By assumption we know that k cannot be j. This implies that the similar
component in TO

2 can do a matching transition:

(νq)(q〈s〉 |
∏

i∈I\{lj}[l=li]q(xi).[[bi]]r | [l=lj]q(x).[[b]]r)
τ−−→

(νq)(
∏

i∈I\{j,k}[l=li]q(xi).[[bi]]r | [l=lj]q(x).[[b]]r) | [[bk]]r{s/xk}

Which gives us a total system T that is strongly congruent to

(νx̃)
(

T1 | TM\{m′}
2 | TN

3 | TO
4 | P | [[b]]r{s/x}

)

So we have S ∼R∼ T .

This ends the first part of the analysis. We now look at how the left hand
system can match a transition

(νx̃)
(

T1 | TM
2 | TN

3 | TO
4 | P

)

α−−→ T

performed by the right hand system by doing a weak transition α==⇒ resulting
in a system S. Again we must proceed by a case analysis of the origin of the
transition:

An observable action by P : Same argument as in the other direction.

An observable action by T1: Same argument as before will apply.

An internal transition because P synchronize with T1: Same argu-
ment as before.
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An internal action by TW
2 : This is the most interesting case. We have

three cases depending on whether W is M , N or O. The most involved case
is if W = M so let us restrict ourselves to that case only.

If TM
2

τ−−→ T ′ then it is because one of the components, labelled m′ in
TM

2 has performed the transition. That is, the action is performed by some
process of the form (as usual we omit the index):

(νq)
(

q〈s〉 |
∏

i∈I\{j}

[l=li]q(xi).[[bi]]r | [l=lj]q(x).[[b]]r
)

The action can only have occurred by a communication on the private name
q implying that l is equal to some li or lj. We need to divide the analysis
of the transition into two cases depending on which of the two possibilities
applies.

If l is equal to lj, the result of the transition is:

(νq)
(

∏

i∈I\{j}

[l=li]q(xi).[[bi]]r
)

| [[b]]r{s/x}

which makes the total system T congruent to

(νx̃)
(

T1 | TM\{m′}
2 | TN

3 | TO
4 | P | [[b]]r{s/x}

)

The transition by TM
2 can be matched by the component SM

2 by a similar
internal action giving a total system S congruent to:

(νx̃)
(

(νt)(S1 | SM\{m′}
2 | SN

3 ) | SO
4 | P | [[b]]r{s/x}

)

And we get S ∼R∼ T .
If l is not equal to lj, then l must be equal to some lk for k ∈ I \ {j}.

This means that the result of the transition is:

(νq)
(

∏

i∈I\{j,k}

[l=li]q(xi).[[bi]]r | [l=lj]q(x).[[b]]p
)

| [[bk]]r{s/xk}

which makes the total system T congruent to

(νx̃)
(

T1 | TM\{m′}
2 | TN

3 | TO
4 | P | [[bk]]r{s/xk}

)

In order to match this the left hand system need to do three internal actions.
The first internal action is performed by the element in SM

2 that has the
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index m′ resulting in the the removal of that part from S2 and the addition
of it to S3. Giving us a total system in the form:

(νx̃)
(

(νt)(S1 | SM\{m′}
2 | SN∪{m′}

3 ) | SO
4 | P

)

The new component in S3 is able to communicate with S1 spawning of a new
element in S4 so that we get:

(νx̃)
(

(νt)(S1 | SM\{m′}
2 | SN

3 ) | SO∪{m′}
4 | P

)

The new element in S4 looks like:

(νq)
(

q〈s〉 |
∏

i∈I

[l=li]q(xi).[[bi]]r
)

We know that l is equal to lk so an internal transition can again happen
giving us:

(νq)
(

∏

i∈I\{k}

[l=li].q(xi).[[bi]]r
)

| [[bk]]r{s/x}

This means that we have a system S congruent to:

(νx̃)
(

(νt)(S1 | SM\{m′}
2 | SN

3 ) | SO
4 | P | [[bk]]r{s/x}

)

And we get S ∼R∼ T .
The reasoning for the two other cases follows a similar pattern except

that we need fewer transitions by the left hand system in order to match the
transition by the right hand system.

This concludes the proof. We have been very thorough this time because the
translation of method override is the most complicated part of the translation,
as has been witnessed by the problems we have had with getting to the final
formulation. In subsequent proofs where we create bisimulation relations, we
shall not be as thorough in the above case analysis, but instead just discuss
some of the interesting cases. 2

Using the two lemmas one immediately get two easy corollaries, stating
that method activation and method override work correctly.

Corollary 5.3 Let a = [li=ς(xi)bi
i∈I ]. Then for all j ∈ I

[[a.lj]]p
τ−−→≥ς

b [[bj{a/xj}]]p
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Proof. We simply need to observe that [[a.lj]]p can do a series of deter-
ministic τ -steps resulting from communication on private names leading to
a term where we can apply Lemma 5.1.

We have that

[[a.lj]]p = (νq)((νs)(q〈s〉 | s:=[[a]]) | q(x).x〈lj, x, p〉)
τ−−→d (νs)(s:=[[a]] | s〈lj, s, p〉)
τ−−→d (νs)

(

s:=[[a]] | (νq)(q〈s〉 |
∏

i∈I

[lj=li]q(xi).[[bi]]p)
)

τ−−→d (νs)
(

s:=[[a]] | (νq)(
∏

i∈I\{j}

[lj=li]q(xi).[[bi]]p) | [[bj]]p{s/xj}
)

∼ (νs)
(

s:=[[a]] | [[bj]]p{s/xj}
)

∼ς
b ([[bj{a/xj}]]p)

2

Corollary 5.4 Let a = [li=ς(xi)bi
i∈I ]. Then

[[a.lj⇐ς(x)b]]p
τ−−→≥ς [[[li=ς(xi)bi, lj=ς(x)b i∈I\{j}]]]p

Again observe that this property in fact holds for a calculus where we allow
the addition of methods.
Proof. As in the previous case all we need to do is to observe that the left
hand process can do a series of internal communications to become a process
where Lemma 5.2 applies:

[[a.lj⇐ς(x)b]]p = (νq)
(

(νs)(q〈s〉 | s:=[[a]]) | q(y).

(νt)(p〈t〉 | t:=y.[[lj⇐ς(x)b]])
)

τ−−→d (νs)
(

s:=[[a]] | (νt)(p〈t〉 | t:=s.[[lj⇐ς(x)b]])
)

∼ (νt)
(

p〈t〉 | (νs)(s:=[[a]] | t:=s.[[lj⇐ς(x)b]])
)

≥ς (νt)(p〈t〉 | t:=[[[li=ς(xi)bi, lj=ς(x)b i∈I\{j}]]])
= [[[li=ς(xi)bi, lj=ς(x)b i∈I\{j}]]]p

2

With these two corollaries we can now prove the following result, which
states that whenever an object a can reduce to the object b, then the trans-
lation of b is weakly congruent to a.
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Theorem 5.5 If a ; b then [[a]]p
τ−−→≈ς

b [[b]]p

Proof. We prove this property by induction on the structure of the
inference of the reduction a ; b.

We have two base cases. Let c = [li=ς(xi)bi
i∈I ]. Either a = c.lj and

b = bj{c/xj} and the result follows from Corollary 5.3, or a = c.lj⇐ς(x)c′ and
b = [li=ς(xi)bi, lj=ς(x)c′ i∈I\{j}] and the result follows from Corollary 5.4.

For the inductive case we have a = C[a′] and b = C[b′] and use the
inference rule

a′ ; b′

C[a′] ; C[b′]

Since the translation is compositional there exists a π-calculus context C[·]
such that [[C[a′]]]p = C[[[a′]]q] and [[C[b′]]]p = C[[[b′]]q]. (In fact we also know
what C[·] looks like, it is simply the translation of the ς-calculus context C[·].)

By induction we have that if a′ ; b′ then [[a′]]q ≈ς
b [[b′]]q. And since ≈ς

b is
a congruence we get

a = [[C[a′]]] = C[[[a′]]q] ≈ς
b C[[[b′]]q] = [[C[b′]]] = b

2

The relation from transitions in the π-calculus encoding to reductions in
the ς-calculus is somewhat more difficult to express. This is because the
π-calculus encoding may need to perform some internal computation before
being ready to simulate an object.

The desired property we initially stated was that [[a]]p ≈ [[b]]p then a ;∗ b.
But there are several reasons why this property does not hold. First of all,
[[a]]p ≈ [[b]]p says nothing about [[a]]p “evaluating” to [[b]]p — the reverse might
in fact be the case. Furthermore, we can come up with ς-calculus terms that
have bisimilar translations but where one cannot reduce one to the other (for
instance terms that are stuck, as the term [].l).

One might then consider requiring that the translation of a should per-
form some reductions in order to become a process weakly congruent to the
translation of b as in: If [[a]]p

τ−−→
∗

P then a ; b for some b where P ≈ [[b]]p.
(We do not use ;∗ because we would like to express that a can reduce.)
But such a property does not hold because the translation of a ς-calculus
term might need to do some internal transitions before getting stuck, as for
instance in the translation of [ ].l. So we need some means of telling whether
the reductions (internal transitions) performed by the translation are “real”
reductions caused by similar reductions in the ς-calculus term. The most
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natural way to achieve this is to use the observable actions that the transla-
tion of a term performs to signal that it has evaluated to a value. This leads
to the formulation of the following theorem:

Theorem 5.6 If [[a]]p⇓p then a ;∗ v where v = [li=ς(xi)bi
i∈I ] or v = x and

[[a]]p ≈ς
b [[v]]p

Proof. Before commencing on the proof, a remark as to why we require an
observable action on p and not just any observable action. This is because free
occurrences of self variables in ς-calculus terms also can result in observable
actions, as in the translation of the term x.l. By restricting ourselves to
observable actions on p we avoid mistaking such actions as signalling that a
term has reduced to a value. (Another possibility would have been only to
consider closed terms.)

The proof is by induction on the number of internal transitions performed
by [[a]]p before an action can be observed at the name p. That is we do
induction on n in [[a]]p

τ−−→
n

P↓p using expansion instead of weak congruence.
The reason why we use expansion (and also why the previous lemmas and
corollaries were stated using expansion) it that if P ≤ς

b Q then we know that
P will have fewer internal transitions than Q. This will allow us to use the
induction hypothesis on a part of a system and still have an upper bound on
the number of internal transitions that the total system can perform.

Base case n = 0: By inspection of the translation we can easily see that
there are only two terms whose translations are immediately capable of doing
an observable action on p, namely if a is either an object value [li=ς(xi)bi

i∈I ]
or a self variable x. In both cases, since a is a value, we have a ;∗ v = a
and since ≤ς

b is reflexive we have [[a]]p ≤ς
b [[a]]p.

Inductive case n > 0: Assume the theorem holds for all τ -sequences of
length less than n. We now consider a reduction sequence leading to an
observable action on p [[a]]p

τ−−→
n

P of length n. We now proceed with a case
analysis on the structure of a:

a = [li=ς(xi)bi
i∈I ]: This term can immediately perform an observable action

and since we assumed n > 0, this term does not fit this case.

a = x: Same argument as above.

a = b.l: The translation of a is (νq)([[b]]q | q(x).x〈l, x, p〉) where p 6∈ fn([[b]]q).
Since p does not occur free in [[b]]q the only way we can get an observable
action on p is if [[b]]q performs a number of reductions followed by an
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output of a name s on q, an interaction on the name s and then again
a series of reductions leading to the observable actions on p. That is,
first we have

(νq)([[b]]q | q(x).x〈l, x, p〉) τ−−→
m

(νq)(P | q(x).x〈l, x, p〉)

where P↓q. Obviously we must have m < n, for otherwise [[b.l]] would
not be able to perform an observable action on p after n reductions.
Therefore we can use the induction hypothesis on [[b]]q and get that for
some value v b ;∗ v and [[b]]q ≥ς

b [[v]]q.

Since (νq)(P | q(x).x〈l, x, p〉)⇓p, we have (νq)([[v]]q | q(x).x〈l, x, p〉)⇓p.
The only way the last term can perform an observable action on p
is if v is an object value [li=ς(xi)bi

i∈I ] and l is equal to some lj for
j ∈ I. The term (νq)([[v]]q | q(x).x〈lj, x, p〉) will do two deterministic
internal transitions (see the proof of Corollary 5.3) to become a term
strongly congruent to [[bj{v/xj}]]p. This means that the number of in-
ternal transitions that [[bj{v/xj}]]p can do before an observable action
on p is definitely less than n. So we can apply the induction hypothesis
again to infer that [[bj{v/xj}]]p⇓p, bj{v/xj} ; v′ and [[bj{v/xj}]]p ≥ς

b v′

for some value v′. By transitivity of ≥ς
b we then get that [[b.l]]p ≥ς

b [[v′]]p.

a = b.l⇐ς(x)c: This case is handled with the same argument as in the pre-
vious case (although simpler as we only need to apply the induction
hypothesis once).

2

Finally from Theorem 5.5 and Theorem 5.6 we get the following result
for closed terms stating that a computation of a term a terminates if and
only if the corresponding computation for the translation of a does so.

Theorem 5.7 (Computational adequacy) Let a be a closed ς-calculus
term. Then a⇓ iff [[a]]p⇓p.

Since for closed terms, that is terms a where fn([[a]]p) ⊆ MName∪{p}, it is
in fact enough to detect any observable action by the translation of a term a
in order to infer that a⇓ (because the only action that can happen is on p).

We have now finished showing that our translation is operationally cor-
rect. In the course of doing this we worked in a restricted version of the
π-calculus and adapted a more liberal semantics for the untyped ς-calculus.

The use of a restricted π-calculus in the proofs is mostly for convenience;
the main result in Theorem 5.7 does not really depend on the use of a re-
stricted π-calculus simply because the translation from the ς-calculus to the
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π-calculus obeys these constraints. On the other hand, had we not worked
in this restricted version of the π-calculus the proofs would have been much
more complicated primarily because Lemma 5.1, the substitution lemma,
does not hold in the full π-calculus.

The use of a more liberal ς-calculus semantics, where we allow addition of
methods to objects, is more annoying, since one can claim that the translation
in not sound w.r.t. the real ς-calculus semantics. But on the other hand, the
main reason why Abadi and Cardelli chose not to allow addition of methods
was to simplify the type system (c.f. [AC96, Section 6.1.4]). So in an untyped
setting we feel that using the more liberal semantics is not unreasonable.
Furthermore, if we only consider well-typed ς-calculus terms, the translation
is in fact faithful to the ς-calculus semantics from Table 3.2 since a well-typed
program never attempts to add a method to an object.

5.4 Reasoning about the ς-calculus

The topic of the previous section was the operational correctness of the trans-
lation. Operational correctness can be thought of as saying that “the trans-
lation compiles ς-calculus programs correctly into π-calculus machine code”.
So these results tell us little about how we might consider using the transla-
tion to reason about ς-calculus terms. In this section we shall work on this by
establishing the basic properties needed to use the translation for reasoning
about ς-calculus terms.

So what are the basic properties we want from the translation? One
possibility would be to consider the untyped equational laws of the ς-calculus
([AC96, page 63]) and check their validity w.r.t. some π-calculus equivalence.
But as most of these laws are quite trivial and stated mostly to introduce the
more interesting typed ones, we feel that it is more interesting to consider how
a notion of behavioral equivalence for ς-calculus terms relates to π-calculus
equivalences.

Notions of program equivalence are, as mentioned earlier, central to the
theory and practice of programming languages. They form the basis for pro-
gram optimization and can be used to justify correctness preserving transfor-
mations performed by program manipulation systems. Program equivalences
are typically defined according to the following paradigm:

i. A collection of terms that are considered to be directly executable and
observable are designated as programs, and their behavior is defined.

ii. Two arbitrary terms are defined to be equivalent iff they have the same
behavior in every program context.
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The resulting notion of program equivalence is usually referred to as obser-
vational congruence [Mor68]. Observational congruence for the first-order
object calculus with subtyping Ob1<:µ has been defined by Gordon and Rees
in [GR96] thus: Two programs are observationally congruent iff they have
the same termination behavior in all contexts of boolean type. We shall have
a closer look at Gordon and Rees’ definition of typed observational congru-
ence in Chapter 7. Since we are currently working in an untyped setting
we cannot restrict the set of contexts but shall instead consider two terms
equivalent iff they have the same termination behavior in all contexts. This
leads to the following definition:

Definition 5.8 (Untyped observational congruence) Let a and b be two
closed ς-calculus terms. We say that a and b are observationally congruent,
written a ' b, if for all closed contexts C[·]:

• C[a]⇓ iff C[b]⇓.

Following Gordon and Rees, we have only defined observational congruence
on closed terms. The definition can easily be extended to apply also to closed
terms simply by considering contexts that close the terms a and b.

Being in an untyped setting implies that contexts are very powerful since
we have no way of restricting the set of contexts that we test the two terms
in. One must also be aware that we examine objects in contexts that might
result in computations leading to a stuck state.

Also our use of the more liberal semantics adds to the power of contexts.
For instance the two terms

a = [l=ς(x)x] b = [l=ς(x)a]

are observationally congruent if we do not allow addition of methods to ob-
jects (b is just the one level unfolding of a). But with addition of methods we
can easily distinguish the two terms using the context C[·] = ([·].l′⇐ς(x)Ω).l.l′ ,
where Ω denotes the divergent term [l=ς(x)x.l].l.

Now that we have a definition of equivalence on ς-calculus terms, we
proceed to study how this definition relates to definitions of equivalence in
the π-calculus. The main result is the following:

Theorem 5.9 (Adequacy) Assume that a and b are closed, then [[a]]p ≈ς
b

[[b]]p implies a ' b.

Proof. We must show that if [[a]]p ≈ς
b [[b]]p then for all ς-calculus contexts

C[·] we have C[a]⇓ iff C[b]⇓.
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Assume that C[a]⇓, we must now argue that C[b]⇓. By Theorem 5.7 if
C[a]⇓ then [[C[a]]]q⇓q. Because ≈ς

b is a congruence, we have C[[[a]]p] ≈ς
b C[[[b]]p]

for all π-calculus contexts C[·], and in particular for the contexts that are
encodings of ς-calculus contexts. Furthermore by the definition of barbed
bisimulation, if [[C[a]]]q ≈ς

b [[C[b]]]q and [[C[a]]]q⇓q then [[C[b]]]q⇓q. Finally we
can now use Theorem 5.7 again to infer that C[b]⇓.

A similar argument is used to infer that if C[b]⇓ then C[a]⇓. 2

This result allows us to use the translation into the π-calculus to infer that
two ς-calculus terms are equivalent. We have shown the result for ≈ς

b, but to
establish that two ς-calculus terms are observationally congruent any π-cal-
culus congruence will do, as long as it is contained in ≈ς

b.
The ultimate goal would be to use the translation to establish all equalities

between ς-calculus terms. Unfortunately, this is not the case as shown by
the following two objects:

a = [l=ς(x)x.l] b = [l=ς(x)a.l]

Obviously no ς-calculus context can tell them apart — on activation of the
method l both objects diverge, on override of the method l both object
evaluate to the same term, and if we add a method the only thing this
method can do to experiment with l is either to activate or override it. But
we can come up with a π-calculus context that is capable of telling a and b
apart. The trick is to use a modified relay construct that will allow us to see
which method activations happen internally in a and b, as in the following
π-calculus context.

C[·] = (νq)
(

(νp)([·] | p(x).(νt)(q〈t〉 | t(m, y, r).(x〈m, y, r〉 |

t(m, y, r).r〈t〉))) | q(x).x〈l, x, r〉
)

The context C[·] is built with a special relay construct inside a request for the
activation of the method named l. The relay construct is designed such that
it will only forward one request for method activation to the object placed
in the hole; if a second request arrives it will immediately signal this on the
name r. This means that the term C[[[a]]p]⇓r whereas C[[[b]]p] 6 ⇓r.

The example above shows that we are able to detect which methods an
object can activate internally, therefore even ≈ς

b is quite discriminating on
ς-calculus terms. Unfortunately there is not much to do about this since
the ability to detect which methods an objects tries to activate internally is
needed in order to describe method override in our translation.
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This result, that ≈ς
b is not complete w.r.t. ', does not come as a surprise.

In fact it would have been very strange if observational congruence between
ς-calculus terms implied congruence between the translated terms for some
natural π-calculus congruence. The above example does in fact show that it
is not even enough to restrict the set of π-calculus contexts to deterministic
contexts.

What we can obtain, is a not very interesting result, namely that if we
restrict the set of π-calculus contexts to contexts which are translations of
ς-calculus contexts, then we do in fact get the reverse result of Theorem 5.9.

Theorem 5.10 Let ≈[[]]
b denote barbed congruence over the set of translations

of ς-calculus contexts and assume that a and b are closed. Then a ' b iff
[[a]]p ≈[[]]

b [[b]]p.

Proof. The proof is along the lines of the proof of Theorem 5.9. 2
Of course such a result is not particularly useful, since we have no alter-

native characterization of ≈[[]]
b but it seems quite difficult to come up with

such a characterization.

5.5 Final remarks

In this chapter, we have examined a translation of the untyped Functional
ς-calculus into the π-calculus. This chapter is a major rewrite of an unpub-
lished manuscript and a BRICS technical report [HK96]. The unpublished
manuscript that contained the translation using matching was submitted to
FOOL 3 (workshop on the Foundations of Object-Oriented Languages) which
was held in conjunction with LICS’96, but was not accepted because it had
a large overlap with an invited talk by Davide Sangiorgi on the same subject
(we shall discuss his work in the following chapter). The technical report
examines the translation that does not use matching; unfortunately, that
paper contains some errors, which were pointed out to us by the anonymous
referees at CJTCS. The problems are the ones discussed on page 65 in the
list of possible solutions to what method labels one needs to relay.

Although perhaps interesting in its own right, the translation presented
in this chapter does not really help us to answer the question about the use-
fulness of process calculus techniques to reason about objects. The two main
problems are related to our source calculus — it is untyped and functional.
As we have mentioned several times, type systems are quite important in
object-orientation, and most object-oriented languages are imperative, not
functional. A translation incorporating these aspects will be the topic of the
following chapter.



Chapter 6

Translating a Typed Imperative
ς-calculus

In the previous chapter we looked at a translation of the untyped Functional
ς-calculus into the π-calculus. The stateless functional semantics for the
ς-calculus is the semantics normally used when studying the ς-calculus. The
motivation given by Abadi and Cardelli for focusing on the functional seman-
tics is that the simplicity of its semantics make the study of type systems
easier.

However, most “real world” programming languages are imperative. Usu-
ally, objects encapsulate a state, which can be manipulated by activating the
methods of the object; that is, method calls can have side effects on the
state of the object. In order to show that the type systems developed for
the Functional ς-calculus are also applicable to imperative languages, Abadi
and Cardelli give an imperative semantics to the ς-calculus and show how
the type systems can be adapted to it.

Since most object-oriented languages are imperative, it seems highly rel-
evant to consider a translation of the Imperative ς-calculus, especially, as
the lack of mathematical techniques for giving the semantics to, and prov-
ing properties about, imperative object-oriented languages is even more pro-
nounced than for functional object-oriented languages. For instance, it seems
difficult to come up with reasonable notions of bisimulation for the Impera-
tive ς-calculus. This contrasts with the Functional ς-calculus, for which one
such a notion has been developed (see Chapter 7).

The study of the Imperative ς-calculus can provide a solid basis for in-
vestigating more complex languages, that may include also, for instance,
constructs for distribution and concurrency (like Obliq [Car95], that, indeed,
contains the untyped Imperative ς-calculus as a sublanguage).

91
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As mentioned several times, most interesting problems/challenges specific
to object-oriented languages are related to types. Therefore, it is relevant
to take typing issues into account in the translation. So, in this chapter, we
shall study the interpretation of the (first order) Imperative ς-calculus within
a typed π-calculus.

The typed π-calculus we use is the one Sangiorgi introduced in [San98]
in order to give a typed translation of the Functional ς-calculus with type
system Ob1<: (see Section 6.6 for a description of Sangiorgi’s translation of
the Functional ς-calculus). This π-calculus extends the polyadic π-calculus
with variants and variant types. Variant types, together with input/output
capabilities, allow very useful subtyping rules, that turn out to be essential
in order to give a typed translation of the ς-calculus.

We end this introduction with a brief road-map of the contents of the
chapter. Section 6.1 introduces the syntax, semantics, and type system of
the Imperative ς-calculus. Section 6.2 is devoted to the typed π-calculus; we
present its syntax, semantics, and type system. The translation of the Im-
perative ς-calculus into the π-calculus is given in Section 6.3. In Section 6.4,
we give an alternative encoding that simplifies the proof of operational cor-
rectness. In Section 6.5.1 we show the correctness of the translation. First
we show the correctness with respect to typing and subtyping for the original
encoding. Then we establish operational correctness for the alternative en-
coding and finally we show operational correctness for the original encoding.
In Section 6.6 we briefly discuss how our encoding is related to Sangiorgi’s
encoding of the Functional ς-calculus into the π-calculus from [San98]. Fi-
nally, Section 6.7 shows how the translation of the Imperative ς-calculus to
the π-calculus can be used to justify program transformations rules; we give
examples of untyped transformations and transformations that are only valid
in a typed setting.

6.1 The Imperative ς-calculus

In this section we present syntax, semantics and type system of the (first-
order) Imperative ς-calculus from [AC96, Chapter 10-11].

