
An Introduction to 
Reactive and Real-time System 

Modelling
(slides by Brian Nielsen)



Agenda
• Finite state machine (FSM)
• High-level FSM languages
• Modelling untimed systems using Uppaal

• Timed automaton (TA)
• Modelling timed systems using Uppaal

• Verification using Uppaal



Finite State Machine (FSM)



System Structure
System 1

Component  1

Component  2

Component  3

Component  6

Component  5

Component  4

•How do we model components?
•How do components interact?
•How do we specify environment assumptions?
•How do we ensure correct behaviour?



Component Behavior

Unified Model: State Machine

a

b

x

y
a?

b?

x!

y!b?

Control states

Input
ports

Output
ports



Finite State Machine (Mealy machine)
q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q1,q2,q3}
Initial state = q1
Transitions= {

(q1, coin, -, q2),
(q2, coin, -, q3),
(q3, cof-but, cof, q1),
(q3, tea-but, tea, q1) 
}

condition effect
current 
state input output next 

state
q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

Sample run:

coin/ - coin/- coin/ -cof-but / cof

coin/ -

q1 q2 q3 q1

q2
cof-but / cof q1q3

In Mealy machine the output depends on 
the current state as well as the input



Finite State Machine (Moore machine)
q1

q2

q3

coin

tea-butcof-but

condition effect

current 
state

input next state

q1 coin q2

q2 coin q3

q3 cof-but q5

q3 tea-but q4

q5 cup-taken q1

q4 cup-taken q1

q4q5

coin

cup-taken

teacof

cup-taken

select

need1

need2

Input sequence: coin.coin.cof-but.cup-taken.coin.cof-but
Output sequence: need2.need1.select.cof. need2.need1.select.cof

need2=display shows “insert two coins”

In Moore machine the output (or “activity”)
depends on the current state only

condition effect

current state activity

q1 need2

q2 need1

q3 select

q5 cof

q4 tea



Input-Output FSM (IO-FSM)

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q1,q2,q3}
Initial state = q1
Transitions= {

(q1, coin, q2),
(q2, coin, q3),
(q3, cof-but, q5),
(q3, tea-but, q4), 
(q4, tea, q1),
(q5, cof, q1)
}

condition effect

current state action next state

q1 coin? q2

q2 coin? q3

q3 cof-but? q5

q3 tea-but? q4

q4 tea! q1

q5 cof! q1

Sample run:

coin? coin? cof!cof-but?

coin?

q1 q2 q3 q5

cof! q1q3

action trace: coin?.coin?.cof-but?.cof!.coin?.coin?.cof-but?.cof!
input sequence: coin.coin.cof-but.coin.coin.cof-but
Output sequence: cof.cof

q1

q2

q3

coin?

tea-but?cof-but?
q4q5

coin?

cof! tea!

cof-but? q5
coin?q1 q2



Fully Specified FSM (Mealy)

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

condition effect
current 
state input output next 

state

q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

q1 tea-but - q1

q2 cof-but - q2

q2 tea-but - q2

q1 cof-but - q1

q3 coin coin q3

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -

for each state
for each input

...



Mealy FSM as program (1)
enum currentState {q1,q2,q3};
enum input {coin, cof_but,tea_but};
int nextStateTable[3][3] = { 

q2,q1,q1, 
q3,q2,q2,
q3,q1,q1 };

int outputTable[3][3] = { 
0,0,0, 
0,0,0,
coin,cof,tea};

While(input=waitForInput()) {
OUTPUT(outputTable[currentState,input])
currentState:=nextStateTable[currentState,input];

}

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -



Mealy FSM as program (2)
enum currentState {q1,q2,q3};
enum input {coin,cof,tea_but,cof_but};

While(input=waitForInput){
Switch(currentState){
case q1: {

switch (input) {
case coin: currentState:=q2; break;
case cuf_but:
case tea_but: break;
default: ERROR(”Unexpected Input”);
}

break;
case q3: { 

switch(input) { 
case cof_buf: {currentState:=q3;

OUTPUT(cof);
break;}

…
default: ERROR(”unknown currentState”);

} // end of switch

}

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -



Spontaneous Transitions
q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

condition effect
current 
state

input output next 
state

q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

q3 - - q4

q4 fix - q1

q4

fix / -

cof-but / -
tea-but / -
coin / -

- / -

alias: internal transition 
alias: unobservable transition

A spontaneous transition is a transition 
in response to no input at all.



