
Model-Based Testing: Introduction

K

J

I

H

G

F

E

D

C

BA

(Adapted from Harry Robinson’s slides)



What are the Problems of 
Software Testing?

• Time is limited (time-to-market)

• Applications are complex

• Requirements are fluid



WSetWndPosSiz(CurrentWindow, 7, 3, 292, 348)

WMenuSelect("&Settings\&Analog")

Sleep(2.193)

WMenuSelect("&Settings\&Digital")

Sleep(2.343)

Play "{DblClick 130, 188, Left}"

WResWnd(CurrentWindow)

Sleep(2.13)

Play "{Click 28, 36, Left}"

Play "{Click 142, 38, Left}"

Play "{DblClick 287, 16, Left}"

Scripted Test Automation

• Unchanging

• Chiseled in stone

• Usually undecipherable



Traditional Software Development

Imagine this projector is the software under test,
and the triangle is the behavior exposed to you



Traditional Automated Testing

Typically, testers automate by creating static scripts.



Traditional Automated Testing

Given enough time, these scripts will cover the behavior.

may be up to thousands of years ...



Traditional Automated Testing

But what happens when the software’s behavior changes?

(due to, e.g., requirement change or software maintenance)

these scripts no longer cover all 
behavior of the software



… a remedy…



Model-Based Development

Now, imagine initially you build a model (the upper projecter)



Model-Based Development

Now, imagine initially you build a model (the upper projecter),
based on which you ”generate” your real software (the lower projecter)



Model-Based Development

Now, imagine initially you build a model (the upper projecter),
based on which you ”generate” your real software (the lower projecter),

which implements the functionalities in your model



Model-Based Testing

From the model you generates tests to cover the 
behavior of the real software in a rigorous and systematic manner

that's much easier than from the real software



Model-Based Testing

… and when there is a requirement change…



Model-Based Testing

… you change the model…



Model-Based Testing

… and re-generate the real software from the new model…



Model-Based Testing

… and derive new tests from the new model….



So What’s the Benefit of a Model?

• Models are (much) simpler than the systems they describe

• Models help us understand and predict the system’s behavior

Formal models:
Finite State Machines (FSM) aka Automata, LTS, TA, CSP, CCS, Z, 

B, guarded command language, Message Sequence Charts, LSC, . . . 

Semi-formal models:
UML, E-R Diagram, Data 

Flow Diagram, . . . 

A model is a formal or semi-formal 
description of a system’s behavior.



Approaches to Automated Testing

Static Tests

Model-Based Tests

Monkey Tests
(constant repetition of 
simple, isolated actions 
against the IUT)

To go with a military analogy, static tests are like battlements: they are fairly cheap to build and 
maintain, and they can help keep you from losing ground you have already won. Generated tests are 
like tanks or ground troops: they need more thought in their design, and you need them if you want to 
win new territory, but they work best when they are on the move.

(based on tester-
written scripts)



Calculator: A Fairly Typical GUI

• Familiar enough

• Simple enough

• Complex enough

• Hard to test thoroughly



Calculator GUI Behavior

Start Stop

Scientific

Standard

Not Running

Start Stop

Not Running Scientific

Standard



Start Stop

Scientific

Standard

Not Running

Start Stop

Not Running Scientific

Standard

Test: Start-Standard-Standard-Standard-Scientific-Scientific-Scientific-Scientific …

Monkey Tests vs. The Calculator



Start Stop

Scientific

Standard

Not Running

Start Stop

Not Running Scientific

Standard

Static Tests vs. The Calculator
Test Case 1: Start Stop



Start Stop

Scientific

Standard

Not Running

Start Stop

Not Running Scientific

Standard

Test Case 2: Start Scientific Standard Stop

Static Tests vs. The Calculator
Test Case 1: Start Stop



Start Stop

Scientific

Standard

Not Running

Start Stop

Not Running Scientific

Standard

Test Case 3: Start Scientific Stop Start Standard Stop

Static Tests vs. The Calculator
Test Case 2: Start Scientific Standard Stop
Test Case 1: Start Stop



Start Stop

Scientific

Standard

Not Running

Start Stop

Not Running Scientific

Standard

Test Case 4: Start Standard Scientific Scientific Standard Stop

Static Tests vs. The Calculator

Test Case 3: Start Scientific Stop Start Standard Stop
Test Case 2: Start Scientific Standard Stop
Test Case 1: Start Stop



