Model-Based Testing of
Reactive Systems
Principles, Methods, and Tools

(based on the slides of Brian Nielsen and Jan Tretmans)

Lecture Plan

12:30 - 13:15 Model-Based Testing: Principles,
Methods and Tools

13:15-13:25 break

13:25 - 14:10 Modeling, Verification and Testing of
Real-time Systems

14:10 - 16:00 Tutored exercises

Agenda

Overview

Labelled Transition System (LTS)-based testing
Finite State Machine (FSM)-based testing
Tools for Model-Based Testing

Summary

3 /81

The Nature of Testing

_rather than on models (which

TeSTing: The aCTiViTy/Qfx"/ are formal verification or

checking or measuring some qual?’rrn;/la::lmxr'ac’rer'is‘rics
of an execu’ririé object (i.e., IUT) rather than by

by performing experiments

in a controlled way

w.r.t. a specification

to decide whether it
passes or fails

IUT: the Implementation Under Test 4/81

Model-Based Testing

Driving forces for MBT:

- testing effort grows exponentially with complexity
- testing cannot keep pace with development

- ever-changing software requirements

- demands for high-quality software

- reduced time-to-market

State of the art

- practice: testing - ad hoc, too late, expensive, lot of time

- research: formal verification - proofs, model checking, ...

, with disappointing practical impact

Model-based testing has potential to combine
- practice (testing) with
- theory (formal methods)

5/81

Model-Based Testing (cont'd)

- Essence
- generating tests from a (formal) model / specification
- state model, pre/post, CSP, Promela, UML, Spec#,
- testing with respect to a (formal) model / specification

- Benefits

- promises better, faster, cheaper testing:
- algorithmic generation of tests and test oracles : tools
» formal and unambiguous basis for testing
* measuring the completeness of tests
* maintenance of tests through model modification

6 /81

A Model-Based Development Process

L B — _—
—

TS~ informal world
l.....'.....’.’ [N J .Q.Q.Q.Q.....‘k‘............Q.Q.Q.Q.........
T~ formalizable world
-~ ~
- ~
validation B -~ (world of models)
[SPECITICATION _ fOPmGIIZUble
-~ \
\ SO \
\\ \
N\ |
formal ! MRS N
orma |
cr- . I ~ -
verification \ S~ ‘I | model
N ,: based
\l:ITZSTing
l'/
D OO OO 0000000000000 000000000000 0000000000 OQO°O°TCQO®°OQO VOOQu 0 0000O0OCGCOEOOOSENOSO
I, physical world

7181

Formal Verification

model ves

checker No

formal world % We are verifying the properties of the models

-
l.......O.Q.....’..............:....Q.QQO ® 606,600 0 QOOOQOOOQI.OOQ.O..'...'
[]

rather than of the implementation
real world B

- n
. n
. u

.

g a
. n
.

.
.
.
.
*
‘0
o /

8 /81

Types of Testing

Level of detail

system

Integration

black box

portability Accessibility

maintainability
efficiency /£

usability £~
reliability £~
functionality £~

/ white box

still more dimensions ...

Characteristics 9/81

A Taxonomy of Model-Based Testing

[Mark Utting 2006]

Subject

i Environment
sUT

Redundancy

Model

i Shared test&dev mode|
Separate test model

Deterministic / Non-Det.

e

Characteristics

Timed / Unfimed

—— Discrete / Hybrid / Continuous

— _Pre-Post
— . Iransiion-Based

Faradigm

— History—Based

—— Functional

i

— Operational

—— Structural Model Coverage

Test
Generation

Test Selection
Criteria

/{,i--— Uata Coverage
~—— Requirements Coverage

Test Case Specifications
— Random&Stochastic

— Fauit—-Based

_—— Manual

Technology

/ ,:--' Randam generation
¢—— (Graph search algorithms

— Model-checkin

Test
Execution

. Symbolic execution
—— Theorem proving

On/Offline

Online { OUtfline

10/ 81

Automated Model-Based Testing

IUT confto model

TUT passes tests :
: TUT
- conforms-to
- model?