Non-deterministic FSM
condition effect

current 
state

input output next 
state

q1 coin - q2

q1 coin - q1

q3 cof-but cof q1

q2 coin - q3

q3 tea-but tea q1 

q3 cof-but mocca q1

q1

q2

q3

coin / -
tea-but / teacof-but / cof

coin / -

coin / -

cof-but / mocca



Extended FSM (EFSM)

q1

coin / -
total++

total>=2 and capacity > 1
cof-but / cof
capacity--, total:=0

•EFSM = FSMs + variables + enabling conditions + assignments
•Can model the control aspect as well as the data aspect
•Can be translated into FSM if variables have bounded domains
•EFSM state: control location + variables’ valuation

total>=1 and capacity > 1
tea-but / tea

capacity--, total:=0

coin / -(q1,0,10) (q1,1,10) coin / - (q1,2,10) cof-but / cof (q1,0,9) 

or "guard"

(q,total,capacity)

called “flattening"

these are the 
extended parts



Parallel Composition (independent)

q1

q2

q3

j++

j++

p1

p2

p3

i++

i++

P Q
P || Q
(p1, q1)

(p2, q1)

(p2, q2)

(p1, q2)

i++

j++

j++ i++
(p3, q1)

i++

(p1, q3)

j++

(p3, q2)

(p3, q3)

(p2, q3)

i++
j++

i++

i++

j++

j++

(0,0)

(1,0)

(2,0)

(2,1)

(2,2)

(1,2)

(0,2)

(0,1)

(1,1)

interleaving "execution“



State Explosion Problem
• n parallel FSMs or 

EFSMs
• Each with k states
• In parallel they have 

kn states 
• EXPONENTIAL!

• 10^2 =100
• 10^3 = 1000
• 10^4 = 10000
• 10^10 =10000000000



Synchronous Parallel Composition

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof
coin / -

p1

p2

p3

- / coin

cof / cof-but

p3

- / coin 

-/ report

Handshake on complementary actions
e.g., one “sending” with another “receiving”

strict!



Asynchronous Parallel Composition

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

p1

p2

p3

- / coin 

- / cof-but

p3

- / coin 

cof / report

Single output variable per FSM holds last “written” output

no handshaking any more!

loose ..



Queued Parallel Composition

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

p1

p2

p3

- / coin 

-/ cof-but

p3

- / coin 

cof/ report

System state: a snapshot of all (E)FSMs and queues

Output is queued in (un)bounded queue
The queue may be per process (component), 
per action, or explicitly defined

looser ..



Blackboard exercise: Bank-box Code

To open a bank box
the code must contain at least 2 

To open a bank box
the code must end with

To open a bank box
the code must end with a palindrom
e.g:. O

B
Y

……..

?

To open a bank box
the code most end with

or with

!!

Palindrome: Word that reads the same forth and back!

http://www.ultrasonic.com/pix/safe.jpg


Notes
• Palindrome not recognizable by FSM: 

infinitely many/long palindromes

• Recognizes bank-box opening sequence:

• If non-deterministic: 
determinize it minimize it



Minimized FSM
• Two states s and t are (language) 

equivalent iff
• s and t accepts same language
• have same traces: tr(s) = tr(t)

• Two Machines M0 and M1 are equivalent iff
initial states are equivalent

• A minimized (or “reduced”) M is one that 
has no equivalent states
• for no two states s,t, s!=t,  s equivalent t



Fundamental Results

• Every FSM may be determinized accepting the same 
language (potential explosion in size).

• For each FSM there exists a language-equivalent
minimal deterministic FSM.

• FSM’s are closed under ∩ and ∪

• FSM’s may be described as regular expressions (and 
vice versa)



Determinization + Minimization
The Finite State Machine Explorer (http://www.belgarath.org/java/fsme.html)

Many other tools for FSM editing, simulation, determinization, minimization, ...
(http://en.wikipedia.org/wiki/List_of_state_machine_CAD_tools)



High-level FSM languages



UML State Machines
UML State Machine
= FSM 

+ concurrency 
+ hierarchy
+ broadcast communication



Tool: visualSTATE Designer

• Hierarchical state systems
• Flat state systems
• Multiple and inter-related state machines
• Supports UML notation



SDL

Specification and Description Language (SDL):
- for unambiguous specification and description of the behaviour of reactive and 
distributed systems
- defined by the ITU-T (Recommendation Z.100.)
- originally focused on telecommunication systems
- current areas of application include process control and real-time applications in general

a system is specified as a set of interconnected 
abstract machines which are extensions of FSM



Esterel a synchronous programming language for the 
development of complex reactive systems

the development environment: Esterel Studio



Textual Notations for FSM

int x;
proctype P(){
do
:: x<200 --> x=x+1
od}

proctype Q(){
do
:: x>0 --> x=x-1
od}

proctype R(){
do
:: x==200 --> x=0
od}

init 
{run P(); run Q(); run 
R()}

SERVERv2 = (accept.request
->service>accept.reply->SERVERv2).

