
Model-Based Testing of 
Reactive Systems

Principles, Methods, and Tools
( based on the slides of Brian Nielsen and Jan Tretmans )



Lecture Plan

12:30 – 13:15 Model-Based Testing: Principles, 
Methods and Tools 

13:15 – 13:25 break

13:25 – 14:10 Modeling, Verification and Testing of 
Real-time Systems

14:10 – 16:00 Tutored exercises



Agenda

• Overview

• Labelled Transition System (LTS)-based testing

• Finite State Machine (FSM)-based testing

• Tools for Model-Based Testing

• Summary
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The Nature of Testing

Testing: the activity of
checking or measuring some quality characteristics

of an executing object (i.e., IUT)

by performing experiments

rather than on models (which 
are formal verification or 
simulation)

rather than by 
reasoning

by performing experiments

in a controlled way

w.r.t. a specification

IUT

tester

specification

IUT: the Implementation Under Test

to decide whether it 
passes or fails
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Model-Based Testing

• Driving forces for MBT:
– testing effort grows exponentially with complexity
– testing cannot keep pace with development
– ever-changing software requirements
– demands for high-quality software
– reduced time-to-market– reduced time-to-market

• State of the art
– practice:   testing - ad hoc, too late, expensive, lot of time
– research:  formal verification - proofs, model checking,  . . . 
, with disappointing practical impact

• Model-based testing has potential to combine
– practice  (testing) with
– theory (formal methods) 5 / 81



Model-Based Testing (cont’d)

• Essence
– generating tests from a (formal) model / specification

• state model, pre/post,  CSP, Promela, UML, Spec#,  . . . . 

– testing with respect to a (formal) model / specification

• Benefits• Benefits
– promises better, faster, cheaper testing:

• algorithmic generation of tests and test oracles :  tools
• formal and unambiguous basis for testing
• measuring the completeness of tests
• maintenance of tests through model modification
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A Model-Based Development Process

informal
requirements

specification formalizablevalidation

informal world

formalizable world 

(world of models)

realization

design

code

formal
verification

testing

model-
based

physical world
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Formal Verification

sat

model
checker

Yes
property

specification No

model m

of i
sat

implementation
i

formal world

real world

We are verifying the properties of the models
rather than of the implementation!
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Types of Testing

integration

system

Level of detail

module
the topics this lecture covers...

unit

efficiency

maintainability

functionality

white box black box

Accessibility

Characteristics

usability

reliability

portability

still more dimensions ...
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A Taxonomy of Model-Based Testing

[Mark Utting 2006]
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Automated Model-Based Testing

model

IUT
conforms-to

TTCNTTCNtest
cases

test
generation

tool

IUT passes tests

IUT confto model
⇔⇔ ⇔⇔

IUT

conforms-to
model?

test
cases

pass/fail

test

tool
test

execution
tool

formal world

physical world
input

output
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Labelled Transition System 
(LTS)-Based Tetsing



Labelled Transition Systems

• Labelled Transition System (LTS)
– Transition system labelled with (input, output, or internal) actions
– A very basic model for describing system behavior

• Why LTS-based testing:
– FSM is required to be ”deterministic” and ”complete” for testing– FSM is required to be ”deterministic” and ”complete” for testing
– LTS is more fundamental, more naive, and simpler, thus has 
better supports for the descriptions of non-determinancy, 
concurrency and composition

• FSM has always alternation between inputs and outputs

– LTS can serve as underlying semantics model for many other 
formalisms (e.g., FSM, EFSM, and timed models)

though sometimes 
they may be "-"
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An example LTS

Labelled Transition System    〈〈〈〈 S, L, T, s0 〉〉〉〉

states

actions transitions

initial state
s0 ∈ S

Recall...

coffee vending machine

?coin

?button

!alarm ?button

!coffee

actions transitions
T ⊆ S × (L∪{τ}) × S

IDLE

CHECK_COIN

BREWING
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Input-Output LTS (IOLTS)

• Special kind of LTS:
Input-Output Labelled Transition System - IOLTS
– distinction between outputs (!) and always-enabled inputs (?)

– implementations modelled as IOLTS

• IOLTS with variables  - equation solver for y2 =x :

Recall...