physical world _
Input

TUT

output

pass/fail

11/ 81

Labelled Transition System
(LTS)-Based Tetsing

Labelled Transition Systems

+ Labelled Transition System (LTS)
- Transition system labelled with (input, output, or internal) actions
- A very basic model for describing system behavior

* Why LTS-based testing:
- FSM is required to be "deterministic” and “complete” for testing

- LTS is more fundamental, more naive, and simpler, thus has
better supports for the descriptions of non-determinancy,
concurrency and composition

* FSM has always alternation between inputs and outputs

"T~~<__ though sometimes
they may be "-"

- LTS can serve as under! in%\seman’rics model for many other
formalisms (e.g., FSM, EFSM, and timed models)

13/ 81

Recall...

An example LTS

Labelled Transition System (S, L, T, sg)

states / \ initial state
SO eS

actions transitions
TcSx(LUft}) xS

lcoffee

IDLE
?coin lalarm ?button

CHECK_COIN ?button

14/ 81

Recall...

Input-Output LTS (IOLTS)

Special kind of LTS:
Input-Output Labelled Transition System - IOLTS

- distinction between outputs (!) and always-enabled inputs (?)
- implementations modelled as IOLTS

IOLTS with variables - equation solver for y? =x :

? X (x <0)

I Vx ? X (x >= 0)

15/ 81

Conformance Relation

Assume that the Implementation Under Test
(IUT) is a black box

- The internal states and internal actions of IUT are
unobservable

- We can observe the external actions of IUT from
its interface

Whether the behavior of TUT conforms to
those specified by the specification model?

input/output conformance (“ioco”

- the IUT should:

* do what are required to do, and
- never do what are forbidden to do

16/ 81

conformance relations

SPEC IMP
behavior behavior

what are "behavior'???

internally, ... behavior

Notion of “Conformance”

SPEC

comply?

<

v

externally, ...

Trace equivalence, bisimulation
Trace inclusion

Input/output sequence inclusion
Observation sequence inclusion

SPEC

Error

17/ 81

i conforms-to s ?? (a)

Implementation Under Test

Specification
S
coin?
v
coffeel
) 4

[Jan Tretmans]
18/ 81

i conforms-to s ?? (b)

Implementation Under Test Specification

ioco

[Jan Tretmans]

19/ 81

i conforms-to s ?? (c)

Implementation Under Test Specification

/ S
token?
coin? token?
coin?

coin?
token?
coffeel coffeel o
i?éo

coin?
token?

[Jan Tretmans]. 20/ 81

i conforms-to s ?? (d)

Implementation Under Test Specification

, . . S
coin? coin?

coin?

coin? v

coin?

coffeel coffeel

\ 4
O e
coin?

[Jan Tretmans]. 21/ 81

Tretman's ioco-coformance

The conformance relation widely used for black-box
LTS-based testing of (untimed) reactive systems

"suspension trace"

(o]

Straces (s) = {oce(Lu{d}) | s=—}
"reachable states" .

p after o = {p | p=0p}
“quiescence"

) . ol

p—>p iff Volel,u{t}:p ‘7L> L, is the subset of output
W " actions of L
outputs ol

out(P) = {oel,|p—— ., peP}

U{d|p—Ls, pecP}

iiocos =, Vo € Straces (s): out (i after 6) C out (s after o)

22/ 81
[Jan Tretmans].

ioco: intuitively

iiocos =, Vo € Straces(s): out(i after) < out (s after o)

Intuitively:
| ioco-conforms to s, iff

- if i produces output x after trace o,
then s should be able to produce x after o

- if i cannot produce any output after trace o, i.e.,
i produces a quiescence 5 after o,
then s should also be able to produce 6 after o, i.e.,
s should not be able to produce any output after o.