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

FSP: Finite State Processes
LTSA: Labelled Transition System Analyser

Promela: the input language of tool SPIN

In: Promela/SPIN In: FSP/LTSA



SPIN, by Gerald Holzmann at AT&T



Modelling Untimed Systems
using Uppaal



Uppaal
• An integrated tool environment for modeling, 

simulation and verification of real-time systems 
modelled as networks of timed automata, 
extended with data types

• However, it is also capable of untimed system 
modelling, simulation and verification



Uppaal Verification as a box…

System description
Timed Automata in Uppaal Editor

Requirement specification
Temporal logic formula

Yes!

No!
Diagnostic Information

UppaalUppaal



Working Modes of Uppaal



Uppaal Simulator Screenshot



FSM in Uppaal
• Basically an Extended FSM (variables, guards, 

assignments)
• Also may be thought of as an LTS, or IO Automaton

• actions are either inputs or outputs
• internal actions are not explicitly given LTS can be viewed as 

a degradation of 
finite state machine
(FSM)



Home-Banking?

• Are the accounts in balance after the  transactions?
• Suppose initially: accountA + accountB = 200
• Note that local variables a, b are shared by the two threads

int accountA, accountB; //Shared global variables

//Two concurrent bank costumers

Thread costumer1 () { 
int a,b; //local tmp copy

a=accountA;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;

}    

Thread costumer2 () { 
int a,b;

a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;

} 



Home-Banking

A[] (pc1.finished and pc2.finished) imply (accountA+accountB==200)?

accountA = 100
accountB = 100
a = 0
b = 0

accountA = 90
accountB = 100
a = 90
b = 110

accountA = 90
accountB = 100
a = 90
b = 100

accountA = 70
accountB = 120
a = 70
b = 120

accountA = 70
accountB = 120
a = 70
b = 120



Home-Banking: another attempt
int accountA, accountB; //Shared global variables
Semaphore A,B; //Protected by sem A,B

//Two concurrent bank costumers

Thread costumer1 () { 
int a,b; //local tmp copy

wait(A);
wait(B);
a=accountA;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;
signal(A);
signal(B);

}    

Thread costumer2 () { 
int a,b;

wait(B);
wait(A);
a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;
signal(B);
signal(A);

} 

exclusive access to shared variables via 
semaphore

- semaphore: a special kind of boolean variables.
- wait(A): if A is true, go to next sentence and set A to false; if A is false, just wait 
here until A becomes true
- signal(A): set A to true



Home-Banking: another attempt

1. A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)
2. E<> mc1.critical_section and mc2.critical_section
3. A[] not (mc1.finished and mc2.finished) imply not deadlock ÷

1. Consistency? (Balance)
2. Race conditions?
3. Deadlock?

Semaphore Really Works!



Semaphore FSM Model

Binary Semaphore Counting Semaphore

wait: a thread wants to occupy this semaphore
signal: a thread wants to release this semaphore

The critical resource can be accessed 
by only one thread! (exclusive access)

The critical resource can be simultaneously 
accessed by at most n threads! (restricted 
shared access)



Composition
IO Automata (2-way synchronization)

A

B

X

Y

h! h?

AX

BY

or pairwise synchronization

sending or 
writing

receiving or 
reading

or “handshaking”



Composition
IO Automata

A

B

X

Y

h! h?

AX

BY
C

k!

CX

k!



Modelling Processes
• A process is the execution of a sequential program 
• modelled as a labelled transition system (LTS) 

• transits from state to state
• by executing a sequence of atomic actions.

a light switch 
LTS

on off on off on off ……….
a sequence of actions

or 

a trace



Modelling Choices

• Who or what makes the choice?

• Is there a difference between input and output actions?



