An Introduction to
 Reactive and Real-time System Modelling

(slides by Brian Nielsen)

Agenda

- Finite state machine (FSM)
- High-level FSM languages
- Modelling untimed systems using Uppaal
- Timed automaton (TA)
- Modelling timed systems using Uppaal
- Verification using Uppaal

Finite State Machine (FSM)

System Structure

-How do we model components?
-How do components interact?

- How do we specify environment assumptions?
-How do we ensure correct behaviour?

Component Behavior

Unified Model: State Machine

Control states

Finite State Machine (Mealy machine)

Inputs $=$ \{cof-but, tea-but, coin\} Outputs = \{cof,tea\}
States: $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
Initial state $=q_{1}$
Transitions= \{

$$
\begin{aligned}
& \left(q_{1}, \text { coin, }-, q_{2}\right), \\
& \left(q_{2}, \text { coin, }-, q_{3}\right), \\
& \left(q_{3}, \text { cof-but, cof, } q_{1}\right), \\
& \left(q_{3}, \text { tea-but, tea, } q_{1}\right) \\
& \}
\end{aligned}
$$

condition		effect	
current state	input	output	next state
q_{1}	coin	-	q_{2}
q_{2}	coin	-	q_{3}
q_{3}	cof-but	cof	q_{1}
q_{3}	tea-but	tea	q_{1}

In Mealy machine the output depends on the current state as well as the input

Sample run:
$\mathrm{q}_{1} \xrightarrow{\text { coin } /-} \mathrm{q}_{2} \xrightarrow{\text { coin } /-} \mathrm{q}_{3} \xrightarrow{\text { cof-but } / \text { cof }} \mathrm{q}_{1} \xrightarrow{\text { coin } /-}$

$$
\mathrm{q}_{2} \xrightarrow{\text { coin } /-} \mathrm{q}_{3} \xrightarrow{\text { cof-but } / \text { cof }} \mathrm{q}_{1}
$$

Finite State Machine (Moore machine)

In Moore machine the output (or "activity") depends on the current state only

Input sequence: coin.coin.cof-but.cup-taken.coin.cof-but Output sequence: need2.need1.select.cof. need2.need1.select.cof
need2=display shows "insert two coins"

Input-Output FSM (IO-FSM)

Inputs = \{cof-but, tea-but, coin\} Outputs $=\{$ cof,tea $\}$
States: $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
Initial state $=q_{1}$
Transitions= \{

$$
\begin{aligned}
& \left(\mathrm{q}_{1}, \text { coin, } \mathrm{q}_{2}\right), \\
& \left(\mathrm{q}_{2}, \text { coin, } \mathrm{q}_{3}\right), \\
& \left(\mathrm{q}_{3}, \text { cof-but, } \mathrm{q}_{5}\right), \\
& \left(\mathrm{q}_{3}, \text { tea-but, },\right. \\
& \left(\mathrm{q}_{4}, \text { tea, } \mathrm{q}_{1}\right), \\
& \left(\mathrm{q}_{5}, \text { cof, } \mathrm{q}_{1}\right)
\end{aligned}
$$

condition		effect
current state	action	next state
q_{1}	coin?	q_{2}
q_{2}	coin?	q_{3}
q_{3}	cof-but?	q_{5}
q_{3}	tea-but?	q_{4}
q_{4}	tea!	q_{1}
q_{5}	cof!	q_{1}

Sample run:

$$
\begin{aligned}
& \mathrm{q}_{1} \xrightarrow{\text { coin? }} \mathrm{q}_{2} \xrightarrow{\text { coin? }} \mathrm{q}_{3} \xrightarrow{\text { cof-but? }} \mathrm{q}_{5} \xrightarrow{\text { cof! }} \\
& \mathrm{q}_{1} \xrightarrow{\text { coin? }} \mathrm{q}_{2} \xrightarrow{\text { coin? }} \mathrm{q}_{3} \xrightarrow{\text { cof-but? }} \mathrm{q}_{5} \xrightarrow{\text { cof! }} \mathrm{q}_{1}
\end{aligned}
$$

action trace: coin?.coin?.cof-but?.cof!.coin?.coin?.cof-but?.cof! input sequence: coin.coin.cof-but.coin.coin.cof-but

