
Lecture 8: Reactive and Real-time System
Modelling

Exercises:

1. Use the Finite State Machine Explorer to model the “Bank-box Code” example
(pp.20 of slides). If your model is not a reduced one, try to determinize and minimize it
using the corresponding buttons.

2 (Simple Vending Machine).
In this exercise you are required to model a (very) simplified vending machine for
beverage cans. The vending machine is supposed to sell cans (containing some
interesting substance) to customers. In this simplest version, the machine only sells a
single kind of cans where a can cost one single unit (of the currency of your choice). We
also assume that the vending machine has an unlimited number of available cans.
Purchasing a can is usually performed as follows:
 1. The customer inserts a coin into the machine
 2. The customer may now either
 - request a can, or
 - cancel
 3. Depending on the order of the customer the vending machine should either provide a
can or return the coin.

Model in UPPAAL the vending machine. Also make models of various types of
customers including
- a random customer (may at any given moment non-deterministically try to insert a new
coin, cancel an order, ...etc),
- a fair customer (behaving as intended by the machine),
- a non-thirsty user (always cancelling after insertion of coin).

Validate the various configurations (machine and a particular customer) by simulation.
Check for (absence) of deadlock in your model. Try to verify that cans requested will be
delivered, and cancellations are obeyed. What happens if the configuration involves
multiple users (possibly of different type)?

3 (Extended Vending Machine).
Extend the model of the vending machine from the previous exercise so that the price of a
can is 5 units (or coins). Also change the behaviour of the customers so that multiple
coins may be inserted before requesting a can is attempted -- both the machine and the
user should have their own local variable (pendingCoins) for recording the credit of the
customer. When a can is requested the surplus of coins should be given back to the
customer. To make matters simpler you may assume that the user has a limited number
of coins (say 10).

Try to establish the following properties either by simulation or verification:
 1. If the pending amount of money is sufficient (=5) and (only) the button "requestCan"
is pressed then a can will be given out.
 2. A can is only delivered if the pending amount of money is sufficient (=5).
 3. As soon as a can is delivered, the change is given to the customer.
 4. The machine does not lose or produce money.
 5. The amount of pending coins in non-negative.
 6. If cash is pending and (only) the "cancel" button is pressed then the machine will
output all pending coins and no can.

4 (Timed Coffee Machine).
In this exercise you are asked to design the control of a Machine (the control program)
which will serve a coffee craving Person (the environment). As you can see below the
person repeatedly (tries to) insert a coin, (tries to) extract coffee after which (s)he will
make a publication. Between each action the person requires a suitable time-delay before
being ready to participate in the next one.

The machine takes some time for brewing the coffee and will time-out if coffee has not
been taken before a certain upper time-limit.

As a requirement we want the overall behaviour to ensure that the indicated Observer
experiences a constant flow of publications from the system. In particular we want the
Observer to complain if at any time more than 8 time-units elapses between two
consecutive publications. Model the Machine and Observer in UPPAAL and analyze the
behaviour of the system. Try to determine the maximum brewing time allowed by the
Machine in order that the above requirement is met.