Non-deterministic Choice
• Tossing a coin

• Possible traces?
• Both outcomes possible
• Nothing said about relative frequency
• If coin is fair, the outcome is 50/50



Non-deterministic Choice
modelling failure

How do we model an unreliable communication channel which 
accepts packets, and if a failure occurs produces no output, 
otherwise delivers the packet to the receiver?

Use non-determinism...



Internal Actions
• Internal actions also called

• spontaneous actions, or
• tau-actions

• Internal transitions can be taken on the initiative 
of a single machine without coupling with another 
one



Modelling Extended FSM (EFSM)

•EFSM = FSM + variables + enabling conditions + assignments
•Transition still atomic
•Can be translated into FSM if variables have bounded domains
•State: control location + variables’ valuation
•(state, total, capacity), e.g.: (s0, 5, 10)



Global shared variables:
int accountA, accountB;

Uppaal Network of Automata

Local variables:
int a,b;
Local control:

•system state = snapshot of (all machines’ control locations + local variables 
+ global variables)

e.g.: mc1.control=requestB, mc1.a=0, mc1.b=0,
mc2.control=requestB, mc2.a=0, mc2.b=0,
bsem1.control=closed, bsem2.control=open, 
accountA=100, accountB=100

Local variables:
int a,b;
Local control:

Local control:

Local control:

wait_A

signal_A

wait_A

signal_A

wait_B

signal_B
wait_B

signal_B

wait_A

wait_B

signal_A

signal_B



Process Interaction
• “!” denotes output, “?” denotes input
• Handshake communication
• Two-way

Coffee Machine Lecturer 
University=
Coffee Machine || Lecturer

4 states
4 states

4 states:
(interactions constrain overall behavior)

synchronization results in internal actions

=

LTS?
How many states?
Traces ?



Broadcasts

• the sending party: one automaton outputs join!
• the receiving party: several automata accept join!,

• each of them makes a move upon receiving join!,
• ie. every automaton with enabled “join?” transition moves 

in one step
• the number of recipients may be 0 (one “speaker”, 

but no “audience”) 

chan coin, cof, cofBut;
broadcast chan join;



Committed Locations
• Locations marked “C”

• No delay in committed location
• Next transition must involve one of those 

automata in committed locations

• Handy to model atomic sequences
• An ”input/output”-style transition of Mealy

machine can be modelled by 2 atomic
actions ”input?” and ”output!”, which are
connected by a committed location

• The use of committed locations 
significantly reduces the state space of a 
model, thus allows for more efficient 
analysis and verification

s0 to s5 executed atomically
they will not be interrupted



The Cruise Controller

Engine

User

Controller

SpeedControl

CruiseControl

speedsetThrottle

engineOff, engineOn, acc, brake
on, off, resume

enableControl,
disableControl, recordSpeed



Timed Automata



Real-time Systems

sensors

Plant
Continuous

Controller Program
Discrete

actuators

Eg.: 
•Realtime Protocols
•Pump Control
•Air Bags
•Robots
•Cruise Control
•ABS
•CD Players
•Production Lines

Real Time System
A system where correctness not only
depends on the logical order of events
but also on their timing!!

We are interested in this one!The "environment"



Real-time System Modelling

sensors

Plant
Continuous

Controller Program
Discrete

actuators

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UppaaL Model

Model of
Environment
(non-deterministic/
User-supplied)

Model of
Tasks
(user supplied
/automatic?)

inputs

outputs



Off Bright
press?

press?

press?

WANT: if “press” is issued twice quickly 
then the light will get brighter; if “press” is issued 
twice slowly the light is turned off.

press?

An Intelligent Light Control

Light

Solution: Add a real-type variable (a real-valued clock) x

X:=0 X<=3

X>3



Timed Automata

n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Guard 
Boolean combination of comp with
integer bounds

Reset
Action performed on clocks

Transitions

(Alur & Dill 1990)

( n , x=2.4 , y=3.1415 )
( n , x=3.5 , y=4.2415 )

e(1.1)

( n , x=2.4 , y=3.1415 )
( m , x=0 , y=3.1415 )

a

State
( location , x=v , y=u ) where v,u are in R

Action
used

for synchronization



n

m

a

Clocks:  x, y

x<=5 & y>3

x := 0

Transitions

( n , x=2.4 , y=3.1415 )
( n , x=3.5 , y=4.2415 )

e(1.1)

( n , x=2.4 , y=3.1415 )
e(3.2)

x<=5

y<=10

Location
Invariants

g1
g2 g3

g4

Invariants ensure progress!!

location invariants

Timed Automata 

you cannot stay in this location forever;
you must leave before the deadline!