Fully Specified FSM (Mealy)

for each state for each input

condition		effect	
current state	input	output	next state
q_{1}	coin	-	q_{2}
q_{2}	coin	-	q_{3}
q_{3}	cof-but	cof	q_{1}
q_{3}	tea-but	tea	q_{1}
q_{1}	cof-but	-	q_{1}
q_{1}	tea-but	-	q_{1}
q_{2}	cof-but	-	q_{2}
q_{2}	tea-but	-	q_{2}
q_{3}	coin	coin	q_{3}

Mealy FSM as program (1)

enum currentState \{q1,q2,q3\}; enum input \{coin, cof_but,tea_but\}; int nextStateTable[3][3] = \{

$$
\left.\begin{array}{l}
q 2, q 1, q 1, \\
q 3, q 2, q 2, \\
q 3, q 1, q 1
\end{array}\right\}
$$

int outputTable[3][3] = \{

$$
\begin{aligned}
& 0,0,0, \\
& 0,0,0, \\
& \text { coin, cof, tea\}; }
\end{aligned}
$$

While(input=waitForInput()) \{

OUTPUT(outputTable[currentState, input]) currentState:=nextStateTable[currentState,input];
\}

Mealy FSM as program (2)

```
enum currentState {q1,q2,q3};
enum input {coin,cof,tea_but,cof_but};
While(input=waitForInput){
    Switch(currentState){
    case q1: {
        switch (input) {
        case coin: currentState:=q2; break;
        case cuf_but:
        case tea_but: break;
        default: ERROR("Unexpected Input");
            }
        break;
    case q3: {
        switch(input) {
            case cof_buf: {currentState:=q3;
                OUTPUT(cof);
                break;}
    ..
    default: ERROR("unknown currentState");
    } // end of switch


\section*{Spontaneous Transitions}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ condition } & \multicolumn{2}{c|}{ effect } \\
\hline \begin{tabular}{c} 
current \\
state
\end{tabular} & input & output & \begin{tabular}{c} 
next \\
state
\end{tabular} \\
\hline\(q_{1}\) & coin & - & \(q_{2}\) \\
\hline\(q_{2}\) & coin & - & \(q_{3}\) \\
\hline\(q_{3}\) & cof-but & cof & \(q_{1}\) \\
\hline\(q_{3}\) & tea-but & tea & \(q_{1}\) \\
\hline\(q_{3}\) & - & - & \(q_{4}\) \\
\hline\(q_{4}\) & fix & - & \(q_{1}\) \\
\hline
\end{tabular}

A spontaneous transition is a transition in response to no input at all.
alias: internal transition
alias: unobservable transition

\section*{Non-deterministic FSM}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ condition } & \multicolumn{2}{c|}{ effect } \\
\hline \begin{tabular}{c} 
current \\
state
\end{tabular} & input & output & \begin{tabular}{c} 
next \\
state
\end{tabular} \\
\hline\(q_{1}\) & coin & - & \(q_{2}\) \\
\hline\(q_{1}\) & coin & - & \(q_{1}\) \\
\hline\(q_{2}\) & coin & - & \(q_{3}\) \\
\hline\(q_{3}\) & tea-but & tea & \(q_{1}\) \\
\hline\(q_{3}\) & cof-but & cof & \(q_{1}\) \\
\hline\(q_{3}\) & cof-but & mocca & \(q_{1}\) \\
\hline
\end{tabular}

\section*{Extended FSM (EFSM)}

-EFSM = FSMs +゙variables + enabling conditions + assignments -Can model the control aspect as well as the data aspect -Can be translated into FSM if variables have bounded domains -EFSM state: control location + variables' valuation
(q,total, capacity)
\[
\left(q_{1}, 0,10\right) \xrightarrow{\text { coin } /-}\left(q_{1}, 1,10\right) \xrightarrow{\text { coin } /-}\left(q_{1}, 2,10\right) \xrightarrow{\text { cof-but } / \operatorname{cof}}\left(q_{1}, 0,9\right)
\]

\section*{Parallel Composition (independent)}


\section*{State Explosion Problem}
- n parallel FSMs or EFSMs
