An Introduction to
Reactive and Real-time System

Modelling

(slides by Brian Nielsen)

Agenda

* Finite state machine (FSM)
* High-level FSM languages
* Modelling untimed systems using Uppaal

* Timed automaton (TA)
* Modelling systems using Uppaal

» Verification using Uppaal

Finite State Machine (FSM)

Sys’r;m Structure

System 1

Component 5
Component 1 Component 3

Component 2 Component 4

Component 6

‘How do we model components?
*How do components interact?

‘How do we specify environment assumptions?
How do we ensure correct behaviour?

Component Behavior

Unified Model: State Machine

Input
ports

Control states

Finite State Machine (Mealy machine)

condition effect
current out | outout next
state P PUL L state

tea .

d; coin - op

ep elly - Qs

J3 cof-but cof ol

03 tea-but (1) d,

In Mealy machine the output depends on

the current state as well as the input

Sample run:

coin/ -

coin/- cof-but / cof coin/ -
d; > Q5 > > >

> (3 >0y >

- cof-but / cof
CI2—C'O'IDL> ds >0,

Finite State Machine (Moore machine)

condition effect condition effect

cup-taken Cgtr;fgt (il nextstate current state | activity

a, eelly a, a, need?

d, coin ds d, need1

Qs cof-but 05 ds select

ds tea-but d, Os cof

Qs cup-taken a, d, tea

cof select tea d, cup-taken d,

In Moore machine the output (or “activity”)
depends on the current state only

need2=display shows “insert two coins”

Input-Output FSM (IO-FSM)

condition effect
current state action next state
q, coin? 1,
a, coin? ds
J, cof-but? s
d, tea-but? d,
a, teal ad,
s cof! d,
Sample run:
coin? coin? cof-but? cofl
o} > (s > s »0Js >
coin? coin? cof-but? cofl
d, > 0 » O3 >» 05 ——(Q;

Fully Specified FSM (Mealy)

o7, cof-but / -
“, Jtea-but/ -

tea-b\t / tea

cof-but /

coin / coin

for each state
for each input

condition effect
current T next
state state
a, | coin - a,
q, | coin - s
O3 cof-but cof o
O3 tea-but (1) J,

Mealy FSM as program (1)

e cof-but / -
enum currentState {ql,q2,q3}; “ tea-but/ -

enum Input {coin, cof but,tea but};

int nextStateTable[3][3] = {
Jd2,91,q1,
93,092,492,
a3.ql.q1 F; cof-but / fof :

int outputTable[3][3] = { “..... tga-but /-
0,0,0, i
0,0,0,
coin,cof,tea};

Wwhi le(input=waitForinput()) { coirt/ coin
OUTPUT (outputTable[currentState, input]) Ceanes
currentState:=nextStateTable[currentState, input];

Mealy FSM as program (2)

enum currentState {gl,92,q93};
enum input {coin,cof,tea but,cof but};

While(input=waitForinput){
Switch(currentState){
case ql: { e cof-but / -

switch (input) { . ‘tea-but / -
case coin: currentState:=qg2; break; 3
case cuf but:
case tea but: break;
default: ERROR(’Unexpected Input™);
+
break;
case q3: { cofput / cof (oY : cpf-but / -
switch(input) { :
case cof buf: {currentState:=q3;
OUTPUT (cof) ;
break;}

.

default: ERROR(’unknown currentState™); R
- CO

v,
in:/ coin
} // end of switch .

agus?®

Spontaneous Transitions

condition effect
current input output next
state state
a, | coin i a,
q, | coin i s
o8 cof-but cof d;
ds tea-but tea d;
fix / - - 9 : : =
d4 fix - d;

¥ cof-but / -
.- tea-but/ -
coin / -

alias: internal transition
alias: unobservable transition

Non-deterministic FSM

condition effect
current | input | output next
state state
0, coin _ 0
. coin - Q
g, | coin | s
UL o E g, |tea-but| tea d,

Extended FSM (EFSM)

coin / - these are the
total++ ex‘rended parts

otal> 1 and capacity > 1
i tea-but/tea
capacny—— total:=0

.
.
*
.
.
.
.
.
.
.
.
*
.
.
*
.
*
*
.
.
“
.

