
Contents

1 Introduction to Timed-Arc Petri Nets 2
1.1 Petri Net . 2
1.2 Timed Tokens and Timed Arcs 6
1.3 Invariants on Places . 8
1.4 Transport Arcs . 10
1.5 Queries about TAPN Models 10

2 TAPAAL Manual 13
2.1 User Interface . 13

2.1.1 Menu bar . 14
2.1.2 Tool bar . 14
2.1.3 Drawing area . 15

2.2 Drawing a TAPN . 16
2.3 Verifying the Model . 17

1

Chapter 1

Introduction to Timed-Arc
Petri Nets

In this section Petri Nets (PN) and Timed-Arc Petri Nets (TAPN) will be
described, starting with the basic components and features of the simple Petri
nets. One by one we introduce the more advanced features, which include
invariants and transport arcs, that are extensions of TAPN.

If you are already familiar with PN, you might want to jump directly to
Section 1.2, where the TAPN is introduced.

1.1 Petri Net

A Petri Net is a directed bipartite graph of places (circles), transitions
(squares) and arcs (arrows) as illustrated in Figure 1.1(a) and (b).

In Figure 1.1(a) small dots are placed within the places P0, P1 and P3.
These dots are called tokens. The behaviour of a given PN is defined by the
way that tokens are placed.

A configuration of a given PN is a distribution of tokens on places and is
referred to as a marking of a given PN.

We say that a given transition is enabled if all the places that have arcs
going to the transition, referred to as a transitions preset, has at least one
token. When a transition is enabled it can be fired. This means that T0
in Figure 1.1(a) can be fired. In Figure 1.1(b) T0 has been fired. A firing
of a given transition will consume a token from each place in its preset and
produce a token in each place of its postset. The postset of a transition is
the places that have an arc going from the transition to it self. We see that
the places P0 and P1 lose one token and P2 receive one.

Example 1.1. Say we want to model a production line with producers and

2

(a) A PN with a token in places P0, P1 and P3.

(b) The PN from Figure (a), after transition T0 has been fired.

Figure 1.1: Firing of a transition in a PN.

3

consumers using a Petri Net. Figure 1.2(a) illustrates how to make a pro-
ducer. This part is able to produce an arbitrary number of tokens. A PN part
that consumes tokens is illustrated in Figure 1.2(b). It is simply a transition
with no outgoing arcs. In Figure 1.2(c) we have a PN that ”moves” a token
through, what could be, a production line. In Figure 1.2(d) we have com-

(a) A token producing PN. (b) A token consuming PN.

(c) A token transporting PN.

(d) Combined producer consumer with a transporting part in between.

Figure 1.2: Combining different PN modules.

bined the three small nets into a simple producing and consuming production
line.

This example could be the production line of a fast food restaurant. The
producer would be heating bread, and the line would be treatments of the
bread. Meat will be added and salad could be added. We could also model
an assembly worker as illustrated Figure 1.3(a). Meat and salad are added
at different places, but by the same assembly worker, who has to move from
place to place to assemble a burger from the heated bread.

This model can behave differently from what we would expect from a
production line. This is because we can choose to fire arbitrarily amongst

4

(a) A PN modelling a fast food production line.

(b) Behaviour of a modelled fast food production line.

Figure 1.3: Possible behaviour of a modelled fast food production line.

5

the enabled transitions — e.g. bread could stack up in different places of the
production line as illustrated in Figure 1.3(b).

In some fast food restaurants burgers are produced in advance, so that
costumers can be served as fast as possible. However these restaurants have
to guarantee that the food that the consumers get is not too old. To model
this we have to introduce some notion of age to the tokens in the net, so
that we can check the age of the produced tokens and ensure that only fresh
burgers get consumed.

By introducing time we can also prevent the stack up of bread, by de-
scribing that bread with a certain age cannot be added meat or salad, but
should maybe be reheated. 4

The PN we have studied so far have introduced unbound behaviour. This
is because every place can stack up any number of tokens. In Figure 1.4 we
illustrate how one can restrict the number of tokens at a single place. By
adding a new place, often called the capacity place, and adding arcs from the
capacity place to the transitions producing tokens in the specified place and
adding arcs from the transitions consuming from the place, it is ensured that
the number of tokens in the given place cannot exceed the number of tokens
originally placed in a token and its capacity place.