? x (x >= 0)! √x

? x (x < 0)

? y

! -√x? x (x >= 0)! √x

? x (x < 0)

? y

15 / 81



Conformance Relation

• Assume that the Implementation Under Test 
(IUT) is a black box
– The internal states and internal actions of IUT are 
unobservable

– We can observe the external actions of IUT from 
its interface model

IUT
• input/output conformance (”ioco”)

– the IUT should:
• do what are required to do, and
• never do what are forbidden to do

• Whether the behavior of IUT conforms to
those specified by the specification model?

16 / 81



Notion of ”Conformance”

SPEC IMP

comply?

SPEC
behavior

IMP
behavior

conformance relations
– Trace equivalence, bisimulation
– Trace inclusion
– Input/output sequence inclusion
– Observation sequence inclusion
– …

SPEC
behavior

IMP
behavior

Error

what are "behavior"???
internally, ...
externally, ...
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i conforms-to s ?? (a)

coin?

coin?

token?
i

coin?

s

Implementation Under Test Specification

ioco

coin?
token?

coffee! tea! coffee!

[Jan Tretmans]
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i conforms-to s ?? (b)

coin?

coin?

token?
i s

coin? token?

Implementation Under Test Specification

coin?
token?

coffee! tea!

ioco

coffee! tea!

[Jan Tretmans]
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i conforms-to s ?? (c)

coin?

i
token?

s
coin? token?

Implementation Under Test Specification

coffee!

coin?
token?

coin?
token?

ioco

coffee! tea!

[Jan Tretmans]. 20 / 81



i conforms-to s ?? (d)

coin? coin?

i

coin?

coin?

s

Implementation Under Test Specification

ioco

coin?

coin?

coffee!

coin?

coffee!

[Jan Tretmans].
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Tretman’s ioco-coformance

Straces (s) =    {  σ ∈∈∈∈ ( L ∪∪∪∪ {δ } )*  |  s       }
σσσσ

p after σ =    {  p’  |   p    p’  }
σσσσ

The conformance relation widely used for black-box 
LTS-based testing of (untimed) reactive systems

"suspension trace"

"reachable states"

i ioco s =def ∀σ ∈∈∈∈ Straces (s) :  out (i after σσσσ)  ⊆⊆⊆⊆ out (s after σ) 

p p iff   ∀∀∀∀ o! ∈∈∈∈ Lu ∪∪∪∪ {ττττ} :  p
o!δδδδ

σ

out ( P ) =     {  o! ∈∈∈∈ Lu |  p  ,  p∈∈∈∈P  }

∪∪∪∪ {  δ |  p   ,   p ∈ P  }

o!

δ

[Jan Tretmans].

Lu is the subset of output 
actions of L

“quiescence"

“outputs"
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ioco: intuitively

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

Intuitively:

i ioco-conforms to s, iffi ioco-conforms to s, iff

• if  i produces output  x after trace  σ,
then  s should be able to produce  x after  σ

• if  i cannot produce any output after trace  σ, i.e.,
i produces a quiescence δδδδ after σ,

then  s should also be able to produce δδδδ after σ, i.e.,
s should not be able to produce any output after σ.
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ioco-conformance (a)

coin?

coin?

token?
i

coin?

s

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

ioco

coin?
token?

coffee! tea! coffee!

out (i after coin?)      =  { coffee! }

out (i after token?)  =   { tea! }

out (s after coin?)      =  { coffee! }

out (s after token?)  =  ∅∅∅∅

But  token?  ∉∉∉∉ Straces ( s )

[Jan Tretmans].
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ioco-conformance (b)

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

coin?

coin?

token?
i s

coin? token?

coin?
token?

coffee! tea!

ioco

coffee! tea!

out (i after coin?)      =  { coffee! }

out (i after token?)  =   { tea! }

out (s after coin?)      =  { coffee! }

out (s after token?)  =  { tea! }

[Jan Tretmans].
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ioco-conformance (c)

coin?

i
token?

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

s
coin? token?

coffee!

coin?
token?

coin?
token?

out (s after token?)   =   { tea! }out (i after token?)   =   { δ }

ioco

coffee! tea!

[Jan Tretmans].
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ioco-conformance (d)

coin? coin?

i

coin?

coin?

s

i ioco s   =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

out (s after coin?)   =   { coffee! }out (i after coin?)   =   { δ, coffee! }

ioco

coin?

coin?

coffee!

coin?

coffee!