- Each with \(k\) states
- In parallel they have kn states
- EXPONENTIAL!
- 10^2 =100
- \(10^{\wedge} 3=1000\)
- \(10 \wedge 4=10000\)
- \(10 \wedge 10=10000000000\)


\section*{Synchronous Parallel Composition}

Handshake on complementary actions
e.g., one "sending" with another "receiving"


\section*{Asynchronous Parallel Composition}

Single output variable per FSM holds last "written" output

\section*{no handshaking any more!}


\section*{Queued Parallel Composition}

Output is queued in (un)bounded queue
The queue may be per process (component), per action, or explicitly defined


System state: a snapshot of all (E)FSMs and queues

\section*{Blackboard exercise: Bank-box Code}

To open a bank box

the code must contain at least 2

To open a bank box
the code must end with

To open a bank box
the code most end with


To open a bank box
the code must end with a palindrom
e.g: - ○○○
0000
00000

Palindrome: Word that reads the same forth and back!

\section*{Notes}
- Palindrome not recognizable by FSM: infinitely many/long palindromes
- Recognizes bank-box opening sequence:
- If non-deterministic:
\(\rightarrow\) determinize it \(\rightarrow\) minimize it

\section*{Minimized FSM}
- Two states s and t are (language) equivalent iff
- \(s\) and \(\dagger\) accepts same language
- have same traces: \(\operatorname{tr}(s)=\operatorname{tr}(t)\)
- Two Machines M0 and M1 are equivalent iff initial states are equivalent
- A minimized (or "reduced") \(M\) is one that has no equivalent states
- for no two states \(s, t, s!=t\), s equivalent \(\dagger\)

\section*{Fundamental Results}
- Every FSM may be determinized accepting the same language (potential explosion in size).
- For each FSM there exists a language-equivalent minimal deterministic FSM.
- FSM's are closed under \(\cap\) and \(\cup\)
- FSM's may be described as regular expressions (and vice versa)

\section*{Determinization + Minimization}

The Finite State Machine Explorer (http://www.belgarath.org/java/fsme.html)


Hove states or connections by dragging them...


Many other tools for FSM editing, simulation, determinization, minimization, ... (http://en.wikipedia.org/wiki/List_of_state_machine_CAD_tools)

\section*{High-level FSM languages}

\section*{UML State Machines}


\section*{Tool: visualSTATE Designer}

\section*{}

- Hierarchical state systems
- Flat state systems
- Multiple and inter-related state machines
- Supports UML notation
a system is specified as a set of interconnected abstract machines which are extensions of FSM


Specification and Description Language (SDL):
- for unambiguous specification and description of the behaviour of reactive and distributed systems
- defined by the ITU-T (Recommendation Z.100.)
- originally focused on telecommunication systems
- current areas of application include process control and real-time applications in general
a synchronous programming language for the development of complex reactive systems


\section*{Textual Notations for FSM}

\section*{In: Promela/SPIN}
```

int x;
proctype P(){
do
:: x<200 --> x=x+1
od}
proctype Q(){
do
:: x>0 --> x=x-1
od}
proctype R(){
do
:: x==200 --> x=0
init
{run P(); run Q(); run
R()}