Figure 1.4: An example of a PN, where P1 is restricted to a capacity of four
tokens.

1.2 Timed Tokens and Timed Arcs

In Figure 1.5 a small TAPN is illustrated. Here we see that arcs going from
places to transitions carry guards. Tokens each have their own clock or age,

6

(a) A small TAPN. (b) The net from (a), where T0 has been
fired.

Figure 1.5: A small TAPN illustrating age of tokens and resets when transi-
tions are fired.

which must conform with the guard before it can be consumed — being
enabled is no longer enough for a transition to consume tokens. When time
passes in the net all tokens are aged. In Figure 1.5(a) the arc going from
place P0 to T0 has a guard specifying that only tokens of age 1 to 5 exclusive
are allowed to be consumed. A consumed token will have its age reset to
0, which is what Figure 1.5(b) illustrates; here the token of age 3 has been
consumed and its age reset to 0.

This is the components that Timed-Arc Petri nets (TAPN) consist of.
Extensions that follow are further extensions to the TAPN.

Example 1.2. Now let us add time to our fast food production line. In
Figure 1.6 we have illustrated a more advanced fast food production line,
which model that the assembly worker will use time assembling different parts
of the burgers. Heating a piece of bread takes more than 1 time unit, hence
the guard (1,inf), which specifies that the age of the token in BreadStorage
should be more than 1 time unit. To add salad to the heated bread the
assembly worker has to move to the Saladbar place to add salad to the bread.
If the bread waits for more than 2 time units it is too cold to be added salad,
and is instead reheated. Adding salad takes at least 1 time unit. After salad
have been added the burger needs heated meat. It takes more than 1 time
unit to heat the meat meanwhile the burger is only allowed to cool down for
about 2 time units — also the assembly worker will have to go to the MeatPan
to assemble this part of the burger. If the burger waits for 2 or more time
units it is too old and meat cannot be added and so it can only be thrown
out. It should not be reheated since there have been added salad. After meat
has been added the assembly worker will add cheese in the same matter as
meat and salad was added. Now the burger is finished and is ready to be
consumed by a costumer. If the burger is ready for 4 or more time units
cannot be sold, and so it will eventually be thrown out.

From this example we have an intuition that it is possible to make burgers,
but we would like to be sure i.e. is it possible to make infinitely many burgers?

7

Figure 1.6: A modelled fast food production line with a single bread heater
and a single assembly worker, that each uses time to do their tasks.

It would also be nice to know how fast it is possible to make a burger? Or,
how many burgers are consumed before a burger is thrown out?. To keep
track of that we will have to add places that collect the sold burgers and the
thrown out burgers.

If we would model that e.g. bread cannot wait more than a fixed number
of time units (else it starts growing mold), we would have to introduce some
new construct dictating that tokens of a certain age have to move away from
a given place. 4

1.3 Invariants on Places

Invariants are restrictions to the age of tokens in places. Invariants make
sure that tokens are consumed if possible, when the tokens reach a certain
age. If a token reaches the bound of an invariant, time cannot pass any more.
The only actions possible are firing of transitions. In Figure 1.7 P0 has an
invariant that ensures that the token is consumed before it is at age four. The
guard on the arc make sure that the arc is not consumed before it has age
one. Even though the arc allows the token to get age five, the only behaviour
possible for this net is to fire T0 when the age of the token is between 1 and
4 (exclusive).

Example 1.3. Returning to the fast food production line — in Figure 1.8,
we have added invariants on WaitingForMeat, WaitingForCheese and WaitingFor-

8

Figure 1.7: A Petri net with a place P0 with an invariant that ensures that
T0 is fired before the token reaches age four.

Costumer so that we ensure that if bread is to old to go further into the
production line it will eventually get thrown out.

Figure 1.8: A Petri net model of a fast food production line that is hygienic.
Invariants ensure that old food is thrown out.