[Jan Tretmans].
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LTS Modeling Tool: 
yEd Java Graph Editor

28 / 81
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Conformance Checking Tool: 
iocoChecker

29 / 81
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Test Generation Algorithm
Objective: To generate a test case  t(S)  from a transition system specification. 

// Here  S is a set of states  ( initially S = {s0} )

1 end test case

Algorithm:
Apply the following steps recursively, non-deterministically

3 observe output1 end test case

PASS

2 supply input

supply ?a

t(S after ?a)

3 observe output

FAIL

t(S after !x)

FAIL

allowed outputs !xforbidden outputs !y
θ

to randomly terminate…
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Test Generation Example

specification test

! 9? x (x < 0)

Equation solver for y2=x

! 4

? -2
? 2

PASS PASS

otherwise

FAIL

PASS

otherwise

? 3

? -3

FAIL

? x (x >= 0)

! √x ! -√x

To cope with non-deterministic behaviour, 
tests are not linear traces, but trees
To cope with non-deterministic behaviour, 
tests are not linear traces, but trees
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Test Execution Examples

? x (x < 0)

implementation test

! 9

? x (x >= 0)

! √x ! -√x

? y

! 9

! 4

? -2
? 2

PASS PASS

otherwise

FAIL

PASS

otherwise

? 3

? -3

FAIL

(coupling)
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Validity of Test Generation

For every test  t generated with the algorithm:

Soundness :
- t  will never fail with correct implementation

i ioco s       implies        i passes ti ioco s       implies        i passes t

Exhaustiveness :
- each incorrect implementation can be detected
with a generated test t

i ioco s       implies      ∃t :  i fails t
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LTS-based Conformance 
Testing Tool: TorX

• On-the-fly test generation and test execution

• Implementation relation:  ioco

• Specification languages:  LOTOS  and  Promela

TorX

next
input

specification IUT

observe
output

offer
input

check
output

test verdict:
pass
fail
inconclusive

user:
(manual or automatic mode)

34 / 81
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TorX Tool Architecture

explorer primer driver adapter IUT
bits

bytes

states

transitions

abstract

actionstransition

on-the-fly testing

bytestransitions actionstransition

to explore the transition-graph of the specification and to provide, 
for a given state, the set of transitions that are enabled in this state

to implement the test derivation algorithm (to generate inputs for 
the implementation and to check outputs from the implementation)

to control the progress of the testing process

responsible for sending inputs to 
and receiving outputs from the IUT 
on request of the driver
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On-The-Fly Testing

explorer primer driver adapter IUTIUTIUT
bits

bytes

states

transitions

abstract

actionstransition

Menu

! x (x < 0)

! x (x >= 0)
Choice

! 9

Abstract action

! 9

Concrete action

! 00001001

? x (x >= 0)

! √x

? x (x < 0)

! -√x

specification implementation

? x (x >= 0)

! √x

? x (x < 0)

? x
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TorX Screenshot
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Case Study of LTS-based Testing
Conference Protocol Experiment
• Initiated for test tool evaluation and comparison
• Based on real testing of different implementations
• Simple, yet realistic protocol
• Specifications in LOTOS, Promela, SDL, EFSM, …
• 28 different implementations in  C• 28 different implementations in  C

– one of them is (assumed-to-be) correct
– others with manually derived mutants

a single error is injected deliberately

errors:
- no outputs
- no internal checks
- no internal updates

38 / 81http://fmt.cs.utwente.nl/ConfCase



The Conference Protocol

join,
leave,
send,

user a user b user c

CPE

UDP Layer

CPECPE

send,
receive

CEP: Conference Protocol Entity
UDP: User Datagram Protocol
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Abstract Test Architecture

PCO: Point of Control and Observation
IAP: Implementation Access Point
IUT: Implementation Under Test
SUT: System Under Test (i.e., SUT = IUT + test context)

The test context is the 
environment in which the IUT is 
embedded and that is present 
during testing, but it is not the aim 
of conformance testing.
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Conference Protocol:
Concrete Test Architecture

UT-PCO = C-SAP

Tester
TorXA

Directly access to IAP (Imp. Access Point)

CPE

(IUT)

LT-PCO

UT-PCO = C-SAP

UDP Layer

U-SAP LT-PCO

B C

CPE: Conference Protocol Entity
C-SAP: Conference Service Access Point
U-SAP: UDP Service Access Point
UT-PCO: Upper Tester Point of Control and Observation
LT-PCO: Lower Tester Point of Control and Observation

Indirect access to IAP via the UDP layer
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Test Results
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The Conference Protocol 
Experiments

Reported experiments:

• TorX  - LOTOS,  Promela :  on-the-fly  ioco  testing

Axel Belinfante et al.,

“Formal Test Automation: A Simple Experiment”
In Proc. 12th IWTCS, Budapest, 1999.