$$
\begin{aligned}
& :: x==200-->x=0 \\
& \text { od\} }
\end{aligned}
$$

init
\{run P() ; run Q() ; run $R()\}$

```
```

SERVERv2 = (accept.request
->service>accept.reply->SERVERv2).
CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).
||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

```

FSP: Finite State Processes
LTSA: Labelled Transition System Analyser


\section*{Modelling Untimed Systems using Uppaal}

\section*{Uppaal}
- An integrated tool environment for modeling, simulation and verification of real-time systems modelled as networks of timed automata, extended with data types
- However, it is also capable of untimed system modelling, simulation and verification


\section*{Uppaal Verification as a box...}

System description
Timed Automata in Uppaal Editor

Requirement specification
Temporal logic formula


\section*{Working Modes of Uppaal}


\section*{Uppaal Simulator Screensho†}


\section*{FSM in Uppaal}
- Basically an Extended FSM (variables, guards, assignments)
- Also may be thought of as an LTS, or IO Automaton
- actions are either inputs or outputs
- internal actions are not explicitly given


LTS can be viewed as a degradation of finite state machine (FSM)

\section*{Home-Banking?}
int accountA, accountB; //Shared global variables
//Two concurrent bank costumers
```

Thread costumer1 () {
int a,b; //local tmp copy
a=accountA;
b=accountB;
a=a-10;b=b+10;
accountA=a;
accountB=b;
}

```
```

Thread costumer2 () {
int a_b;
a=accountA;
b=accountB;
a=a-20; b=b+20;
accountA=a;
accountB=b;
}

```
- Are the accounts in balance after the transactions?
- Suppose initially: account \(A+\) account \(=200\)
- Note that local variables \(a, b\) are shared by the two threads

\section*{Home-Banking}
```

accountA = 100
accountB=100
a=0
b}=

```
account \(A=90\)
account \(B=\)
\(a=90\)
\(b=110\)


A[] (pc1.finished and pc2.fin1 cd) imply (accountA+accountB==200)?

\section*{Home-Banking: another attempt}
```