23/ 81

ioco-conformance (a)

iiocos =y Vo € Straces(s): out(i after o) — out(s after o)

S
coin?
\
coffeel
v
out (7 after coin?) = { coffeel} out (s after coin?) = { coffeel }
out (/ after token?) = { teal} out (s after token?) = &

But token? ¢ Straces(s)
1 Jan Tret .
10CO , [Jan Tretmans] 0481

ioco-conformance (b)

iiocos =y Vo e Straces(s): out(i after) < out(s after o)

S
out (7 after coin?) = { coffeel} out (s after coin?) = { coffeel }
out (7 after token?) = {teal} out (s after token?) = { tedl }

loco / [Jan Tretmans].
25/ 81

ioco-conformance (c)

iiocos =y Vo e Straces(s): out(i after o) — out(s after o)

,.
token?
coin?
coin?
token?
coffeel
coin?
token?

out (7 after token?) = {0}

iofo

coin? token?

coffeel teal

out (s after token?) = {teal}

[Jan Tretmans].
26/ 81

ioco-conformance (d)

iiocos =y Vo € Straces(s): out(i after o) — out(s after o)

/ s
coin? coin?
coin?
coin? v
coin?
coffeel coffeel
O s
coin?
out (/after coin?) = {9, coffeel } out (s after coin?) = { coffeel}

i 0 [Jan Tretmans].
27 / 81

LTS Modeling Tool
yEd Java Graph Editor

r.graphml - yEd

© File Edit Wiew Layout Tools Grouping Windows Help
B @HLJFHP- l@lﬁ‘ml%‘%%%@s@lﬂlﬁﬁ %I.
ili A -~ | Type:|shape "
) = General ~
[] O Texk 6 |
£ 256.0
¥ 402.0
D D A Fhutton width 30.0
Height 30.0
Fill Color CRGEALZSS. .
Fill Calar 2 &) RGEA[-,-,- -
J O O = Lire Color W FRGEALD,D,...
Lire Type _—
; . Transparent]
D lliquorice Jhutton = Label
Wisible
Background B RGEA[-,-,-,-
Border B RGEAL-,-,-,-]
Color W RGEA[D,D,...
Placement Internal: Cen...
Size Fit Content
Ichocolate Configuration Standard
Aligriment Center
. . Farnily Dialog
Fonk Size 12
" " Ratation Angle 0.0
= = = — | =l Data
LRL
Descripkion =
=l Shape
b shape Ellipse
< | > Dron Shadaw,., TIRGEAM179,,, ¥

28/ 81
http://www.yworks.com/en/products_yed_about.htmi

Conformance Checking Tool:

iocoChecker

o iocoChecker V300608b o0

iocoChecker

Specification:

|xamp|esf‘u'ending I'-:1achine,fr.graphml| Choose...

Implementation:
|amp|esﬂ-'ending I'-a1achine,fr1.graphml|

Traces to check:
@ Straces i) Utraces

— ioco does not hold

ioco does not hold! The following table lists all shortest counterexamples:

000

Suspension Trace Implementation Outputs Specification Outputs
[Fhutton, Phutton] [HNiquorice, lchocolate] [lchocolate]
[Fhutton, (quiescence), Phutton] [HNiquorice, lchocolate] [lchocolate]

http://www.cs.ru.nl/~If/tools/iocochecker/

29/ 81

Test Generation Algorithm

Objective: To generate a test case t(S) from a transition system specification.
// Here S is a set of states (initially S ={sy})

Algorithm:
Apply the following steps recursively, non-deterministically

® PASS

_ Aty

supply ?a t(S after Ix)

(safterr) A

—+H
o
3
o
Q
(o
o
>
o
c
-+
o
c
—+
0n

30/ 81

Test Generation Example

Equation solver for y2=x
specification

?x(x<0)