• TorX statistics (with LOTOS and Promela)
– all errors found after  2 - 498  test events

– maximum length of tests :   >  500,000  test events

– 2 mutants react to PDU’s from non-existent partners:
• no explicit reaction is specified for such PDU’s,

so ioco-correct, and TorX does not test such behaviour
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Finite State Machine 
(FSM)-Based Testing

q1

coin / -

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -



FSM example (Mealy machine)
q1

q2

coin / -

tea-but / teacof-but / cof

coin / -

condition effect
current 
state

input output
next 
state

q1 coin - q2

q2 coin - q3

Recall...

q3

coin / -

Inputs = {cof-but, tea-but, coin}

Outputs = {cof,tea}

States: {q1,q2,q3}

Initial state = q1

Transitions= {

(q1, coin, -, q2),

(q2, coin, -, q3),

(q3, cof-but, cof, q1),

(q3, tea-but, tea, q1) 

}

q2 coin - q3

q3 cof-but cof q1
q3 tea-but tea q1

Sample run:

coin/ - coin/- coin/ -cof-but / cof

coin/ -

q1 q2 q3
q1

q2

cof-but / cof
q1q3 45 / 81



A Formal Definition
The Mealy Machine is  5-tuple

M  =   ( S, I, O, δ, λ )

S finite set of statesS finite set of states

I finite set of inputs

O finite set of outputs

δ :  S x I  → S transfer (transition) function

λ :  S x I  → O output function

Natural extension to input sequences : δ :  S x I*  → S
λ :  S x I*  → O*
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Basic Concepts

• Two states s and t of FSM are (language) 
equivalent iff 
– s and t accept same language
– have same traces: tr(s) = tr(t)

Recall...

• Two machines M0 and M1 are equivalent iff 
the two initial states of them are equivalent

• A minimized (or reduced) M is one that has no 
equivalent states
– for all states s, t : (s equivalent t) ==> (s = t)
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Fundamental Results

• Every FSM may be determinized accepting 
the same language.

• For every FSM there exists a language-
equivalent minimal deterministic FSM.

Recall...

equivalent minimal deterministic FSM.

• FSM’s are closed under “intersection” ∩∩∩∩ and
”union” ∪∪∪∪ operations

• FSM’s may be described as regular 
expressions (and vice versa)
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Given: a specification FSM  MS , and
a  (black-box)  implementation FSM  MI

FSM Conformance Testing

SUT

FSM M
I

Tester
Spec.

FSM M
s

test

inputs

outputs

Task: To determine whether MI conforms to MS,

i.e.,  whether MI behaves in accordance with MS   , or

whether outputs of  MI   are allowed by MS    , or

whether the reduced MI   is equivalent to  MS

and we assume: 
• Deterministic specifications
• MI is an (unknown) deterministic FSM (the “testing hypothesis”)

49 / 81
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Restrictions on FSM

– deterministic

δ :  S x I  → S and  λ : S x I  → O are functions (not “relations”)

– completely specified

δ :  S x I  → S and  λ : S x I  → O are complete functions

M  =   ( S, I, O, δ, λ )

δ :  S x I  → S and  λ : S x I  → O are complete functions

( empty output is allowed;  sometimes implicit completeness )

– strongly connected

from any state any other state can be reached

– reduced

there are no equivalent states
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Type of Faults
q1

q2

q3

coin / -
tea-but / vodka

cof-but / -

coin / -

q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

tea-but / tea

q1

q2

q3

coin / -

cof-but / cof
coin / -

q3

•output fault (wrong outputs or missing outputs)

•extra or missing states

•transition fault
•to other state
•to new (extra) state

correct model (SPEC)

q3

erroneous IMP

q3

q4

coin / -

erroneous IMP
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Desired Utilities for Tester
• Nice, but rarely realistic assumptions

– “status” message: Assume  that tester can enquire the 
implementation (IUT) for its current state (reliably!!!) 
without changing the IUT state

– reset: to reliably bring IUT to the initial state

– set_state(): to reliably bring IUT to a specified state – set_state(): to reliably bring IUT to a specified state 

IUT

Grey-box

FSM M
I

status?

currentState=S10!

reset?

set_state(S10)?
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FSM Testing

• Test with paths of the  (specification)  FSM

– A path is a sequence of inputs with expected outputs

– (cf.  “path testing” as white-box program testing technique)

• Infinitely many paths :  how to select ? To find a path or a set of paths to cover • Infinitely many paths :  how to select ?