Now we have added Trash and Eaten, which makes it possible to check how
many burgers are thrown out and how many are eaten. However it would be
nice to know how old the burgers are before they are eventually thrown out
or sold. To do this we will have to bring the notion of transporting the tokens
and not consuming and producing tokens when firing a transition. 4

9

1.4 Transport Arcs

Transport arcs are arcs that give the notion of transporting tokens and so
preserve their age. Transport arcs have guards just like timed arcs, but in-
stead of consuming a token and producing a new one with age zero, transport
arcs ensure that the produced token has the same age as the consumed token.
Transport arcs are paired so that the token consumed will be produced in the
correct place with the correct age. In Figure 1.9(a) one transport arc pair is
marked by 1 and another is marked by 2. In Figure 1.9(b) time has elapsed
3 time units and T0 has been fired.

(a) A small Petri net with transport arcs
at age zero.

(b) A small Petri net with transport arcs
at age three and transport arc pair 1 has
fired.

Figure 1.9: A small Petri net with transport arcs.

We end this introduction with an example of a full blown Extended TAPN
modelling a fast food production line.

Example 1.4. In this example of the fast food production line we are able
to keep track of the age of the burger (since the bread was heated) thanks
to the transport arcs as illustrated in Figure 1.10. Now to check if burgers
of certain ages are thrown out or sold, we need a way to express questions
about the behaviour of the model.

4

1.5 Queries about TAPN Models

To verify the existence of some special behaviour in a TAPN, we need a way
to formulate these questions. We do this by using queries. In TAPN we can
ask atomic questions of the type: Does some number compare to the number

10

Figure 1.10: An Extended TAPN model of a fast food production line that
is hygienic and traceable.

of tokens in some place? e.g. are there more than 5 tokens in P0. These
‘frases’ can be combined using logical and and or.

To ask questions of the behaviour of the model, we introduce 4 special,
questions (inspired by the tool Uppaal):

• To ask the question if something is possible, we use a query ∃♦ Φ. This
query askes if there are some computation s.t. the atomic question Φ
is true at some marking of the computation,

• To ask the question if some property potentially always hold, we use
query, ∃� Φ, if there is a computation s.t. for all steps in this compu-
tation the property Φ is satisfied.

• To ask questions of the type, will something eventually happen, we use
the query, ∀♦ Φ, meaning that for all possible different computations,
the property Φ must at some point be satisfied.

• The last form of question is invariantly true. We use the query ∀� Φ,
meaning that for all possible different computations each reachable
marking has to satisfy Φ.

We are now able to ask questions about the behaviour of a TAPN.

11

For example we might want to know if we can make burgers with the pro-
duction line modelled in Figure 1.10. So we would pose the query: ∃♦ Eaten ≥
1? Or we would like to know if we can produce a specific number of burgers,
e.g. 5 burgers, without throwing any out: ∃♦ Eaten = 5 and Trash = 0?

12

Chapter 2

TAPAAL Manual

This is the introduction to the TAPAAL.NET, it includes an introduction to
the interface and how to export a model, such that it can be verified using
Uppaal.

This it meant to be a manual that can be disturbed together with the
tool when it is released.

If you work or study at Aalborg University you can can download a pre-
relace of TAPAAL from URL www.cs.aau.dk/~kyrke/tapas.

2.1 User Interface

TAPAAL.NET has a simple, easy to overview user interface. The user interface
is presented in Figure 2.1.

Figure 2.1: The TAPAAL.NET interface

13

www.cs.aau.dk/~kyrke/tapas

The user interface consist of tree main areas, marked 1. the menu bar, 2.
a tool bar, and 3. the drawing area.

2.1.1 Menu bar

The menu bar contains all the functions that a offered by TAPAAL.NET. The
file menu is mainly used for save and loading TAPAAL.NET files. The file menu
also contains a submenu “Export” for Exporting the modelled TAPN:

• PNG
Export the TAPN as a PNG image file.

• PostScript
Export the TAPN as a Post Script file.

• Export to Uppaal
Export the TAPN as a Uppaal model, using the naive reduction.

• Export to Uppaal, Advanced
Export the TAPN to Uppaal model, select the reduction method ad-
vanced (Mainly a developer feature).

• Export to Uppaal, Symetric
Export the TAPN as a Uppaal model, using the naive reduction with
symmetric reduction.

• Export a degree-2 net
Export a net into degree-2, and have it open in TAPAAL.NET for visual
inspection (Mainly a developer feature).