6.1.1 Syntax

The syntax of the Imperative ς-calculus, given by the grammar in Table 6.1,
is not much different from the syntax of the Functional ς-calculus found in
Table 3.1; the only difference is the addition of a clone- and a let-construct.
Cloning creates a copy of the original object. A let x:A=a in b expression first
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evaluates the let-part, binding the result to x, then the in-part is evaluated
with the variable x in scope. Sequential evaluation of objects a; b can be
defined thus: let x:A=a in b for some x 6∈ fv(b). The informal semantics for
the rest of the operators are the same as for the Functional ς-calculus, with
the essential difference that method override now modifies the object bound
to the self variable, instead of generating a new object. Another related
difference is that objects can be used several times for activation.

a, b ::= [li=ς(xi:A)bi
i∈1..n] object value

| x self variable
| a.l method activation
| a.l⇐ς(x:A)b method override
| clone(a) cloning
| let x:A=a in b local definition

Table 6.1: Syntax of the Imperative ς-calculus.

6.1.2 Operational semantics

We recall the operational semantics of the Imperative ς-calculus from Abadi
and Cardelli’s book.

The semantics for the Imperative ς-calculus is given as a relation that
relates a store σ, a stack S (usually called an environment, but we stick to
the name used by Abadi and Cardelli) and a term a with a value v and an
updated store σ′. The relation is written σ · S ` a ; v · σ′ and is read: “the
term a will, under the store σ and stack S, reduce to the value v and store
σ′.

Values v are of the form [li=ιi i∈1..n] mapping method names li to loca-
tions ιi. A store σ maps locations to closures. A closure is the pair 〈ς(x)b,S〉
of a method body ς(x)b together with a local stack. A stack S maps variables
to values. For any mapping f we let dom(f) denote the domain of f .

Figure 6.1 illustrates the relations between the different parts of the op-
erational semantics.

A stack S is well-formed w.r.t. a store σ, written σ · S ` �, if for all
x ∈ dom(S) S(x) = [li=ιi i∈1..n] where all ιi are defined in σ. A store σ
is well-formed, written σ ` �, if the stacks in all closures in the store are
well-formed w.r.t. the store.

If σ is a store, then we let σ, ι 7→〈ς(x)b,S〉 denote the extension of σ with
the new entry 〈ς(x)b,S〉 on the new location ι, assuming that σ · S ` �. We
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Value

Store

Method body

StackClosure
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x
y
z

Figure 6.1: Illustration of the relations in the operational semantics.

write σ[ι 7→〈ς(x)b, s〉] for the update of location ι of store σ, assuming that
ι ∈ dom(σ) and again σ · S ` �.

The operational semantics, given in Table 6.2, is untyped; type annota-
tions are simply removed when evaluating terms.

We write a⇓v · σ (“a converges to the value v and store σ”) if we can
deduce ∅ · ∅ ` a ; v · σ and a⇓ iff a⇓v · σ for some v and σ. If there is no v
and σ such that a⇓v · σ we write a⇑ (“a diverges”).

Example 6.1 To illustrate the operational semantics we give a small exam-
ple from [AC96]. Consider the object a = [l=ς(x)x.l⇐ς(y)x.l] and let us see
what happens when we evaluate a.l

Let σ0 = ι 7→〈ς(x)x.l⇐ς(y)x, ∅〉 and σ1 = ι 7→〈ς(y)x, x 7→[l=ι]〉

∅ · ∅ ` a ; [l=ι] · σ0
σ0 · x 7→[l=ι] ` x ; [l=ι] · σ0

σ0 · x 7→[l=ι] ` x.l⇐ς(y)x ; [l=ι] · σ1

∅ · ∅ ` a.l ; [l=ι] · σ1
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(VarI)
σ · S ` � x ∈ dom(S)

σ · S ` x ; S(x)

(ObjI) where σ′ = (σ, ιi 7→〈ς(xi)bi,S〉 i∈1..n)
σ · S ` � ιi 6∈ dom(σ) ιi distinct ∀i ∈ 1..n

σ · S ` [li=ς(xi:A)bi
i∈1..n] ; [li=ιi i∈1..n] · σ′

(SelI)
σ · S ` a ; [li=ιi i∈1..n] · σ′ σ′(ιj) = 〈ς(xj)bj ,S ′〉
xj 6∈ dom(S ′) j ∈ 1..n σ′ · S ′, xj 7→[li=ιi i∈1..n] ` bj ; v · σ′′

σ · S ` a.lj ; v · σ′′

(UpdI)
σ · S ` a ; [li=ιi i∈1..n] · σ′ j ∈ 1..n ιj ∈ dom(σ′)

σ · S ` a.lj⇐ς(x:A)b ; [li=ιi i∈1..n] · σ′[ιj 7→〈ς(x)b,S〉]

(CloneI)
σ · S ` a ; [li=ιi i∈1..n] · σ′ ∀i ∈ 1..n ι′i 6∈ dom(σ′) ι′i distinct

σ · S ` clone(a) ; [li=ιi i∈1..n] · (σ′, ι′i 7→σ(ι′i) i∈1..n)

(LetI)
σ · S ` a ; v′ · σ′ σ′ · S, x 7→v′ ` b ; v′′ · σ′′

σ · S ` let x:A=a in b ; v′′ · σ′′

Table 6.2: The operational semantics for the Imperative ς-calculus

This example shows how we can create loops in the store. The store σ1

contains a loop because it maps index ι to a closure, that binds x to a closure
that contains index ι. 2

6.1.3 Type system

The type system is a straightforward adaptation of Ob1<: in Table 3.3 on
page 33 to the Imperative ς-calculus. The only change is the addition of
the two rules found in Table 6.3, which are needed to type the clone- and
let-constructs.

Just as for the Functional ς-calculus, where Theorem 3.1 states the sound-
ness of the type-system, we have a similar theorem for the Imperative ς-calculus.
This theorem is, of course, a little more involved since the result of evaluat-
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(Clone)
Γ ` a:A

Γ ` clone(a):A

(Let)
Γ ` a:A Γ, x:A ` b:B
Γ ` let x:A=a in b : B

Table 6.3: Additional typing rules for the Imperative ς-calculus

ing an imperative object term is a value and a store. We shall not give the
precise statement of the subject reduction theorem here, but just note that
what is essential for our use, is that if a configuration σ · S ` a is well-typed
and σ · S ` a⇑, then it is not because we get stuck trying to access a non-
existing method. (Subject reduction for the Imperative ς-calculus with the
type system Ob1<: can be found in [AC96, Section 11.4].)

Example 6.2 Consider the following two objects:

a = [ ].l b = [l=ς(x)x.l].l

Both objects diverge but for different reasons.
When we try to build an inference tree for a then we see that we cannot

complete the rule (SelI):

(SelI)
(ObjI)

−
∅ · ∅ ` [ ] ; [ ] · ∅
∅ · ∅ ` [ ].l ;

The reason is that the object [ ] does not contain the method l.
The reason why b diverges is that we can indefinitely apply the rule

(ObjI).

(SelI)

(ObjI)
−

∅ · ∅ ` [l=ς(x)x.l] ; [l=ι] · σ
where σ = ι 7→〈ς(x)x.l, ∅〉

(SelI)

...
σ · x 7→[l=ι] ` x.l ;
σ · x 7→[l=ι] ` x.l ;

∅ · ∅ ` [l=ς(x)x.l].l ;

What well-typedness ensures is that divergence caused by the inability to
apply any inference rule does not occur1. 2

1The need to make the distinction between the two types of divergence could be avoided
by using a small step semantics.
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6.1.4 A first look at a translation

Although the imperative semantics in Table 6.2 looks quite involved com-
pared to the functional semantics in Table 3.2, the essential difference is
simply that method update in the imperative semantics modifies the object,
whereas method update in the functional semantics generates a new object.
So, at a first glance, one might expect that it should be straightforward to
change the translation from the previous chapter to work for the imperative
semantics. But this is not as easy as it might seem.

Let us consider the translation of a.l⇐ς(x:A)b. As before we would first
evaluate a on some name q private to the translation of the total expression,
and over that name get the location, say s, of the object a. Now we get
to the difficult part — we need to modify the existing object. That is, the
result of a method override must be located at s (otherwise we would create
a new object). So a first attempt of a translation using the relay construction
might be:

[[a.l⇐ς(x:A)b]]p
4
= (νq)

(

[[a]]q | q(z).(p〈z〉 | z:=z.[[l⇐ς(x:A)b]])
)

This will, of course, not work, because we get two receivers of requests to the
resulting object (the one from the translation of a and the one from the relay
construct). This introduces a nondeterministic choice between the old and
new version of l, plus the possibility of divergence if requests for methods
other than l are always received by the relay construct. A way to fix this
is to make objects relocatable, so that we, when overriding a method, move
the original object to a location private to the relay construct. This leads to
the following proposal:

[[a.l⇐ς(x:A)b]]p
4
= (νq)

(

[[a]]q | q(z).(νs, r)(z〈relocate, s, r〉 |

r(y).(p〈z〉 | z:=s.[[l⇐ς(x:A)b]]))
)

Of course, the relay construct must be modified so that it on a relocate
request will relocate itself and forward the request.

Having dealt with method override, we now need to take care of cloning.
The expression clone(a) should create a copy of a — how can we do that? At
first, one might think that we should just create a new object location s and
locate a relay process at s that forwards all requests for method activation
to the original object (also called the donor object). This relay construct
should also react to relocate requests, but not forward them. This would
have worked, had it not been for the possibility of overrides on the donor
object, as in the following program:
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let x=a in
let y=clone(x) in
x.l⇐ς(z)b;
y.l

The problem is that the override on a also would affect the clone. Therefore
y.l ends up activating b instead of what was originally bound to l in a. This
indicates that we cannot use a relay to deal with cloning — we need to detach
the clone from its donor. To do this, we need to extract the methods from
the original object and install them in a new object. It would be no problem
to add to the translation the possibility of extracting methods from objects.
But this leads us to the same problem as the one we discussed in Section 5.1
— Which methods does an object contain? In Section 5.1 we avoided the
need to know the names of the methods in an object by using mismatch. But
now, we are less privileged, because we need precisely all the methods in the
donor object. One way to obtain exactly the methods in the original object,
would be to implement some kind of protocol, asking the donor object for a
list of pairs of method names and bodies. And from this list we could then
build the clone.

Although cumbersome, we believe that a translation built this way would
work. But proving the correctness of such a translation would not be an easy
task. This indicates that the way we translated the Functional ς-calculus is
not the way one should deal with the Imperative ς-calculus. This leads us
to consider another translation, where we abandon relays. Before presenting
the translation, we proceed with the presentation of typed π-calculus that
will allow a translation of types, too.

6.2 A typed mobile calculus

In this section, we present the typed π-calculus from [San98] in which we
shall interpret the Imperative ς-calculus.

The type language we use for the π-calculus is taken from [PS96, San98].
In these type systems, as well as other type systems for the π-calculus like
[Ode95, KPT96, Bor98, Yos96, VH93, VT93, Hon96], types are assigned to
names. The types in [PS96] show the arity and the directionality of a name
and, recursively, of the names carried by that name; the difference in [San98]
is that variant types are used instead of tupling.

For simplicity, we take tuples as primitive in the grammar for values,
although they can be coded up using variants [San98].
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6.2.1 Syntax

The syntax of the typed π-calculus is given in Table 6.4. We let Proc denote
the set of π-calculus processes and Names denote the set of names and Value
the set of values.

The process constructs are those of the monadic π-calculus [MPW92] with
matching replaced by a case construct. The latter can be thought of as a
more disciplined form of matching, in which all tests on a given name are
localized to a single place. The syntax for case is reminiscent of an analo-
gous construct in [MPW92]. In the untyped calculus, matching and case are
interderivable, but in the typed calculus case allows us simple but powerful
typing and subtyping rules for which, moreover, any misuse of variant values
in communications is easy to detect (rule (Case-W), Table 6.7).

We have omitted summation, since we will not need it in the interpreta-
tion of the Imperative ς-calculus. Restriction, is following [San98], explicitly
typed.

The most important difference with respect to the monadic π-calculus
is the addition of variant values. This introduces a vertical dimension on
values, as opposed to the tupling construct of the polyadic π-calculus, which
introduces an horizontal dimension. We should stress that variant values are
rather simple, in that they are constructed out of names and variant tags only
— they do not contain terms of the language. The construct wrong stands for
a process in which a run-time type error has occurred — i.e., for instance,
a communication in which the variant tag or the arity of the transmitted
value was unexpected by its recipient. A soundness theorem guarantees that
a well-typed process expression cannot reduce to an expression containing
wrong.

Bound and free names, alpha conversion, and substitutions are defined in
the expected way. We stipulate that P{ṽ/x̃} is wrong if replacing the ṽ’s for
the x̃’s in P does not yield a process expression according to the grammar of
Table 6.4 (thus, for instance, (xw.0){〈p, q〉/x} = wrong).

6.2.2 Semantics

In Table 6.5, we give the semantics for the π-calculus as a labelled transition
system. The advantage of a labelled semantics, compared to a reduction
semantics [Mil93, San98], is that it easily allows us to define labelled forms
of bisimulation. Process transitions are of the form P

µ−−→ P ′, where µ is a
label given by the following syntax:

α, β, µ ::= (νñ:T̃ )pv | pv | τ | wrong
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Names
p, q, r . . . x, y, z

Variant Tags
l

Types
T ::= µ(X)T recursive type

| X type variable
| [ l1 T1..ln Tn ] variant type
| 〈T1 . . . Tn〉 tuple type
| T I channel type

I /O Tags
I ::= r input only

| w output only
| b either

Values
v ::= x name

| 〈v1..vn〉 tuple value
| l v variant value

Processes
P ::= 0 nil process

| P |P parallel
| (νx̃:T̃ )P restriction
| p(x).P input
| pv.P synchronous output
| !P replication
| let x1..xn=v in P tuple destructor
| case v of [ l1 (x1) � P1; . . . ; ln (xn) � Pn ] case
| wrong error

where:

• In a recursive type µ(X)T , variable X must be guarded in T , i.e., occur
underneath an I/O-tag or underneath a variant tag;

• in a case statement, the tags li (i ∈ 1..n) are pairwise distinct.

Table 6.4: Syntax of the typed π-calculus
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The label (νñ:T̃ )pv denotes the output of the value v on the name p. The
restriction, (νñ:T̃ ), where ñ must be a subset of the names in v indicates that
the names ñ are bound names having types T̃ ; if there are no names bound we
omit the restriction on the label. The label pv denotes the input of the value
v over the name p. The action τ denotes an internal action. Finally, wrong
denotes a run-time error. The soundness theorem (Theorem 6.1) guarantees
that a well-typed program will never reduce to a term containing wrong.

Table 6.5 shows the inference rules with the symmetric versions of (Sync-
L) and (Comp-L) omitted.

The rules for the operational semantics are standard rules of the π-
calculus. The new, but expected, rules are those for let and case, in which
run-time errors may be generated.

We write P
µ−−→d Q if P

µ−−→ Q is the only transition that P can perform.
And as in Chapter 4 we let

µ
==⇒ denote weak transitions, and P =⇒ P ′ means

“P τ==⇒ P ′ or P = P ′”.

6.2.3 Type system

The syntax for types is given in Table 6.4.
We recall that I/O annotations [PS96] separate the capabilities of reading

and writing on a channel (we use “read” and “write” as synonyms for “input”
and “output”, respectively). For instance, a type p : 〈Sr Tw〉b (for appropriate
type expressions S and T ) says that name p can be used both to read and to
write and that any message at p carries a pair of names; moreover, the first
component of the pair can be used by the recipient only to read, the second
only to write.

Subtyping judgments, shown in Table 6.6, are of the form Σ ` S ≤ T ,
where Σ represents the subtyping assumptions. Whenever the Σ is extended
with the additional assumption S ≤ T , we write this as Σ[S ≤ T ], and if
S ≤ T is an assumption in Σ, we write this as (S ≤ T ) ∈ Σ. We often
write S ≤ T , when the subtyping assumptions are empty. Note that type
annotation r (an input capability) gives covariance, w (an output capability)
gives contravariance, and b (both capabilities) gives invariance. Moreover,
since a tag b gives more freedom in the use of a name, for each type T we
have T b ≤ T r and T b ≤ Tw.

A typing judgment Γ ` P (Table 6.7) asserts that process P is well-typed
in Γ, and Γ ` v : T (Table 6.8) that value v has type T in Γ (as usual is a type
environment Γ a finite assignment of types to names). There is one typing
rule for each process construct except wrong. The interesting rules are those
for input and output prefixes and for case. In the rules for input and output
prefixes, the subject of the prefix is checked to possess the appropriate input
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(Inp)
−

p(x).P
pv−−→ P{v/x}

∀v ∈ Values
(Out)

−

pv.P
pv−−→ P

(Open) where p 6∈ q̃, q̃ ∩ ñ = ∅
ñ′:T̃ ′ = (ñ:T̃ )(q̃:S̃ ∩ n(v))
q̃′:S̃′ = (q̃:S̃) \ n(v)

P
(νñ:T̃ )pv
−−−−−−−→ P ′

(νq̃:S̃)P
(νñ′:T̃ ′)pv
−−−−−−−−→ (νq̃′:S̃ ′)P ′

(Res) where q̃ ∩ n(µ) = ∅
P

µ−−→ P ′

(νq̃:T̃ )P
µ−−→ (νq̃:T̃ )P ′

(Sync-L) where ñ ∩ fn(Q) = ∅

P
(νñ:T̃ )pv
−−−−−−−→ P ′ Q

pv−−→ Q′

P | Q τ−−→ (νñ:T̃ )(P ′ | Q′)

(Comp-L) where bn(µ) ∩ fn(Q) = ∅
P

µ−−→ P ′

P | Q µ−−→ P ′ | Q

(Repl)

P | !P µ−−→ Q

!P
µ−−→ Q

(Let)
−

let x1..xn=〈v1..vn〉 in P
τ−−→ P{v1..vn/x1..xn}

(Let-W)
v 6= 〈v1..vm〉 or v = 〈v1..vm〉 and m 6= n

let x1..xn=v in P
wrong−−−−−→ wrong

(Case)
lj ∈ {l1 . . . ln}

case lj v of [ l1 (x1) � P1; . . . ; ln (xn) � Pn ]
τ−−→ Pj{v/xj}

(Case-W)
v 6= lj v′ or lj 6∈ {l1 . . . ln}

case v of [ l1 (x1) � P1; . . . ; ln (xn) � Pn ]
wrong−−−−−→ wrong

Table 6.5: The labelled transition system for the π-calculus.
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(A-BB)
Σ ` S ≤ T Σ ` T ≤ S

Σ ` Sb ≤ T b

(A-XR)
I ∈ {b, r} Σ ` S ≤ T

Σ ` SI ≤ T r

(A-XW)
I ∈ {b, w} Σ ` T ≤ S

Σ ` SI ≤ Tw

(A-Case)
Σ ` Si ≤ Ti i ∈ 1..n

Σ ` [ l1 S1..ln Sn ] ≤ [ l1 T1..ln+m Tn+m ]

(A-Tuple)
Σ ` Si ≤ Ti ∀i ∈ 1..n

Σ ` 〈S1..Sn〉 ≤ 〈T1..Tn〉

(A-Rec-L)
Σ[µ(X)S ≤ T ] ` S{µ(X)S/X} ≤ T

Σ ` µ(X)S ≤ T

(A-Ass)
(S ≤ T ) ∈ Σ
Σ ` S ≤ T

(A-Rec-R)
Σ[S ≤ µ(X)T ] ` S ≤ T{µ(X)T/X}

Σ ` S ≤ µ(X)T

Table 6.6: Subtyping rules

or output capability in the type environment. (Tv-sub) is the only rule
which explicitly uses subtyping. We let ProcΓ denote the class of processes
well-typed in Γ.

Theorem 6.1 (Soundness of Type System) If Γ ` P , all names in Γ
have channel type and P =⇒ Q then Q does not contain the process wrong.

The restriction to channel types is necessary to ensure that variant and
tuple destruction on a name x is guarded underneath an input with x as
object. For instance, without the restriction, the process let x1, x2=y in 0
would be well-typed under the assumption y:〈T1, T2〉 (for any types T1 and
T2) although let x1, x2=y in 0

wrong−−−−−→ wrong.
We can argue for the soundness of the subtyping rules as follows. If a:S

and S ≤ T , then we should be able to use a in settings where it is expected
that a has type T . If a : T b, it means that a can be used for both output and
input. Obviously, a can also be used in settings that only allow use of a for
input or output. Therefore T b ≤ Tw, and similar for the input annotation.

(A-Case) express that a longer variant type is a supertype of a shorter,
this is the opposite of (Sub Obj). To see why this is the right rule, one has
to look at (T-Case). Consider, how we can finish the typing of:

v : [l1 T1, l2 T2] ` case v of[l1(x1) � P1, l2(x2) � P2, l3(x3) � P3]
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(T-Nil)
−

Γ ` 0

(T-Par)
Γ ` P Γ ` Q

Γ ` P |Q

(T-Repl)
Γ ` P
Γ ` !P

(T-Restr)
Γ[x:SI ] ` P

Γ ` (νx:SI)P

(T-In)
Γ ` p:Sr Γ[x:S] ` P

Γ ` p(x).P

(T-Out)
Γ ` p:Sw Γ ` w:S Γ ` P

Γ ` pw.P

(T-Let)
Γ ` v:〈T1..Tn〉 Γ[x1:T1, . . . , xn:Tn] ` P

Γ ` let x1..xn=v in P
(T-Case)
Γ ` v:[ l1 T1..ln Tn ] for each i ∈ 1..n, Γ[xi:Ti] ` Pi

Γ ` case v of [ l1 (x1) � P1; . . . ; ln (xn) � Pn ]

Table 6.7: Process typing

This assumption v : [l1 T1, l2 T2] says that v is a variant value, which can
be either l1 v1 or l2 v2. On the other hand, the case construct tests for three
possible tags. The rule (A-Case) allows us to assume that the value v range
over a larger range, allowing us to apply (T-Case) (which we could not do
if (A-Case) looked like (Sub Obj)).

The reason why the rule (A-XW) is contravariant can be explained as
follows. If a : [i∈I li Ti]w, it means that we on the name a can pass values of
type [i∈I li Ti], that a receiver can test in a case construct. If (A-XW) was
covariant, we would be allowed to send on a values that were out of range of
the case construct on the receiving side, whereas contravariance allows us to
restrict the set of possible tags.

Example 6.3 Consider the processes P = !a(x).(νb:T )x〈a, b〉. How should
it be typed?

Obviously the name received on a should have a type that expresses,
that it is used to output a tuple, so a good guess would be something like
x : 〈S, T 〉w. It is easy to see that the second component of the tuple type is
T (because of the type annotation in the restriction). The type of the first
component is a little bit more difficult, because a (on which we receive) is
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(Tv-base)
Γ(p) = T
Γ ` p : T

(Tv-sub)
Γ ` v : S S ≤ T

Γ ` v : T

(Tv-var)
Γ ` v : T

Γ ` l v : [l T ]

(Tv-tuple)
Γ ` vi : Ti ∀i ∈ 1..n
Γ ` 〈x1..xn〉 : 〈T1..Tn〉

Table 6.8: Value typing

the first component of the tuple. This indicates that S should be a recursive
type.

If we assume that the receiver of a can use a only for writing, we can make
the following guess of a type assumption: a : (µ(X)〈Xw, T 〉w)b. It says, a is
a name on which we receive a name, that is used to output a tuple, where
the first component can be used for the same as a, and the second has type
T .

The following inference shows that P is well-typed under this assump-
tion. We let S = µ(X)〈Xw, T 〉w, Γ = a:Sb, Γ′ = a:Sb, x:S, and Γ′′ =
a:Sb, x:S, b:T .

Γ ` a:Sb Sb ≤ Sr

Γ ` a:Sr

〈Sw, T 〉 ≤ S
Γ′′ ` x:S S ≤ 〈Sw, T 〉w

Γ′′ ` x:〈Sw, T 〉w

Γ′′ ` a:Sb Sb ≤ Sw

Γ′′ ` a:Sw Γ′′ ` b:T

Γ′′ ` 〈a, b〉 : 〈Sw, T 〉
Γ′′ ` x〈a, b〉

Γ′ ` (νb:T )x〈a, b〉
Γ ` a(x).(νb:T )x〈a, b〉
Γ ` !a(x).(νb:T )x〈a, b〉

2

6.2.4 Some derived constructs

In the translation, we shall use:

Recursive definitions, A(x̃)
4
= P which can be defined in a standard fash-

ion from replication (c.f. [Mil93]);

Polyadic inputs, a(x1 . . . xn).P , defined as a(y).let 〈x1 . . . xn〉=y in P for
y 6∈ fn(P );
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Variant inputs, such as p[j∈1..n lj [i∈1..m li,j (x̃i,j) � Pi,j]], defined as

p(y).case y of [j∈1..n lj(yj) � case yj of [i∈1..m li,j(x̃i,j) � Pi,j]],

where y 6∈ fv ∪j∈1..n, i∈1..m Pi,j and yj 6∈ fv ∪i∈1..m Pi,j.

This abbreviation allows us to go down two levels into the structure of
a variant value received in an input at p; in fact, this term interacts
with output particles of the form plr ls,r w̃ (with r ∈ 1..n, s ∈ 1..m,
and tuple w̃ of the same length as x̃r,s) and, in doing so, it reduces in
3 reductions to Ps,r{w̃/x̃s,r}.

6.2.5 Barbed bisimulation and congruence

The behavioral equality we adopt for the π-calculus is barbed congruence.
In an untyped calculus, no constraint is made on processes or contexts. In

a typed calculus, it makes sense to compare only processes that obey the same
typing. This lead to the following definition of typed barbed bisimulation:

Definition 6.2 (Typed Barbed Bisimulation) A symmetric relationR ⊆
Proc∆ ×Proc∆ is a barbed ∆-bisimulation if P R Q implies:

i. If P
τ−−→ P ′ then there exists a Q′ such that Q

τ−−→ Q′ and P ′ R Q′.

ii. for each name p P↓p iff Q↓p.

Two processes P and Q are barbed ∆-bisimilar, written P ∼̇∆
b Q, if P R Q,

for some barbed ∆-bisimulation R.