.
I VX .-\/X

To cope with non-deterministic behaviour,

tests are not linear traces, but trees

test

otherwise ® ?-3
?3
[

FAIL - pasS

1 4
‘

otherwise ?-2
?2
[

PASS PASS

FAIL

31/ 81

Test Execution Examples

implementation test

®
19

(coupling)
P otherwise ?-3
1 23
[

FAL pass |!'4

otherwﬂZ
IQ? 2

FAIL SS PASS

32/ 81

Validity of Test Generation

For every test t generated with the algorithm:

Soundness :
-t will never fail with correct implementation
i ioco s implies i passes t

Exhaustiveness :
- each incorrect implementation can be detected

with a ienem’red test t

33/ 81

LTS-based Conformance
Testing Tool: TorX

* On-the-fly test generation and test execution
+ Implementation relation: ioco

» Specification languages: LOTOS and Promela

user:
‘(manual or automatic mode)
A A
A next

it offer
inpu :
P ol input
<
6
;:L?’reculfr observe
P output
test verdict:
pass
fail

http://fmt.cs.utwente.nl/tools/torx/ inconclusive 34781

TorX Tool Architecture

on-the-fly testing

Wwstract

| ansiTio R cTions — 1

4 I, L _________4
\

|
|
| \ responsible for sending inputs to

l | \ and receiving outputs from the TUT
|
I
I
I

\ on request of the driver

to control the progress of the testing process

I to implement the test derivation algorithm (fo generate inputs for
, the implementation and to check outputs from the implementation)

to explore the transition-graph of the specification and to provide,

. " . . 35/ 81
for a given state, the set of transitions that are enabled in this state

On-The-Fly Testing

Menu
I'x (x<0) Choice Abstract actionConcrete action
I x (x>=0) 19 19 | 00001001

implementation

?x(x<0)

?x(x>=0)

? X

36/ 81

TorX Screenshot

_}{'me 1.2.0: Conhg: conf_jan.prom _ O] %] |
1
File »{ Message Sequence Chart: conf.jan.prom
(Re)start | | || moge: « Ao, ~ AutoTrace, Depth: | [[dut | | | [wdp2 | [udp0 | Ceri][5
{uiescense)
Path

: fxrom_lgwer ! PDU J0IN ! 103 ! 51 If2 1 1
14 output): (Quiescense) -

15 inputiudp): from_lower | PDU_JOIM 1103152 12 11 -
16 output(udp?): to_lower | POU_ANSWER 11021521112 | {Quiescense)
17 outputi): (Guiescense)

yom lowexr ! BDW LEAVE ! 103 ! 52z 1 0! 1

I~ Erom upper ! JpIN ! 102 ! 52

Current state offers: from_lower ! POU DAYA ! 21! 32 1(21 1

Inputs: Out
to_1of ! POr JOIN|! 102 ! 52 ! 12

from_upper | LEAVE | var_byte | var_byte Delta —pRE A "1
from_upper | DREG | var_byte | var_byte to Llower | JOIK ! 102 0 521 11 0 N
from_lower | PDU_JOIN | var_byte | var_hyte | var_hyt
from_lower | POU_DATA | var_hyte | var_byte | var byt from lower ! PO DATA ! 21! 34! 0 ! 1
from_lower | PDU_LEAVE | var_byte | var_byte | var b

| tn_].n‘u'er!ll‘ml;mnl]!:l.ﬂZ!EZ!'l.!z
H i =

| Randam Input | Randar | to lower ! PLI! JOIN ! 102 8 521 11 0)
{uiescense)
[Use T | B

from upper ! JBEQ ! 21 1 31

Werdict: .

{uiescense)
IUT Stoerr: Debug: of_r.c: Joining sender is not a partner! from lhwer ! POU WIL 1403 1 Bz 121 1
IUT Stderr: Debug: cf_rt.c: Create a st answer unit! B
IUT Stderr: Debug: cf_rtc: Send the st answer unit! to_lower ! POV WEL 1 102 1 52 Ll 12
IUT Stderr: Debug: cf_st.c: Entering the “rist” answer casel

IUT Stderr: Debug: of_st.c: answer: Add “rist” user to partner

IUT Stderr: Debug: of_st.c: answer: Insert partner!