total>=2 and capacity >
cof-but / cof
capacity--, total:=

«Can model th@ control aspect as well as the data aspect
«Can be translated into FSM if variables have bounded domains
EFSM state: control location + variables’ valuation

coin / - coin/ - cof-but / cof
(9,,0,10) >(9,,1,10) >(9,,2,10) >(9,,0,9)

Parallel Composition (independent)

(2,2)

* Each with A states

State Explosion Problem

* nparallel FSMs or
EFSMs

* In parallel they have
states

- 1072 =100

- 1073 = 1000
- 1074 = 10000
- 10710 =10000000000

Synchronous Parallel Composition

strict!

Asynchronous Parallel Composition

Single output variable per FSM holds last "written” output

ho handshaking any more!

cof / repoft

-/copin ———

tea

loose ..

Queued Parallel Composition

Output is queued in (un)bounded queue

System state: a snapshot of all (E)FSMs and queues looser ..

Blackboard exercise: Bank-box Code

To open a bank box
the code must contain at least 2 @

To open a bank box
the code must end with @ @ @

To open a bank box
the code mostend with @@ @

orwith @ @ @

To open a bank box T
the code must end with a palindrom a

@ O €0.. 000
® B 0000
® v 00000

Palindrome: Word that reads the same forth and back!

http://www.ultrasonic.com/pix/safe.jpg

Notes

* Palindrome not recognizable by FSM:
infinitely many/long palindromes

* Recognizes bank-box opening sequence:

* Tf non-deterministic:

- determinize it 2 minimize it

Minimized FSM

* Two states sand #are (language)
equivalent iff
* sand 7 accepts same language
* have same traces: fr(s) = 1r(t)

* Two Machines MO and M1 are equivalent iff
initial states are equivalent

* A minimized (or "reduced") M is one that
has no equivalent states

* for no two states s,7, s/=7, s equivalent t

Fundamental Results

* Every FSM may be determinized accepting the same
language (potential explosion in size).

* For each FSM there exists a language-equivalent
minimal deterministic FSM.

 FSM's are closed under n and u

* FSM's may be described as regular expressions (and
vice versa)

Determinization + Minimization

The Finite State Machine Explorer (http://www.belgarath.org/java/fsme.html)

ﬁ The Finite State Machine Explorer
File Help

()] J.n"' ("

Toggle

Move states or connections by dragging them...

| Medium -

Minimize MonDet-» Det

Many other tools for FSM editing, simulation, determinization, minimization, ...
(http://en.wikipedia.org/wiki/List_of_state_machine_CAD_tools)

High-level FSM languages

ﬁ UML State Machines

KEY_NO_HOLDG ¢
OPEMDISPLAYD
LIGHT_OHO

power_off KEY_NO_HOLDG ¢

CLEAR_DISPO)
LIGHT_OFF()
SUAITCH_OFF

UML State Machine
= FSM

+ concurrency
+ hierarchy

piouer_on

Calling

KEY_DIGITSO !
STORE_DIGD
UPDATE_DISFD

try connect

KEY¥_YES() line_ok
SENDMLUINEERT

KEY_DIGITSO ¢
CLEAR_DISPD
STORE_DIGOD

UPDATE_DISPO

4R_DISPO
RESWIRE_DISF

CONNECT(Nine_weak /
DISPLAY_CONG

CALLING_REQ) OFF
CLEAR_DISPD
RING_OFFOILI
KEY_ MO/
CLEAR_DISPD
DISCOMMECTEDD

CONNECT Nine_weak #
OISPLAY_COMD

KEY_YES(1/
RING_OFF(
LIGHT_OHG

DISPLAY_CONG

,Line _Coritral

KEY¥_CLR{1/
DELETE_DIGO
UPDATE_DISPO

INTERN_CLR(¢
CLEAR_DISPO
INT_RESTORED

CALLING_REQUESTY)
LIGHT_BLINKD)
RING_OM)