Start Stop

Scientific

Standard

Not Running

Start Stop

Not Running Scientific

Standard

So, here’s your test case library
Test Case 1: Start Stop
Test Case 2: Start Scientific Standard Stop
Test Case 3: Start Scientific Stop Start Standard Stop
Test Case 4: Start Standard Scientific Scientific Standard Stop



But, really, what are you left with?
• Hard-coded test cases
• Tests that do only what you told them to 
• Tests that wear out due to pesticide paradox 

The more you test 
software, the more immune 
it becomes to your tests.



MBT vs. The Calculator

Setup: Calculator is running in Standard mode

Action: Select “Scientific” mode

Outcome: Did Calculator go correctly to “Scientific” mode?

Scientific



We all Use Models Already

hmm …

if I am in Standard mode

and I select Scientific mode

I should end up in Scientific mode

Scientific



Steps for Creating a Model
1. Walk through some scenarios

a. What model do you have in your head?
b. How do you know what you expect to see?

2. Figure out your scope:
a. What are you testing?
b. What are you ignoring?

3. Figure out a useful representation



A Graph is a Type of Model

start node end node

arc

A Few Quick Graph Theory Terms



Scientific

NOT_RUNNING

STANDARD

RUNNING

STANDARD

Start Stop

Standard

Standard
RUNNING

SCIENTIFIC

NOT_RUNNING

SCIENTIFIC

Scientific

Start Stop

State Variables in the Calculator GUI

The System is either

• NOT_RUNNING, or 
• RUNNING

The Working Mode is either

• STANDARD, or 
• SCIENTIFIC

Finite State Machine (FSM) model



Rule: You cannot execute the “Stop” action 
if the Calculator is not running

All Actions Aren’t Always Available

Scientific

NOT_RUNNING

STANDARD

RUNNING

STANDARD

Start Stop

Standard

Standard
RUNNING

SCIENTIFIC

NOT_RUNNING

SCIENTIFIC

Scientific

Start Stop



Finding the Rules

Stop

• When the System is NOT_RUNNING, the user cannot execute the Stop action.

• When the System is RUNNING, the user can execute the Stop action.

• After the Stop action executes, the System is NOT_RUNNING.



The Generated Finite State Table
Beginning State Action Ending State

NOT_RUNNING.STANDARD Start RUNNING.STANDARD

NOT_RUNNING.SCIENTIFIC Start RUNNING.SCIENTIFIC

RUNNING.STANDARD Stop NOT_RUNNING.STANDARD

RUNNING.SCIENTIFIC Stop NOT_RUNNING.SCIENTIFIC

RUNNING.STANDARD Standard RUNNING.STANDARD

RUNNING.STANDARD Scientific RUNNING.SCIENTIFIC

RUNNING.SCIENTIFIC Standard RUNNING.STANDARD

RUNNING.SCIENTIFIC Scientific RUNNING.SCIENTIFIC



Scientific

NOT_RUNNING

STANDARD

RUNNING

STANDARD

Start Stop

Standard

Standard
RUNNING

SCIENTIFIC

NOT_RUNNING

SCIENTIFIC

Scientific

Start Stop

A Random Walk

Start
Standard
Standard
Scientific
Scientific
Scientific
Scientific
…

re-inventing the monkey



Scientific

NOT_RUNNING

STANDARD

RUNNING

STANDARD

Start Stop

Standard

Standard
RUNNING

SCIENTIFIC

NOT_RUNNING

SCIENTIFIC

Scientific

Start Stop

All States (“salesman”)

to reach every state in the model

Start
Scientific
Stop
Start
Standard
Stop



Scientific

NOT_RUNNING

STANDARD

RUNNING

STANDARD

Start Stop

Standard

Standard
RUNNING

SCIENTIFIC

NOT_RUNNING

SCIENTIFIC

Scientific

Start Stop

All Transitions (“postman”)