The only change compared to Definition 4.4 is that we only consider pairs of
processes that has the same typing.

The changes needed to the definition of barbed congruence are somewhat
more involved. The contexts in which (typed) processes are tested should be
compatible with their types. We call a (Γ/∆)-context a context which, when
filled in with processes obeying the typing ∆, becomes a process obeying the
typing Γ. The typing Γ might contain names not in ∆; the converse might
be true too, because of binders in the context which embrace the hole.

Definition 6.3 We write Γ <E ∆ if, for each x on which ∆ is defined, also
Γ is defined and Γ(x) ≤ ∆(x).
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Definition 6.4 ((Γ/∆)-context) Given type environments Γ and ∆ and a
process context C, we say that C is a (Γ/∆)-context if Γ ` C assuming the
following additional typing rule for the hole [ ] of C:

Γ′ <E ∆
Γ′ ` [ ]

(where Γ′ is a metavariable over type environments).

Example 6.4 Consider the process ax|P . If Γ ` ax|P then a ∈ dom(Γ).
Given the context C[−] = (νa:T )([−] | Q), the environment ∆ used to type
C, should contain assumptions about the new free names introduced by Q,
but it would not contain a (because of the restriction). 2

Definition 6.5 (Barbed Congruence) Two processes P, Q ∈ Proc∆ are
barbed ∆-congruent, written P ∼∆

b Q, if, for each type environment Γ and
(Γ/∆)-context C, we have C[P ] ∼̇Γ

b C[Q].

In the remainder of the chapter, we write P ∼∆
b Q without recalling the

assumption that P and Q are well-typed in ∆.
Similarly, we can define weak barbed bisimulation (≈̇∆

b ) and weak barbed
congruence (≈∆

b ), by allowing that one reduction can be matched by a se-
ries of reductions (possibly zero) and using weak barbs in the definition of
barbed bisimulation. In the proof of operational correctness, we also need
the untyped version of barbed congruence, denoted by ∼b.

Example 6.5 Consider the following two processes:

R1 = a(x).case x of [ l1 (y) � P1, l2 (y) � P2]
R2 = a(x).case x of [ l1 (y) � P1, l2 (y) � P ′

2]

Using untyped barbed congruence we have R1 6∼b R2 (unless P2 ∼b P ′
2).

But, if we compare R1 and R2 under the typing Γ′, a:[ l1 T1 ]r, R1 and R2

are equivalent because the typing prevents P2/P ′
2 from being started (by

“hiding” l2). If we instead use the typing Γ = Γ′, a:[ l1 T1, l2 T2]r, then P2/P ′
2

can activated, and just as for untyped barbed congruence, R1 6∼Γ
b R2. 2

Barbed congruence requires a quantification over all contexts. Therefore
proving process equalities can be tedious. Thus, it is important to have
powerful proof techniques. One such a technique consists in using labelled
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bisimilarities whose definition does not require context quantification. For
this, the labelled bisimilarity relation must be contained in barbed congru-
ence.

For instance, in the untyped π-calculus, barbed congruence can be recov-
ered using the well-known early labelled bisimilarity. Its typed version, typed
early labelled bisimulation, is studied by Boreale and Sangiorgi [BS98]. In
Appendix A.2, we present a simplified form of their definition that will be
enough for our purposes. Below we give a brief sketch of the construction.

A typed labelled bisimulation contains triples (Λ, P, Q) where Λ is, roughly,
a type environment (more precisely, it is a multiset type environment). In-
tuitively, (Λ, P, Q) being in a typed bisimulation means that P and Q are
indistinguishable by an observer whose use of names respect the type in-
formations in Λ. The type environment gives us an estimate of the type
information that an observer interacting with the process may know. An
observer can not know more than what the type environment indicates. Con-
sequently, the observer may only see those actions of the processes that are
well typed w.r.t. the type environment. When P and Q perform actions, the
observer’s knowledge changes as well; therefore Λ has to be updated. For
instance, if Λ ` p : T r meaning that the environment can see outputs on

p, and P and Q export a local name, performing actions P
(νn:S)pn
−−−−−−−→ P ′

and Q
(νn:S′)pn
−−−−−−−→ Q′, respectively, then the update of Λ is Λ, n:T (because T

represents the observer’s view of names that he/she receives along p).
The technique of labelled bisimulation can be made more powerful by

combining it with up-to techniques, like “up to parallel composition” and
“up to injective substitutions”.

6.3 The interpretation

In Section 6.1 we discussed why our translation of the Functional ς-calculus in
Chapter 5 is not easily adaptable to the Imperative ς-calculus. The problems
encountered were related to how method override is handled by a relay in
the translation of the Functional ς-calculus. Instead, when dealing with
method override our solution is reminiscent of that for method activation.
In the translation of the Functional ς-calculus, we send a request s〈l, s, r〉 to
a process responsible for activating the method bound to l, when we want
to activate the method named l. Now, what if we do the same thing when
wanting to override a method — i.e. we send a request to the object, asking
it to update the method body.

To understand the π-calculus interpretation, it may be helpful to see
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first an intermediate interpretation into the Higher-Order π-calculus (HOπ)
[San93], an extension of the π-calculus where arguments of communications
and recursive definitions may be, besides names, also abstractions, i.e., pa-
rameterized processes. For the interpretation of the Imperative ς-calculus,
we only need abstractions in recursive definitions. More precisely, we need
certain parameters of recursive definitions to be functions from names to
processes. An example of such a recursive definition is

K(f, p)
4
= p(x).(f〈p〉|K〈f, x〉)

Here, f is a function parameter, and p a name parameter; f〈p〉 is the process
obtained by applying function f to name p. We write functions from names
to processes using a lambda notation, like in λ(x, y).P . The interpretation
into HOπ is shown in Table 6.9. We have omitted the type annotations2.

{[[li=ς(xi)bi
i∈1..n]]}p

4
= (νs)(ps | OB〈λ(x1, r).{[b1]}r, . . . , λ(xn, r).{[bn]}r, s〉)

{[a.lj]}p
4
= (νq)({[a]}q | q(x).xlj sel p)

{[a.lj⇐ς(xj)b]}p
4
= (νq)({[a]}q | q(x).xlj upd 〈p, λ(xj, r).{[b]}r〉)

{[x]}p
4
= px

{[clone(a)]}p
4
= (νq)({[a]}q | q(x).xclone p)

{[let x=a in b]}E
p

4
= (νq)({[a]}q | q(x).{[b]}p)

where OB is defined as:

OB(f1 . . . fn, s)
4
=

s
[

j∈1..n
lj [ sel (x) � fj〈s, x〉 | OB〈f1 . . . fn, s〉;

upd (x, y) � xs | OB〈f1 . . . fj−i, y, fj+1 . . . fn, s〉 ];

clone (x) � OB〈f1 . . . fn, s〉 | (νs′)(xs′ | OB〈f1 . . . fn, s′〉)
]

Table 6.9: The intermediate translation into HOπ (sketch)

The translation {[a]}p of an Imperative ς-calculus term a is located at a
2We are omitting type annotations for ease of reading; they would however be necessary

to make the definition formal. Types are taken into account in the interpretations into
the π-calculus in Table 6.10.
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channel p. When a is an object value, with methods li (i ∈ 1..n), its transla-
tion is a process whose first action is to signal its valuehood by providing an
access name s to its value-core, which is a process of the form OB〈f1 . . . fn, s〉.
This process is ready to accept along the access name s requests of selection,
update and cloning for the methods lj. The body of a method lj is the
function fj; the set of these functions form the state of OB〈f1 . . . fn, s〉.

We explain the behavior of OB〈f1 . . . fn, s〉 on operations of selection,
update and cloning. In case of a select operation lj sel p (which reads “ac-
tivate method lj and use p as location for the resulting object”) the body
fj of method lj is activated, with arguments 〈s, p〉; argument s, the access
name of the value-core OB〈f1 . . . fn, s〉, represents the self-parameter. An
update request lj upd 〈p, f〉 (which reads “replace current method body for
lj with f , and use p as the location of the resulting object value”) results
in a side effect on OB, whereby the j-th component of its state is updated
to f . In a clone request clone p (which reads “create a copy of the current
object at location p”), a new object is created that has the same value-core
OB〈f1 . . . fn, s〉. Note the recursive definition of OB〈f1 . . . fn, s〉, which shows
that OB〈f1 . . . fn, s〉 may accept arbitrarily many requests at s.

Now, following the translation of HOπ into π-calculus [San93], we can
turn the previous interpretation into a π-calculus one. Therefore, it suffices
to make a recursive call with a functional argument, like K〈λx.P 〉, into a
first-order recursive call whose argument is a pointer to the function, like in:

(νb)(K〈b〉 | !b(x).P )

Correspondingly, a function application becomes an output of the arguments
of the function along the pointer to the function. The result of this transfor-
mation, with the addition of type annotations, is presented in Table 6.10.

Just as in the interpretation of ς-calculi into the λ-calculus [ACV96], our
translation of the terms has an environment E as parameter in order to put
the necessary type annotations in the translation of method selection. This
parameter could be avoided by providing, for instance, more type information
on the syntax of method selection. We assume that p, q, r, b, s . . . are not
ς-calculus variables.

In the remainder of the thesis, we call a process of the form OBA〈b1 . . . bn, s〉
an object manager (in the interpretation of an object, OBA〈b1 . . . bn, s〉 acts
like an administrator for the object; it “owns” the object methods, in the
sense that it is only object managers which can reach them, via names bi’s).

Finally we need to show how to translate types. For this it suffices to
follow the definition of the object manager. The translation of an object type
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{[[li=ς(xi:A)bi
i∈1..n]]}E

p
4
= (νs:{[A]}b)

(

ps | (νbi:T b
A,i

i∈1..n)
(

OBA〈b1 . . . bn, s〉 |
∏

i∈1..n

!bi(xi, r).{[bi]}E,xi:A
r

))

{[a.lj]}E
p

4
= (νq:{[[lj : Bj]]}wb

)({[a]}E
q | q(x).xlj sel p)

{[a.lj ⇐ ς(xj:A).b]}E
p

4
= (νq:{[A]}wb

)({[a]}E
q | q(x).(νb:T b

A,j)

(xlj upd 〈p, b〉 | !b(xj, r).{[b]}E,xj :A
r ))

{[x]}E
p

4
= px

{[clone(a)]}E
p

4
= (νq:{[A]}wb

)({[a]}E
q | q(x).xclone p)

{[let x:A=a in b]}E
p

4
= (νq:{[A]}wb

)({[a]}E
q | q(x).{[b]}E,x:A

p )

The object manager OBA is defined as:

OBA(b1:Tw
A,1 . . . bn:Tw

A,n, s:{[A]}b)
4
=

s
[

i∈1..n
li [ sel (x) � bi〈s, x〉 | OBA〈b1 . . . bn, s〉;

upd (x, y) � xs | OB〈b1 . . . bi−1, y, bi+1 . . . bn, s〉 ];

clone (x) � OBA〈b1 . . . bn, s〉 | (νs′:{[A]}b)(xs′ | OBA〈b1 . . . bn, s′〉)
]

and where

• A = [lj : Bj] and TA,j
4
= 〈{[A]}w, {[Bj]}ww〉

• in the encoding of selection, Bj is the unique type s.t. E `
a:[. . . , lj:Bj, . . .] holds, if one such judgment exists (the unicity of this
type if a consequence of the minimum-type property of Ob1<:), Bj can
be any type otherwise;

• in the rule for update, x does not occur free in b.

Table 6.10: The interpretation of the Imperative ς-calculus into the π-
calculus
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must be a type that specifies repeated selection, update and clone operations.

{[[lj:Bj
j∈1..n]]} 4

= µX.
[

j∈1..n
lj [ sel {[Bj]}ww ;

upd 〈Xww , 〈Xw, {[Bj]}ww〉w〉 ];

clone Xww
]

The pattern of occurrences of w tags is determined by the protocol which
implements select and update operations. What is important, however, is
the level of nesting of w tags: An even number of nesting gives covariance,
whereas an odd number of nesting gives contravariance. Thus, the compo-
nent {[Bj]} is in covariant position on selection, and in contravariant position
on update: This explains the invariance of object types on the common com-
ponents, in rule (Sub Obj) (the interpretation of the Imperative ς-calculus
into the λ-calculus [ACV96] does the same). Type environments are then
interpreted componentwise:

{[∅]} 4
= ∅

{[Γ, x:A]} 4
= {[Γ]}, x:{[A]}w

6.4 Simplifying the imperative part of the en-
coding

In the interpretation of the Imperative ς-calculus in Section 6.3, the key
component is the object manager OB. This process is given as a recursive
definition in which certain parameters may change over time. Having a state,
this process may be regarded as “imperative”.

In this section, we modify the encoding, so that the only imperative pro-
cesses are cell-like processes, each of which just stores a name. All remaining
processes will be stateless, and may therefore be regarded as “functional”.
We thus obtain a clean separation of the interpretation into a functional part
and a very simple imperative part. This factorization is useful because:

i. It allows us take full advantage of various π-calculus proof techniques
for functional names and functional processes.

ii. It shows what — we believe — are the simplest non-functional π-cal-
culus processes that are needed for translating the imperative features
of the Imperative ς-calculus.

We discuss functional names and processes, informally, below.
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6.4.1 Functional names and functional processes

A π-calculus name is functional, if its response to incoming messages does
not change over time. To spell this out more clearly, a name a is functional if
the input offer at a is persistent and uniform. That is, an input at a is always
available — at least as long as there are processes that could send messages
at a — and the continuation after an input on a is always syntactically
the same. Thus, messages sent at a can be processed immediately, and all
messages are processed in the same way. Typically, a name a is functional if
it only appears in subexpressions of the form

(νa)(!a(p).P | Q) (6.1)

where P and Q only possess the output capability on a (this is the Lπ
constraint on names), or of the form

(νa)(a(p).P | Q) (6.2)

if, in addition, a can only be used once in output. (In [San99b] names obeying
these constraints are called uniformly receptive.)

Functional names have advantages. First, they can be implemented more
efficiently than arbitrary names. For instance, in PICT [PT99], a program-
ming language based on the π-calculus, the compiler may recognize functional
names and will then perform optimizations in the code that implements com-
munications.

Another advantage of functional names is their algebraic properties, among
which:

i. Copying or distributivity laws such as

(νa)(!a(b).P | Q|R) = (νa)(!a(b).P |Q) | (νa)(!a(b).Q|R).

Their effect is to localize computation. In this way, analyzing a process
behavior becomes easier.

ii. τ -insensitiveness: Interactions along a functional name may not affect
the future behavior of a process. As a consequence, when comparing
the behavior of two processes, there are fewer configurations to take
into account.

Let us call a process functional, if all inputs made by the process during
its lifetime are at functional names. Functional languages may be interpreted
into a sublanguage of the π-calculus in which all names are functional. For in-
stance, in the encodings of call-by-name and call-by-value λ-calculus [Mil92]
and Sangiorgi’s encoding of the Functional ς-calculus [San98], all input pre-
fixes are of, or can be put into, the format (6.1) or (6.2).
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6.4.2 The factorized encoding

The new, factorized, encoding is defined in Table 6.11. To enhance readability
we omit types, as they are the same as in the previous encoding. Only the
clause for evaluated objects changes. Previously, the access name of the
methods was part of (the state of) the object manager. By contrast, now
a level of indirection is introduced, such that when updating a method, the
indirection, instead of the object manager, is changed; this way the object
manager becomes functional.

A cell Cell〈ι, n〉 stores a pointer n to a method; and can be accessed for
read and write operations at ι. The cells are the only imperative processes
in the encoding. Being imperative, a cell may be shared by several clients,
but may not be copied among them. By contrast, all other resources are
functional and they may be copied among their clients. A cell will accept
two messages: read and write, with the expected meaning. A read operation
has a first step in which a client sends a return channel, and a second step
where the cell communicates its value along the return channel.

The copy operator Copy is used to create new cells in a clone operation.
The operator Copyn(ι̃, ι̃′, x, s) creates sequentially n new cells located at the
names ι̃′ with the contents of the cells located at ι̃, signaling completion by
sending the name s on x. One might think that the creation of the cell can
be made parallel, thus:

Copyn(ι̃, ι̃′, x, s)
4
=

∏

i∈1..n

(νg)(ιiread g.g(m).Cell〈ι′i,m〉) | xs,

that is, as a parallel composition of updates. Unfortunately, this will free
the acknowledgment of the clone operation too early, which can lead to un-
expected effects; for instance in the translation of the expression:

let x=a in let y=clone(x) in x.lj⇐ς(z)b

Since the acknowledgment of the clone operation can be sent before the cell
for the method lj has been copied, y may end up having a cell pointing to
the new lj method of x instead of the old. Therefore the copy operation has
to ensure that the acknowledgment is sent after all the new cells have been
created.

This factorized encoding is less compact, but has a simpler correctness
proof than that of the previous encoding of Section 6.3. In the next section,
we use this factorized encoding for proving the correctness of the original
one.
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Below, we let ι̃ denote ι1 . . . ιn, and ι̃′ denote ι′1 . . . ι′n.

[[[li=ς(xi:A)bi
i∈1..n]]]p

4
= (νs)

(

ps | (νι̃)(OBf〈ι1 . . . ιn, s〉 |
∏

i∈1..n

(νbi)(Cell〈ιi, bi〉 | !bi(xi, r).[[bi]]r))
)

The other clauses are as for the original translation in Table 6.10.

The object manager is now defined thus:

OBf (ι̃, s)
4
=

!s
[

i∈1..n
li [ sel (x) � (νg)(ιiread g.g(m).m〈s, x〉);

upd (x, y) � ιiwrite y.xs) ];

clone (x) � (νι̃′, s′)(OBf〈ι̃′, s′〉 | Copyn〈ι̃, ι̃′, x, s′〉)
]

where Cell(ι,m) and Copyn (n ≥ 0) are defined as:

Cell(ι,m)
4
= ι[ read (x) � xm | Cell〈ι,m〉;

write (y) � Cell〈ι, y〉]

Copyn(ι̃, ι̃′, x, s)
4
= (νg)ιnread g.g(m).(Cell〈ι′n,m〉 | Copyn−1〈ι̃, ι̃′, x, s〉)

Copy0(ι̃, ι̃′, x, s)
4
= xs

Table 6.11: The factorized encoding
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6.5 Correctness of the interpretation

6.5.1 Correctness of the interpretation of types

For proving the correctness of our translation of types we can, essentially,
reuse the analogous proofs for Sangiorgi’s interpretation of the Functional
ς-calculus [San98], discussed in Section 6.6. We shall therefore only state
the results of correctness of the translation of types and refer the interested
reader to [San98].

Theorem 6.6 (Correctness of Subtyping) For all A,B, it holds that `
A <: B iff ∅ ` {[A]} ≤ {[B]}.

This result allows us to reason about the Ob1<: subtype relation using its
translation into the type system for the π-calculus. It is, of course, also
essential for the following theorem.

Theorem 6.7 (Correctness of Type Judgements)

i. If E ` a:A then, for all p, it holds that {[E]}, p:{[A]}ww ` {[a]}E
p .

ii. If {[E]}, p:{[A]}ww ` {[a]}E
p , then E ` a:A.

The relation between type judgements in the Imperative ς-calculus and in
the translation allows us to prove properties about the Imperative ς-calculus
that rely on types using the translation (see Section 6.7).

6.5.2 Operational correctness

The proof of the correctness of the interpretation with respect to Abadi
and Cardelli’s operational semantics has a few tricky points. First of all,
we need to extend the translation to deal with configurations (objects plus
stores plus stacks) in the semantics. We therefore need to add translations of
stores (σ), stacks (S) and values (v), such that we can relate the semantics
of the Imperative ς-calculus to the behavior of the encoding. We found it
quite difficult to make such an extension of the original encoding {[−]} of
Section 6.3, due to sharing of closures, which is inevitable in the Imperative
ς-calculus.

To understand the problem, let us try to come up with a translation for a
configuration σ · S ` a. A stack maps variables to values and values are the
object managers in our encoding. Finally, stores maps locations to closures.
This suggests the following encoding of the elements of stacks, stores and
configurations respectively:
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{[x 7→[li=ιi i∈1..n]]} 4
= OB〈ι1 . . . ιn, x〉

{[ι 7→〈ς(x)b,S〉]} 4
= (νdom(S))({[S]} | !ι(x, r).{[b]}r)

{[σ · S ` a]}p = (νdom(σ))({[σ]} | (νdom(S))({[S]} | {[a]}p))

Unfortunately, this does not work due to sharing and method override. To
see the problem, consider the configuration

σ · S ` [l1=ς(x)b, l2=ς(x)(y.lj⇐ς(x)b′; x)].l2

with S = y 7→[li=ιi i∈1..n]. When evaluating this expression, we have the
following configuration σ′ · S, x 7→[l1=ι1, l2=ι2] ` y.lj⇐ς(x)b′; x with σ′ =
σ, ι1 7→〈ς(x)b,S〉, ι2 7→〈ς(x)y.lj⇐ς(x)b′; x,S〉. Now, in our proposed transla-
tion, only the object manager in the currently active stack is updated, the
object managers hidden in the store will remain the same and refer to the
original lj method, so the method update will only occur locally.

We solve this problem by using instead the factorized encoding [[−]] of
Section 6.4.

6.5.3 Operational correctness of the factorized encod-
ing

In the factorized encoding, stores and stacks can be translated as proposed
above; a store binds closures to locations, so here we locate a cell at the
location holding the address of the method closure (which is the translation
of a method together with a private stack). One can consider a cell as
implementing a single entry of a store — A cell is located at some name ι
and has a contents which can be read and overridden.

[[∅]] 4
= 0

[[ι 7→〈ς(x)b,S〉, σ]]
4
= (νdom(S),m)(Cell〈ι,m〉 | !m(x, r).[[b]]r | [[S]]) | [[σ]]

A stack binds values to variables, so we translate it as an object manager
located on the variable name.

[[∅]] 4
= 0

[[x 7→[li=ιi i∈1..n],S]]
4
= OBf〈ι1 . . . ιn, x〉 | [[S]]
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We have two types of configurations in the operational semantics of the
Imperative ς-calculus; initial configurations on the form σ · S ` a and final
configurations on the form v · σ. They are translated as follows:

[[σ · S ` a]]p
4
= (νdom(σ))([[σ]] | (νdom(S))([[S]] | [[a]]p))

[[[li=ιi i∈1..n] · σ]]p
4
= (νs, dom(σ))(ps | OBf〈ι1 . . . ιn, s〉 | [[σ]])

That is, in both cases, we simply translate each component of the configura-
tions and appropriately hide their access.

Before we start on the “real” proof of operational correctness, we need the
following definition and lemma, stating that the translation of configurations
in the semantics of the Imperative ς-calculus can always be transformed in a
normal form. The reason why we do this, is because then we know exactly
which part of the translation that can bring the system to evolve.

In the following we shall, unless otherwise mentioned, assume that when
we consider configurations σ · S ` a and [li=ιi i∈1..n] · σ then they are well-
formed. This is, σ · S ` �, fv(a) ⊆ dom(S), and ι1, . . . , ιn ∈ dom(σ). Below,
∼b is the strong version of barbed congruence.

Definition 6.8 Let Pp
q be given by the following grammar (where p and q

binds names in terms generated by the grammar):

Pp
q ::= q(x).xlj sel p

| q(x).xclone p
| (νdom(S))([[S]] | q(x).(νb)(xlj upd 〈p, b〉 | !b(x, r).[[b]]r))
| (νdom(S))([[S]] | q(x).[[b]]p)

Let Cp
q be given by: Cp

q ::= (νr)(Pr
q | Cp

r ) | q � p, where is a destructive link
from q to p defined by q � p = q(x).px.

In the above definition Pp
q represents single actions that can happen to an

object and Cq
p represents a sequential list of actions. The reason why the

two last cases in the definition of Pp
q contains the translation of a stack S, is

because method update and the let construct both includes an object, that
needs a stack.

The following lemma states that the translation of any configuration σ ·
S ` a is barbed congruent to the translation of an object value [li=ιi i∈1..n],
an extension of the store σ and a Cq

p .
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Lemma 6.9 For all σ, S, and a, there exists a Cp
q′ and a store σ′ with σ ⊆ σ′

and ι1, . . . ιn ⊆ dom(σ′) such that

(νdom(σ))([[σ]] | (νq)(((νdom(S))([[S]] | [[a]]q) | q � p))
∼b (νdom(σ′))([[σ′]] | (νq′)((νs)(OBf〈ι1 . . . ιn, s〉 | q′s) | Cp

q′))

Proof. Straightforward structural induction in a for the more general case:

(νdom(σ))
(

[[σ]] | (νq)
(

(νdom(S))([[S]] | [[a]]q) | Cp
q

))

(6.3)

using the distributivity of the functional processes that represent object man-
agers in S. Below, we show a few of the cases.

a = [li=ς(xi)bi
i∈1..n]: The translation of (6.3) is:

(νdom(σ))
(

[[σ]] | (νq)
(

(νdom(S))([[S]] | (νs)(qs |

(νι̃)(OBf〈ι1 . . . ιn, s〉 |
∏

i∈1..n(νbi) (Cell〈ιi, bi〉 | !bi(xi, r).[[bi]]r)
︸ ︷︷ ︸

Pi

))) | Cp
q

))

We can now distribute S into each (νbi)(Pi) and get (νdom(S), bi)(Pi | [[S]])
which is the translation of a store σ′′. If we assume that {ι1, . . . , ιn} ∩
dom(σ) = ∅ we “move” σ′′ next to σ and get:

(νdom(σ), ι1, . . . , ιn)
(

[[σ]] |
∏

i∈1..n(νdom(S), bi)(Pi | [[S]]) |

(νq)
(

(νs)(qs | OBf〈ι1 . . . ιn, s〉) | Cp
q

))

By letting σ′ = σσ′′, Cp
q′ = Cp

q , and q′ = q we get the result.

a = x: The translation of (6.3) is:

(νdom(σ))
(

[[σ]] | (νq)
(

(νdom(S))([[S]] | qx) | Cp
q

))

By assumption x ∈ dom(S), so there is an object manager OBf〈ι1 . . . ιn, x〉
in [[S]]. Since S ` � we have

(νdom(S))([[S]] | qx) ∼b (νx)(OBf〈ι1 . . . ιn, x〉 | qx)

and since ∼b is a congruence we have the result.

a = let x=b in c: The translation of (6.3) is:

(νdom(σ))
(

[[σ]] | (νq)
(

(νdom(S))([[S]] | (νr)([[b]]r | r(x).[[c]]q) | Cp
q

))
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We can use the functional nature of S and distribute it among b and c, getting

(νdom(σ))
(

[[σ]] | (νq)
(

(νr)((νdom(S))([[S]] | [[b]]r) |

(νdom(S))([[S]] | r(x).[[c]]q)) | Cp
q

))

We can now build a new Cp
r = (νdom(S))([[S]] | r(x).[[c]]q) | Cp

q . By induction
there exists a Cp

q′ , σ′, OBf〈ι1 . . . ιn, s〉 such that

(νdom(σ))
(

[[σ]] | (νq)
(

(νr)((νdom(S))([[S]] | [[b]]r) | Cp
r

))

∼b (νdom(σ′))([[σ′]] | (νq′)((νs)(OBf〈ι1 . . . ιn, s〉 | q′s) | Cp
q′))

2

We can now prove the operational correctness of the factorized encod-
ing. The following lemma describes how each operation: method activation,
cloning, method update, and let, on a object value is mimicked by a series
of deterministic reductions in the translation.