[UT Stderr: Debug: of_st.c: Construct answer poul

IUT Stdderr: Debuy: cf_st.c: Send answer-pou!

IUT Stcderr: Debug: mo_st.c: Sending ANSWER-pdu (21 hytes) to user 3

{uiescense)

=

Clear Log | Sawve Log to File.. St Das Gia=1. [| Eloee | 37/ 81

kd I =

Case Study of LTS-based Testing
Conference Protocol Experiment

» Initiated for test tool evaluation and comparison
Based on real testing of different implementations

+ Simple, yet realistic protocol

+ Specifications in LOTOS, Promela, SDL, EFSM, ...

- 28 different implementations in C
- one of them is (assumed-to-be) correct
- others with manually derived mutants
a single error is injected deliberately

errors:

- ho outputs

- no internal checks
- no internal updates

http://fmt.cs.utwente.nl/ConfCase 38 /81

The Conference

Protocol

join, ¢
leave, L.
send,
receive

CEP: Conference Protocol Entit
UDP: User Datagram Protocol

39/ 81

Abstract Test Architecture

PCO: Point of Control and Observation
IAP: Implementation Access Point
IUT: Implementation Under Test

I

I
I

I
IAPs 4_.EC'D
I
I
| test o I
| context : tester
| \'\'
TAPs™— PCO
| ‘\
|
I
I

The test context is the
environment in which the TUT is
embedded and that is present
during testing, but it is not the aim
of conformance testing.

SUT: System Under Test (i.e., SUT = TUT + test context) 40 / 81

Conference Protocol:
Concrete Test Architecture

. Directly access to IAP (Imp. Access Point)

~UDP Layer

CPE: Conference Protocol Entity ",

C-SAP: Conference Service Access Point Indirect access to IAP via the UDP layer

U-SAP: UDP Service Access Point 41/ 81
UT-PCO: Upper Tester Point of Control and Observation

LT-PCO: Lower Tester Point of Control and Observation

Test Results

mu- LOTON Fromela SO
tant | verdict ateps verdict steps verdict steps
nr. min max min max min
‘correct” implementation
Okpes> - - T N [<555
Incorrect Implementations — No outputs

1 | fail 37 66 | fail 9 al .-- -
2 | fail 21 37 | fail 6 116 | timeout 7
3 | faill 63 78 | fail 24 493 | timeout T
4 | fail 65 68 | fail 20 43 | timeout 7
5 | fail 11 17 | fail 2 10 | timeout i
6 | fail 31 192 | fail 14 &1 | timeout 7

Incorrect Implementations — No internal checks
7| faill a7 126 | fail 31 392 | timeout 12
8 | fail 31 37 | fail 38 200 |GQas -
f 5 - - |cPass - - | timeout 12

10 % - e - - |eas

Incorrect Implementations — No internal updates
11 | fail 26 126 | fail 20 143 | timeout 12
12 | fail 21 44 | fail 6 127 | timeout 7
13 | fail 21 45 | fail i 19 | timeout i
14 | fail a7 76 | fail 28 146 | faul T
15 | fail 207 304 | fail 15 142 | fail 17
16 | fail 40 208 | fail 25 43 | fail 25
17 | faill 35 198 | fail g 46 | timeout &
18 | fail 31 238 | fail 12 121 | timeout 7
19 | fail 20 46T | fail] LG5 -
20 | fail 57 166 | fail 33 142 | timeout 7
21 | fail 63 178 | fail 15 219 | fal 7
22 | fail 87 166 | fail 31 144 | timeout T
23 | fail 21 35 | fail b 33 | faul T
24 | fail 60 126 | fail 31 197 g ;
25 | fail a7 36 | fail 7 51 | timeout T
2 | fail 66 01 | fail 24 235 |@gE _
27 | fail 46 210 | fail 23 139 | fal L7

42 / 81

The Conference Protocol
Experiments

Reported experiments:
« TorX - LOTOS, Promela: on-the-fly ioco testing

Axel Belinfante et al.,

"Formal Test Automation: A Simple Experiment”
InProc. 12th IWTCS, Budapest, 1999.