• Different strategies :

– test every state :  state coverage ( of specification model ! )

– test every transition :  transition coverage

• test output of every transition

• test output + resulting state of every transition

– …

To find a path or a set of paths to cover 
all the states in the specification FSM

To find a path or a set of paths to cover all 
the transitions in the specification FSM
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A Coffee Machine FSM (Mealy)

0
5

coin? / -

coin? / -

coffee? / -coffee? / -

10

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 
54 / 81



State Coverage
• Make State Tour that covers every state (in spec.)

0 5

coin? / -

coin? / -

coffee? / -coffee? / - 0 5

coin? / -

coin? / -

coffee? / -coffee? / -

10

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 

Test sequence :    coin?   token?   coffee?

10

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 
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Transition Coverage
• Make Transition Tour that covers every transition (in spec)

0 5

coin? / -

coin? / -

coffee? / -coffee? / - 0 5

coin? / -

coin? / -

coffee? / -coffee? / -

10

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 

Test input sequence :

reset? coffee?  coin?  coffee?  coin?  coin?  token?  coffee?  token?  coffee?  coin?  token?  coffee?

10

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 
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FSM Transition Tour
• Make Transition Tour that covers every transition (in spec)

0 5

coin? / -

coin? / -

token? / -

coffee? / -coffee? / - 0 5

coin? / -

coin? / -

token? / -

coffee? / -coffee? / -

10

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 

Test input sequence :

reset? coffee?  coin?  coffee?  coin?  coin?  token?  coffee?  token?  coffee?  coin?  token?  coffee?

10

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 

+ check expected output and target state using the “status” message 57 / 81



FSM Transition Testing
• Make a test case for each transition in SPEC 

separately:  

S1 S2a? / x!

• Test purpose:  “Test whether the system, when in state  S1, 
produces output  x!  on input  a?  and goes to state  S2”

• Test transition  “S1 –-a?/x!--> S2”:

1. Go to state  S1    // set_state(S1)

2. Apply  input  a?

3. Check  output  x!

4. Verify  state  S2   ( optionally )     // status() == “S2” ?? 58 / 81



Transition Testing – issue #1

coffee? / - 0 5

coin? / -

coffee? / -

•To test  token? / coin! :

go to source state:   set_state(5)

give input token? check output coin!

verify destination state:  status?  // currentState == 10 ??

coffee? / - 0

10

5
coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 

Test case :     set_state(5)/ * - token? / coin! - status? / 10!
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Transition Testing – issue #1

• “go to state  S5” relies on the “set_state()” 
method

• What if “set_state()” method not available?• What if “set_state()” method not available?
– if the “reset” method is available, then use it instead

• go from  S0  to  S5 ( always possible because of 
determinism and completeness )

– otherwise, use a synchronizing sequence to bring 
machine to a particular known state, say S0, from 
any state  
• (but synchronizing sequence may not exist           )

A synchronizing sequence of state s brings the FSM from any state to state s.
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Transition Testing – issue #1
synchronizing sequence of state S0: token?  coffee?

0 5

coin? / -

coin? / -

coffee? / -coffee? / - 0 5

coin? / -

coin? / -

coffee? / -
coffee? / -

0 5

coin? / -

coin? / -

coffee? / -
coffee? / -coffee? / - 0 5

coin? / -

coin? / -

coffee? / -coffee? / - 0 5

coin? / -

coin? / -

coffee? / -

10

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 

10

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 

10

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 

10

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 

10

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 

To test  token? / coin! :   go to state S5 by :   token?  coffee?  coin?
61 / 81
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Transition Testing – issue #2

coin? / -

•To test  token? / coin! :
1. go to state S5 by :   “token?  coffee?  coin?”

2. give input token?

3. check output coin!

4. verify that machine is in state S10 by: “status? currentState==10”

coffee? / - 0

10

5

coin? / -

coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 
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Transition Testing – issue #2
“status” message: Assume  that tester can ask implementation 
for its current state (reliably!!!)

coin? / -

0

10

5
coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -coffee? / -

token? / token! 

status? / “S0”!

status? / “S10”!

status? / “S5”!
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Transition Testing – issue #2

• What if no “status” message??