Lemma 6.10 For all stores σ, stacks S, and objects a, with σ · S ` � and
fv(a) ⊆ dom(S), the following holds:

(νdom(σ))([[σ]] | (νq)([[[li=ιi i∈1..n]]]q | (νp)(q(x).xlj sel p | Cp∗
p )))

τ−−→
+

d∼b (νdom(σ))([[σ]] | (νp)((νdom(S), xj)([[bj]]p |
[[S, xj 7→[li=ιi i∈1..n]]]) | Cp∗

p ))

with σ(ιj) = 〈ς(xj)bj,S〉 and j ∈ 1..n

(νdom(σ))([[σ]] | (νq)([[[li=ιi i∈1..n]]]q | (νp)(q(x).xclone p | Cp∗
p )))

τ−−→
+

d∼b (νdom(σ), ι′1 . . . ι′n)([[σ, ι′i 7→σ(ιi) i∈1..n]] |
(νp)((νs′)(ps′ | OB〈ι′1 . . . ι′n, s

′〉) | Cp∗
p ))

(νdom(σ))([[σ]] | (νq)([[[li=ιi i∈1..n]]]q | (νp)(
(νdom(S))([[S]] | q(x).(νb)(xlj upd 〈b, p〉 | !b(x, r).[[b]]r)) | Cp∗

p )))
τ−−→

+
∼b (νdom(σ))([[σ[ιj 7→〈ς(x)b,S〉]]] |

(νp)((νs)(ps | OBf〈ι1 . . . ιn, s〉) | Cp∗
p ))

with j ∈ 1..n

(νdom(σ))([[σ]] | (νq)([[[li=ιi i∈1..n]]]q | (νp)(
(νdom(S))([[S]] | q(x).[[b]]p) | Cp∗

p )))
τ−−→d∼b (νdom(σ))([[σ]] | (νp)((νdom(S), x)([[b]]p |

[[S, x 7→[li=ιi i∈1..n]]]) | Cp∗
p ))
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Proof. By inspection of the possible transitions for each case, here we
only consider the first.

(νdom(σ))([[σ]] | (νq)([[[li=ιi i∈1..n]]]q | (νp)(q(x).xlj sel p | Cp∗
p )))

= (νdom(σ))([[σ]] | (νq)((νs)(qs | OBf〈ι1 . . . ιn, s〉) |
(νp)(q(x).xlj sel p | Cp∗

p )))
τ−−→d (νdom(σ))([[σ]] | (νs)(OBf〈ι1 . . . ιn, s〉 |

(νp)(slj sel p | Cp∗
p )))

τ−−→
3

d (νdom(σ))([[σ]] | (νs)(OBf〈ι1 . . . ιn, s〉 |
(νp, g)(ιjread g.g(m).m〈s, p〉 | Cp∗

p )))

Now the object manager has started a process that will read the contents
of the cell located at ιj. By assumption there exist a ιj ∈ σ, with σ(ιj) =
〈ς(xj)bj,S〉. The translation σ(ιj) is (νbj, dom(S))(Cell〈ιj, bj〉 | !bj(x, r).[[bj]]r |
[[S]]). We can now use the functional nature of [[S]] and !bj(x, r).[[bj]]r to create
private copies for the activation of the method bj.

τ−−→
2

d∼b (νdom(σ))([[σ]] | (νs)(OBf〈ι1 . . . ιn, s〉 | (νp, g)((νbj)(gbj |
(νdom(S))(!bj(x, r).[[bj]]r | [[S]]) | g(m).m〈s, p〉) | Cp∗

p )))
τ−−→d∼b (νdom(σ))([[σ]] | (νs)(OBf〈ι1 . . . ιn, s〉 | (νp)((νbj)(

(νdom(S))(!bj(x, r).[[bj]]r | [[S]]) | bj〈s, p〉) | Cp∗
p )))

After having activated the method bj, we can garbage collect !bj(x, r).[[bj]]r
and get the result.

τ−−→d∼b (νdom(σ))([[σ]] | (νs)(OBf〈ι1 . . . ιn, s〉 | (νp)(
(νdom(S))([[bj]]p{s/xj} | [[S]])) | Cp∗

p ))

∼b (νdom(σ))([[σ]] | (νp)((νdom(S), xj)([[bj]]p | [[S]]
| OBf〈ι1 . . . ιn, xj〉) | Cp∗

p ))

= (νdom(σ))([[σ]] | (νp)((νdom(S), xj)([[bj]]p |
[[S, xj 7→[li=ιi i∈1..n]]]) | Cp∗

p ))

2

After we have handled the basic operations on object values, we can
now proceed by showing how the operational semantics of the Imperative
ς-calculus is mimicked by the translation.
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Lemma 6.11 If σ · S ` a ; v · σ′ then:

(νdom(σ))([[σ]] | (νq)((νdom(S))([[S]] | [[a]]q) | Cp
q ))

τ−−→
∗
d (νdom(σ′))([[σ′]] | (νq)([[v]]q | Cp

q ))

Proof. We prove the lemma using induction in the structure of the in-
ference of σ · S ` a ; v · σ′. To increase readability, we let (νσ) denote
(νdom(σ)) and (νS) denote (νdom(S)).

(VarI): By the rule (VarI), the stack S must be of the form S ′, x 7→[li=ιi i∈1..n].
Using the strong bisimulation congruence and the fact (νp)(!p(x).P ) ∼b 0 we
get:

(νσ)([[σ]] | (νq)((νS ′, x)([[S ′]] | OBf〈ι1 . . . ιn, x〉 | qx) | Cp
q ))

∼b (νσ)([[σ]] | (νq)((νx)(OBf〈ι1 . . . ιn, x〉 | qx) | Cp
q ))

= (νσ)([[σ]] | (νq)([[[li=ιi i∈1..n]]]q | Cp
q ))

(ObjI): Following the encoding of objects we have:

(νσ)([[σ]] | (νq)((νS)([[S]] | (νι1 . . . ιn, s)(qs | OBf〈ι1 . . . ιn, s〉 |
∏

i∈1..n(νbi)(Cell〈ιi, bi〉 | !bi(xi, r).[[bi]]r)) | Cp
q ))

(6.4)

Since stacks are functional we can distribute the stack to each method, so
expression (6.4) must be bisimilar to:

(νσ, ι1 . . . ιn)([[σ]] |
∏

i∈1..n(νbi)(Cell〈ιi, bi〉 | (νS)([[S]] |
!bi(xi, r).[[bi]]r)) | (νq)((νs)(qs | OBf〈ι1 . . . ιn, s〉) | Cp

q ))

= (νσ′)([[σ′]] | (νq)([[[li=ιi i∈1..n]]]q | Cp
q ))

with σ′ = σ, ιi 7→〈ς(xi)bi,S〉 for all i ∈ 1..n.

(SelI): By the encoding of method activation we have:

(νσ)([[σ]] | (νq)((νS)([[S]] | (νq′)([[a]]q′ | q′(x).xlj sel q)) | Cp
q ))

∼b (νσ)([[σ]] | (νq′)((νS)([[S]] | [[a]]q′) | (νq)(q(x).xlj sel q | Cp
q )))

By induction this reduces to:

(νσ′)([[σ′]] | (νq′)([[[li=ιi i∈1..n]]]q′ | (νq)(q′(x).xlj sel q | Cp
q )))

which again by Lemma 6.10 reduces to:
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(νσ′)([[σ′]] | (νq)((νS ′, xj 7→[li=ιi i∈1..n])([[S ′]] | [[bj]]q) | Cp
q ))

with σ′(ιj) = 〈ς(xj)bj,S ′〉
And again we can use the induction hypothesis to deduce that this reduces
to something bisimilar to:

(νσ′′)([[σ′′]] | (νq)([[v]]q | Cp
q ))

(UpdI): By the encoding of method update and distributivity of the stack we
have:

(νσ)([[σ]] | (νq)((νS)([[S]] | (νq′)([[a]]q′ |
q′(x).(νb)xlj upd 〈b, q〉.!b(x, r).[[b]]r)) | Cp

q ))

∼b (νσ)([[σ]] | (νq′)((νS)([[S]] | [[a]]q′) | (νq)((νS)([[S]] |
q′(x).(νb)(xlj upd 〈b, q〉 | !b(x, r).[[b]]r)) | Cp

q )))

By induction this reduces to something bisimilar to:

(νσ′)([[σ′]] | (νq′)([[[li=ιi i∈1..n]]]q′ | (νq)(
(νS)([[S]] | q′(x).(νb)(xlj upd 〈b, q〉 | !b(x, r).[[b]]r)) | Cp

q )))

which by Lemma 6.10 reduces to:

(νσ′)([[σ′[ιj 7→〈ς(x)b,S〉]]] | (νq)([[[li=ιi i∈1..n]]]q | Cp
q ))

(CloneI): By the encoding of cloning we get:

(νσ)([[σ]] | (νq)((νS)([[S]] | (νq′)([[a]]q′ | q′(x).xclone q) | Cp
q ))

≡ (νσ)([[σ]] | (νq′)((νS)([[S]] | [[a]]q′) | (νq)(q′(x).xclone q | Cp
q )))

By induction this reduces to something bisimilar to:

(νσ′)([[σ′]] | (νq′)([[[li=ιi i∈1..n]]]q′ | (νq)(q′(x).xclone q | Cp
q )))

which by Lemma 6.10 reduces to:

(νσ′, ι′1 . . . ι′n)([[σ′, ι′i 7→σ′(ιi) i∈1..n]] | (νq)([[[li = ι′i
i∈1..n]]]q | Cp

q ))

(LetI): By the encoding of the let construct and distributivity of the stack
we have:

(νσ)([[σ]] | (νq)((νS)([[S]] | (νq′)([[a]]q′ | q′(x).[[b]]q) | Cp
q ))

∼b (νσ)([[σ]] | (νq′)((νS)([[S]] | [[a]]q′) | (νq)((νS)([[S]] | q′(x).[[b]]q) | Cp
q )))
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By induction this reduces to something bisimilar to:

(νσ′)([[σ′]] | (νq′)([[v]]q′ | (νq)((νS)([[S]] | q′(x).[[b]]q) | Cp
q )))

which by Lemma 6.10 is reduces to:

(νσ′)([[σ′]] | (νq)((νS, x)([[b]]p | [[S, x 7→v]]) | Cp
q ))

and again by induction we know that this reduces to something bisimilar to:

(νσ′′)([[σ′′]] | (νq)([[v′]]q | Cp
q ))

2

As an immediate consequence of Lemma 6.11 we get the following corol-
lary:

Corollary 6.12 If σ · S ` a ; v · σ′ then: [[σ · S ` a]]p =⇒d ∼b [[v · σ′]]p.

Lemma 6.13 If [[σ · S ` a]]p↓q, then a is either an object (value) or a vari-
able.

Proof. By inspection of the encoding. 2

Lemma 6.14 Let R = {[[σ ·S ` a]]p | σ ·S ` a⇑, σ ·S ` a well-typed}. Then
for all P ∈ R there exists a P ′ such that P

τ−−→=⇒d ∼b P ′ with P ′ ∈ R

Proof. We argue by induction of the length of a with a case analysis of
the structure of a. The length on a term is defined the obvious way.

For terms with length 0, the result follows trivially, as there are no terms
with length 0. Now consider terms with length n, in principle a term can be
on the following forms:

x: Is always convergent.

[li=ς(xi:A)bi
i∈1..n]: Is always convergent.

b.lj: If σ · S ` b.lj diverges it can be for one of two reasons; either:

• σ · S ` b diverges, and by induction there exists a Q′ such that [[σ · S `
b]]p

τ−−→
+

d∼b Q′ with Q′ ∈ R. Since Q′ ∈ R this means that Q′ is of
the form [[σ′ · S ′ ` b′]]p. Therefore will σ′ · S ′ ` b′.lj also diverge and its
encoding be contained in R.
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• σ · S ` b ; [li=ιi i∈1..n] · σ′ and σ′ · S ′, x 7→[li=ιi i∈1..n] ` c diverges,
where σ′(ιj) = 〈ς(x)c,S ′〉. By Lemma 6.11 and 6.10 we have [[σ · S `
b.l]]p

τ−−→
+

d∼b [[σ′ · S ′, x 7→[li=ιi i∈1..n] ` c]]p which must be contained in
R.

b.l⇐ς(x)c: If σ · S ` b.l⇐ς(x)c diverges is must be because σ · S ` b diverges,
and by induction there exists a Q′ such that [[σ · S ` b]]p

τ−−→
+

d∼b Q′ with
Q′ ∈ R. Since Q′ ∈ R this must mean that Q′ is on the form [[σ′ · S ′ ` b′]].
Therefore will σ′ · S ′ ` b′.l⇐ς(x)c also diverge and its encoding be contained
in R.

clone(b): Same argument as in the previous case.

let x=b in c: If σ · S ` let x=b in c diverges, then it is either because:

• σ · S ` b diverges. By induction there exists a Q′ such that [[σ · S `
b]]p

τ−−→
+

d Q′ with Q′ ∈ R. This means that Q′ is on the form [[σ′·S ′ ` b′]]
and σ′ ·S ′ ` b′ diverges. Therefore will σ′ ·S ′ ` let x=b′ in c also diverge
and its encoding be contained in R.

• σ · S ` b ; v · σ′ and σ′ · S, x 7→v ` c diverges. By Lemma 6.11 and a
reduction, we get [[σ · S ` let x=b in c]]p

τ−−→
+

d [[σ′ · S, x 7→v ` b]]p ∈ R
2

Theorem 6.15 Suppose σ ·S ` a is well-typed. If [[σ ·S ` a]]p⇓p, there exists
a value v, and a store σ′, s.t. σ · S ` a ; v · σ′

Proof. We argue by contradiction. Assume that [[σ · S ` a]]p⇓ converges
but σ · S ` a diverges. But then by Lemma 6.14 [[σ · S ` a]]p should also
diverge, which contradicts our initial assumption. 2

In the above statements of operational correspondence, we often require
that the configurations are well-typed. This is because the divergence pred-
icate ⇑ does not distinguish between “real” divergence and run-time errors.
For instance, we have ∅ · ∅ ` [ ].l⇑, although one would not claim that this
term diverges. But if we only consider well-typed terms, such cases are ruled
out.

Another possibility would have been to work with a small-step semantics,
like the one Gordon, Hankin and Lassen [GHL97] give to the Imperative
ς-calculus, where it is possible to define divergence of a term as having an
infinite reduction sequence.
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6.5.4 Relating the original and the factorized encod-
ings

In this section, we study the correctness of the transformation that leads us
from the original encoding of Table 6.10 to the factorized one of Section 6.4.

We have not been able to prove that the translations of an imperative
object according to the factorized encoding [[−]] and to the original encoding
{[−]} are equated by some known behavioral equivalence of the π-calculus —
the factorized encoding yields richer behaviors.

The transformation only affects the object manager. So, for instance, one
might hope to prove that the original object manager and its transformed
are equated by one of the known notions of equivalence for the π-calculus,
i.e. proving:

OB〈b1 . . . bn, s〉 = (νι1 . . . ιn)
(

OBf〈ι1 . . . ιn, s〉 |
∏

i∈1..n

Cell〈ιi, b〉
)

But this is not true because the process on the right-hand side has a richer
behavior, as shown by the following example.

Example 6.6 The functional object manager can perform the following
transition sequence, which cannot be performed by the imperative coun-
terpart:

sl1 sel p−−−−−−→
sl1 upd 〈p′,b′〉
−−−−−−−−−−→ =⇒

b′〈s,p〉
−−−−−→

What can happen is that a request for a method update can overtake a
request for selection of that same method, resulting in the activation of the
new method. This can happen because the functional object manager is a
replicated process that is always ready to accept new request even if it has not
finished updating or reading its cells. Observe, this is only a problem for the
proof of operational correctness — the Imperative ς-calculus is sequential, so
π-calculus terms generated by the factorized translation cannot create cases
like this. 2

The problem is that the original object manager responds in a different
manner to concurrent requests than the functional. However, the contexts in
which object managers work are sequential, so that should not really make a
difference. What we need to do is to ensure that the original object manager
has enough behavior to function correctly.

We solve this problem by extending the notion of ready simulation [BIM95,
LS91] (in the latter paper called 2/3-simulation) to the π-calculus and prove
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that the two translations of an object are in a ready simulation relation. This
is a rather weak result, but, together with the correctness of the factorized
encoding, it will suffice to prove the operational correctness of the original
encoding. (As far as we know, ready simulation has never been defined in a
weak version and never been used in calculi of mobile processes.)

Definition 6.16 (Ready Simulation) A relation R is a (weak) ready sim-
ulation if P R Q implies, for any µ (with bound names of µ not free in P,Q):

i. If P
µ−−→ P ′, then there exists a Q′ s.t. Q

µ̂
==⇒ Q′ and P ′ R Q′.

ii. If Q
µ−−→ Q′, then there exist a P ′ s.t. P

µ
==⇒ P ′

We say that Q ready-simulates P , written P ≺ Q, if P R Q for some ready
simulation R.

Observe that, in the above untyped relation, types are ignored, and there-
fore in the derivatives P ′, Q′ there could be run-time errors. (We could also
have a typed version of ready simulation, but the untyped version will suffice
for our purpose). The only problem is what happens on input of something
that is not well typed. We have two cases to consider.

• Input of a value that results in a grammatically incorrect process, which
by the way substitution is defined, will result in the term wrong; this
term has no transitions and will therefore be ready similar to 0. Intu-
itively this is acceptable in the untyped case, as the input of something
resulting in a grammatically incorrect term should stop the system.

• Input of a value that results in grammatically correct terms, but leads
to a runtime error later. But this does not matter since run-time errors
are signaled as wrong-actions; therefore for two processes to be ready
similar they must have the same behavior w.r.t. run-time errors.

Furthermore, we shall only compare well-typed processes where run-time
errors are guaranteed not to occur.

Observe, in clause ii of Definition 6.16 we require that if Q
µ−−→ Q′ then

P
µ

==⇒ P ′. One might have expected P
µ̂

==⇒ P ′, but if we did that then P
could match a τ -move by Q by deadlocking, which would make the relation
unfit for our use.

In Appendix A.1 we establish some basic theory for ready simulation.
We prove (Theorem A.2) that ready simulation is a precongruence w.r.t.
parallel composition and restriction, and show the soundness (Theorem A.4)
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of the powerful proof technique of up-to restriction and parallel composition
(Definition A.3). With these results at hand we are now able to prove the
key result for the relation between the original and the factorized translation
of the Imperative ς-calculus.

Theorem 6.17

OB〈b1 . . . bn, s〉 ≺ (νι1 . . . ιn)
(

OBf〈ι1 . . . ιn, s〉
∣

∣

∣

∏

i∈1..n

Cell〈ιi, bi〉
)

Proof. Let

R =
{(

OB〈b1 . . . bn, s〉, (νι1 . . . ιn)
(

OBf〈ι1 . . . ιn, s〉
∣

∣

∣

∏

i∈1..n Cell〈ιi, bi〉
))

∣

∣

∣ ∀b1, . . . , bn, s ∈ Names
}

We claim that R is an up-to context ready simulation. That together with
Theorem A.4 proves the theorem.

If OB〈b1 . . . bn, s〉
µ−−→ S there are 3 possibilities:

i. µ = slj sel p and S = OB〈b1 . . . bn, s〉 | b〈s, p〉

ii. µ = slj upd 〈p, b〉 and S = OB〈b1 . . . b . . . bn, s〉 | ps

iii. µ = sclone p and S = OB〈b1 . . . bn, s〉 | (νs′)(OB〈b1 . . . bn, s′〉 | ps′)

In each case it is easy to determine that this can be matched in the required
way by (νι1 . . . ιn)(OBf〈ι1 . . . ιn, s〉 |

∏

i∈1..n Cell〈ιi, bi〉).
For instance in case iii we have

(νι1 . . . ιn)(OBf〈ι1 . . . ιn, s〉 |
∏

i∈1..n Cell〈ιi, bi〉)
µ

==⇒ (νι1 . . . ιn)(OBf〈ι1 . . . ιn, s〉 |
∏

i∈1..n Cell〈ιi, bi〉) |
(νs′)((νι′1 . . . ι′n)(OBf〈ι′1 . . . ι′n, s

′〉 |
∏

i∈1..n Cell〈ι′i, bi〉) | ps′)

Since we only need to show that R is an up-to context ready simulation, we
can cancel the common parallel component and restriction and only need to
check that

OB〈b1 . . . bn, s〉 R (νι1 . . . ιn)(OBf〈ι1 . . . ιn, s〉 |
∏

i∈1..n

Cell〈ιi, bi〉)

and

OB〈b1 . . . bn, s′〉 R (νι′1 . . . ι′n)(OBf〈ι′1 . . . ι′n, s
′〉 |

∏

i∈1..n

Cell〈ι′i, bi〉)
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which is easily seen to be true.

Conversely, a transition

(νι1 . . . ιn)
(

OBf〈ι1 . . . ιn, s〉
∣

∣

∣

∏

i∈1..n

Cell〈ιi, bi〉
)

µ−−→

is easily matched as µ must be one three possible actions of OB〈b1 . . . bn, s〉. 2

This is a rather weak result, but, together with the correctness of the
factorized encoding, it suffices to prove the operational correctness of the
original encoding.

From the previous theorems, we can conclude that the original encoding
is ready simulated by the factorized one:

Corollary 6.18 {[a]}p ≺ [[∅ · ∅ ` a]]p.

Proof. Follows from Theorem 6.17 and Theorem A.2. 2

Lemma 6.19 Suppose a is well-typed. Then {[a]}p cannot deadlock, i.e.
whenever {[a]}p ⇒ P then there are µ, P ′ s.t. P

µ−−→ P ′.

Proof. Assume that {[a]}p can deadlock, that is there exists a P such that
{[a]}p =⇒ P 6 µ→. Now since {[a]} ≺ [[∅ · ∅ ` a]]p, there must exist a Q such that
[[∅ · ∅ ` a]]p =⇒ Q with P ≺ Q.

By Corollary 6.12, if a converges, then [[∅ · ∅ ` a]]p will also converge,
and by Lemma 6.14, if a diverges, then [[∅ · ∅ ` a]]p will also diverge; so
[[∅ · ∅ ` a]]p cannot deadlock. Then there must exist a µ s.t. Q

µ−−→. By the
second clause of the definition of ready simulation, we infer P

µ
==⇒, which is

a contradiction. 2

Corollary 6.20 Suppose a is well-typed.

• {[a]}p⇑ iff [[∅ · ∅ ` a]]p⇑

• {[a]}p⇓ iff [[∅ · ∅ ` a]]p⇓

Proof. Both {[a]}p and [[∅ · ∅ ` a]]p are deadlock-free. Then the corollary
follows from Corollary 6.18 and the fact that [[∅ · ∅ ` a]]p either converges or
diverges (it cannot do both, because of Corollary 6.12 and Lemma 6.14). 2
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6.5.5 Adequacy and soundness of the original interpre-
tation

From Corollary 6.12, Theorem 6.15 and Corollary 6.20, we infer:

Corollary 6.21 (Computational Adequacy) If ∅ ` a : A for some type
A, then a⇓ iff {[a]}p⇓p.

Behavioral equivalences such as barbed congruence or the Morris-style
contextual equivalence can also be defined in the Imperative ς-calculus (in
fact, since the reduction relation for the Imperative ς-calculus is confluent,
the two equivalences coincide).

A context C[−] in the ς-calculus is an (A/B)-context if −:B ` C[−] : A
(that is, we can deduce that C[−] has type A if its hole has type B).

Definition 6.22 (Contextual Equivalence) For closed ς-calculus terms
a and b of type B, we write a 'B b if for all types A and (A/B)-contexts C,
it holds that C[a]⇓ iff C[b]⇓.

Just as in Definition 5.8, we follow Gordon and Rees [GR96] by only consid-
ering closed terms.

We can show soundness of the translation using compositionality of the
encoding and adequacy. This tells us that the equalities that can be proven
using the translation are valid equalities.

Theorem 6.23 (Soundness) Assume a:B and b:B. If {[a]}p ≈p:{[B]}ww

b {[b]}p

then a 'B b. (Where ≈Λ
b is π-calculus weak typed barbed congruence).