WEAK_S1G0A

DISPLAT N

CALLING_REQUEST(/
CLEARLOISA0
LIGHT_E

RING_

call_wait

lime_weak

+ broadcast communication

lime_ok

STRONG_SIGO !
FIMGS0
DS PLAY _hlas_S1G0)

LIME_LOSTO ¥
CLEAR_DISPD
TESTGS()
DI5PLAY_HO_51GK)
=tand_by

SWITCHEED

Tool: visualSTATE Designer

Classic Diagram Designer - untitled_vsr - [CD_PLAYER] BEE
Opt \

#1+ Beologic visualSTATE

cd_no_detect

TIME_LEFT

Hierarchical state systems

Flat state systems

Multiple and inter-related state machines
Supports UML notation

a system is specified as a set of interconnected
S D L abstract machines which are extensions of FSM

process MobileSt(1,13

/~ Mobile Station */ it Ini
'ﬁ walt Init4 power Off wait CheckPIM listening
S lthe mabi
MOME _ the mobile can

nithdS {BTS_ID)
PIM_Dkstatusg miave fram o

waitInit1 [ETS_PIDs¢BTS_ID)= send.] 'BTS to anat
: , ..
inithd5 (BETS_ID, The real behaviour
me, IMEI beging here, before it is

odels that

SDL configuration stuff,

EFALSE:l |:THL|E:| CellEntry OrCha..

[ET5_PIDs{BTS_ID)= send.] I N
paceer OFF) ‘Marmally asH N
= me = FIN 3 times IFEning
check PN - 'Frompts ..
I:Duke) I: A S user during
| | Sk Locked new BTS isimulation.
| e waitCheckF M
| | | | o ; ‘Mo, this mokbile
"Wrang P receives from
SIMLocked}
it S IMip isink stat.. BTSreceived, until the
next change of cell”
waitlnit2

™ To store the SDL PID of the Base Tx Stations. Mecessary ‘Display level of the
to send a signal to a given BTS. ™ radio signal received

inith1S (BTS_ID) MEWTYPE BTS_FIDs_t frorm the BTS”

ARRAY(BTS_ID_t, FIDY, Tells where =
[ET5_PIDs(BTS_ID}:= send.] EMDNEWTYPE; lag O V'ETSreceived:.
- {me, BTSreceived, IMEI® Missing in the
. TO
waitlnit3 me Mobile_ID_t, » replaces context parameters ™/ ETS_PIDs¢ETSreceive :Tlsaj G5 koo
. i
1

IMEI IMEI_t, & replaces context parameters.™f
nithS (BTS_ID) poPIM_T, %

status BOOLEARN,

[ETS_FIDs(ETS_ID)= send.] E‘*T”Sdfef:glfsea BTS 1D 1

BTS_FIDs BTS_FIDs_t;
waitinit4

Specification and Description Language (SDL):

- for unambiguous specification and description of the behaviour of reactive and
distributed systems

- defined by the ITU-T (Recommendation Z.100.)

- originally focused on telecommunication systems

- current areas of application include process control and real-time applications in general

ESimulatiun Output

Esterel

a synchronous programming language for the
development of complex reactive systems

eflexGameMormal.scg - ReflexGameMormal #0

I ame

| Walue |

Tuoe

RingBel

TILT

mat Code Coverage Help

= %X|ﬂ ﬁ|ﬂ|®%GQG{| 100 HM::u:IuIe

Gamedver

Go

E | Abbrey |

Dizplay

integer

ReflexG ameM ormal

JarmeM ormal. R emaininghd e

iteger -

ESlmulatmn Control

Hame

| Walue

Coin

Or_nff

Ready

Stop

M5

All | Inputs

— Command

| =X

—Playback Session

ags| s

s | owi |

|

EI @l [V Reset on Loading

Speed

b4

— Dumnp contral
—Waveform

Qutput file

Configuration File

EI Shark |
2] _ede | cop |

ame Dver &7

zustain GameCyer

GAME

mngMeasures > 0]/

asures[MEASURE_MUMBER]

PAUSE_LENGTH M5/
Display(?MEAN/MEASURE_NUMEER]

—Coverage

Qutput file

[T Compack Caverage Files

start |

2

Skop |

Textual Notations for FSM
In: Promela/SPIN In: FSP/LTSA

SERVERV2 (accept.request
->service>accept.reply->SERVERvV2).