– State identification: What state am I in?

– State verification: Am I in state s?

– Apply sequence of inputs in the current state of the FSM

such that from the outputs we cansuch that from the outputs we can

• identify the state where we started (state identification),  or

• verify that we were indeed in a particular start state (state verification)

– Different kinds of sequences (dating back to 1960s)

• UIO  sequences  ( Unique Input Output sequence)

• Distinguishing Sequence   ( DS )

• W-set ( characterizing set of sequences )

• UIOv

• SUIO

• MUIO

• Overlapping UIO 64 / 81



Transition Testing – issue #2
State check :

• UIO  sequences (state verification)

– sequence  xs that distinguishes state  s from all other states :
for all  t ≠ s :   λ(s, xs)  ≠ λ(t, xs ) 

– each state has its own UIO sequence

– UIO sequences may not exist

UIO: each state has its own input sequence that produces 
different outputs when applied in other states. 

DS: special UIO such that it – UIO sequences may not exist

• Distinguishing Sequence (state identification)

– sequence  x that produces different output for every state :
for all pairs  t, s with  t ≠ s :   λ (s, x )  ≠ λ (t, x )

– a distinguishing sequence may not exist

• W-set of sequences (state identification)

– set of sequences  W which can distinguish any pair of states :
for all pairs  t ≠ s there is  x ∈W :   λ (s, x )  ≠ λ (t, x )

– W-set always exists for reduced FSM

DS: special UIO such that it 
is a UIO for all states!!
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Transition Testing – issue #2: UIO

0 5

coin? / -

coin? / -

token? / -

coffee? / -coffee? / -

UIO: each state has its own input sequence that produces different 
outputs when applied in other states. 

UIO sequences

10

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

token? / token! 

for state 0 : coin? / - coffee? / -

for state 5 : token? / coin!

for state 10: coffee? / coffee! 66 / 81



Transition Testing – issue #2: DS

0 5

coin? / -

coin? / -

token? / -

coffee? / -coffee? / -

DS: special UIO such that it is a UIO for all states!!

10

token? / coin!
coffee? / coffee!

coin? / coin!token? / token! 

output state 0 : -

output state 5 :    coin!

output state 10 :  token!

DS sequence: token?
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Transition Testing – issue #2: done

coffee? / - 0 5

coin? / -

coffee? / -

•To test  token? / coin! :

1) go to state S5 :   token?  coffee? coin?

2) give input token? check output coin!

3) apply UIO of state S10 :   coffee? / coffee!

synchronizing sequence

UIO sequence of S10

coffee? / - 0

10

5
coin? / -

token? / coin!
coffee? / coffee!

coin? / coin!

token? / -

coffee? / -

token? / token! 

Test case :     token? / *  coffee? / *   coin? / - token? / coin! coffee? / coffee!

we do not care about them
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Transition Testing - done

0 5

coin? / -

coin? / -

token? / coin!

token? / -

coffee? / -coffee? / -

- 9  transitions / test cases for coffee machine

- if end-state of one test case corresponds with start-state of next test 

case then concatenate

- different ways to optimize and remove overlapping / redundant parts

- there are various tools to support this

10

token? / coin!
coffee? / coffee!

coin? / coin!token? / token! 
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FSM Transition testing: further results
• Test transition “S1 –-a?/x!--> S2”:

1. Go to state  S1    // synchronizing sequence

2. Apply  input  a?

3. Check  output  x!

4. Verify  state  S2    // UIO sequence of S2

• Checks every output fault and transfer fault (to existing state)

• If we assume that• If we assume that

the number of states of the implementation machine MI 

is less than or equal to
the number of states of the specification machine MS,

then testing all transitions in this way

leads to equivalence of reduced machines,

i.e.,  complete conformance.