Proof. Consider some (A/B)-context C[−] and assume that C[a]⇓. We
must now show that C[b]⇓.

By Corollary 6.21 if C[a]⇓ then {[C[a]]}q⇓. Since the translation is compo-
sitional, it is easy to see that {[C[a]]}q = C[{[a]}p] for some π-calculus (Γ/∆)-
context C[−] and name p, where Γ = q : {[A]}ww and ∆ = p : {[B]}ww .

By assumption {[a]}p ≈p:{[B]}ww

b {[b]}p, and therefore C[{[a]}p]⇓ implies {[C[b]]}p =
C[{[b]}p]⇓. Finally, we apply Corollary 6.21 to conclude that C[b]⇓.

If C[a]⇑ the same line of reasoning is used to conclude that C[b]⇑. 2

As for the encodings of the λ-calculi into the π-calculus, the converse of
soundness does not hold for the Imperative ς-calculus.
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Example 6.7 Consider the following two objects (from [San98]):

a = [l1=ς(x)b, l2=ς(x)((x.l1).h⇐ς(y)b′).h⇐ς(y)b′]
a′ = [l1=ς(x)b, l2=ς(x)(x.l1).h⇐ς(y)b′]

with b having a method named h. These two objects are contextually equiv-
alent in the ς-calculus, but their translations are not barbed congruent. The
reason is that an external observer can update the method l1 with a new
method body, that behaves nondeterministically w.r.t. method updates. For
instance, the new method body can decide to diverge on the second request
for an update of the h method. By doing so, a will diverge, whereas a′ will
converge. 2

Just as we did for the translation of the Functional ς-calculus in Theo-
rem 5.10, if we restrict the set of π-calculus contexts considered in barbed
congruence to contexts that are translations of ς-calculus contexts, we can
get a full abstraction result. But again this is not especially useful without
an alternative characterization of the resulting equivalence.

6.6 Comparisons with the Functional ς-calculus

In [San98], the Functional ς-calculus is translated into the same typed π-cal-
culus that we have used for the translation of the Imperative ς-calculus in
this chapter. Remarkably, despite the strong differences in the operational
semantics, our interpretation of the Imperative and Sangiorgi’s of the Func-
tional ς-calculus into the π-calculus are structurally very close. Roughly, the
only difference between the two translations is in the object manager. The
manager for the Functional ς-calculus, reported below, is a functional process
(it is replicated, see the discussion on functional processes in Section 6.4).
This difference has consequences on the update requests: On such a request,
the manager for the Functional ς-calculus always generates a new object
manager, whereas the one for the Imperative ς-calculus works by having side
effects on itself3. Below we present the object manager for the translation of
the Functional ς-calculus.

3This applies to both the original and the factorized object manager if we consider the
cells a part of the functional object manager
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OBA
func(b1:Tw

A,1 . . . bn:Tw
A,n, s:{[A]}b)

4
=

!s
[

j∈1..n
lj [ sel (x) � bj〈s, x〉;

upd (x, y) � (νs′:{[A]}b)(xs′ |
OB〈b1 . . . bj−i, y, bj+1 . . . bn, s′〉) ]

]

The translation of types in the translation of the Functional ς-calculus is
also very similar to the one for the Imperative ς-calculus. The only change
is that in translation of types in the functional case we do not have the clone
tag in the resulting π-calculus type.

The functional and the imperative nature of, respectively, the Functional
and Imperative ς-calculus, is reflected in the functional and the imperative
nature of the object managers of the π-calculus interpretations. As a con-
sequence, we can use the π-calculus interpretations to compare and contrast
the Imperative and Functional ς-calculus — for instance, their discriminating
power — and to prove properties about them, within a single framework.

The resemblance between the interpretations also allow us to reuse certain
proofs, most notably those on types (see Theorem 6.6 and 6.7), but also
certain proofs about behavioral properties of objects (a good example of this
is the proof of the law (Eq Sub Obj), in Section 6.7).

On the other hand, as a consequence of the differences in the opera-
tional semantics, certain basic laws of for the Functional ς-calculus, such as
a.lk = bk{a/xk} (k ∈ 1..n), do not hold in the Imperative ς-calculus.

In [AC96, Section 10.1] a translation of the Functional ς-calculus to
the Imperative ς-calculus is sketched as the identity translation except for
method override, which is translated as ||a.l⇐ς(x)b|| 4= clone(||a||).l⇐ς(x)||b||.
It is interesting to note, that this is also the difference between the object
managers for the Imperative and Functional ς-calculus — On an override
operation, the object manager for the Functional ς-calculus will create a new
updated object manager, leaving the original object manager unchanged,
whereas the object manager for the Imperative ς-calculus will change its
internal state on method override.

6.7 Reasoning about objects

Our main motivation for studying translations of the ς-calculus into the π-
calculus was to investigate the possibility of using the π-calculus as a tool for
reasoning about objects. We are now in a position to present a number of
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examples of how the π-calculus interpretation can be used to validate some
basic behavioral properties for the Imperative ς-calculus.

Lemma 6.24 Let o = [li=ς(xi:A)bi
i∈1..n], C = [li:Bi

i∈1..n], and o:C. Then

i. o.lj 'Bj let xj:C=o in bj

ii. If x:C ` b:Bj then

o.lj⇐ς(x:C)b 'C [lj=ς(x:C)b, li=ς(xi:C)bi
i∈1..n\{j}]

iii. clone(o) 'C o

iv. If a⇓, a:A, b:B x 6∈ fv(b), then let x:A=a in b 'B b.

v. If x 6∈ fv(o), y 6∈ fv(a), a:A and let x:A=a in let y:C=o in b : B, then

(let x:A=a in let y:C=o in b) 'B (let y:C=o in let x:A=a in b)

vi. (law (Eq Sub Object)):
If D = [li:Bi

i∈1..m], m ≥ n and [li=ς(xi:D)bi
i∈1..m]:D, then

o 'C [li=ς(xi:D)bi
i∈1..m].

In the following we shall show the proof of some of the properties stated
in Lemma 6.24.

Proof of law v. Laws i-v can all be validated using the theory of the
untyped π-calculus. For instance, using laws such as the expansion law,
(νp)(p(x).P | pv.Q) ≈b (νp)(P{v/x} | Q) and (νp)(!p(x).P | Q) ≈b Q if p is
not free in Q, we can prove law v as follows.

The translation of let y=o in let x=a in b is:

{[let y=o in let x=a in b]}p

= (νq)
(

(νs, b1 . . . bn)(qs | OB〈b1 . . . bn, s〉 | (6.5)
∏

i∈1..n

!bi(xi, r).{[bi]}r) | q(y).(νq′)([[a]]q′ | q′(x).{[b]}p)
)

When we consider (6.5) we see that the only possible transition for the ex-
pression is an internal communication on the restricted name q resulting in
the exchange of the name y in the subexpression {[b]}p with the private name
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s (remember that y is not free in a). Therefore (6.5) must be barbed congru-
ent to the following expression, where we have replaced the communication
with a τ -prefix and changed the name y in {[b]}p to s.

τ.(νq′)
(

{[a]}q′ | q′(x).(νs, b1 . . . bn)({[b]}p{s/y} | (6.6)

OB〈b1 . . . bn, s〉 |
∏

i∈1..n

!bi(xi, r).{[bi]}r)
)

We can now remove the τ prefix and exchange the substitution of s for y
in {[b]}p with a communication on a private name and thereby obtain the
following expression, which is weakly barbed congruent to (6.6).

(νq′)
(

{[a]}q′ | q(x).(νq)((νs)(qs | OB〈b1 . . . bn, s〉 |
∏

i∈1..n

!bi(xi, r).{[bi]}r) | q(y).{[b]}p)
)

= {[let x=a in let y=o in b]}p

2

It is interesting to look at the difference between the Functional and
Imperative ς-calculus for objects of the form o.lj, for o = [li=ς(xi:A)bi

i∈1..n]
(j ∈ 1..n), using the π-calculus interpretations. In the case of the Functional
ς-calculus, o is interpreted as a functional process (see Section 6.4) and we
can therefore apply copy laws to derive {[o.lj]}p ≈b {[bj{o/xj}]}p. By contrast,
in the case of the Imperative ς-calculus, object o is interpreted as a process
with a state, and we can only infer {[o.lj]}p ≈b {[let xj:A=o in bj]}p, as by
Lemma 6.24(i).

Law vi (Eq Sub Object), which is an adaptation of the corresponding
law of the same name of the Functional ς-calculus [AC96, Chapter 8], allows
one to prove equalities between objects with different collections of methods,
and relies on the type information; so of course here, we need to consider the
types in the proof of that law.

Proof of law (Eq Sub Object). Law (Eq Sub Object) of Lemma 6.24
can be validated using the typed labelled bisimulation technique. We describe
a typed bisimulation for proving (Eq Sub Object).

Let a = [li=ς(xi:C)bi
i∈1..n], b = [li=ς(xi:D)bi

i∈1..m], C = [li:Bi
i∈1..n],

and D = [li:Bi
i∈1..m] with n ≤ m. Furthermore assume that a : C and b : D.
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We want to show a 'C b. By Theorem 6.23, it suffices to prove {[a]}p 'Γ

{[b]}p, where Γ = p:{[C]}ww , and by Theorem A.11 we can use typed labelled
bisimulation establish the result, by showing that {[a]}p 'p:{[C]}wr {[b]}p.

Having fixed a and b, their translations are:

{[a]}p = (νs:{[C]}b)
(

ps | (νbi:T b
C,i

i∈1..n)(OBC〈s, b1 . . . bn〉 |
∏

i∈1..n!bi(xi, r).{[bi]}r)
)

{[b]}p = (νs:{[D]}b)
(

ps | (νbi:T b
D,i

i∈1..m)(OBD〈s, b1 . . . bm〉 |
∏

i∈1..m!bi(xi, r).{[bi]}r)
)

Now, let
Γ′ = s:{[C]}w, b1:T r

C,1, . . . , bn:T r
C,n

and
Γ′′ = p:{[C]}wr

, b1:T r
C,1, . . . , bn:T r

C,n,

where TC,j
4
= 〈{[C]}w, {[Bj]}ww〉. Consider the relation consisting of these two

triples:

1)
(

Γ′, OBC〈b1 . . . bn, s〉,

(νbi:T b
C,i

i∈n+1..m)(OBD〈b1 . . . bm, s〉 |
∏

i∈n+1..m

!bi(xi, r).{[bi]}r)
)

2)
(

Γ′′, (νs:{[C]}b)(ps | OBC〈b1 . . . bn, s〉,

(νs:{[D]}b)(νbi:T b
D,i

i∈n+1..m)(ps | OBD〈b1 . . . bm, s〉 |
∏

i∈n+1..m

!bi(xi, r).{[bi]}r)
)

This relation is a typed bisimulation up to parallel composition and up to
injective substitutions. Using the congruence property of typed bisimulation
(precisely Corollary A.10 and Lemma A.14), we get the desired result. 2

This is the first proof of (Eq Sub Object) for the Imperative ς-calculus
we are aware of. The proof can be easily adapted to the analogous law of
the Functional ς-calculus.

Proofs of laws i to v have also been given by Gordon, Hankin and Lassen
[GHL97], using a variant of Mason and Talcott’s CIU equivalence.

We are not aware of other coinductive proofs of laws or behavioral equal-
ities of the Imperative ς-calculus. By contrast, coinductive techniques for
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the Functional ς-calculus have been carried out by Gordon and Rees [GR96]
(see Chapter 8). Gordon and Rees propose a labelled bisimulation for the
Functional ς-calculus (following the idea of Abramsky’s applicative bisimu-
lation for λ-calculi) and show that it coincides with contextual equivalence,
which they show validates the equational theory for the Functional ς-calculus
(The equational theory for the Functional ς-calculus has also been validated
using denotational methods [AC96, Chapter 14]). It is worth mentioning
that Gordon and Rees’s applicative bisimulation, however, contains a form
of universal quantification on terms in its definition. For this reason

• applicative bisimulation relations always consist of an infinite number
of pairs (unless all objects are divergent);

• applicative bisimulation does not work well for proving properties like
(Eq Sub Object); indeed, Gordon and Rees’s proof of (Eq Sub
Object) for the Functional ς-calculus does not use applicative bisim-
ulation, but it is done directly in terms of the contextual equivalence.

Advantages of using π-calculus for the proofs are that the bisimulation
relations needed may be finite (for instance, the bisimulation we use for the
proof of (Eq Sub Object) has just two pairs); one can take advantage of
the already available theory for π-calculus, including its algebraic laws (as
we did for the proof of law 5 above).

6.8 Final remarks and comments

In this chapter, we have shown a typed translation of the Imperative ς-calculus
into the π-calculus for which we have shown soundness of the type transla-
tions and operational adequate. Furthermore, we have compared our trans-
lation with a similar translation of the Functional ς-calculus. Finally, we
gave some examples of how the translations could be used to reason about
properties for the Imperative ς-calculus.

This chapter is an extended version of a paper [KS98], which to our
knowledge is one of the first to look at the Imperative ς-calculus of Abadi
and Cardelli.

6.8.1 Extensions

The interpretation of the Imperative ς-calculus can be extended to accommo-
date other type features discussed in [AC96], such as variant tags, recursive
types, and polymorphic types.
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Variant tags are tags on method names which allow only selection or
update operations on a method, so as to have a richer subtyping relation.
These tags yield the same form of subtyping on ς-calculus types as that
induced by the tags {r, w, b} on the π-calculus types. We can capture them
with a simple refinement of the encoding of types. Variant tags (+,−, b)
allow a more refined subtyping relation. A positive tag (+) forbids method
update, but allows covariant subtyping in the components of an object type.
A negative tag (−) prevents method activation, but allows contravariant
subtyping. Finally, the tag b allows both update and activation, but requires
invariance of the method types.

To accommodate variant tags, we change the encoding of types to:

{[{lIi : Bi}]} = µX.[li {[I:Bi]}, cloneww

X ]
{[b : Bi]} = [sel [[Bi]]w

w
; upd 〈Xww

, {[Bi]}ww〉w]
{[+ : Bi]} = [sel [[Bi]]w

w
]

{[− : Bi]} = [upd 〈Xww
, {[Bi]}ww〉w]

Also, the addition of a recursive type system like the one in [AC96,
Chapter 9] is easily handled. We just map type variables of an Impera-
tive ς-calculus type to type variables of the π-calculus types. Similarly, it
is possible to handle polymorphic types, using polymorphic extensions of the
π-calculus [Tur96].





Chapter 7

Relation between Operational
and the Denotational Semantics

In the previous chapters we have considered the translations of different ver-
sions of ς-calculi to the π-calculus. Our main motivation for these translations
was to use them to support reasoning about objects.

In Section 3.4 we saw another way of supporting reasoning about objects;
namely via equational theories. For an equational theory to make any sense,
it must of course be sound w.r.t. the semantic model(s) of the language. The
strategy employed by Abadi and Cardelli was to show that the equational
theories are sound with respect to a denotational semantics based on partial
equivalence relations [AC96, Chapter“nobreakspace –˝14].

Notions of program equivalence are central to the theory and practice of
programming languages, and we have already briefly discussed equivalences
for the ς-calculus in the previous chapters. They form the basis for program
optimization, and can be used to justify correctness preserving transforma-
tions performed by program manipulation systems. Program equivalences
are typically defined according to the following paradigm:

i. A collection of terms that are considered to be directly executable and
observable are designated as programs, and their behavior is defined;

ii. Two arbitrary terms are defined to be equivalent iff they have the same
behavior in every program context.

The resulting notion of program equivalence is usually referred to as obser-
vational congruence [Mor68, Mey88]. Observational congruence for the first
order ς-calculus with subtyping Ob1<:µ (see also Section 3.3) has been de-
fined in [GR96] thus: Two programs are observationally congruent iff they

139
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have the same termination behavior in all contexts of boolean type. Follow-
ing earlier work on functional languages, Gordon and Rees equip the calculus
Ob1<:µ with a labelled transition system semantics, and its associated notion
of bisimulation equivalence is proven to coincide with observational congru-
ence. Like the denotational model presented in [AC96, Chapter 14], obser-
vational congruence soundly models Abadi and Cardelli’s equational theory
for objects (cf. [GR96, Theorem“nobreakspace –˝3]).

The work of Gordon and Rees shows that process calculus techniques can
be applied directly to the ς-calculus. In their case, firstly for showing the
equational theories sound, and secondly for showing equalities between ob-
jects, that cannot be derived using the equational theories, using bisimulation
directly.

The results discussed so far provide two different semantic models for
the calculus Ob1<:µ that soundly model the equational theory underlying
that version of the ς-calculus. Just as for translations, the acid test for
the goodness of any denotational model for programming languages is the
nature of the connection between the mathematical meaning it assigns to
programs and their computational behavior. In particular, a denotational
model should be correct [Sto88] in the sense that it identifies only terms that
are related by observational congruence. Models with the ideal property of
identifying exactly those terms that are observationally congruent are called
fully abstract with respect to the former. Perhaps surprisingly, the literature
on the object calculi lacks a study of the relationship between Abadi and
Cardelli’s denotational semantics and observational congruence, as studied
by Gordon and Rees. The aim of this chapter is to provide such an analysis.

In this chapter we study Abadi and Cardelli’s denotational semantics vis-
à-vis observational congruence over the ς-calculus with type system Ob1<:µ.
In particular, we prove that the denotational semantics based on partial
equivalence relations of [AC96, Chapter 14] is correct with respect to obser-
vational congruence of objects (Theorem 7.11). As an important stepping
stone towards this correctness result, we show that the denotational seman-
tics is computationally adequate with respect to the reduction semantics
(Theorem 7.8), and that a program of boolean type evaluates to a boolean
value v iff its denotation equals that of v (Corollary 7.10). By means of a
counter-example, we argue that the denotational model is not fully abstract
with respect to observational congruence. In fact, the model is able to dis-
tinguish objects that have the same behavior in every Ob1<:µ-context. As a
byproduct of our results we obtain an alternative proof of the soundness of
the equational theory with respect to bisimulation (Proposition 7.12).

We end this introduction with a brief road-map to the contents of this
chapter. The labelled transition semantics of the ς-calculus and the notion
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of bisimulation equivalence are introduced in Section 7.1. Section 7.2 gives
a brief overview of the denotational model of Ob1<:µ and its types. Finally,
Section 7.3 presents our main result, viz. that the denotational model is
correct, but not fully abstract.

7.1 A labelled transition semantics

In this section we shall give a short review of the labelled transition semantics
proposed by Gordon and Rees in [GR96]. Only terms of matching types are
considered to be related semantically. This is formalized by introducing the
notion of proved programs, i.e. elements of the form aA where a is a program
of type A. We let Prog

4
= {aA | a:A} denote the set of well-typed closed

objects annotated with types (called proved programs by Gordon and Rees)
and let Rel be the universal relation on proved programs of the same type,
i.e.

Rel
4
= {(aA, bA) | a:A and b:A}.

The types of Ob1<:µ are divided into two classes, active and passive.
Active types are the types of values. Only Bool is active, so in our presen-
tation all values are booleans. Recursive types, object types and Top are
passive types. At active types a program must converge to a value before
it can be observed; at passive types a program performs observable actions
unconditionally, whether or not it converges.

The observable actions, α ∈ Act, take the following forms:

α ::= true | false | l | l⇐ς(x)b | unfold.

These observations should be interpreted as follows: An object term allows
the observation true (resp. false) if the term is of type Bool and has the value
true (resp. false). An object term allows the observation l if it has a method
labelled l. An object term allows the observation l⇐ς(x)b if the object can
have its method labelled l redefined as ς(x)b. And finally, an object term
allows the observation unfold if it is the fold of an object.

The family { α−−→| α ∈ Act} of transition relations over proved programs
is defined as the set of the least relations satisfying the rules in Table 7.1.

The definition of bisimulation equivalence over proved programs is then
basically as for the π-calculus (Definition 4.1).

Definition 7.1 (Bisimulation) Bisimilarity ∼ is the greatest subset of Rel
that satisfies the following: aA ∼ bA if and only if
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(Trans Bool)
a⇓v ∈ {true, false}

aBool
v−−→ aTop

(Trans Select)
j ∈ I A = [li:Bi

i∈I ]

aA
lj−−→ a.lj Bj

(Trans Update)
x:A ` b:Bj j ∈ I A = [li:Bi

i∈I ]

aA
lj⇐ς(x)b
−−−−−−−→ a.lj⇐ς(x:A)bA

(Trans Unfold)
A = µ(X)B C = B{A/X}

aA
unfold−−−−−→ unfold(a)C

Table 7.1: The rules of the labelled transition semantics

i. aA
α−−→ a′A′ ⇒ ∃ b′A′ . (bA

α−−→ b′A′ ∧ a′A′ ∼ b′A′) and

ii. bA
α−−→ b′A′ ⇒ ∃ a′A′ . (aA

α−−→ a′A′ ∧ a′A′ ∼ b′A′).

If aA ∼ bA we say that aA and bA are bisimilar.

It should be noted that Definition 7.1 not only relates terms aA and bA on
their type A, but also on all of their supertypes. That is, if the subtype
relation

A <: B1 <: B2 <: · · · <: Bn

holds, then Definition 7.1 states that the following must hold:

aA ∼ bA implies aB1 ∼ bB1 , . . . , aBn ∼ bBn .

Intuitively, this is true because if A <: B then aA has more transitions than
aB, so if aA ∼ bA then they must also be equivalent when condering the fewer
transitions that type B allows (see [GR96] for details).

The notion of equivalence chosen by Gordon and Rees for the object calcu-
lus is an observational congruence where two terms are considered equivalent
if they have the same termination behavior in all contexts of type Bool. As
usual, we shall only consider well typed contexts and we write −:B ` C[−]:A
if the context C has type A under the assumption that the hole has type B.

Definition 7.2 (Observational congruence) We write aB
A' bB iff for

all contexts satisfying −:B ` C[−]:A we have C[a]⇓ iff C[b]⇓.

Intuitively, contexts should be considered as the possible tests that an ob-
ject can be subjected to. One should note that the naturalness of the notion



7.2. The denotational semantics 143

of observational congruence crucially depends upon the choice of observable

types. For instance, it is easy to see that true 6
Top
' ΩTop, which violates the rule

(Eq Top) from Table 3.11 expressing that all objects are to be considered

equal at type Top. Amongst the relations
A', congruence at type Top, viz.

Top
' ,

is the most discriminating and
Bool' the least. Rule (Eq Top) holds for

Bool'
and, for that reason and by analogy with [Plo77], Gordon and Rees choose
Bool' as the appropriate notion of observational congruence for Ob1<:µ.

In [GR96] Gordon and Rees show that bisimulation coincides with obser-
vational congruence and that these relations validate the equational theory
of Tables 3.9–3.11.

The following lemma collects some basic properties of the type assign-
ment, and of its interaction with the reduction relation which we shall need
later.

Lemma 7.3 ([GR96])

i. If Γ ` a:A, then fv(a) ⊆ dom(Γ).

ii. If a:A and a ; b, then b:A.

7.2 The denotational semantics

In this section we shall give a short description of the denotational seman-
tics given in [AC96, Chapter 14], where the interested reader will find more
details.

The denotational semantics is based on a two-level approach. The first
level consists of a standard cpo model for interpreting untyped objects. Types
are then modelled by certain kinds of partial equivalence relations (pers)
over the object domain. In this two-level semantics the objects a and b are
considered equal in the type A if ([[a]], [[b]]) ∈ [[A]], where [[a]], [[b]] and [[A]] are
the corresponding interpretations.

7.2.1 The untyped model

The untyped model is a cpo obtained as a solution to the domain equation

D = {∗}⊥ + {tt, ff}⊥ + (D → D) + (MNames → D)⊥

where MNames = {l1, l2 . . .} is a countable set of method names, D → D
and (MNames → D)⊥ have the usual meaning and + is coalesced sum



144 7. Relation between Operational and the Denotational Semantics

[Plo90]. The solution is obtained as the limit of the following sequence of
iterates:

D0 = {⊥}
Dn+1 = {∗}⊥ + {tt, ff}⊥ + (Dn → Dn) + (MNamesn → Dn)⊥

where MNamesn = {l1, . . . , ln}

We consider Di as being a subset of D.
There is an increasing sequence, pn : D → Dn, of projections related to

the model with the identity map as its least upper bound. If x ∈ D and
pn(x) = x for some n, then x is said to be finite. The rank of a finite element
x is the least n such that pn(x) = x.

We use 〈〈l1=x1, . . . , ln=xn〉〉 to denote the function in MNames → D
that maps li to xi for i ≤ n and all other labels to ∗. The notation
〈〈l1=x1, . . . , ln=xn〉〉〈l 7→x〉 will stand for the function in MNames → D that
maps l to x, and agrees with 〈〈l1=x1, . . . , ln=xn〉〉 on all the other inputs.

The semantic function for terms [[·]] : (SVar→D) → (Obj → D) is
defined in Table 7.2. In the definition, the symbol b is a strict membership

[[x]]ρ = ρ(x)
[[[li=ς(xi:Ai)bi

i∈I ]]]ρ = 〈〈li = λv.[[bi]] i∈I
ρ〈xi 7→v〉〉〉

[[a.l]]ρ =
{

[[a]]ρ(l)([[a]]ρ) if [[a]]ρ b MNames → D and [[a]]ρ(l) b D → D
∗ otherwise

[[a.l⇐ς(x:A)b]]ρ =
{

[[a]]ρ〈l 7→λv.[[b]]ρ〈x 7→v〉〉 if [[a]]ρ b MNames → D
∗ otherwise

[[fold(A, a)]]ρ = λv.[[A]]ρ
[[unfold(a)]]ρ = [[a]]ρ(⊥)
[[true]]ρ = tt, [[false]]ρ = ff

[[if(a, b1, b2)]]ρ =















[[b1]]ρ if [[a]]ρ = tt,
[[b2]]ρ if [[a]]ρ = ff
⊥ if [[a]]ρ = ⊥
∗ otherwise

Table 7.2: The semantic function for terms

test (if [[a]]ρ = ⊥, then ([[a]]ρ b S) = ⊥), and we use ρ to stand for an
environment, i.e., a mapping from SVar to D. Moreover, conditionals and
conjunctions are strict and evaluated left to right. If a is closed we write [[a]]
instead of [[a]]ρ.
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The following standard result will be useful in the remainder of the chap-
ter. (Cf. Lemma C.4–6 on page 356 of [AC96].)