CLIENTV2 (call.request
->call._reply->continue->CLIENTV2).

int x;

proctype PQ{
do
o Xx<200 --> x=x+1
od}

| ICLIENT_SERVERvV2 = (CLIENTv2 || SERVERV2)
/{call/accept}.

proctype QO{
do FSP: Finite State Processes

2 x>0 --> x=x-1 LTSA: Labelled Transition System Analyser
od}

proctype R(O{
do

I x==200 --> x=0
od}
init
{run PQO; run QQO; run
ROJ Promela: the input language of tool SPIN

—

SPIN CONTROL 3.1.3 -- 16 March 1998 --) line 41 "pan_in" (state 1f)

_ S . line 23 "pan_in" (state 1&)
File.. | Edit.. | Run.. | Help | SN DESIGN VERIFICATION Line|[Ta : L B3 Bnl b

) = 0, il k0, kLl 1 .
Sm 5 SRk a e ne 63 "never" (state 0) [printf (" MSC:
chan sender =[1] of { byte }; . B - Message Sequence Chart
chan receiver=[1] of { byte }; Line &3 "pan_in' (stz —
proctype Sender ()
i byte any;
agaln:

da Save in:

if
sender?ackl -» hreak
sendec?any /* lost */
tineout f* retransmit +/
fi
od;
do
o receiverImsgl;
if
sender?ackl -» break
sender?any /* lost */
. timeout /* retransmit +/
fi

od;
goto again

¥

ﬁroctwebii;e;;;f() by Ger‘ald HOlzmann at AT&T

again:
do (53]
o receivertmsgl -» senderlackl; break
. receivertmsgl -» sender!ackd 1] 35
o oreceiver?any /* lost */
od;

o receivertmsgl -> senderlack; break

bin/spin -X -p -v -g -1 -5 -r

Verification Dutput 1] B4

jwarning: for p.o. reduction to he valid the never claim must he stutter-closed
(never claims generated from LTL formulae are stutter-closed)
pan: acceptance cycle (at depth 53)
pan: wrote pan_in. trail
(Spin Version 3.1.3 -- 16 March 1998)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:
never-clain
assertion wiolations (if within scope of claim)
acceptance cycles (fairness disahled)
invalid endstates (disabled by never-claim)

State-vector 32 hyte, depth reached 67, errors: 1
35 states, stored (41 visited)
6 states, matched
47 transitions (= visited+matched)
1 stonic steps
hash conflicts: 0 (resolved)
(max size 2°19 states)

2,542 memory usage (Mbyte)

Smaller | Larger | 3ave in: msc.ps | Close | _| Preserve

Save in: |p123.0ut Clear Close | | [

Modelling Untimed Systems
using Uppaal

Uppaal

* An integrated tool environment for ,
simulation and verification of real-time systems
modelled as networks of timed automata,
extended with data types

* However, it is also capable of untimed system
modelling, simulation and verification

Copyright 1;é!—“—-ﬂm&-hﬂ.lppﬂli BIRIEr=ity and Aalborg University. All rights reserved
More Information SEmiEs Luppaa’. com

UPPAAL 4.0.3 (rey. 2758}, Ockober 2006,

Uppaal Verification as a box...

System description
Timed Automata in Uppaal Editor

\/ Diagnostic Information
ﬁ Uppaal N\
Yes! P‘
V)

Requirement specification
Temporal logic formula

Working Modes of Uppaal

Verification

Uppaal Simulator Screenshot

Templates Wiew Queries Options Help

=3 | @ ® | @,

File

% @

System Editor Simulator l Verifier

Drag ouk

Drag ouk

)

Enabled Transitions

(cc.4.recordSpeed!, sc.8 recordSpeed?

eed!, sc.6.speed?)

Mk I Reset I

Simulation Trace

(-, inactive, disabled, -, -
(u.1.engineon!, cc.l.engineCn?)

(-, -, disabled, -, -)
(cc.2.cdearSpeed!, sc.7. clearspesd?)
(-, active, disabled, -, -

(u.3.0nl, cc.3.0n?)