* TorX statistics (with LOTOS and Promela)
- all errors found after 2 - 498 test events
- maximum length of fests: > 500,000 test events

- 2 mutants react to PDU's from non-existent partners:
* no explicit reaction is specified for such PDU's,
so ioco-correct, and TorX does not test such behaviour

43/ 81

Finite State Machine
(FSM)-Based Testing

®

cof-but / cof tea-but / tea

FSM example (Mealy machine)

Recall...

cof-bufl/ cof

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q,0,,93}
Initial state = q,
Transitions= {
(q1’ COin’ Ty q2),

(d,, coin, -, qs),
(q3’ COf—bUt, COf’ q1),

(a5, tea-but, tea, q,)
}

condition effect
current | . next
state input output state
‘ /tea ql Coin _ q2
qz coin - q3
qs cof-but | cof q
ds tea-but | tea d;
Sample run:
coin/ - coin/- cof-but / cof coin/ -
o) Js o
- cof-but / cof
%-QQLDL* ds > 45/ 81

A Formal Definition

The Mealy Machine is 5-tuple

M= (S5T0,35, 1)

S finite set of states

T finite set of inputs

o finite set of outputs

8§: SxI - S transfer (transition) function
L SxI -5 O output function

Natural extension to input sequences: &: SxI* —» S
L SxI* > O*
46 / 81

Recall... BGSiC CO"CCP*S

+ Two states s and T of FSM are (language)
equivalent iff

- s and 1 accept same language
- have same traces: tr(s) = tr(t)

* Two machines M, and M, are equivalent iff
the two initial states of them are equivalent

* A minimized (or reduced) M is one that has no
equivalent states

- for all states s, t: (s equivalent 1) ==> (s = 1)

47 / 81

Recall... FU"damental RCSU“’S

+ Every FSM may be determinized accepting
the same language.

* For every FSM there exists a language-
equivalent minimal deterministic FSM.

- FSM's are closed under “intersection” N and
“union” U operations

+ FSM’'s may be described as regular
expressions (and vice versa)

48 / 81

FSM Conformance Testing

test
Spec Jgrnrnnnnnnnnnnns > Tester inpUtS > SUT
FSM M, RS

Given: a specification FSM M. and
a (black-box) implementation FSM /1,

and we assume: much stronger assumptions than
Deterministic specifications LTS-based testing
M;is an (unknown) deterministic FSM (the "testing hypothesis")
Task: To determine whether M, conforms to M
i.e., whether M; behaves in accordance with M. , or
whether outputs of M, are allowed by M. , or

whether the reduced M; is equivalent to M. 49/ 81

Restrictions on FSM
M= (51,0,51)

deterministic

8§: SxXxI - S and L:SxI — O are functions(not “relations”)
completely specified

5: SXI - S and L:SxI — O are complete functions

(empty output is allowed; sometimes implicit completeness)

strongly connected

from any state any other state can be reached

reduced

there are no equivalent states

50/ 81

Type of Faults
O

cof-but do

but / vodka

d3
correct model (SPEC)

*extra or missing s’ra’res

e

*transition fault

to other state”
to new (extra) state

-

51/ 81

Desired Utilities for Tester

» Nice, but rarely realistic assumptions

- "status” message: Assume that tester can enquire the
implementation (IUT) for its current state (reliablylll)
without changing the IUT state

- reset: o reliably bring IUT to the initial state
- set_state(): to reliably bring IUT to a specified state

status?

currentState=S10!
<

IUT

reset? Grey-box
FSM M,

set state(S10)?