Example

Reachable?

x

y

(L0,x=0,y=0)
ε(1.4)

(L0,x=1.4,y=1.4)
a

(L0,x=1.4,y=0)
ε(1.6)

(L0,x=3.0,y=1.6)
a

(L0,x=3.0,y=0)

a b

c

ε(1
.4)

a aε(1
.6)



Zones
from infinite to finite

a state
(n, x=3.2, y=2.5 )

x

y

x

y

a symbolic state (set)

Zone:
conjunction of
x-y<=n, x<=>n

(n, 1≤ x ≤ 4, 1 ≤ y ≤ 3)

this is a time zone

a bunch of concrete states



Symbolic Transition

n

m

x>3

y:=0

delays to

conjuncts to

projects to

x

y
1≤x≤4
1≤y≤3

x

y
1 ≤ x,
1 ≤ y,
-2 ≤ x-y ≤ 3

x

y 3<x,
1 ≤ y,
-2 ≤ x-y ≤ 3

3<x,
y=0

x

y

Thus  (n,1 ≤ x ≤ 4,1 ≤ y ≤3)  = a => (m, 3 < x, y=0)Thus  (n,1 ≤ x ≤ 4,1 ≤ y ≤3)  = a => (m, 3 < x, y=0)

a

Finite symbolic simulation graph and 
reachable states can be computed

this is a symbolic transition (a 
bunch of concrete transitions)



ModellingTimed Systems
using Uppaal



The Uppaal Model
= Networks of Timed Automata + Integer Variables +….

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

………….
Two-way synchronization
on complementary 
actions.

Closed Systems!

Two-way synchronization
on complementary 
actions.

Closed Systems!

(l1, m1,………, x=2, y=3.5, i=3,…..)              (l2,m2,……..,x=0,  y=3.5, i=7,…..)

(l1,m1,………,x=2.2, y=3.7, i=3,…..)
0.2

tau

Example transitions



Modelling using Uppaal …



Timed Automaton of Coffee Machine

Possible users-model

coin?

thinCof!

strongCof!

request?

Machine Model



Touch Sensative Light Controller

•Patient user: Wait=∞
•Impatient: Wait=15



Verification using Uppaal



Uppaal as a box…

System description
Timed Automata in Uppaal Editor

Requirement specification
Temporal logic formula

Yes!

No!
Diagnostic Information

UppaalUppaal



What does Verification do
• Compute all possible execution sequences

• And consequently to examine all states of the 
system

• Exhaustive search => proof

• Check if
• every state encountered does not have the undesired 

property --> safety property
• some state encountered has the desired property --> 

reachability property



Properties
• Safety

• Nothing bad happens during execution
• System never enters a bad state

• Eg. mutual exclusion on shared resource

• Liveness
• Something good eventually happens
• Eventually reaching a desired state

• Eg. a process’ request for a shared resource is 
eventually granted

diffent from reachability property



UPPAAL Property Specification Language

• A[] p 
• A<> p

• E<> p 
• E[] p
• P --> q

clock guardsdata guardsprocess location

p::= a.l | gd | gc | p and p |
p or p | not p | p imply p |
( p ) | deadlock(only for A[],E<>)

A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)

“p leads to p”:
A[ ] (p imply A< > q)



Uppaal “Computation Tree Logic”

p

. . .

. . .

. . .

. . .

E<> p Possible

P

P P

. . .

. . .

. . .

. . .

A<> p inevitable

p

P

p

P P

p

. . .

. . .

. . .

. . .

A[] p

p

always

P

P

P

. . .

. . .

. . .

. . .

E[] p potentially always p --> q leads-to

p

. . .

. . .

q q q

. . .

. . .