Lemma 7.4 (Substitution Lemma) For object terms a, b and variable x,

[[a]]ρ〈x 7→[[b]]ρ〉 = [[a{b/x}]]ρ .

7.2.2 Introducing types into the model

Types are modelled as certain binary relations over D. A per is a symmetric,
transitive, binary relation on D that (by convention) does not have ∗ in its
domain. A binary relation P is uniform if xPy implies pi(x)Ppi(y) for all i.
It is complete if ⊥P⊥ and if whenever 〈xi〉 and 〈yi〉 are chains where xiPyi

for all i then txiP t yi. A cuper is a complete uniform per. The set of all
cupers is Cuper ranged over by R, S, T .

We use pr(R) to denote the restriction of the cuper R to those pairs whose
rank is no greater than r. Cuper can be given the structure of a complete
metric space with the metric d : Cuper×Cuper → R+ defined as

d(R, T ) = max({0} ∪ {2−r | pr(R) 6= pr(T )}).

A function F : Cuper → Cuper is contractive if whenever R, S ∈ Cuper,
d(F (R), F (S)) ≤ 2−1d(R, S). Banach’s fixed point theorem guarantees that
all contractive endofunctions in Cuper have a unique fixed point µF [Apo82].

The following operators over Cuper are used to define the semantics of
types:

• Univ = (D \ {∗})× (D \ {∗})

• Bool = {(⊥,⊥), (tt, tt), (ff, ff)}

• P → Q = {(f, g) ∈ (D → D)× (D → D) | ∀x, y . xPy ⇒ f(x)Qg(y)}

• ti∈IPi = C(∪i∈IPi), where C(P ) is the least cuper that contains P

• 〈〈li:Bi
i∈I〉〉 = {(⊥,⊥)} ∪ {(o, o′) ∈ (MNames → D) × (MNames →

D) | ∀i ∈ I . (o(li), o′(li)) ∈ Bi}

The function λS.〈〈li:S → Ti
i∈I〉〉 is contractive and therefore has a unique

fixed point. We say that λS.〈〈li:S → Ti
i∈J〉〉 extends λS.〈〈li:S → Ti

i∈I〉〉,
written λS.〈〈li:S → Ti

i∈J〉〉 � λS.〈〈li:S → Ti
i∈I〉〉 if I ⊆ J . The set of

all functions of the form λS.〈〈li:S → Ti
i∈I〉〉 is called Gen. We have the

following operator in Cuper:

‖li:Bi
i∈I‖ = t{µF |F ∈ Gen, F � λS.〈〈li:S → Bi

i∈I〉〉}.
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The semantic function for types

[[·]] : (TypeVar → Cuper) → (Type → Cuper)

is defined as follows:

[[X]]η = η(X)
[[Top]]η = Univ
[[[li:Bi

i∈I ]]]η = ‖li:Bi
i∈I‖

[[µ(X)A]]η = µT.(Univ → [[A]]η〈X 7→T 〉)
[[Bool]]η = Bool

where η denotes a type environment, i.e., a mapping from TypeVar to
Cuper. Again we write [[A]] instead of [[A]]η for closed type expressions.

In later developments, we shall need the following result.

Lemma 7.5 If {(x, y), (x′, y′)} ⊆ ‖li:Ti
i∈I‖ then (x(li)x′, y(li)y′) ∈ Ti for

all i ∈ I.

Proof. Similar to the proof of Proposition C.4-4 in [AC96]. 2

7.2.3 Soundness of the type and equational theory

We can now define the semantic counterparts of type and subtyping judg-
ments. In order to do this, we shall need a notion of consistency. We say
that Γ, η and (ρ, ρ′) are consistent if

• whenever X <: A is in Γ then η(X) ⊆ [[A]]η and

• whenever x:A is in Γ then (ρ(x), ρ′(x)) ∈ [[A]]η.

Now for any consistent Γ and η, (ρ, ρ′) and any A,B, a, a′ we define

Γ |=η,(ρ,ρ′) A iff [[A]]η ∈ Cuper
Γ |=η,(ρ,ρ′) A <: B iff [[A]]η ⊆ [[B]]η
Γ |=η,(ρ,ρ′) a:A iff ([[a]]ρ, [[a]]ρ′) ∈ [[A]]η
Γ |=η,(ρ,ρ′) a ↔ a′ : A iff ([[a]]ρ, [[a′]]ρ′) ∈ [[A]]η

Let cons(Γ) = {(η, (ρ, ρ′)) | Γ and (η, (ρ, ρ′)) are consistent}. For γ ∈
{A,A <: B, a:A, a ↔ b : A} we say that

Γ |= γ iff ∀(η, (ρ, ρ′)) ∈ cons(Γ) . Γ |=η,(ρ,ρ′) γ.

The soundness of the type and equational theory can now be stated as follows.

Theorem 7.6 ([AC96]) The relation |= is preserved by the rules in Tables
3.7, 3.8 and 3.9-3.11. Therefore, for all Γ and γ ∈ {A,A <: B, a:A, a ↔ b :
A}, Γ ` γ implies Γ |= γ.
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7.3 Correctness of the denotational model

We shall now investigate the relationship between the equivalence on pro-
grams induced by Abadi and Cardelli’s denotational semantics and observa-
tional congruence. More precisely, we prove that the denotational semantics
presented in Section 7.2 is correct with respect to observational congruence,
i.e., that it identifies only terms that are related by observational congruence.
By means of an example, we shall also argue that the denotational semantics
is not fully abstract.

The proof of correctness of the denotational semantics will be delivered
in three steps. We begin by showing a soundness result for the reduction
relation with respect to the denotational semantics.

Proposition 7.7 For every program a and value v, if a⇓v then [[a]] = [[v]].

Proof. We begin by proving that if a ; b, then [[a]] = [[b]]. In light of
Lemma 7.4, it is sufficient to establish the above claim for the basic reduction
rules. We confine ourselves to examining two of these rules.

• Assume that a = a′.lk ; bk{a′/xk} = b, where a′ = [li=ς(xi:Ai)bi
i∈I ]

and k ∈ I. First of all, note that

[[a′]] = 〈〈li = λu.[[bi]]ρ〈x 7→u〉
i∈I〉〉 .

Using the definition of the semantic function given in Table 7.2 and
Lemma 7.4, we can now prove that [[a]] = [[b]] thus:

[[a]] = [[a′]](lk)([[a′]])
= (λu.[[bk]]ρ〈xk 7→u〉)([[a′]])
= [[bk]]ρ〈xk 7→[[a′]]〉

= [[bk{a′/xk}]]
= [[b]] .

• Assume that a = unfold(fold(A, v)) ; v = b. Using the definition of the
semantic function given in Table 7.2, we can now prove that [[a]] = [[b]]
thus: [[a]] = (λu.[[v]])(⊥) = [[v]] = [[b]].

The statement now follows easily by induction on the length of the (unique)
sequence of reductions leading from a to v. 2

Of course, one cannot expect the converse of this soundness property to
hold because objects are values whether or not the bodies of their meth-
ods are fully evaluated. For example, the objects [l=ς(x:[l:Bool])true] and
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[l=ς(x:[l:Bool])if(true, true, true)] have the same denotation, but are different
values. However, if a program has a denotation different from ⊥, then it
reduces to some value. In particular, at the observed type Bool a program
evaluates to a value v if and only if its denotation is [[v]]. This property is
usually referred to as computational adequacy [Mey88], and is the essential
connection between a denotational and an operationally based semantics.

Theorem 7.8 (Computational Adequacy) Let a:A be such that [[a]] 6=
⊥. Then a⇓v for some value v.

The proof of the above result is based on an adaptation of a strategy due
to Plotkin [Plo77]. We begin by defining a formal approximation relation �
between elements of the domain D and programs with the following proper-
ties:

For any d ∈ D and program a, d � a (d approximates the value
of a) iff

i. d = ⊥, or

ii. a⇓v for some value v such that d � v, where

(a) tt � true and ff � false,
(b) 〈〈li = di

i∈I〉〉 � [li=ς(xi:[li:Ai
i∈I ])ei

i∈I ] iff for every d′

such that (d′, d′) ∈ [[[li:Ai
i∈I ]]] and a′:[li:Ai

i∈I ], d′ � a′

implies di(d′) � ei{a′/xi} for every i ∈ I,
(c) λu.d � fold(µ(X)A, v) iff d � v.

The existence of a relation with these properties may be shown following the
developments in [Pit94].

The key to the proof of Theorem 7.8 is the following technical result.

Lemma 7.9 Assume that x1:A1, . . . , xn:An ` e:A. Let d1, . . . , dn and a1, . . . , an

be such that (di, di) ∈ [[Ai]], ai:Ai and di � ai, for every i ∈ 1..n. Then

[[e]]〈x1 7→d1,...,xn 7→dn〉 � e{ai/xi}n
i=1 .

Proof. We prove the claim by induction on the depth of the proof
of the type assignment x1:A1, . . . , xn:An ` e:A. For the sake of concise-
ness, throughout the proof we shall use ρ to stand for the environment
〈x1 7→d1, . . . , xn 7→dn〉, and σ to denote the substitution {ai/xi}n

i=1. The list
of type assumptions x1:A1, . . . , xn:An will be referred to as Γ. We proceed
by a case analysis on the last rule used in the proof of the type assignment
Γ ` e:A, and only detail the proof for the nontrivial cases. (The reader is
referred to Table 3.7 for the list of the typing rules.)
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(If) Assume that Γ ` e:A because e = if(e1, e2, e3) and, by shorter inferences,

Γ ` e1:Bool, and

Γ ` ei:A, i = 2, 3.

The induction hypothesis now yields that, for i ∈ {1, 2, 3},

[[ei]]ρ � eiσ . (7.1)

We proceed with the proof by distinguishing three cases, depending on whether
[[e1]]ρ is equal to ⊥, tt or ff .

• If [[e1]]ρ = ⊥, then [[e]]ρ = ⊥. By the definition of �, it follows immedi-
ately that [[e]]ρ = ⊥� eσ, which was to be shown.

• If [[e1]]ρ = tt, then [[e]]ρ = [[e2]]ρ. In case [[e2]]ρ = ⊥, it follows immedi-
ately that

[[e]]ρ = ⊥� eσ .

Assume therefore that [[e2]]ρ 6= ⊥. In light of (7.1) and the definition of
�, it follows that e1σ⇓true, and that e2σ⇓v for some value v such that
[[e2]]ρ � v. Collecting the above information, we now derive that

eσ = if(e1σ, e2σ, e3σ) ;∗ if(true, e2σ, e3σ) ; e2σ ;∗ v .

Thus eσ⇓v and [[e]]ρ = [[e2]]ρ � v. By the definition of the relation �,
we may now infer that [[e]]ρ � eσ, which was to be shown.

• The case [[e1]]ρ = ff is similar to the one above.

(Object) Assume that Γ ` e:A because e = [li=ς(yi:A)ei
i∈I ], A = [li:Bi

i∈I ]
and, by shorter inferences,

Γ, yi:A ` bi:Bi (7.2)

for every i ∈ I. Using the definition of the denotational semantics we find
that:

[[e]]ρ = 〈〈li = λv.[[bi]]ρ〈yi 7→v〉
i∈I〉〉 .

As the list ã only contains closed terms and yi is different from all the vari-
ables in {x1, . . . , xn} by (7.2), we obtain that

eσ = [li=ς(yi:A)biσ i∈I ] .



150 7. Relation between Operational and the Denotational Semantics

Applying the inductive hypothesis to (7.2), we may now infer that, for every
i ∈ I, d′ ∈ D such that (d′, d′) ∈ [[A]] and a′:A with d′ � a′,

[[bi]]ρ[yi 7→d′] � bi{a′/σ}[yi 7→ a′] .

By the definition of the relation �, we finally conclude that

[[e]]ρ = 〈〈li = λv.[[bi]]ρ〈yi 7→v〉
i∈I〉〉

� [li = ς(yi:A)eiσ i∈I ]
= eσ

which was to be shown.

(Select) Assume that Γ ` e:Bj because e = e′.lj and, by a shorter inference,

Γ ` e′:[li:Bi
i∈I ] (j ∈ I) . (7.3)

If [[e]]ρ = ⊥, then [[e]]ρ � eσ is immediate from the definition of the relation
�. Assume therefore that [[e]]ρ 6= ⊥. Applying the induction hypothesis to
(7.3), we obtain that [[e′]]ρ � e′σ. Note now that, as [[e]]ρ 6= ⊥, it must be
the case that [[e′]]ρ 6= ⊥. Thus, by the definition of the relation �, there is
a value v of type B = [li:Bi

i∈I ] such that e′σ⇓v and [[e′]]ρ � v. Again using
the definition of �, it must be the case that:

• [[e′]]ρ = 〈〈lk = dk
k∈K〉〉, for some superset K of I,

• v = [lk=ς(yk:B)bk
k∈K ], and

• for every d̂ ∈ D and closed term â such that (d̂, d̂) ∈ [[B]], â:B and
d̂ � â, it holds that dk(d̂) � bk{â/yk} for every k ∈ K.

As e′:B and e′⇓v, it follows that v:B (Lemma 7.3(2)). In light of (7.3),
Theorem 7.6 yields that ([[e′]]ρ, [[e′]]ρ) ∈ [[B]]. Using the fact that [[e′]]ρ � e′σ,
we may therefore derive that

[[e]]ρ = [[e′]]ρ(lj)([[e′]]ρ)
= dj([[e′]]ρ)
� bj{v/yk} .

As eσ = (e′σ).lj ;∗ v.lj ; bj{v/yk} and [[e]]ρ � bj{v/yk}, we may finally
conclude that [[e]]ρ � eσ, which was to be shown.
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(Update) Assume that Γ ` e:A because e = e′.lj⇐ς(x:A)b : A, A = [li:Bi
i∈I ],

j ∈ I and, by shorter inferences,

Γ ` e′:A (7.4)
Γ, x:A ` b:Bj . (7.5)

Using the definition of the denotational semantics, we obtain that

[[e]]ρ = [[e′]]ρ〈lj 7→λu.[[b]]ρ〈x 7→u〉〉 .

As the terms in ã are closed, and x does not occur in x̃, we infer that

eσ = (e′σ).lj⇐ς(x:A)bσ .

Applying induction to (7.4), we derive that

[[e′]]ρ � e′σ .

If [[e′]]ρ = ⊥, then [[e]]ρ is also equal to ⊥, and the claim follows immediately
by the definition of �. Assume therefore that [[e′]]ρ 6= ⊥. As [[e′]]ρ � e′σ, it
must be the case that e′σ⇓v for some value v of type A such that [[e′]]ρ � v.
As A = [li:Bi

i∈I ] and [[e′]]ρ � v, we obtain that

i. [[e′]]ρ = 〈〈lk = dk
k∈K〉〉, for some superset K of I,

ii. v = [lk=ς(yk:A)bk
k∈K ], and

iii. for every d̂ ∈ D and closed term â such that (d̂, d̂) ∈ [[A]], â : A and
d̂ � â, it holds that dk(d̂) � bk{â/yk} for every k ∈ K.

Applying the inductive hypothesis to (7.5), we have that, whenever (d′, d′) ∈
[[A]], a′:A and d′ � a′,

[[b]]ρ〈x 7→d′〉 � bσ[x 7→a′] .

This yields, together with clause iii above, that

[[e]]ρ = 〈〈lj = λu.[[b]]ρ〈x 7→u〉, lk = dk
k∈K\{j}〉〉

� [lj=ς(x:A)bσ, lk=ς(yk:A)bk
k∈K\{j}] .

Collecting the information on reductions that we have accumulated so far,
we derive that

eσ ;∗ v.lj⇐ς(x:A)b ; [lj=ς(x : A)bσ, lk=ς(yk:B)bk
k∈K\{j}] .

Thus we may finally conclude that [[e]]ρ � eσ, which was to be shown.
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(Fold) Assume that Γ ` e:A because e = fold(A, e′), A = µ(X)E and, by a
shorter inference,

Γ ` e′:E{A/X} . (7.6)

By the definition of the denotational semantics, we derive that

[[e]]ρ = λu. [[e′]]ρ .

The inductive hypothesis, applied to (7.6), yields

[[e′]]ρ � e′σ . (7.7)

If [[e′]]ρ = ⊥, then [[e]]ρ = λu.⊥. This is the least element of D → D, and,
by the definition of D, is identified with ⊥. In this case, [[e]]ρ � eσ follows
immediately. Assume therefore that [[e′]]ρ 6= ⊥. As [[e′]]ρ � e′σ, it must be
the case that e′σ⇓v for some v such that [[e′]]ρ � v. As e′σ⇓v, it follows
immediately that eσ = fold(A, e′σ)⇓fold(A, v). Moreover, using clause (ii)(c)
of the definition of � and (7.7), we conclude that [[e]]ρ � fold(A, v), which was
to be shown.

(Unfold) Assume that Γ ` e:A because e = unfold(e′), A = E{µ(X)E/X}
and, by a shorter inference, Γ ` e′:µ(X)E. The definition of the denotational
semantics yields

[[e]]ρ = [[e′]]ρ(⊥) .

If [[e]]ρ = ⊥, then the claim is immediate. Assume therefore that [[e]]ρ 6= ⊥.
By induction, we may derive that

[[e′]]ρ � e′σ . (7.8)

Note, furthermore, that [[e′]]ρ 6= ⊥. Thus (7.8) yields that e′σ⇓v for some
value v of type µ(X)E such that [[e′]]ρ � v. The value v must be of the form
fold(µ(X)E, v′). By the definition of �, if [[e′]]ρ � fold(µ(X)E, v′) then [[e′]]ρ
is of the form λu.d′ for some d′ � v′. It is now easy to see that eσ⇓v′ and
that

[[e]]ρ = [[e′]]ρ(⊥) = λu.d′(⊥) = d′ .

As d′ � v′, it follows that [[e]]ρ � eσ, which was to be shown.

(Subsump) Assume that Γ ` e:A because, by shorter inferences, Γ ` e:B
and Γ ` B <: A. Then the inductive hypothesis immediately yields that
[[e]]ρ � eσ.

This completes the proof of this statement. 2
Theorem 7.8 now follows immediately by the above statement and the defi-
nition of the formal approximation relation �.

The following consequence of Proposition 7.7 and Theorem 7.8 will be
useful in the remainder of this section.
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Corollary 7.10 Let a:Bool. Then a⇓v iff [[a]] = [[v]].

Proof. The “only if” implication is just Proposition 7.7. To establish the
“if” implication, assume that [[a]] = [[v]] and a:Bool. As [[a]] 6= ⊥, Theorem 7.8
yields that a⇓v′ for some value v′ of type Bool. By Proposition 7.7, it follows
that [[v]] = [[v′]]. As v and v′ are of type Bool, this entails that v = v′ and
thus that a⇓v. 2

We are now in a position to prove the main result of this chapter, viz. that
the denotational semantics is correct with respect to observational congru-
ence.

Theorem 7.11 Let A ∈ Type and a, b:A. Then

([[a]], [[b]]) ∈ [[A]] implies aA
Bool' bA .

Proof. Assume that A ∈ Type, a, b:A and ([[a]], [[b]]) ∈ [[A]]. In light of

[GR96, Theorem“nobreakspace –˝2], to prove that aA
Bool' bA it is sufficient

to show that aA ∼ bA holds. Let X = {(aA, bA) | ([[a]], [[b]]) ∈ [[A]]}. We
prove that X is a bisimulation. To this end, assume that (aA, bA) ∈ X and
aA

α−−→ a′A′ . By symmetry it is enough to prove that bA
α−−→ b′A′ for some

b′:A′ such that (a′A′ , b
′
A′) ∈ X . The proof of this claim proceeds by case

analysis of the transition rule used in inferring the transition aA
α−−→ a′A′ .

(Trans Bool) Then α = v where a⇓v ∈ {true, false}, A = Bool, A′ = Top
and a′ = a. Recall that [[Bool]] = {(⊥,⊥), (tt, tt), (ff, ff)} and that, for
all programs a:Bool, [[a]] = [[v]] iff a⇓v (Corollary 7.10). As ([[a]], [[b]]) ∈
[[Bool]] this implies that [[b]] = [[v]]. Again by Corollary 7.10, it follows
that b⇓v, and therefore that bBool

v−−→ bTop. Furthermore a:Top, b:Top
and ([[a]], [[b]]) ∈ [[Top]], i.e. (aTop, bTop) ∈ X .

(Trans Select) In this case A = [li:Bi
i∈I ], α = lj, a′ = a.lj and A′ = Bj

for some j ∈ I. As b:A we also have that bA
lj−−→ b.ljBj

. By the
type assignment rule (Select), a.lj:Bj and b.lj:Bj. Furthermore, by
the equational rule (Eq Select) and the soundness of the equational
theory, ([[a.lj]], [[b.lj]]) ∈ [[Bj]]. This proves that (a.ljBj

, b.ljBj
) ∈ X .

(Trans Update) In this case A = A′ = [li:Bi
i∈I ], x:A ` e:Bj, α =

lj⇐ς(x)e and a′ = a.lj⇐ς(x:A)e. Also bA
lj⇐ς(x)e
−−−−−−−→ b′A where b′ =

b.lj⇐ς(x:A)e. By the type assignment rule (Update), a′:A and b′:A.
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By the equational theory x:A ` e:Bj implies x:A ` e ↔ e : Bj. There-
fore, using the equational rule (Eq Override) and the soundness of
the equational theory with respect to the model (Theorem 7.6), we
infer that ([[a′]], [[b′]]) ∈ [[A]]. This proves that (a′A, b′A) ∈ X .

(Trans Unfold) Then A = µ(X)B, C = B{A/X}, α = unfold, a′ =
unfold(a)C . By assumption a:A and therefore the type assignment rule
(Fold) implies that unfold(a):B{A/X} and unfold(b):B{A/X}. Fur-
thermore by the equational rule (Eq Unfold) and soundness of the
equational theory, we have ([[unfold(a)]], [[unfold(b)]]) ∈ [[C]]. This proves
that (unfold(a)C , unfold(b)C) ∈ X .

2
To see that the denotational model is not fully abstract, consider the

following two objects (from [AC96]) of type B = [l2:Bool]:

a = [l1=true, l2=true] b = [l1=true, l2=ς(x:[l1:Bool, l2:Bool])x.l1]

where we have omitted the ς-binder in the methods that do not use self.
We shall now argue that ([[a]], [[b]]) 6∈ [[B]]. The denotations of a and b are:

[[a]] = 〈〈l1=λ(v)tt, l2=λ(v)tt〉〉
and

[[b]] = 〈〈l1=λ(v)tt, l2=λ(v)v(l1)v〉〉
Let b∗ = [l1=false, l2=true]. As b∗ is a program of type B, Theorem 7.6

yields that ([[b∗]], [[b∗]]) ∈ [[B]]. If ([[a]], [[b]]) ∈ [[B]], by Lemma 7.5 we would
then be able to infer that

([[a]](l2)[[b∗]], [[b]](l2)[[b∗]]) ∈ [[Bool]] .

However, this is obviously not the case, because the denotation of b∗ is

〈〈l1=λ(v)ff, l2=λ(v)tt〉〉
and therefore

[[a]](l2)[[b∗]] = tt and [[b]](l2)[[b∗]] = ff .

As a corollary of Theorem 7.11, we obtain an alternative proof of the weak
soundness of the equational theory for Ob1<:µw.r.t. bisimulation equivalence,
a result originally due to Gordon and Rees.

Proposition 7.12 If ∅ ` a ↔ b : A, then aA ∼ bA.

Proof. Suppose ∅ ` a ↔ b : A. The soundness of the equational theory
in the denotational model implies that ([[a]], [[b]]) ∈ [[A]] and Theorem 7.11 in

turn implies that aA
Bool' bA. As

Bool' and ∼ coincide [GR96], the result now
follows. 2
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7.4 Final comments

In this chapter we have shown that the denotational model proposed by
Abadi and Cardelli [AC96] is correct, but not fully abstract with respect
to the reduction semantics. The chapter is based on the paper [AHIK97],
which is joint work between Luca Aceto, Anna Ingólfsdóttir, Hans Hüttel and
myself, which was presented at Express’97 held in Santa Margrerita Ligure,
Italy.





Chapter 8

Relation between Modal Logic
and Types

In this chapter we use the labelled transition system of Section 7.1 to build
a modal logic for describing dynamic properties of terms in the object cal-
culus. By dynamic properties we mean properties specifically related to the
behavior over time of a term. We also examine the relation between the
type system with recursive types Ob1<:µ for the ς-calculus and the modal µ-
calculus [Koz83]. It turns out that there are close correspondences between
the type system and a fragment of the µ-calculus using only maximal fixed-
points. In particular, there is a sound and complete translation from types
to logical formulae preserving typability and the subtype ordering, when we
interpret subtyping as containment. Phrased differently, the translation es-
tablishes a Curry-Howard-style result in that it allows us to view ς-calculus
types as realizers of certain µ-calculus formulae.

8.1 A logic for objects

In the following we shall consider the modal µ-calculus [Koz83] interpreted
over the labelled transition system defined in the Section 7.1. Later we shall
show that one of its sublogics corresponds to the Ob1<:µ type system in a
precise sense.

The modal µ-calculus was introduced by Kozen in [Koz83]. Taking actions
as propositions, the modal µ-calculus corresponds to the logic introduced by
Hennessy and Milner and [HM85] extended with recursive definitions [Lar90].