int accountA, accountB; //Shared global variables
Semaphore A,B; //Protected by sem A,B

```
//Two concurrent bank costumers
exclusive access to shared variables via semaphore

Thread costumer1 () \{
int a,b; //local tmp copy
wait(A);
wait(B);
a=accountA;
\(\mathrm{b}=\) account B ;
\(a=a-10 ; b=b+10\);
accountA=a;
accountB=b;
signal(A);
signal(B);
\}

Thread costumer2 () \{
int a,b;
wait(B);
wait(A);
a=accountA;
b=accountB;
\(a=a-20 ; b=b+20\);
accountA=a;
accountB=b;
signal(B);
signal(A);
\}
- semaphore: a special kind of boolean variables.
- wait(A): if A is true, go to next sentence and set \(A\) to false; if \(A\) is false, just wait here until \(A\) becomes true
- signal(A): set A to true

\section*{Home-Banking: another attempt}

1. Consistency? (Balance)
2. Race conditions?
3. Deadlock?

\section*{Semaphore Really Works!}
1. A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)
2. E<> mc1.critical_section and mc2.critical_section
3. A[] not (mc1.finished and mc2.finished) imply not deadlock

\section*{Semaphore FSM Model}

The critical resource can be accessed by only one thread! (exclusive access)

Binary Semaphore


The critical resource can be simultaneously accessed by at most \(n\) threads! (restricted shared access)

\section*{Counting Semaphore}

wait: a thread wants to occupy this semaphore
signal: a thread wants to release this semaphore

\section*{Composition}

IO Automata (2-way synchronization)
or pairwise synchronization

\author{
or "handshaking"
}


\section*{Composition}

\section*{IO Automata}


\section*{Modelling Processes}
- A process is the execution of a sequential program
- modelled as a labelled transition system (LTS)
- transits from state to state
- by executing a sequence of atomic actions.

on \(\rightarrow\) off \(\rightarrow\) on \(\rightarrow\) off \(\rightarrow\) on \(\rightarrow\) off \(\rightarrow\)
a sequence of actions
or
a trace

\section*{Modelling Choices}

- Who or what makes the choice?
- Is there a difference between input and output actions?

\section*{Non-deterministic Choice}
- Tossing a coin
- Possible traces?
- Both outcomes possible
- Nothing said about relative frequency
- If coin is fair, the outcome is \(50 / 50\)


\section*{Non-deterministic Choice modelling failure}

How do we model an unreliable communication channel which accepts packets, and if a failure occurs produces no output, otherwise delivers the packet to the receiver?

Use non-determinism...


\section*{Internal Actions}
- Internal actions also called
- spontaneous actions, or
- tau-actions
- Internal transitions can be taken on the initiative of a single machine without coupling with another one


\section*{Modelling Extended FSM (EFSM)}

-EFSM = FSM + variables + enabling conditions + assignments
- Transition still atomic
-Can be translated into FSM if variables have bounded domains
- State: control location + variables' valuation
-(state, total, capacity), e.g.: (s0, 5, 10)

\section*{Uppaal Network of Automata}

-system state \(=\) snapshot of (all machines' control locations + local variables + global variables)
e.g.: mc1.control=requestB, mc1.a=0, mc1.b=0, mc2.control=requestB, mc2.a=0, mc2.b=0, bsem1.control=closed, bsem2.control=open, account \(A=100\), account \(B=100\)

\section*{Process Interaction}
- "!" denotes output, "?" denotes input
- Handshake communication
- Two-way

Coffee Machine


4 states

Lecturer


University=
Coffee Machine || Lecturer


LTS?
How many states?
Traces?

4 states:
(interactions constrain overall behavior)

\section*{Broadcasts}
chan coin, cof, cofBut; broadcast chan join;


- the sending party: one automaton outputs join!
- the receiving party: several automata accept join!,
- each of them makes a move upon receiving join!,
- ie. every automaton with enabled "join?" transition moves in one step
- the number of recipients may be 0 (one "speaker", but no "audience")

\section*{Committed Locations}
- Locations marked "C"
- No delay in committed location
- Next transition must involve one of those automata in committed locations
- Handy to model atomic sequences
- An "input/output"-style transition of Mealy machine can be modelled by 2 atomic actions "input?" and "output!", which are connected by a committed location
- The use of committed locations significantly reduces the state space of a model, thus allows for more efficient analysis and verification

s0 to s5 executed atomically they will not be interrupted

\section*{The Cruise Controller}


Timed Automata

\section*{Real-time Systems}


\section*{Plant}

Eg.: Continuous

\section*{Real Time System}

A system where correctness not only depends on the logical order of events but also on their

\section*{Real-time System Modelling}

Plant
Continuous


Controller Program
Discrete
inputs

outputs

UppaaL Model

\section*{An Intelligent Light Control}


WANT: if "press" is issued twice quickly then the light will get brighter; if "press" is issued twice slowly the light is turned off.

Solution: Add a real-type variable (a real-valued clock) \(x\)

\section*{Timed Automata}


\section*{Timed Automata}
location invariants


\section*{Example}

\((L 0, x=0, y=0)\)
\(\rightarrow_{\varepsilon(1.4)}\)
(LO, \(x=1.4, y=1.4\) )
\(\rightarrow_{\mathrm{a}}\)
(LO, \(x=1.4, y=0\) )
\(\rightarrow_{\varepsilon(1.6)}\)
(LO, \(x=3.0, y=1.6\) )
\(\rightarrow\) a
(L \(0, x=3.0, y=0\) )

\section*{Zones}
from infinite to finite
```