(-, on_requested, disabled, -, -

(e.2.speed, sc.6.5peed?)

Trace File: j

Prew

Cpen

fariables

eln 1
bhrk = 0O
throttleContr
time = 0

dizable Cortr!

engine 0
throttle Cortml =0

PR, 3

D

inactive

angine0n’®

dlearSpesd!

active C ¥

on’¥

an_requested (.

engine0ff?

engine D;F?' :

thmitle Control =0

on’?

record Spesd |

resume T

enable Control!
throttle Control =

aczalerator?
throttle Corrol =0

u CC

SC e

ufiz

enginedn

E

clearSpeead

[active]

[disa

- || an_reguested

EI [inan|:twe] I[Imsa|medllggl

FSM in Uppadl

* Basically an Extended FSM (variables, guards,
assignments)

0in?, cof_but?, te

a_but?

LTS can be viewed as
a degradation of
finite state machine
(FSM)

Home-Banking?

int accountA, accountB; //Shared global variables

//Two concurrent bank costumers

Thread costumer2 () {
int a.b-

a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;

* Are the accounts in balance after the transactions?
* Suppose initially: accountA + accountB = 200
* Note that local variables a, b are shared by the two threads

Home-Banking

accountA = 100
accountB = 100

a=0
b=0
accountA = 90
e accountB = 100
computing a=90
a:=a-20, b=
b =h+20
accountA = 90 . z :EJII:II:IZII_JI'It"'.Z=:-
accountB = '
0:90 i — B it (2
az %o)) writeB
accountB: =g accountA = 70
accountB = 120
Inished w finished a=70
a=70 b=120
b=120

A[]l (pcl.finished and pc2.finrgked) imply (accountA+accountB==200)7?

Home-Banking: another attempt

int accountA, accountB; //Shared global variables
Semaphore A,B; //Protected by sem A,B

exclusive access to shared variables via
//Two concurrent bank costumers semaphore

Thread costumer2 () {
int a,b;

wait(B);
wait(A);
a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;
signal(B);
signal(A);

}

- semaphore: a special kind of boolean variables.

- wait(A): if A is frue, go to next sentence and set A to false; if A is false, just wait
here until A becomes true

- signal(A): set A to true

Home-Banking: another attempt

’Q}

, 1 requests
7 requests,

wait_Bl
~ requestB 1““'4”'“ STA

mc2 bsem1 hsem?

& =accounta, 3 =5CCOUntA, | r'EE]IJEE:t-'i'-.] | requestl | | Open | | open |

br=accountB b= 1||||IJr|tE

[requests | [clased]

Wit Al
) crifical_section) critical_section

a=a-10,

a0,
bi=h+10 1 e

=h+2 II

i
Accounts = l
!
&

[requesta |

accountd =a

accounts:=h accountB:=h

1. Consistency? (Balance)
2. Race conditions?
3

Deadlock?

releases 1,,_.|,_._1 s
signal_A
signal B
1 releasel
)released

signal_B|

signal_Al (I
,.1 finished \,_.:::I finished Semaphor‘e Really Wor'kS!

1. A[] (ncl.finished and mc2.finished) imply (accountA+accountB::200)«/
2. E<> mcl.critical _section and mc2.critical_section v
3. AIl not (mcl.finished and mc2.finished) imply not deadlock

Semaphore FSM Model

The critical resource can be simultaneously

The critical resource can be accessed accessed by at most n threads! (restricted
by only one thread! (exclusive access) shared access)

.
*

*
*
*

Binary Semaphore

....... CIUSEd

wait: a thread wants to occupy this semaphore
signal: a thread wants to release this semaphore

Composition
IO Automata (2-way synchronization)

or pairwise synchronization

6 6 &

h! h?

LT e
mye

Composition
10 Automata

Modelling Processes

* A process is the execution of a sequential program

* modelled as a labelled transition system (LTS)
* transits from state to state
* by executing a sequence of atomic actions.

a light switch
LTS

a sequence of actions

on>off>on>off>on>off>

o] &

a frace

Modelling Choices

- Who or what makes the choice?