157
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8.1.1 Syntax and informal semantics

The set of µ-calculus formulae Form is given in Table 8.1

F ::= F1 ∨ F2 | F1 ∧ F2 | 〈α〉F | [α]F | X | νX.F | µX.F
| tt | ff

α ::= l | unfold | l⇐ς(x)b

Table 8.1: The syntax of µ-calculus formulae.

Here X ranges over the set of formula recursion variables FormVar. tt
and ff are atomic formulae, not to be confused with the boolean values of
the ς-calculus. The modalities of the logic are indexed by the observations
from the labelled transition semantics. Intuitively, a formula 〈α〉F is true
for an object aA if aA allows some observation α such that F is true for
the resulting object. Similarly, a formula [α]F is true for the object a if all
observations of α will result in an object for which F is true.

8.1.2 Semantics of the µ-calculus

We interpret our logic over the labelled transition system of the previous
section. If a formula F is true for an object aA, we say that aA satisfies F
and write that aA |= F .

The denotation of a formula F is the set of proved programs (pairs of
a closed object and its type) that satisfy F . As formulae may contain free
variables, the denotation of a formula is seen relative to an environment
σ : FormVar ↪→ P(Prog) which for a given variable, returns the set of
proved programs which satisfies the formula bound to that variable.

We can extend operations and predicates on sets of objects to environ-
ments. For any two environments σ1, σ2 we write σ1 ⊆ σ2 iff for all variables
we have that σ1(X) ⊆ σ2(X). If S is a set of objects, we write σ ⊆ S if for
all X we have that σ(X) ⊆ S. Similarly, σ1 ∪ σ2 is the environment σ such
that σ(X) = σ1(X) ∪ σ2(X).

The semantics of formulae not using the recursion connectives can then
be defined as shown in Table 8.2.

The operators νX.F and µX.F are recursion operators. For any recursive
formula νX.F or µX.F we define a declaration function

DF : (FormVar ↪→ P(Prog)) → P(Prog) by DF (σ) = [[F ]]σ
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[[tt]]σ = Prog
[[ff ]]σ = ∅

[[F1 ∨ F2]]σ = [[F1]]σ ∪ [[F2]]σ
[[F1 ∧ F2]]σ = [[F1]]σ ∩ [[F2]]σ

[[X]]σ = σ(X)

[[〈α〉F ]]σ = {aA | ∃bB s.t. aA
α−−→ bB and bB ∈ [[F ]]σ}

[[[α]F ]]σ = {aA | ∀bB with aA
α−−→ bB : bB ∈ [[F ]]σ}

Table 8.2: The semantics of formulae not using recursion.

Both recursion operators denote a solution to the equation X = F , that
is, we want an environment σ such that [[X]]σ = [[F ]]σ. A σ with this property
is called a model.

One may easily show that (FormVar ↪→ P(Prog),⊆), the set of envi-
ronments ordered under inclusion, constitutes a complete lattice and that
the function DF is a monotonic function for any recursive formula νX.F or
µX.F . Consequently, Tarski’s fixed point theorem [Tar55] for complete lat-
tices and monotonic functions, guarantees that models always exist for any
recursive formula.

Theorem 8.1 (Maximal and minimal model) Given a recursive formula
F of the form νX.F or µX.F , there exist models σmax and σmin given by:

σmax =
⋃

{σ | σ ⊆ DF (σ)}

σmin =
⋂

{σ | DF (σ) ⊆ σ}

σmax is the maximal model w.r.t. ⊆ and σmin is the minimal model w.r.t. ⊆.

The ν-connective is taken to indicate that we want the model σmax ,
whereas the µ-connective is taken to indicate that we want the model σmin

and thus the semantics of the recursion operators is

[[νX.F ]]σ = σmax (X)
[[µX.F ]]σ = σmin(X)
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From Theorem 8.1 we obtain the following definition of pre- and post-
models.

Definition 8.2 (Pre- and post-models) Given a formula µX.F or νX.F ,
an environment σ is a pre-model if σ ∈ {σ | DF (σ) ⊆ σ}. σ is a post-model
if σ ∈ {σ | σ ⊆ DF (σ)}.

Consequently, Theorem 8.1 says that the semantics of a ν-formula is the
union of all its post-models and that the semantics of a µ-formula is the
intersection of all its pre-models.

This logic fully characterizes Gordon-Rees bisimulation; that is two ob-
jects are bisimilar if and only if they satisfy the same logical formulae.

Theorem 8.3 (Characterization) Assume that aA, bA ∈ Prog. Let Form−

denote the set of formulae generated from the grammar in Table 8.1 without
the use of box-modalities. Then,

aA ∼ bA

m
∀F ∈ Form− : aA |= F ⇔ bA |= F

The reason why we can disregard the box-modalities is that the labelled
transitions system is deterministic, the only reason why we have included
then in the logic is because they allow easier specifications of properties.
The proof of Theorem 8.3, which is lengthy but standard, is omitted; it can
be found in [AP96]. Observe, that the theorem also holds in the full logic
Form.

8.2 Specifying objects

The modal µ-calculus is very powerful when used as a temporal logic of
labelled transition systems. It is well-known that the temporal modalities of
the propositional branching time temporal logic CTL [Eme94] are expressible
within the alternation free fragment of the µ-calculus (in fact, it can be shown
that all of CTL∗ [Eme94] can be expressed within the µ-calculus).

In this short section we shall describe how properties of ς-calculus can be
described this way. We let the set Act denote the set of possible observations;
we write [Act]F as an abbreviation of

∧

α∈Act[α]F and similarly, we write
〈Act〉F as an abbreviation of

∨

α∈Act〈α〉F .
The CTL temporal modalities can be defined as
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AGF = νX.(F ∧ [Act]X)
EGF = νX.(F ∧ ([Act]ff ∨ 〈Act〉X))
EFF = µX.(F ∨ 〈Act〉X)
AFF = µX.(F ∨ (〈Act〉tt ∧ [Act]X))

Us(F,G) = µX.(G ∨ (F ∧ 〈Act〉tt ∧ [Act]X))
Uw(F, G) = νX.(G ∨ (F ∧ [Act]X))

The intuitive interpretation of these modalities is

AGF : An object a satisfies AGF , if F is satisfied by all states of any transition
path of a.

EGF : EGF is satisfied by an object a if there exists some transition path of
a such that F is satisfied by all states of the path.

EFF : The dual of AGF . An object a satisfies EFF if F is satisfied by some
state along some transition path.

AFF : Guarantees that F will sooner or later be true along any transition
path.

Us(F, G), Uw(F, G): The meanings of Us(F, G) and Uw(F, G) are almost iden-
tical. The idea is that an object a satisfies Us(F, G) or Uw(F, G) if F is
satisfied by a until G at some point is satisfied. The difference is that
Uw(F,G) does not guarantee that G will ever be satisfied. Us(F,G) is
called strong until, and Uw(F, G) weak until.

Notice that invariance properties are expressed using maximal fixed-points,
whereas eventuality properties are expressed using minimal fixed-points.

The following example illustrates how an object can be specified using
the CTL modalities:

Example 8.1 In [AC96] a calculator object is described. The behavior of
the calculator can informally be stated as follows: Either one of the methods
enter, add or sub can be invoked, which will result in a new calculator, or
the method equals can be invoked resulting in termination. In the following
let Act be defined as Act = {enter, add, sub}.

The formula F shown below specifies the observations that must be al-
lowed by a calculator object of recursive type. The formula G describes
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what must always hold about the methods enter, add and sub of the calcu-
lator object:

F = 〈unfold〉tt ∧ [Act]ff,
G = 〈add〉tt ∨ 〈sub〉tt ∨ 〈enter〉tt ∧ [unfold]ff.

To express that it holds that F is satisfied until G at some point will be
satisfied we use the connective “strong until” and write:

Us(F, G).

We write that Us(F,G) must always hold as

AGUs(F, G)

The specification of the calculator object is a combination of AGUs(F, G)
and the specification for the equals method:

Feq = 〈unfold〉〈equals〉tt

The final correctness specification looks as follows:

AGUs(F,G) ∨ Feq.

2

8.3 Types as logical formulae

In this section we shall show an intimate correspondence between the types
of Ob1<:µ and formulae of a subset of our modal logic, in that we interpret
Ob1<:µ types as formulae. Inhabiting a type then corresponds to satisfy-
ing the corresponding formula in modal logic, and subtyping corresponds to
implication between modal properties.

8.3.1 The ν-calculus and its semantics

From the point of view of temporal logic, types are certain invariance proper-
ties. When relating types and logical properties, we are therefore interested
in maximal models. The sublogic that we shall consider therefore only has
the ν-connective.
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F ::= F1 ∧ F2 | 〈α〉F | X | νX.F
| 〈true〉tt | 〈false〉tt | tt | ff | isBool

α ::= l | unfold | l⇐ς(x)b

In order to be able to express the typings of objects in our modal logic
we have introduced the atomic predicate isBool, which is the logical formula
corresponding to Bool. The predicate isBool is satisfied by an object a if a
has type Bool.

The reason for introducing this predicate is that the µ-calculus connec-
tives alone cannot express that an object of type Bool will allow precisely the
observations true or false – in order to achieve this, we would need infinite
conjunctions. Further, the fact that an object of type Bool can diverge in the
reduction semantics cannot be expressed. In other words, it seems reasonable
that the base types should be modelled by atomic formulae.

Moreover, we now only consider closed formulae as the recursion operator
on types is interpreted using the ν-connective. In what follows, this allows us
to formulate and employ an alternative definition of the semantics, namely
a coinductive definition in terms of satisfaction relations.

Definition 8.4 A satisfaction relation is a relation S ⊆ Prog × Forms−

for which it holds that

aA S tt for any aA ∈ Prog
aA S isBool for any a:Bool
aA S F1 ∧ F2 implies aA S F1 and aA S F2

aA S F1 ∨ F2 implies aA S F1 or aA S F2

aA S 〈α〉F implies ∃bB s.t. aA
α−−→ bB and bB S F

aA S νX.F implies aA S F{νX.F/X}

and no pairs on the form (aA, ff) are in S.

We now have the following result.

Proposition 8.5 If F is a closed ν-calculus formula, then aA |= F iff there
exists a satisfaction relation S such that aA S F .

Proof. The only if -part of the proposition follows from the fact that |=
is a satisfaction relation. For the if -part, one proceeds by induction on the
structure of F . The only interesting case is that of recursive formulae νX.F1.
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Here notice that if we let SX = {aA | aA S νX.F1}, then SX ⊆ [[F ]][X 7→SX ];
in other words, the environment [X 7→ SX ] is a post-model. 2

According to the above proposition, if we wish to show that aA |= F ,
then it is enough to determine a satisfaction relation S for which aA S F .

8.3.2 An interpretation of types in the ν-calculus

The ν-calculus is, in fact, too large – only certain formula can occur as the
translations of Ob1<:µ types. We shall call such formulae type formulae. The
abstract syntax of type formulae is given by the grammar

F ::= tt |
∧

i∈I

〈li〉Fi | isBool | X | νX.(〈unfold〉F )

We denote the set of type formulae by Formt.
We are now able to introduce the translation T : Type → Formt from

types to type formulae as follows:

T (Top) = tt
T (Bool) = isBool

T ([li:Ai
i∈I ]) =

∧

i∈I

〈li〉T (Ai)

T (µ(X)A) = νX.(〈unfold〉T (A))
T (X) = X

Not surprisingly, the type Top is assigned the formulae tt, since all typable
objects have type (or supertype) Top. The type Bool is as a special case
translated to the atomic formula isBool. The µ-calculus translation of an
object type reflects the possible method invocations that can be performed
with respect to objects of the object type. The specification for a recursive
object type is an invariance property. It states that it must always be possible
to perform an unfold-transition leading to the specification for an object type.
As recursive types are interpreted as invariants, we have to use the maximal
fixed point operator. In other words, the µ becomes a ν when passing from
types to formulae.

The translation defined by T is similar to the notion of characteristic
formula [IS94] for the typings of objects. It is not the case, though, that
these characteristic formulae express all possible behaviors of objects. In
particular, it is not possible to prove that the logic for object types fully
characterizes the bisimulation of Gordon and Rees, as the types and thus the
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type formulae say nothing about the possibility of method overrides. (This
is exemplified in Example 8.2 towards the end of this section.)

8.3.3 Soundness and completeness of the translation

The translation presented here is correct in a very precise sense. In order to
express this, we need to formulate the logical counterparts of the typability
notions. Definition 8.6 expresses the notion of subtyping with respect to the
modal formulae for types.

Definition 8.6 Let A,B ∈ Type and Γ some well formed environment. We
say that Γ models the subtyping relation A <: B written

Γ |= A <: B

if for some post-model σ it holds that [[T (A)]]σ ⊆ [[T (B)]]σ and σ(X) ⊆
[[T (C)]]σ for all (X <: C) ∈ Γ.

Theorem 8.7 relates the standard subtype judgments, which are of the
form Γ ` A <: B, to the inclusion relation between logical properties.

Theorem 8.7 Let A, B ∈ Type, Γ some well formed environment and Γ `
A <: B. Then Γ |= A <: B.

Proof. By induction on the proof tree of Γ ` A <: B, that is, by inspecting
the rules for subtyping (c.f. Table 3.8).

(Sub Refl): It follows directly that [[T (A)]]σ ⊆ [[T (A)]]σ.

(Sub Top): Since [[T (Top)]]σ = Prog we have [[T (A)]]σ ⊆ [[T (Top)]]σ for all
types A ∈ Type.

(Sub Object): Let [li:Ai
i∈I ] <: [li:Ai

i∈J ] for some indexing sets I, J for
which it holds that J ⊆ I. By definition of T , T ([li:Ai

i∈I ]) must impose
at least the same restrictions on objects as T ([li:Ai

i∈J ]). It follows that
[[T ([li:Ai

i∈I ])]]σ ⊆ [[T ([li:Ai
i∈J ])]]σ.

(Sub X): Follows from the well formedness of Γ.

(Sub Rec): Assume there is a post-model σ such that σ(X) ⊆ [[T (C)]]σ for
all (X <: C) ∈ Γ, σ(X1) ⊆ σ(X2) and [[T (A)]]σ ⊆ [[T (B)]]σ. We must
find a post-model σ′ such that σ′(X) ⊆ [[T (C)]]σ′ for all (X <: C) ∈ Γ and
[[T (µ(X1)A)]]σ′ ⊆ [[T (µ(X2)B)]]σ′. Take σ′ defined by

σ′(X) =







σ(X1) ∪ [[T (A)]]σ if X = X1

σ(X2) ∪ [[T (B)]]σ if X = X2

σ(X) otherwise
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By the assumptions [[T (µ(X1)A)]]σ′ ⊆ [[T (µ(X2)B)]]σ′. Thus, we only need
to check that σ′ is a post-model, i.e. that

σ′(X1) ⊆ [[T (A)]]σ′ and σ′(X2) ⊆ [[T (B)]]σ′

By definition of σ′, σ(X) ⊆ σ′(X) for all X. Then, since [[·]] is monotonic
on σ it must hold that [[F ]]σ ⊆ [[F ]]σ′ for all F ∈ Formt.

2

We now show that our translation is sound and complete with respect to
the usual typing of objects.

Soundness is stated by the following theorem:

Theorem 8.8 (Soundness) Let aA ∈ Prog then aA |= T (A).

Proof. The relation

ST = {(aA, T (A)) | aA ∈ Prog}
∪ {(aA, 〈li〉T (Ai)) | A = [li:Ai

i∈I ]}
∪ {(aA, 〈unfold〉T (B{µ(X)B/X})) | A = µ(X)B}
∪ {(aA, isBool) | a:Bool}

is a satisfaction relation. 2

Completeness here means that if a typable object in Ob1<:µ satisfies a
type formula, then it also has the corresponding type:

Theorem 8.9 (Completeness) Let aB ∈ Prog and F ∈ Formt. If a ∈
[[F ]]σ then there exists a type A such that ∅ ` a:A, where T (A) = F .

Proof. By induction on the structure of F .

(Top): If F = tt then it must hold that a:Top, where T (Top) = tt.

(Bool): If F = isBool then, obviously, a:Bool, where T (Bool) = isBool.

(Object): Assume that
F =

∧

i∈I

〈li〉T (Ai)

It must be the case that a can perform the transitions aB
li−−→ (a.li)Ai ,

where (a.li)Ai ∈ [[T (Ai)]]σ, for all i ∈ I. That is, a must at least have
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the type [li:Ai
i∈I ]. We do not know if a may have further possibilities for

transitions, aB
lj−−→ (a.lj)Aj for j ∈ J , I ∩ J = ∅, which results in the typing

[li:Ai, lj:Aj
i∈I,j∈J ]

Now, the result follows using the subtype rule (Sub Obj) for objects:

[li:Ai, lj:Aj
i∈I,j∈J ] <: [li:Ai

i∈I ]

(Unfold): Assume that

F = νX.(〈unfold〉T (A))

Then, obviously, a:µ(X)A.

(Var): Trivial.
2

As mentioned earlier, the characteristic formulae for object types do not
fully characterize the bisimulation equivalence of objects due to Gordon and
Rees. This is due to the fact that the typing of an object does not take
into account the possible method overrides that can be performed on the
object. In fact it is possible, with respect to an object, to do infinitely many
method overrides. That is, the ς-calculus is not finite branching. This lack
of information about the possible behavior of an object carries through to
the type formulae.

Example 8.2 Consider the two objects:

a = [l1=true, l2 = true]
b = [l1=true, l2=ς(x:A)x.l1]

Both have the type

A = [l1:Bool, l2:Bool],

and supertypes B and C:

B = [l1:Bool],
C = [l2:Bool]

It can be shown that a ∼B b and a ∼C b but a 6∼A b, since after the method
overrides a.l1⇐ς(x)x.l2 and b.l1⇐ς(x)x.l2, a.l2 converges while b.l2 diverges.



168 8. Relation between Modal Logic and Types

The encodings of A,B and C look as follows

T (A) = 〈l1〉T (Bool) ∧ 〈l2〉T (Bool)
= 〈l1〉isBool ∧ 〈l2〉isBool

T (B) = 〈l1〉T (Bool)
= 〈l1〉isBool

T (C) = 〈l2〉T (Bool)
= 〈l2〉isBool

If the type formulae should characterize Gordon-Rees bisimulation, then
it should be the case that aB, bB ∈ [[T (B)]]σ and aC , bC ∈ [[T (C)]]σ, but
aA, bA 6∈ [[T (A)]]σ. But this does not hold, since aA, bA ∈ [[T (A)]]σ. 2

8.4 Final comments

In this chapter we have described how certain properties of ς-calculus terms
can be described within the modal µ-calculus. The work presented here first
appeared in the Master thesis of Andersen and Petersen [AP96] and later
appeared in [AHKP97]. Unfortunately both papers contained some errors,
especially Theorem 8.8 and its proof was wrong. The major difference be-
tween the papers mentioned and this chapter is the introduction of satisfac-
tion relations (Definition 8.4) and the use of them to prove soundness of the
translation of types to logical formulae (Theorem 8.8). Another difference
is that we in this chapter only use box-modalities in Example 8.1, whereas
[AP96] and [AHKP97] include them also in the translation of types (which
is unnecessary since the ς-calculus is deterministic).

8.4.1 Extensions

A natural question is: How much further can we go in this direction? We can
easily deal with arrow types, if we introduce a simple notion of intuitionistic
implication into our logic. Let us say that F implies G for some object a if
a is an object abstraction which, whenever given an argument satisfying the
property F becomes an object satisfying the property G.

[[F ⇒ G]]σ = {aA→B | ∀ bA ∈ [[F ]]σ : (ab)B ∈ [[G]]σ}

We then get
T (A → B) = T (A) ⇒ T (B)
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It is straightforward to see that this extended interpretation is sound w.r.t.
the subtyping rules for arrow types, and in particular for the rule

(Sub Arrow)
Γ ` A′ <: A Γ ` B <: B′

Γ ` A → B <: A′ → B′

which states that the arrow type is contravariant in its first argument and
covariant in its second argument. (Observe that any recursion variable must
occur in covariant position.)

This leads straight to the question of the possibility of dealing with the
variance annotations suggested by Abadi and Cardelli in [AC96]. This could
probably be done by changing the labelled transition system, such that a term
aA, where A is an object type containing variance annotations, has transitions
labelled lj for methods having co- and invariace annotations and transitions
labelled lj⇐ς(x)b for methods with contra- and invariance annotations.





Chapter 9

Conclusions

The work presented in this thesis represents an attempt to answer the ques-
tion:

Can one successfully adapt and use process calculus techniques to
reason about object-oriented languages?

As usual, it is difficult to give an affirmative answer to a question like this, as
it would require a common agreement on what the answer is. So, the conclu-
sion presented in the following only represents my own personal opinion, and
is not necessarily the opinion of any of the coauthors of the papers behind
this thesis.

Since the work presented here can be divided into two different approaches
towards the initial question, the conclusion is likewise divided into two parts
— with Section 9.1 discussing the translational approach used in Chapters 5
and 6, and Section 9.2 discussing adaptations of process calculi ideas directly
to the ς-calculus found in Chapters 7 and 8. Finally in Section 9.3 we try to
answer the initial question.

9.1 Use of process calculi

The major part of the work presented here has been on the use of the π-
calculus as a language for giving semantics to object-oriented languages. As
Chapter 5 shows, it can be a non-trivial task to get the semantics right. Most
of the work on translations of the Functional ς-calculus into the π-calculus
presented in Chapter 5 was on finding a translation that was correct, and
on showing that the final one was indeed correct. But as we discussed in

171
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Section 5.4 the translation we end up with, although correct, does not seem
to support reasoning very well.

The translation of the Imperative ς-calculus presented in Chapter 6 looks
more promising. Again a lot of work was required to get a correspondence
between the translation in the π-calculus and the operational semantics for
the ς-calculus. But when the correspondence was established we were able
to show some non-trivial laws for the Imperative ς-calculus. The examples of
proofs of properties for the Imperative ς-calculus indeed show the π-calculus
as a promising tool for reasoning about properties for typed object-oriented
languages. In particular, the fact that proofs can be finitary and that the
π-calculus provides us with coinductive techniques incline us to believe that
the π-calculus can be put to use here.

Whereas the techniques used in Chapter 5 to show operational adequacy
were pretty standard, the proof of operational adequacy for the translation of
the Imperative ς-calculus introduces some novel techniques which we believe
are well-suited for reasoning about imperative languages in general. The
idea in the factorization of the translation is to isolate the imperative parts
of the translation, such that it is possible to use well-known techniques for
functional names and processes. It also sheds some light on the exact differ-
ence between the Imperative and Functional ς-calculus. Our work introduces
ready simulation to the π-calculus and puts it to new use, namely to prove
the relation between the factorized and the original encoding.

9.1.1 Related work

An interpretation of the Imperative ς-calculus into a form of imperative poly-
morphic λ-calculus with subtyping, recursive types and records has been
found by Abadi, Cardelli and Viswanathan [ACV96]. This interpretation has
been used to validate the subtyping and typing judgments of the Imperative
ς-calculus. However, it would be difficult to prove behavioral properties of
the Imperative ς-calculus from this interpretation, since very little is known
of the theory of the target imperative λ-calculus. The translation in [ACV96]
also differs form the one presented here, in that the types are translated into a
second order type system, whereas we translate first-order types to first-order
types. Viswanathan [Vis97] has also developed a translation of the Imper-
ative ς-calculus to a functional language with records and references where
the translation of types is first-order to first-order. Interestingly enough, the
type translation is exactly the same as the one we have exposed.

The only work on behavioral equivalences for the Imperative ς-calculus
that we are aware of is Gordon, Hankin and Lassen’s [GHL97]. In this
work, however, the Imperative ς-calculus is untyped. Gordon, Hankin and
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Lassen study contextual equivalence for this untyped Imperative ς-calculus,
prove that it coincides with a variant of Mason and Talcott’s CIU (“Closed
Instances of Use”) equivalence [MT91], and use the latter to validate some
basic laws of the calculus. We briefly discuss the difference between their
and our work. The two most notable differences are:

• Gordon, Hankin, and Lassen do not have a coinductive technique. They
show that contextual equivalence for the Imperative ς-calculus coincides
with the CIU equivalence of Mason and Talcott [MT91], which reduces
the number of contexts that one has to consider. But, still, the defi-
nition of CIU equivalence uses universal quantification over an infinite
number of contexts.

Instead, our translations provide us with the proof techniques of the
π-calculus. This gives us the possibility of using equational laws and
coinductive techniques of the π-calculus to reason about the Impera-
tive ς-calculus. As shown in Section 6.7, the bisimulations required to
validate non-trivial laws can even be finite.

• Gordon, Hankin, and Lassen only study the untyped Imperative ς-calculus.
This means that it is only possible to prove properties that do not rely
on the type of objects. This can be a serious drawback, as a lot of
interesting transformations for object-oriented languages rely on type
information.

Since our translation respects typing, we can use the π-calculus to
reason about properties for the Imperative ς-calculus that rely on types
(c.f. (Eq Sub Obj) in Section 6.7).

The closest related work on translations of object-oriented languages to
the π-calculus is that of the typed translation of the Functional ς-calculus
into the π-calculus [San98]. As discussed in Section 6.6, our translation of
the Imperative ς-calculus can be seen as an extension of the translation of the
Functional ς-calculus. The major differences are the very different proofs of
operational correctness for the translation and our work on proving properties
for the Imperative ς-calculus.

Related is also the work by Liu and Walker [LW99], Walker [Wal95,
Wal91, Wal93] and Jones [Jon93] on translations of POOL-like class-based
object-oriented languages into the π-calculus.