• If not: exponential growth in test length in number of extra states 
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Tools for Model-Based 
TestingTesting



Academic MBT Tools
Tool name Tool provider Modeling notation

Testing 
method

Short description

Lutess Lustre

Lurette Lustre an automated testing tool of reactive programs written in Lustre

GATeL Lustre CLP
a tool that automatically generates test sequences from SCADE/Lustre models, 
according to a user defined test objective

a graphical tool for developing and modeling distributed systems with integrated 
Autofocus Autofocus CLP

a graphical tool for developing and modeling distributed systems with integrated 
testing facilities

Conformance 
Kit

EFSM FSM

Phact EFSM FSM

TVEDA SDL, Estelle FSM

AsmL AsmL FSM? To generate tests directly from an AsmL model
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Academic MBT Tools (cont’d)
Tool name Tool provider Modeling notation

Testing 
method

Short description

Cooper LTS (Basic LOTOS) LTS

TGV
Irisa and 
Verimag, 
France 

LTS-API (LOTOS, 
SDL, UML)

LTS a tool for the generation of conformance test suites for protocols

TorX
Twente 

University
LTS (LOTOS, 
Promela, FSP)

LTS a prototype testing tool for conformance testing of reactive software

STG Irisa, France NTIF LTS

AGEDIS UML/AML LTS

Uppaal Tron
Aalborg 
University

TA TLTS
a tool for on-line conformance of real-time systems based on Timed Automata 
models

Uppaal Cover
Uppsala 

University
TA TLTS

a tool for off-line conformance of real-time systems based on Timed Automata 
models
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Commercial MBT Tools
Tool name

Tool 
type

Manufacturer Web link
Modeling 
notation

Short description

AETG 1
Telcordia 

Technologies
aetgweb.argreenhou

se.com

Model of 
input data 
domain

The AETG Web Service generates pairwise test cases.

Case Maker 1

Diaz & 
Hilterscheid 

Unternehmensb 
eratung GmbH

www.casemakerinter
national.com

Model of 
input data 
domain

CaseMaker uses the Pairwise method to compute test cases from input parameter 
domain specifications and constraints specified by business rules.

Conformiq 
Test 

Generator
3 Conformiq www.conformiq.com

UML 
Statecharts

In Conformiq Test Generator, UML statecharts constitute a high-level graphical 
test script. Conformiq Test Generator is capable of selecting from the statechart 
models a large amount of test case variants and of executing them against tested 
systems.

CTesK, JTesK 3 UniTESK www.unitesk.com

Pre-Post 
extensions of 
programming 
languages

UniTESK technology is a technology of software testing based on formal 
specifications. Specifications are written using specialized extensions of 
traditional programming languages. CTesK and JTesK can use a formal 
representation of requirements as a source of test development.

LEIRIOS 
Test 

Generator -
LTG/B

3
LEIRIOS 

Technologies
www.leirios.com B notation

LTG/B generates test cases and executable test scripts from a B model. It 
supports requirements traceability.

LEIRIOS 
Test 

Generator -
LTG/UML

3
LEIRIOS 

Technologies
www.leirios.com UML 2.0

LTG/UML generates test cases and executable test scripts from a UML 2.0 model. 
It supports requirements raceability.

MaTeLo 2 All4Tec www.all4tec.net
Model usage 
editor using 
Markov chain

MaTeLo is based on Statistical Usage Testing and generates test caes from a 
usage model of the system under test.

Qtronic 3 Conformiq www.conformiq.com
Qtronic derives tests from a design model of the system under test. This tool 
supports multi-threaded and concurrent models, timing constraints, and testing of 
nondeterministic systems.

Legend for Tool Type Column:
Category 1: Generation of Test Input Data from a Domain Model
Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests
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Commercial MBT Tools (cont’d)
Tool name

Tool 
type

Manufactur
er

Web link
Modeling 
notation

Short description

Rave 3 T-VEC www.t-vec.com
Tabular 
notation

Rave generates test cases from a tabular model. The test cases are then 
transformed into test drivers.

Reactis 3
Reactive 
Systems

www.reactive-
systems.com

Mathlab, 
Simulink, 
Stateflow

Reactis generates tests from Simulink and Stateflow models. This tool targets 
embedded control software.

SmartTest 1
Smartware 
Technologie

s

www.smartwaretech
nologies.com/smartt

estprod.htm

Model of 
input data 
domain

The SmartTest test case generation engine uses pairwise techniques.

Statemate 
Statemate 

Statemate 
Automatic Test 
Generator / 
Rhapsody 

Automatic Test 
Generator (ATG)

3 i-Logix www.Ilogix.com

Statemate 
Statcharts 
and UML 
State 
Machine

ATG is a module of Telelogic(I-Logix) Statemate and Rhapsody products. It allows 
test case generation from a statechart model of the System.