a state
(n, x=3.2, y=2.5)

```


this is a time zone

\section*{Symbolic Transition}


projects to

\(3<x\),
\(y=0\)

Finite symbolic simulation graph and reachable states can be computed
this is a symbolic transition (a bunch of concrete transitions)

\section*{ModellingTimed Systems using Uppaal}

\section*{The Uppaal Model}
= Networks of Timed Automata + Integer Variables +....


\section*{Two-way synchronization on complementary actions. \\ Closed Systems!}

\section*{Example transitions}
\(\begin{aligned} &(I 1, m 1, \ldots \ldots, x=2, y=3.5, i=3, \ldots .) \\ & 0.2 \xrightarrow{\text { tau }}(I 2, m 2, \ldots \ldots, x=0, y=3.5, i=7, \ldots .) \\ &(I 1, m 1, \ldots \ldots ., x=2.2, y=3.7, i=3, \ldots .)\end{aligned}\)

\section*{Modelling using Uppaal ...}



Simulation





 \(\frac{8}{6}\)



 spanitas I



Truinlaypr \(\rightarrow\) Trasiderent
Verification


Watro vinimb


vishar->tration
Sompondel

\section*{Timed Automaton of Coffee Machine}

strongCof!


Possible users-model

\section*{Touch Sensative Light Controller}


LightController


\section*{Verification using Uppaal}

\section*{Uppaal as a box...}

System description
Timed Automata in Uppaal Editor

Requirement specification Temporal logic formula


\section*{What does Verification do}
- Compute all possible execution sequences
- And consequently to examine all states of the system
- Exhaustive search \(=>\) proof
- Check if
- every state encountered does not have the undesired property --> safety property
- some state encountered has the desired property --> reachability property

\section*{Properties}
- Safety
- Nothing bad happens during execution
- System never enters a bad state
- Eg. mutual exclusion on shared resource
diffent from reachability property
- Liveness ............ Something good eventually happens
- Eventually reaching a desired state
- Eg. a process' request for a shared resource is eventually granted

\section*{UPPAAL Property Specification Language}
- A[] \(p\)
- \(A<>p\)
- \(E<>\) p
- E[] p
- \(P\)

\section*{process location}

\(p::=a .1\left|g_{d}\right| g_{c} \mid p\) and \(p\) | p or p | not p | p imply p | ( p ) | deadlock(only for A[],E<>)

A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)

\section*{Uppaal "Computation Tree Logic"}


\section*{State Space Exploration}

Int count:=1


- Each trace = a program execution
- Uppaal checks all traces
- Is count possibly 3 ?

E<> count==3
- Is count always 1 ?

A[] count==1

\section*{Reachability Analysis}


Depth-First: maintain waiting as a stack

Breadth-First: maintain waiting as a queue (shortest counter example)

Order: 0136748259

Order: 0123456789

\section*{'State Explosion' problem}


\section*{M1 x M2}


All combinations = exponential in no. of components provabiy the intratable

\section*{Limitations to Reachability Analysis}


\section*{What Influences System Size?}
- Number of parallel processes
- Amount of non-determinism
- Queue sizes
- Range of discrete data values
- Environment assumptions
- Speed
- Kinds of messages that can be sent in what states
- Data values

\section*{Counter Measures}
- Use abstraction, simplification
- Only model the aspects relevant for the property in question
- Economize with (loosely synch'ed) parallel processes
- Make precise assumptions and restrictions
- Range of data values
- Use bounded data values: integer (0:4);
- Reset variables to initial value whenever possible
- Avoid complex data structures
- Partial (controlled) search heuristics
- Bit-State hashing
- Limit search depth
- Restrict scheduling
- Priority to internal transitions over env input
- Schedule process in FIFO style rathar than ALL interleavings

\title{
Does verification guarantee correctness?
}
- Only models verified, not (physical) implementations
- Made the right model?
- Properties correctly formulated?
- The right properties?
- Enough properties?
- System size too large for exhaustive check
- Modelling effort itself revealing
- Increased confidence earlier
- Cheaper
- Even partial and random search increases confidence

\section*{Next lecture - Model-Based Testing!}```