9.1.2 Further work

An interesting topic for further study is to continue the investigation of the
difference between the Functional and Imperative ς-calculus in the common
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framework that the translations provide us with. For instance, one can fur-
ther investigate the examples of the difference between contextual equivalence
for the Functional and Imperative ς-calculus.

The extensibility of the interpretation of imperative objects, and its re-
semblance to the interpretation of functional objects, suggests that the rep-
resentation of objects into the π-calculus is a robust one, and that it could
be used for giving semantics to, and proving properties of, a wide range
of object-oriented languages, possibly combining imperative, functional and
concurrent features.

An interesting and challenging question is to find a direct characteriza-
tion of the equivalence induced on terms of the Imperative ς-calculus by
the encoding into the π-calculus (where two terms are equated if their pro-
cess translations are behaviorally equivalent), as has been done for the lazy
λ-calculus [San94b, San99a].

At the time of writing, an investigation of Cardelli’s experimental dis-
tributed programming language Obliq [Car95] using an extension of the
translation of the Imperative ς-calculus is being carried out by Merro, Nest-
mann, Hüttel, Sangiorgi and the author [HKNS98, Nes99, HKMN99c, HKMN99a,
HKMN99b, KMN00].

The results from this work are very promising. The π-calculus has been
used to give semantics to a subset of Obliq, which so far has only had an
informal semantics (apart from unpublished work by Talcott [Tal96]). The
π-calculus semantics for the subset (named Øjeblik1) has been used in an
attempt to show that object migration in Obliq as proposed by Cardelli is
transparent. While attempting to do this, we discovered that object migra-
tion could not be transparent, and we were (based on the failure of the proof)
able to give simple examples showing this [HKMN99a]. The failure led us to
propose a modified semantics for Obliq for which we have been able to show
transparency of object migration [KMN00].

Another extension of the Imperative ς-calculus for which no use of the
π-calculus has been attempted is the Concurrent ς-calculus of Gordon and
Hankin [GH98]. Their calculus is a simple concurrent extension of the Im-
perative ς-calculus, and it should be pretty straightforward to extend the
translation from Chapter 6 to cover this case.

The ultimate test of the translational approach would be to deal with
programming languages that are used commercially. Most of those, like JAVA
and C++, are class-based imperative languages, and one way to pursue this
line of work would be to work on a stripped-down version of such a language.

1A Danish word with a phonetic resemblance to Obliq.
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9.2 Adaptation of process calculus techniques

The work on adaptations of process calculi directly to the semantics of the
ς-calculus is, by comparison to the use of the π-calculus, of a more founda-
tional nature.

In Chapter 7, we have shown that the denotational model proposed by
Abadi and Cardelli [AC96] is correct, but not fully abstract with respect to
the operational semantics, and in Chapter 8, we have shown a correspon-
dence between the type system Ob1<:µ for the ς-calculus and the modal
µ-calculus that captures both type assignment and subtyping. These results
are primarily of theoretical interest.

However in both cases, if we did not have a correspondence between the
operational and denotational semantics, or between types and modal logics
respectively, it would certainly be an indication that something was not the
way it ought to be.

The only real attempt to use the modal logic of Chapter 8 is Example 8.1,
where the logic is used to describe the behavior of a calculator.

9.2.1 Related work

To our knowledge the only work on the relation between the operational and
denotational semantics for the ς-calculus is the work presented in this thesis.
Related is work on relations between operational and denotational semantics
for λ-calculi (such as [AO93]) and denotational models generated directly
from a structural operational semantics (such as [AI96]).

Other studies of logics for the ς-calculus has been carried out in the setting
of the Imperative ς-calculus (c.f. Section 6.1). In [AL97], Abadi and Leino
study a Hoare style logic for a restricted version of the Imperative ς-calculus
where only fields (that is methods that do not use self) can be updated and
with a first order type system without recursion. In their work the logic is
proven sound with respect to the operational semantics and a translation of
types to logical formulae is provided. In [Lei97], Leino extends the previous
work to handle a kind of recursive types. In [NN98], Nielson and Nielson
study a flow logic for an untyped version of the Imperative ς-calculus, proving
correctness of the logic in a way similar to the one we use in the proof of
Theorem 8.8. In [Boe99] de Boer present a Hoare style logic for a sequential
version of POOL.

Rasmussen and Hüttel [Ras99, HR99] have developed a labelled transition
semantics for the untyped Imperative ς-calculus and showed, similarly to
what Gordon and Rees have done for the typed Functional ς-calculus, that
bisimulation equivalence defined on their labelled transition system coincides
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with contextual equivalence.

9.2.2 Further work

Connection between operational and denotational semantics Here,
the work presented is just a first step, and much remains to be done.

It is no surprise that the equational theory is sound, but incomplete in
the untyped case. As we can express all computable functions within the
ς-calculus, we can express the complement of the halting problem for any
given object a by the equation a ↔ Ω where Ω is the divergent object. The
set of such equations is clearly not recursively enumerable. However, the set
of provable equalities is a recursively enumerable set, so if the model can
adequately capture simple nontermination properties, some equalities will
not be provable. However, one would like a systematic approach that will
shed more light on the model under consideration.

A topic of further research is to show the incompleteness of certain equa-
tional theories by establishing a stronger result on soundness, namely that
Abadi and Cardelli’s equational theory is ‘sound in all models’. In order to
achieve such a result, we need to make precise the notion of an object model
along the lines of the familiar notion of a model for the λ-calculus [Bar84].
In particular, we would need an interpretation of types.

As an important by-product, the notion of a model of the ς-calculus would
let us compare various interpretations already in existence. Ideally, the trans-
lation of the untyped ς-calculus into the π-calculus from Chapter 5 should
provide us with another example of a ς-model, just as Sangiorgi [San95] has
shown that a translation of the λ-calculus into the π-calculus gives rise to a
λ-model. Whether this is indeed the case, is a topic for future investigation.
A starting point for this effort might be the fully abstract model for Ob1<:µ

of Viswanathan [Vis98].

Modal logic For the use of modal logics, a natural next step is to investi-
gate how one can use the µ-calculus to verify interesting properties of objects.
The notion of model-checking, that is, algorithmically checking whether a
term satisfies a given modal formula [SW89], is already well-understood in
the context of process calculi. It remains to be seen how far we can proceed
within the ς-calculus. At the moment this line of work looks quite hard, as
the labelled transition system is both infinite state and infinitely branching.
One could of course remove the problem of infinite branching by restricting
method override to field override, and develop a symbolic semantics, as has
been done for value-passing calculi [HL95] and the π-calculus [BD96]. As for
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the problem of the transition system being infinite state, one should try to
find a reasonably large subset whose symbolic semantics is finite.

A related question is whether one can capture the polymorphic type sys-
tems of the ς-calculus proposed in [AC96] within a higher-order modal pred-
icate logic.

One might also want to investigate the relation between the logic and the
denotational model of Abadi and Cardelli. A first guess might be that each
type formula F gives rise to a PER RF over Obj

RF = {(a, b) | a |= F, b |= F}

Finally, the interpretation of types as modal formulae suggests an alter-
native account of the semantics of types to that presented in [AC96]. One
might consider determining whether the translation of Ob1<:µ types into the
modal µ-calculus together with a suitably quotiented term model gives rise
to a typed ς-model.

9.3 General conclusions

It is my strong opinion, that process calculus techniques can be used success-
fully to support reasoning about object-oriented languages. Having said this,
I must also say that it is neither an easy task to do, nor something I would
claim every programmer/developer should learn to do. In my opinion, one
has to distinguish between showing properties of the programming language
itself and showing properties of programs written in the language.

Properties of programming languages As programming languages be-
come more and more complex, the interplay between different language con-
structs also becomes complex. Here is a thorough, perhaps even formal,
analysis of certain features of the programming language advantageous (al-
though it is often not performed). Such an analysis should be used to show
that the language obeys certain properties and to help in developing equa-
tional theories that can be used by programmers to reason about programs
written in the language. Most (if not all) of the results about the ς-calculus
realized by using process calculus techniques in this thesis have been of the
aforementioned kind.

Properties of programs In most cases, the programmers intuitive under-
standing of the semantics of the programming languages suffices in order to
reason about the programs she/he writes. Exceptions of course exist, such as
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mission-critical systems, complex datastructures and so on. In these cases,
formal reasoning is be needed to ensure the correctness of programs.

In the present thesis, the only case that can be considered to have a
vague resemblance with reasoning about programs is Example 8.1, but it is
not really something that gives any insight, as to which one can use process
calculus techniques to reason about programs.

Fortunately, others have used process calculus techniques to reason about
programs. Sangiorgi [San99c] uses the π-calculus to prove a program trans-
formation of a sequential object-oriented program into a concurrent version
correct. Philippou and Walker [PW97] prove the correctness of concurrent
operations on B-trees using a π-calculus. What these examples show is that
it is indeed possible to use translations of programs into the π-calculus to
support reasoning.

However the work mentioned has been performed by researchers who are
specialists in using the π-calculus. I do not believe that these techniques
can come to widespread use, unless people are trained in reasoning using the
π-calculus and some kind of tool support (like theorem provers and model
checkers for the π-calculus) is provided.

The reason why other peoples work on adaptations of process calculus
techniques directly to the semantics of object-oriented languages is not men-
tioned, is not because it does not exist, but because of my ignorance of their
work.

Since the answer to our initiating question is positive, one final question
arises: Should one prefer the translational or the adaptive approach? By
looking at the work presented here and the work done by others, it looks as if
the most promising path is to use the translational approach. The advantage
of using the translational approach is that the “only” thing one needs to do
before starting using the translation is to come up with a suitable target
language, a translation and establish a correspondence between the original
semantics (if one exists) of the language in question and the translation.
Although this can be tedious and error-prone, it is a well-defined task. In
order to use an adaptation of process calculus techniques one needs to develop
a labelled transition system, equivalences (one is usually not enough), to
show the correctness of the labelled transition system, to develop laws using
the equivalences, and so on. And this needs to be done for every language.
Another advantage of using a translation into a common calculus is that
it allows one to compare and contrast properties of different languages on
a common platform, just as we did when comparing the Imperative and
Functional ς-calculus in Section 6.6.

Based on this, but also because I might be biased towards translations
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which I happen to like working with, the approach I would recommend if
someone asked me is therefore to use a translation.





Appendix A

Theoretical developments on
the typed π-calculus

A.1 Ready simulation

In this section we develop some theory for ready simulation. To ease the
reading we omit type annotations since ready simulation is an untyped rela-
tion.

Definition A.1 (Ready Simulation (also Definition 6.16)) A relation
R is a (weak) ready simulation if P R Q implies, for any µ (with bound
names of µ not free in P,Q):

i. If P
µ−−→ P ′, then there exists a Q′ s.t. Q

bµ
==⇒ Q′ and P ′ R Q′.

ii. If Q
µ−−→ Q′, then there exist a P ′ s.t. P

µ
==⇒ P ′

We say that Q ready simulates P , written P ≺ Q, if P R Q for some ready
simulation R.

Theorem A.2 Ready simulation is a precongruence with respect to parallel
composition and restriction.

Proof.
Let R be a ready simulation and let

S=
{(

(νx̃)(P |R), (νx̃)(Q|R)
) ∣

∣

∣ ∀(P, Q) ∈ R, x̃ ∈ PNames, R ∈ Proc
}

We now claim that S is a ready simulation.

181
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If (νx̃)(P |R)
µ−−→ S this must be inferred using either (Res) or (Open)

as the last rule.
Let us first consider the case where (Res) is the rule used, that is P |R µ−−→

S ′ with S = (νx̃)S ′. This transition can be inferred using the following rules:

(Comp-R): R
µ−−→ R′ and S ′ = P |R′ which Q|R can match by doing the

same, and clearly (νx̃)(P |R′) S (νx̃)(Q|R′).

(Comp-L): P
µ−−→ P ′ and S ′ = P ′|R. Since P R Q there exist a Q′ such that

Q
bµ

==⇒ Q′ with P ′ R Q′. Now using (Comp-L) we have Q|R µ
==⇒ Q′|R and

clearly by definition of S we have (νx̃)(P ′|R) S (νx̃)(Q′|R).

(Sync-L): We must have µ = τ , P
(νñ)yv
−−−−−→ P ′, R

yv−−→ R′ and S ′ =

(νñ)(P ′|R′). Since P R Q there exist a Q′ such that Q
(νñ)yv

=====⇒ Q′ with P ′ R
Q′. By (Sync-L) we infer Q|R τ==⇒ (νñ)(Q′|R′) and again (νx̃, ñ)(P ′|R′) S
(νx̃, ñ)(Q′|R′).

(Sync-R): Same argument as in the previous case.

The other possibility is that (Open) is used as the last rule in the inference

of (νx̃)(P |R)
µ−−→ S, then µ = (νñ)yv with y 6∈ x̃, and P |Q

(νñ)yv
−−−−−→ S ′ with

S = (νx̃′)S ′ for some x̃′ ⊆ x̃. The transition P |Q
(νñ)yv
−−−−−→ S′ can be inferred

using the following rules:

(Comp-L): We have P
(νñ)yv
−−−−−→ P ′ and S ′ = P ′|S. Because P R Q then

Q
(νñ)yv

=====⇒ Q′ and P ′ R Q′ for some Q′. By (Comp-L) and (Open)

we infer (νx̃)(Q|R)
(νñ)yv

=====⇒ (νx̃′)(Q′|R) and by construction of S we have
(νx̃′)(P ′|R) S (νx̃′)(Q′|R).

(Comp-R): We have R
(νñ)yv
−−−−−→ R′ and S′ = P |R′. Obviously Q|R

(νñ)yv
−−−−−→

Q|R′ and (νx̃′)(P |R′) S (νx̃′)(Q|R′).

The other way around; if (νx̃)(Q|R)
µ−−→ then also (νx̃)(Q|R)

µ−−→ is
handled in a similar manner. 2

Definition A.3 (Ready Simulation up to Context) A relation R is a
ready simulation up to context if P R Q implies:

i. If P
µ−−→ P ′; then there exist processes Q′, P̃ , Q̃, R, names x̃, such that

Q
µ

==⇒ Q′, P ′ ∼ (νx̃)(R|P̃ ), Q′ ∼ (νx̃)(R|Q̃) and P̃ R Q̃.
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ii. If Q
µ−−→; then there exist a P ′ s.t. P

µ
==⇒

Theorem A.4 If P R Q for some ready simulation up to context then P ≺
Q.

Proof. Let R be a ready simulation up to context and let

S=
{(

(νx̃)(R|P̃ ), (νx̃)(R|Q̃)
) ∣

∣

∣ ∀R ∈ Proc, x̃ ∈ PNames, P̃ R Q̃
}

We now claim that ∼ S ∼ is a ready simulation.
The proof of this goes by a lengthy analysis of the possible transitions. We

shall only consider one of the cases, as the rest follows by similar reasoning.
Let P ∗ ∼ (νx̃)(R|P̃ ) S (νx̃)(R|Q̃) ∼ Q∗. If P ∗ µ−−→ P ∗∗ then there exists

a S s.t. (νx̃)(R|P̃ )
µ−−→ S and P ∗∗ ∼ S.

If (νx̃)(R|P̃ )
µ−−→ S it must be inferred using either (Res) or (Open) as

the last rule used. If is was (Res) that was the last rule used, then we must
have R|P̃ µ−−→ S ′ with S = (νx̃)S′. This transition must be the result of,
either a transition by one of the components, or by an interaction between
two of the components.

We consider the case when the transition is caused by an interaction
between two components of P̃ and inferred using (Sync-L) as the last rule.

That is, we have i, j s.t. i 6= j and Pi
(νñ)yv
−−−−−→ P ′

i and Pj
yv−−→ P ′

j and

S = (νx̃)(R|P1| . . . (νñ)(P ′
i . . . P ′

j) . . . Pn)

Since P̃ R Q̃, there exist processes Ri, Rj, Q̃i, Q̃j, P̃i, P̃j and names ỹi, ỹj

such that Qi
(νñ)yv

=====⇒ Q′
i and Qj

yv
===⇒ Q′

j with

P ′
k ∼ (νỹk)(Rk|P̃k) S (νỹk)(Rk|Q̃k) ∼ Q′

k for k ∈ {i, j}

Let T = (νx̃)(R|Q1| . . . (νñ)(Q′
i . . . Q

′
j) . . . Qn) Using (Comp-L), (Comp-

R) and (Sync-L) and (Res) we can infer (νx̃)(R|Q̃) τ==⇒ T and then also
that Q∗ τ==⇒ Q∗∗ with T ∼ Q∗∗.

Now P ∗∗ ∼ S ∼ ((νx̃, ỹi, ỹj, ñ)(R|Ri|Rj|P1| . . . P̃ ′
i . . . P̃ ′

j . . . Pn) and Q∗∗ ∼
T ∼ (νx̃, ỹi, ỹj, ñ)(R|Ri|Rj|Q1| . . . Q̃′

i . . . Q̃
′
j . . . Qn), so we have P ∗∗ ∼S∼ Q∗∗.

The second clause in the definition of ready simulation is handled in the
same manner, it is just simpler since we do not have to relate the result of
the transitions. 2
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A.2 Typed bisimulation

In [BS98] Boreale and Sangiorgi present a labelled typed bisimulation for
the monadic π-calculus, and show that their definition of typed bisimula-
tion coincides with typed barbed congruence. In this section, we present a
simplified form of Boreale and Sangiorgi’s typed bisimulation. The simplifi-
cation makes the definition of typed bisimulation simpler, but we loose the
characterization of typed barbed congruence. Instead, we only achieve that
type bisimulation implies type barbed congruence. The proofs are omitted,
as most of them are quite tedious and just extend Boreale and Sangiorgi’s
results to the π-calculus of Section 6.2.

The difference between typed and untyped labelled bisimulation is, that
in a typed bisimulation we restrict the actions that we need to match in order
for two processes to be bisimilar. The restrictions are based on the knowledge
about the type of name that the environment knows. For instance, assume
that a : Tww is an assumption in Γ and that Γ ` P, Q. If we want to show
that P ∼Γ

b Q directly, we have to consider how P and Q behave in all contexts
that has a hole respecting Γ. One such context is C[·] = a(x).xv | [·] having
a type environment ∆ such that ∆ ` v:T, a:Twb . What this context does,
is that it recieves some name on a together with the write capability, and
then transmit a value on that name. P and Q may (if they have the read
capability for the name transmitted on a) recieve v.

If we were to show this in a bisimulation-like manner, it would have to be
something like: If P

µ−−→ P ′ with a as subject, then if µ is an output action
Q must match this by doing a similar action Q

µ−−→ Q′. If µ was an input
action on a we do not have to consider it, because the environment is not
able to observe such actions. The name we recieve on a, say b, is a name
that the environment can use for output, so this implies that we must now
match an input action on b by P ′, with a similar input actions by Q′. This
illustrates that a typed bisimulation should consist of triples (Γ, P, Q), where
Γ contain information about the environments knowledge of names.

Since values are structured, a transition can contain more than one name.
Below, typeof is a partial function that maps a pair (v, S) of a π-calculus value
and a type to a set of pairs {(xi, Si)}i∈I of names and types. Intuitively, typeof
extracts the names contained in v together with their type, as derived from
S. That is, typeof(v, S) = {(xi, Si)}i∈I implies {(xi, Si)}i∈I ` v : S.

Definition A.5 typeof(v, S) is a function that associate the names in v with
the type they are given in the type S defined by:

typeof(x, S)
4
= {(x, S)}
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typeof(〈v1 . . . vn〉, 〈T1 . . . Tn〉)
4
= ∪n

i=1typeof(vi, Ti)

typeof(li v, [ l1 T1..ln Tn ])
4
= typeof(v, Ti) if i ∈ 1..n

We use Λ to range over multiset type environments. These are defined
like type environments, but a name may appear in Λ more than once. We
define Λ ` p : T if there a subset Γ of Λ s.t. Γ is a type environment and
Γ ` p : T .

To reflect update of the environments knowledge, we define an operational
semantics for multiset type environments:

Definition A.6

i. Λ
τ−−→ Λ

ii.
Λ ` p:Sr ñ ∩ n(Λ) = ∅

Λ
(νñ:)pv
−−−−−−→ Λ, typeof(v, S)

iii.
Λ ` p:Sw ñ ∩ n(Λ) = ∅ ñ ⊆ n(v) Λ, ñ:T̃ ` v:S

Λ
pv−−→ Λ, ñ:T̃

If µ is an output action (νñ:T̃ )pv, then |µ| is (νñ:)pv; if µ is an input or
a tau action, then |µ| = µ.

A typed relation in a set of pairs of the form (Λ, P, Q).

Definition A.7 (Typed bisimulation) A symmetric typed relation R is
a typed bisimulation if (Λ, P, Q) ∈ R implies:

i. if P
µ−−→ P ′, then there are Λ′ and Q′ such that

• Λ
|µ|
−−−→ Λ′,

• Q
µ′−−→ Q′ with |µ′| = |µ|,

• and (Λ′, P ′, Q′) ∈ R.

If (Λ, P,Q) ∈ R for some typed bisimulation, we say that P and Q are
type bisimilar under Λ, written P 'Λ Q.

In the above definition, we may replace (Λ′, P ′, Q′) with (Λ′′, P ′, Q′), for
Λ′′ = Λ′ ∩ fn(P ′, Q′).
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Example A.1 As an example of the advantage of typed bisimulation con-
sider the following two agents:

P = av Q = av | b(x)

Obviously P and Q are not bisimilar, but in the type environment Γ = aw

they are type bisimilar because we cannot observe the input on b. 2

Definition A.8 A substitution σ respects a type environment ∆ if dom(σ) ⊆
dom(∆) and for all x ∈ dom(σ) there exists a type T s.t. both ∆ ` x : T and
∆ ` σ(x) : T hold.

The typed bisimulation is preserved by all contexts respecting the type
assumptions. That is:

Theorem A.9 Suppose that Γ and ∆ agree on common names (that is, for
all x s.t. x ∈ dom(Γ) ∩ dom(∆), it holds that Γ(x) = ∆(x).

If for all extensions ∆′ of ∆ and substitution σ that respect ∆′, it holds
that Pσ '∆′ Qσ, then for all Γ/∆-context C it holds that C[P ] 'Γ C[Q].

In particular, we have:

Corollary A.10 If P '∆ Q, and ∆ ` R, then P |R '∆ Q|R.

Stating the relation between typed bisimulation and typed barbed con-
gruence has minor complications. Firstly, if two processes P and Q are typed
barbed congruent under the assumptions ∆, then ∆ ` P, Q, implies that ∆
contains assumptions about all free names in P and Q. We do not have such
a requirement for the type assumptions in the environment used in typed
bisimulation — the environment does not need to contain all free names
(as in Example A.1) and in can contain assumptions that are not consistent
with the use of names in P and Q. Furthermore, the type assumptions in
the environment represent the assumptions under which a (virtual) context
should be typeable, not the processes being compared. This means that the
assumptions are “complementary” to the ones of the processes. For example,
if a:T r is an assumption in the environment, it means that the environment is
willing to receive a value transmitted on the name a; this, of course, requires
the collaboration by the process, that must be willing to transmit a value
(that is the process must have the write-capability on a, and therefore by
typable under the assumption a:Tw).

Theorem A.11 Let ∆l denote the type environment ∆ with the outermost
tags reversed (Twl = T r, T rl = Tw and T bl = T b). If for all substitutions σ
such that ∆σ ` Pσ,Qσ and Pσ '∆σl Qσ, then P ∼∆

b Q.
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The proof techniques of the ordinary untyped bisimulations, can be adapted
to the typed bisimulation. Here, we show a version of the up-to-parallel-
composition technique.

If R is a typed relation, then we write (Λ, P,Q) ∈ ˜R if if the following
conditions hold:

i. for some n, P =
∏

i∈1..n Pi and Q =
∏

i∈1..n Qi;

ii. for all i: either Pi = Qi or (Λ, Pi, Qi) ∈ R

iii. there is no name x s.t. x is free in both Ph and Pk (h 6= k, 1 ≤ h, k ≤ n)
and x is free in one of the two processes in input subject position;

iv. all Pi’s are well typed under a type environment where the r tag does
not occur.

v. the same two conditions above for the Qi’s.

Definition A.12 (Typed bisimulation up-to parallel composition) A
symmetric typed relation R is a typed bisimulation up-to parallel composi-
tion if (Λ, P, Q) ∈ R implies:

i. if P
µ−−→ P ′, then there are Λ′ and Q′ s.t.

• Λ
|µ|
−−−→ Λ′,

• Q
µ′−−→ Q′ with |µ′| = |µ|,

• there are P ′′ ∼ P ′ and Q′′ ∼ Q′ s.t. (Λ′, P ′′, Q′′) ∈ ˜R.

Theorem A.13 If R is a typed bisimulation up-to parallel composition and
(Λ, P, Q) ∈ R then P 'Λ Q.

Another useful property which we shall need, is that under special cir-
cumstances we can add restrictions with different type annotations and still
keep typed bisimulation between terms.

Lemma A.14 If

i. P 'Γ Q and a 6∈ dom(Γ);

ii. a is only used in subject position;

iii. (νa:S)P and (νa:S′)Q are well-typed.

then (νa:S)P 'Γ (νa:S′)Q.





Bibliography

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Mono-
graphs in Computer Science. Springer, 1996.

[ACS98] Roberto M. Amadio, Ilaria Castellani and Davide Sangiorgi.
On Bisimulations for the Asynchronous π-Calculus. Theoretical
Computer Science, 195(2):291–324, 1998. An extended abstract
appeared in Proceedings of CONCUR ’96, LNCS 1119: 147–
162.

[ACV96] Mart́ın Abadi, Luca Cardelli and Ramesh Viswanathan. An
Interpretation of Objects and Object Types. In POPL’96
[POP96], pages 396–409.
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[HKNS98] Hans Hüttel, Josva Kleist, Uwe Nestmann and Davide San-
giorgi. Surrogates in Øjeblik: Towards Migration in Obliq.
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