* Is there a difference between input and output actions?

Non-deterministic Choice

* Tossing a coin

* Possible traces?
* Both outcomes possible

Nothing said about relative frequency
- If coinis fair, the outcome is 50/50

Non-deterministic Choice
modelling failure

How do we model an unreliable communication channel which

accepts packets, and if a failure occurs produces no output,
otherwise delivers the packet to the receiver?

Use non-determinism...

Internal Actions

* Internal actions also called
* spontaneous actions, or
tau-actions

« Internal transitions can be taken on the initiative

of machine coupling with another
one

conn_reqi

) =1 CC |:iu g™ o

W/ Computing

A =a-amount
) "'tl+-HIIII|HIt .

Modellmg E’rende FSM (EFSM)

capacny>1

capacrty — | ___________ _______________________________ e __________ ___________ _______
: : con1 : :

‘EFSM = FSM + variables + + assignments
*Transition still atomic

Can be translated intfo FSM if variables have bounded domains
-State: control location + variables' valuation

‘(state, total, capacity), e.g.: (sO, 5, 10)

Uppaal Network of Automata

Global shared variables:
int accountA, accountB:

Local control:

Local variables:
int a,b;
Local control:

Local variables:
int a,b;
Local control:

wait_A

signal_A

- ',.,Ir'EIZ1IJEE:t-'5'-. | | Wait A @r-eque:z:tEi
glopalwalg_Al closed e
i alobalaj
.\J requests : signaI_A euests,
dlobal wait_Al - val
) ; wait_B
) critical_section | — \,] critical_section

a=accaunts

) _ SrEa I gnal B

S|gna|_B a=accounts o

)

hi=accou I'ItE;.
j

bi=accountd |

a=a-ten,
h=h+ten 1

-system state = snapshot of (all machines’ control locations + local variables

+ global variables)
e.g.: mcl.control=requestB, mcl.a=0, mcl.b=0,

mc2.control=requestB, mc2.a=0, mc2.b=0,
bseml.control=closed, bsem2.control=open,
accountA=100, accountB=100

Process Interaction

\

- "I" denotes output, " denotes input
* Handshake communication
* Two-way

University=

Coffee Machine Lecturer Coffee Machine || Lecture

cof_but!

4 states

synchronization results in internal actions

How many states?

Traces ?
4 states:

(interactions constrain overall behavior)

Broadcasts

chan coin, cof, cofBut;
join;

* the sending party: one automaton outputs join!

* the receiving party: several automata accept joinl,
each of them makes a move upon receiving join,
ie. every automaton with enabled " join?" transition moves
In one step
* the number of recipients may be O (one "speaker”,
but no "audience")

Committed Locations

 Locations marked “C"
No delay in committed location

Next transition must involve one of those
automata in committed locations

Handy to model atomic sequences

An “input/output”-style transition of -
machine can be modelled by 2 atomic RS SO
actions “input?” and "output!”, which are a:Fa-amount;
connected by a h:zh+a

The use of committed locations
significantly reduces the state space of a

S F ac;counéﬂ:aé
model, thus allows for more efficient A
analysis and verification ;

acfcc:-u ntéB:=b§

sO to s5 executed atomically
they will not be interrupted

The Cruise Controller

engineOff, engineOn, acc, brake

on, off, resume
Controller

CruiseControl

enableControl,
disableControl, recordSpeed

SpeedControl

setThrottle l ‘ speed

Timed Automata

Real-time Systems

1 - The "environment"

Continuous

Realtime Protocols
Pump Control

Air Bags

Robots

Cruise Control
ABS

CD Players
Production Lines

S,

Controller Program
Discrete

Real Time System

A system where correctness not only
depends on the logical order of events
but also on their

Real-time System Modelling

Plant

Continuous

Controller Program
Discrete

Model of
Tasks

(user supplied
/automatic?)

Model of
Environmen
(non-determi

Istic/ b~
User-supplied) z

An Intelligent Light Control

press?
X<=3 g
press?

WANT: if “press” is issued twice
then the light will get brighter; if “press” Is issued
twice slowly the light is turned off.