TAU Tester 4 Telelogic
www.telelogic.com/p
roducts/tau/tester/

index.cfm
TTCN-3 An integrated test development and execution environment for TTCN-3 tests

Test Cover 1
Testcover.c

om
www.testcover.com

Model of 
input data 
domain

The Testcover.com Web Service generates test cases from a model of domain 
requirements. It uses pairwise techniques.

T-Vec Tester for 
Simulink - T-Vec 

Tester for 
MATRIXx

3 T-Vec www.t-vec.com
Simulink and 
MATRIXx

Generates test vectors and test sequences, verifying them in autogenerated code 
and in the modeling tool simulator.

ZigmaTEST Tools 3 ATS
www.atssoft.com/pr
oducts/testingtool.h

tm

Finite State 
Machine

ZigmaTEST uses an FSM-based test engine that can generate a test sequence to 
cover state machine transitions.

Legend for Tool Type Column:
Category 1: Generation of Test Input Data from a Domain Model
Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests
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Summary



LTS Testing  vs.  FSM Testing

• FSM good at:
– FSM has “more intuitive” theory
– FSM test suite is complete
-- but only w.r.t. assumption on number of states

– FSM test theory has been around for a number (>40) of years

• FSM bad at:
– Restrictions on FSM (to enable driving the test executions):

• deterministic
• completeness

– FSM has always alternations between inputs and outputs
– Difficult to specify interleaving in FSM
– FSM is not compositional
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Benefits of Model-Based Testing

•Automated testing
•full automation :  test  generation + execution + analysis

•Early testing
•design errors found during validation of model

•Systematic and rigorous testing
•model is precise and unambiguous basis for testing

software life cycle

complexity

model

system under test

•model is precise and unambiguous basis for testing
•longer, cheaper, more flexible, and provably correct tests
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Obstacles to Model-Based Testing

• Comfort factor
– Learning curve

• Skill sets
– Need testers who can design– Need testers who can design

• Expectations
– Models can be a significant upfront investment
– But will never catch all bugs

• Metrics
– Bad metrics: bug counts, number of test cases
– Better metrics: spec coverage, code coverage
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Main Readings

• Gerard J. Holzmann. Design and Validation of Computer 
Protocols, Chapter 9 “Conformance Testing” 

• Jan Tretmans. Model Based Testing with Labelled Transition 
Systems. In: Formal Methods and Testing, An Outcome of the 
FORTEST Network, Revised Selected Papers. Lecture Notes in 
Computer Science 4949 Springer 2008, pp.1-38. 
(http://www.springerlink.com/content/y390356226x154j0/)
Computer Science 4949 Springer 2008, pp.1-38. 
(http://www.springerlink.com/content/y390356226x154j0/)
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Further Readings

• Books:
"Practical Model-Based Testing: A Tools Approach" by Mark 
Utting and Bruno Legeard, Morgan-Kaufmann, 2007.

"Model-Based Testing of Reactive Systems", Advanced Lectures 
edited by M. Broy et al., LNCS 3472, Springer, 2005.

“Black-Box Testing : Techniques for Functional Testing of 
Software and Systems” by Boris BeizerSoftware and Systems” by Boris Beizer

“Testing Object-Oriented Systems: Models, Patterns, and Tools”
by Robert Binder

“Software Testing: A Craftsman's Approach” by Paul Jorgensen

• Papers:
David Lee, Mihalis Yannakakis. Principles and methods of testing 

finite state machines - A survey. In: Proceedings of the IEEE, 
84(8): 1090-1126, 1996.
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Other resources

•Model-based testing website:
www.model-based-testing.org

• General conferences
– FORTE (International Conference on Formal Description Techniques for 
Distributed Systems and Communication Protocols)Distributed Systems and Communication Protocols)

– TACAS, FM/FME, ISSTA, ...

• Specialized conferences/workshops:
– TestCom’00- TestCom’08 (IFIP Int. Conference on Testing of 
Communicating Systems), and previously as

• IWPTS'88 - IWPTS'96 (International Workshop for Protocol Test Systems)

• IWTCS'97 - IWTCS'99 (International Workshop on Testing of Communicating Systems)

– FATES (Int. Workshop on Formal Approaches to Testing of Software)
– MBT (Int. Workshop on Model-Based Testing)
– A-MOST (Workshop on Advances in Model Based Testing)
– ...
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