FSM Testing

+ Test with paths of the (specification) FSM

- A path is a sequence of inputs with expected outputs

- (cf. "path testing” as white-box program testing technique)

InfiniTely many pa'l'hs : how to select ? To find a path or a set of paths to cover
—> all the states in the specification FSM
- Different strategies : ﬁ

- test every state : state coverage (of specification model!)

- test every transition: fransition coverage

- test output of every transition \1
- test output + resulting state of every fransition

- To find a path or a set of paths to cover all
the transitions in the specification FSM

53 /81

A Coffee Machine FSM (Mealy)

coffee? / -

oken? / coin!

54/ 81

State Coverage

Make State Tour that covers every state (in spec.)

coffee? / -

coffee? / coffee!

token? / toke

Test sequence . coin? token? coffee?
55/ 81

Transition Coverage

* Make Transition Tour that covers every transition (in spec)

coffee? / -

coffee? / coffee!

token? / toke

Test input sequence :

reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coffee?
56 / 81

FSM Transition Tour

Make Transition Tour that covers every transition (in spec)

coffee? / -

coffee? / coffee!

token? / toke

Test input sequence :
reset? coffee? coin? coffee? coin? coin? token? coffee? token? coffee? coin? token? coffee?

Crrr

+ check expected output and target state using the “status” message 57/81

FSM Transition Testing

- Make a test case for each transition in SPEC
separately:

a?/x!

« Test purpose: "Test whether the system, when in state Sl1,
produces output x! oninput a? and goes to state S2"

Test transition "S1 --a?/xl--> S2"
1. Go tostate S1 // set_state(S1)
2. Apply input a?
3. Check output xl
4. Verify state S2 (optionally) //status()=="52"?2? 58 / 81

Transition Testing - issue #1

*To test token? / coin! :
=== g0 to SOurce state: set_state(5)
give input token? check output coin!
verify destination state: status? // currentState == 10 ??

coin? / -

Coffee? / - , COﬂ:ee? / -

Z)

token? / coin!
coffee? / coffee!

token? / tokert

Testcase: set state(5)/* - token?/coin! - status? /10! 59/ 81

Transition Testing - issue #1

v "
'.'-Ib\.":-\. lobaant tzan
i[n

........

method

* What if "set_state()" method not available?

- if the "reset” method is available, then use it instead
» go from SO to S5 (always possible because of
determinism and completeness)

- otherwise, use a synchronizing sequence to bring
machine to a particular known state, say SO, from
any state =

- (but synchronizing sequence may not exist ey)

: 60 / 81
A synchronizing sequence of state s brings the FSM from any state fo state s.

Transition Testing - issue #1

synchronizing sequence of state SO: token? coffee?

/oken? / colnl

token? / token! coin? / coinl

To test token? /coin! : go to state S5 by : token? coffee? coin?

(synchronizing sequence of S0)

61 /81

Transition Testing - issue #2

*To test token? / coinl:
1. go to state S5 by : "token? coffee? coin?”
2. give input token?
3. check output coinl

w4 verify that machine is in state S10 by:

currentState==10"

coin? / -

coffee? / -

token? / coin!
coffee? / coffee!

o , coin? / coin!
token? / token! 62/ 81

Transition Testing - issue #2

“status” message: Assume that tester can ask implementation
for its current state (reliably!ll)

63 /81

Transition Testing - issue #2

* What if no "status” message??

State identification: What state am I in?
State verification: Am I in state s?

Apply sequence of inputs in the current state of the FSM
such that from the outputs we can
identify the state where we started (state identification), or

+ verify that we were indeed in a particular start state (state verification)

Different kinds of sequences (dating back to 1960s)
+ UIO sequences (Unique Input Output sequence)

Distinguishing Sequence (DS)
W-set (characterizing set of sequences)
UIOv
SUIO
MUIO
Overlapping UIO 64 /81

Transition Testing - issue #2

- UIO: each state has its own input sequence that produces
State check: different outputs when applied in other states.