X=>3
press?

Solution: Add a real-type variable (a real-valued clock) x

Timed Automata

(Alur & Dill 1990)

| Clocks X, y
N & Guard

Boolean combination of comp with
integer bounds

Action Reset
used Action performed on clocks

for synchronization

_a State
(location, x=v, y=u) where v,u are in R
xX:=0 Transitions
| _
e (n,x=2.4,)y=3.1415) e(1.1)
&i (n, x=3.5, y=4.2415)

Timed Automata

location invariants

\ &

Clocks: x, y

Transitions
e(3.2)
(n,x=2.4, y=3.1415) - >

e(1.1
(n, x=2.4, y=3.1415) (4]
(n, x=3.5, y=4.2415)

Invariants ensure progress!!

you can stay in this location
you must leave before the deadline!

Reachable?

(LO,x=0,y=0)
98(1.4)
(LO,x=1.4,y=1.4)
%a
(LO,x=1.4,y=0)
98(1.6)
(LO,x=3.0,y=1.6)
9a
(LO,x=3.0,y=0)

Zones

from infinite to finite

*

a state a symbolic state (set)
(n, x=3.2, y=2.5) (n, 1<x<4,1<y<3)

\ one:

conjunction of
y 4 y 4 X-y<=n, X<=>n

this is a time zone

Symbolic Transition

1<x<4
1<y<3
y

n
N
X=>3
y
a
X

y =0 3<X,
 Z yZO

m

Thus (n,1<x<4,1<y<3) =a=>(m, 3<x, y=0)

Finite symbolic simulation graph and _
reachable states can be computed

Modelling Systems
using Uppaal

The Uppaal Model

= Networks of Timed Automata + Integer Variables +....

\6/ \‘ Two-way synchronization

y<=4 on complementary
............. actions.

Closed Systems!

Example transitions

(11, m1 x=2 y=3.5,/=3..) BU go2m2 ..., x=0, y=3.5,i=7,...)

0.2
L (/1,md1,........, x=2.2, y=3.7, i=3,.....)

Modelling using Uppaal ...

& vyl s Wby w8 e paina | - IFFRAL

[T Ll
y, L
HE= |

Crag md

i bran-uta
skl vt sl

IR AL) i

Traird Apra

Verification

Timed Automaton of Coffee Machine

Possible users-model
Machine Model

Touch Sensative Light Controller

Interface

starthold?
L

an==0 ”x / on=="
touch? 1 / touch’

L:=0L, O oL=L,
an=1 FAnaN L:=0,
4 ™ on=0

& LightController

Light Controller

Verification using Uppaal

Uppaal as a box...

System description
Timed Automata in Uppaal Editor

K' Uppaal

Requirement specification
Temporal logic formula

J Diagnostic Information

Verification

What does Verification do

Compute a// possible execution sequences

And consequently o examine a// states of the
system

Exhaustive search => proof

Checklf

every state encountered does not have the undesired
property --> safety property

* some state encountered has the desired property -->
reachability property

Properties

* Safety
* Nothing bad happens during execution

* System never enters a bad state
Eg. mutual exclusion on shared resource

diffent from reachability property

* Liveness
- Something good eventually happens

* Eventually reaching a desired state

Eg. a process’ request for a shared resource is
eventually granted

UPPAAL Property Specification Language

*All p *E<>p
*A<> p *E[10p
o P ——> q

p::=a.l 1 g, 1 9.1 p and p |

porp | notp]| p imply p |
(p) | deadlock(only for A[],E<>)

A[] (mcl.finished and mc2.finished) imply (accountA+accountB==200)

Uppaal "Computation Tree Logic”

E<> p P055/b/e ALL p

(reachability) ; SRR

SN potenially aivays S p -=>

)ﬂ (liveness) (guaranteed

response)

E; :

State Space Exploration

Int count:=1

count==1

L OO @

« Each trace = a program execution

» Uppaal checks 2!l traces

* Is count possibly 3 ? E<> count==3
* |s count always 1 ? A[] count==1

Reachability Analysis

Passed:=0 //already seen states
waiting:={S 0} //states not examined yet
While(waiting!=0@) {
warting:=waiting\{s 1}
iIT s 1 ¢ Passed
whenever (s_J —» s jJ) then
waiting:=waiting U S j

by
Depth-First: maintain waiting as a Order:0136748259
Breadth-First: maintain waiting as a Order:0123456789