The menu “Edit” contains function used when editing the model, this in-
clude undo/redo and copy/paste. (Notice that at the moment only copy/paste
of Places works).

The “View” menu is used for manipulating the appearance of the drawing
area, by enabling grid drawing and zooming.

The “Draw” menu us used for drawing the TAPN. Most of the functions
found here are also accessible in the tool bar. The meaning of the different
buttons are explained in the following sections.

2.1.2 Tool bar

In Figure 2.1 the tool bar is presented. The tool bar is divided into 1. a file
bar, 2. an edit bar, 3. a zoom bar and 4. a draw bar:

14

Selection 1. shows the file part of the bar. It contains the usual features
as new Petri net, open Petri net, save Petri net, save Petri net as and
close Petri net tablet.

Selection 2. shows the edit part of the bar and contains buttons: cut
selection, copy selection, paste selection, delete selection and undo/redo
buttons. (Notice that for the moment only copy/past of Places works).

Selection 3. shows the zoom part of the bar, it is possible to zoom in
and out, change grid size and move grid.

Selection 4. shows the drawing part of the bar. It includes buttons to
draw, transitions, places and arcs. The last two buttons are used for
placing and removing token. The meaning of the different symbols are
explained in the following sections.

Selection 5. shows the Uppaal export button on the tool bar used for
generating a Uppaal model based on the modelled net.

2.1.3 Drawing area

The drawing area is the place where the TAPN can be drawn. In Figure 2.2
we see a part of the drawing area.

Figure 2.2: The drawing area of TAPAAL.NET.

Selection 1. shows a Place with its name and its invariant displayed.
The invariant is only displayed if it differs from the default invariant

15

< ∞. A number drawn in the place, marks that there is a token of
that age in the place. By holding the mouse over the place, you will
get a list of all tokens and there age.

Selection 2. shows a transition, and its name.

Selection 3. shows an arc from a place to a transition. The value“[2, 3]”
on the arc, is the guard.

Selection 4. shows a transport arc. The value 1 on the arcs indicates
that these two transport arcs are connected.

2.2 Drawing a TAPN

To draw a TAPN use the tools in the drawing tool bar.

Places To draw a place use the button, and click in the drawing area
where you wish to place the place.

By double clicking on the place you will get the menu:

where the name, number of tokens, the age of tokens and the invariant
of the place can be changed. By scrolling on the place, tokens can be
added/removed.

Transitions To draw a transition use the button and click on the draw-
ing area where you wish to place the transition. To change its name double
click it, and change the name. By scrolling on the transition the angle of the
transition is changed.

16

Arc To draw an arc use the button and click on the place/transition
where the arc should start from and click again on the place/transition where
the arc should point to. You are of coarse not allowed to connect two places
or transition with one arc.

To edit the guard right click on the desired arc and choose “Edit Time
Interval” and the following window will pop up:

When the “inf” check box is checked there is no upper bound to the time
interval. Otherwise the square parenthesis means including, and the soft
parenthesis means not including.

Transport Arc To draw a transport arc use the button and click on a
place from where the arc starts, now click on a transition followed by a place.

You can change the guard of a transport arc in the same way as on a
normal arc.

2.3 Verifying the Model

Verification of the model at the moment consist of two steps: creating the
Uppaal model and verifying it using Uppaal.

To create the Uppaal model press the export to Uppaal button in the
menu bar. (To use one of the implemented optimisation export by selecting
“File->Export->the-export-variant-you-want”.)

Enter the number of extra tokens and the query in the popup window
press enter and enter your query into the graphical query designer:

17

By pressing an “AND” button the window will expand sideways, and
likewise if an “OR” button is pressed the window will expand vertically and
a new row of “AND”’s is displayed. Press ok.

Now select a filename for the Uppaal model and press save. TAPN now
generates the Uppaal xml and q files.
The model has been saved as a Uppaal NTA. Open the generated .xml file
in Uppaal, run the verification and wait for an answer.

18

	Introduction to Timed-Arc Petri Nets
	Petri Net
	Timed Tokens and Timed Arcs
	Invariants on Places
	Transport Arcs
	Queries about TAPN Models

	TAPAAL Manual
	User Interface
	Menu bar
	Tool bar
	Drawing area

	Drawing a TAPN
	Verifying the Model