. . .
(safety)

(reachability)

(liveness) (guaranteed 
response)



State Space Exploration

1111

11

11

1

22

2

0

0

0

• Each trace = a program execution
• Uppaal checks all traces

count==1

count==1count==1

count==1

count++

count++ count++

count++ count++count--count--

count--
count--

count--

• Is count possibly 3 ?  E<> count==3
• Is count always 1 ?  A[] count==1

Int count:=1



Reachability Analysis

Passed:=Ø //already seen states
waiting:={S_0}   //states not examined yet
While(waiting!=Ø) {

waiting:=waiting\{s_i}
if s_i ∉ Passed

whenever (s_j → s_j) then
waiting:=waiting ∪ s_j

}

Depth-First: maintain waiting as a stack

Breadth-First: maintain waiting as a queue
(shortest counter example)

0

1

3

6 7 8 9

4 5

2

Order: 0 1 3 6 7 4 8 2 5 9

Order: 0 1 2 3 4 5 6 7 8 9



‘State Explosion’ problem

a

cb

1 2

43

1,a 4,a

3,a 4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

Provably theoretical 

intractable



Limitations to Reachability Analysis

system size 
(#parallel processes)

State Space / 
Time Usage /
Memory Usage

Exhaustive feasible10^7

Controlled partial10^9

Random  - low coverage

• n parallel FSMs
• k states each
• k^n states in parallel 

composition
• EXPONENTIAL 

GROWTH
• 10^2  =100
• 10^3 = 1000
• 10^4 = 10000
• 10^10=10000000000



What Influences System Size?
• Number of parallel processes
• Amount of non-determinism
• Queue sizes
• Range of discrete data values
• Environment assumptions

• Speed
• Kinds of messages that can be sent in what 

states
• Data values 



Counter Measures
• Use abstraction, simplification

• Only model the aspects relevant for the property in question
• Economize with (loosely synch’ed) parallel processes
• Make precise assumptions and restrictions
• Range of data values

• Use bounded data values: integer (0:4);
• Reset variables to initial value whenever possible 
• Avoid complex data structures

• Partial (controlled) search heuristics
• Bit-State hashing
• Limit search depth
• Restrict scheduling

• Priority to internal transitions over env input
• Schedule process in FIFO style rathar than ALL interleavings



Does verification guarantee 
correctness?

• Only models verified, 
not (physical) 
implementations

• Made the right model?
• Properties correctly 

formulated?
• The right properties?
• Enough properties?
• System size too large 

for exhaustive check

• Modelling effort itself 
revealing

• Increased confidence 
earlier

• Cheaper
• Even partial and 

random search 
increases confidence



Next lecture
– Model-Based Testing!


	An Introduction to �Reactive and Real-time System Modelling
	Agenda
	Finite State Machine (FSM)
	System Structure
	Component Behavior	
	Finite State Machine (Mealy machine)
	Finite State Machine (Moore machine)
	Input-Output FSM (IO-FSM)
	Fully Specified FSM (Mealy)
	Mealy FSM as program (1)
	Mealy FSM as program (2)
	Spontaneous Transitions
	Non-deterministic FSM
	Extended FSM (EFSM)
	Parallel Composition (independent)
	State Explosion Problem
	Synchronous Parallel Composition
	Asynchronous Parallel Composition
	Queued Parallel Composition
	Blackboard exercise: Bank-box Code
	Notes
	Minimized FSM
	Fundamental Results
	Determinization + Minimization
	High-level FSM languages
	UML State Machines
	SDL
	Esterel
	Textual Notations for FSM
	Uppaal
	Uppaal Verification as a box…
	Working Modes of Uppaal
	Uppaal Simulator Screenshot
	FSM in Uppaal
	Home-Banking?
	Home-Banking
	Home-Banking: another attempt
	Home-Banking: another attempt
	Semaphore FSM Model
	Composition�IO Automata (2-way synchronization)
	Composition�             IO Automata
	Modelling Processes
	Modelling Choices
	Non-deterministic Choice
	Non-deterministic Choice�modelling failure
	Internal Actions
	Modelling Extended FSM (EFSM)
	Uppaal Network of Automata
	Process Interaction
	Broadcasts
	Committed Locations
	The Cruise Controller
	Timed Automata
	Real-time Systems
	Real-time System Modelling
	An Intelligent Light Control
	Timed Automata
	Timed Automata 
	Example
	Zones�from infinite to finite
	Symbolic Transition
	The Uppaal Model�= Networks of Timed Automata + Integer Variables +….
	Modelling using Uppaal …
	Timed Automaton of Coffee Machine
	Touch Sensative Light Controller
	Verification using Uppaal
	Uppaal as a box…
	What does Verification do
	Properties
	UPPAAL Property Specification Language
	Uppaal “Computation Tree Logic”
	State Space Exploration
	Reachability Analysis
	‘State Explosion’ problem
	Limitations to Reachability Analysis
	What Influences System Size?
	Counter Measures
	Does verification guarantee correctness?
	Next lecture�– Model-Based Testing!