(shortest counter example)

'State Explosion’ problem

Limitations to Reachability Analysis

n parallel FSMs
k states each
states in parallel

| State Space /
Time Usage /
Memory Usage

composition
o
Random - low coverage
e 1072 =100
1 Controlled partial / * 1073 =1000
e 1074 = 10000

1077 e 10710=10000000000

Exhaustive feasibl

system size
(#parallel processes)

What Influences System Size?

* Number of parallel processes
* Amount of non-determinism

* Queue sizes

* Range of discrete data values

* Environment assumptions
* Speed
* Kinds of messages that can be sent in what
states

* Data values

Counter Measures

Use abstraction, simplification
* Only model the aspects relevant for the property in question

Economize with (loosely synch'ed) parallel processes
Make precise assumptions and restrictions

Range of data values
* Use bounded data values: integer (0:4);
* Reset variables to initial value whenever possible
* Avoid complex data structures

Partial (controlled) search heuristics
* Bit-State hashing
* Limit search depth

* Restrict scheduling
Priority to internal transitions over env input
Schedule process in FIFO style rathar than ALL interleavings

Does verification guarantee
correctness?

* Only models verified,
not (physical)
implementations

* Made the right model?

* Properties correctly
formulated?

* The right properties?
* Enough properties?

- System size too large
for exhaustive check

* Modelling effort itself

revealing

* Increased confidence

earlier

* Cheaper
» Even partial and

random search
increases confidence

Next lecture
- Model-Based Testing

	An Introduction to �Reactive and Real-time System Modelling
	Agenda
	Finite State Machine (FSM)
	System Structure
	Component Behavior	
	Finite State Machine (Mealy machine)
	Finite State Machine (Moore machine)
	Input-Output FSM (IO-FSM)
	Fully Specified FSM (Mealy)
	Mealy FSM as program (1)
	Mealy FSM as program (2)
	Spontaneous Transitions
	Non-deterministic FSM
	Extended FSM (EFSM)
	Parallel Composition (independent)
	State Explosion Problem
	Synchronous Parallel Composition
	Asynchronous Parallel Composition
	Queued Parallel Composition
	Blackboard exercise: Bank-box Code
	Notes
	Minimized FSM
	Fundamental Results
	Determinization + Minimization
	High-level FSM languages
	UML State Machines
	SDL
	Esterel
	Textual Notations for FSM
	Uppaal
	Uppaal Verification as a box…
	Working Modes of Uppaal
	Uppaal Simulator Screenshot
	FSM in Uppaal
	Home-Banking?
	Home-Banking
	Home-Banking: another attempt
	Home-Banking: another attempt
	Semaphore FSM Model
	Composition�IO Automata (2-way synchronization)
	Composition� IO Automata
	Modelling Processes
	Modelling Choices
	Non-deterministic Choice
	Non-deterministic Choice�modelling failure
	Internal Actions
	Modelling Extended FSM (EFSM)
	Uppaal Network of Automata
	Process Interaction
	Broadcasts
	Committed Locations
	The Cruise Controller
	Timed Automata
	Real-time Systems
	Real-time System Modelling
	An Intelligent Light Control
	Timed Automata
	Timed Automata
	Example
	Zones�from infinite to finite
	Symbolic Transition
	The Uppaal Model�= Networks of Timed Automata + Integer Variables +….
	Modelling using Uppaal …
	Timed Automaton of Coffee Machine
	Touch Sensative Light Controller
	Verification using Uppaal
	Uppaal as a box…
	What does Verification do
	Properties
	UPPAAL Property Specification Language
	Uppaal “Computation Tree Logic”
	State Space Exploration
	Reachability Analysis
	‘State Explosion’ problem
	Limitations to Reachability Analysis
	What Influences System Size?
	Counter Measures
	Does verification guarantee correctness?
	Next lecture�– Model-Based Testing!