Start
Standard
Scientific
Scientific
Stop
Start
Standard
Stop

to execute every action



Scientific

NOT_RUNNING

STANDARD

RUNNING

STANDARD

Start Stop

Standard

Standard
RUNNING

SCIENTIFIC

NOT_RUNNING

SCIENTIFIC

Scientific

Start Stop

All State-Changing Transitions

to execute every state-changing action

Start
Scientific
Stop
Start
Standard
Stop



Scientific

NOT_RUNNING

STANDARD

RUNNING

STANDARD

Start Stop

Standard

Standard
RUNNING

SCIENTIFIC

NOT_RUNNING

SCIENTIFIC

Scientific

Start Stop

Shortest Paths First

Length = 2
Start Stop

Length = 3
Start Standard Stop

Length = 4
Start Standard Standard Stop
Start Scientific Standard Stop

and so on …

to execute every path (eventually!)



Scientific

NOT_RUNNING

STANDARD

RUNNING

STANDARD

Start Stop

Standard

Standard
RUNNING

SCIENTIFIC

NOT_RUNNING

SCIENTIFIC

Scientific

Start Stop

Most Likely Paths First

Probability = 0.19
Start Stop

Probability = 0.1216
Start Scientific Standard Stop

and so on …

to execute favored paths in order

P=.80

P=.19 P=.19

P=.80

P=.01P=.01



Executing the Test Actions
open "test_sequence.txt" for input as #infile ‘get the list of test actions

while not (EOF(infile))

line input #infile, action ‘read in a test action

select case action

case “Start“ ‘ Start the calculator
run("C:\WINNT\System32\calc.exe”) ‘ VT call to start calculator

case “Standard“ ‘ choose Standard mode
WMenuSelect(“View\Standard") ‘ VT call to select Standard

case “Scientific“ ‘ choose Scientific mode
WMenuSelect(“View\Scientific") ‘ VT call to select Scientific

case “Stop“ ‘ Stop the calculator
WSysMenu (0) ‘ VT call to bring up system menu
WMenuSelect ("Close") ‘ VT call to select Close

end select

wend



Use Rules as Heuristic Test Oracles

if ( (setting_mode = STANDARD) _ ‘if we are in Standard mode

AND NOT WMenuChecked(“View\Standard") ) then ‘but Standard is not check-marked

print "Error: Calculator should be Standard mode“    ‘alert the tester
stop

endif



Executing tests quickly

a

h
g

f

b

e

d

c

i

????

a b c b d b e b f b g b h b i

A single test machine approach takes 15 time units.



But distributing the work ...
a b c b i

a b d b i

a b e b i

a b f b i

a b g b i

a b h b i

… gets the job done in 1/3 the time!



Scientific

NOT_RUNNING

STANDARD

RUNNING

STANDARD

Start Stop

Standard

Standard
RUNNING

SCIENTIFIC

NOT_RUNNING

SCIENTIFIC

Scientific

Start Stop

An Anti-Random Walk

to visit states most different from where you’ve been

Start 
Scientific

Standard

Scientific
Stop

Here the most different state of (NOT_RUNNING, STANDARD) is 
(RUNNING, SCIENTIFIC).



Models + Traversals = Model-Based 
Testing

• State models are good at representing system behavior
• You can use models to generate tests
• Different algorithms can provide tests to suit your needs:

– Random walk
– All states
– All transitions
– State-changing transitions
– Shortest paths first
– Most likely paths first
– Anti-random walks



Q & A


	Model-Based Testing: Introduction
	What are the Problems of Software Testing?
	Scripted Test Automation
	Traditional Software Development
	Slide Number 5
	Slide Number 6
	Slide Number 7
	… a remedy…
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	So What’s the Benefit of a Model?
	Approaches to Automated Testing
	Calculator: A Fairly Typical GUI
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	MBT vs. The Calculator
	We all Use Models Already
	Steps for Creating a Model
	A Graph is a Type of Model
	State Variables in the Calculator GUI
	All Actions Aren’t Always Available
	Finding the Rules
	The Generated Finite State Table
	A Random Walk
	All States (“salesman”)
	All Transitions (“postman”)
	All State-Changing Transitions
	Shortest Paths First
	Most Likely Paths First
	Executing the Test Actions
	Use Rules as Heuristic Test Oracles
	Slide Number 44
	Slide Number 45
	An Anti-Random Walk
	Models + Traversals = Model-Based Testing
	Q & A