- UIO sequences (state verification)

- sequence x, that distinguishes state s from all other states :
forall t=5: AMs x) = M1 x.)

- each state has its own UILO sequence
- UIO sequences may not exist DS: special UIO such that it

. Distinguishing Sequence (state identification) ~ oo

- sequence x that produces different output for every state :
for all pairs t, s with t=s: LA (s, x) = L (# x)

- adistinguishing sequence may not exist
- W-set of sequences (state identification)

- set of sequences W which can distinguish any pair of states :
for all pairs t= s thereis xe W: A (s, x) = L (F x)

- W-set always exists for reduced FSM
65/ 81

Transition Testing - issue #2: UIO

UIO: each state has its own input sequence that produces different
outputs when applied in other states.

coffee? / -

token? / coin!
coffee? / coffee!

token? / toke oin? / coin!

UIO sequences
for state O : coin? / - coffee? / -

for state 5 : token? / coin!
for state 10: coffee? / coffee! 66 / 81

Transition Testing - issue #2: DS

DS: special UIO such that it is a UIO for all states!!

coffee? / -

coffee? / coffee!

token? / toke

DS sequence: token?

output state 0 : -
output state 5: coin!
output state 10 : token! 67 / 81

Transition Testing - issue #2: done
*To test token? / coin! : // _

1) go to state S5 : token? coffee? coin?
2) give input token? check output coin!
3) apply UIO of state S10 : coffee? / coffee!

coffee? / -

token? / coin!
coffee? / coffee!

we do not care about them
token? / tokert

68 / 81

(goto state S5) offer expected (check state S10)
input output

Transition Testing - done

token? / coin!
coffee? / coffee!

token? / toke

- 9 ftransitions / test cases for coffee machine

- if end-state of one test case corresponds with start-state of next test
case then concatenate

- different ways to optimize and remove overlapping / redundant parts

- there are various tools to support this 69781

FSM Transition testing: further results

Test transition "S1 --a?/xl--> S2":

1. Gotostate S1 // synchronizing sequence
2. Apply input a?
3. Check output x
4. Verify state S2 // UIO sequence of S2
Checks every output fault and transfer fault (to existing state)

If we assume that

the number of states of the implementation machine M;
/s less than or equal to

the number of states of the specification machine Mg
then testing all transitions in this way

leads to equivalence of reduced machines,

i.e., complete conformance.

If not: exponential growth in test length in number of extra states
in Mr. 70/ 81

Tools for Model-Based
Testing

Academic MBT Tools

Tool name Tool provider Modeling notation ST Short description
method
Lutess Lustre
Lurette Lustre an automated testing tool of reactive programs written in Lustre
GATel Lustre cLp a tool fha‘r auToma‘ncally generates test sequences from SCADE/Lustre models,
according to a user defined test objective
a graphical tool for developing and modeling distributed systems with integrated
Autofocus Autofocus CLP testing facilities
Conﬂ;(r‘.mance EFSM FSM
it
Phact EFsSM FSM
TVEDA SDL, Estelle FSMm
AsmL AsmL FSM? To generate tests directly from an AsmL model

72/ 81

Academic MBT Tools (cont'd)

Tool name Tool provider Modeling notation ;e;::g Short description
Cooper LTS (Basic LOTOS) LTS
TGV]\:/r;alrs‘f:ncg;d LTS;;PLI S‘,‘;\JS)-OS’ LTS a tool for the generation of conformance test suites for protocols
France !
TorX U:i‘/\\::rr“;rie‘ry :;Lsm(el'k?}:%ﬁ) LTS a prototype testing tool for conformance testing of reactive software
STG Irisa, France NTIF LTS
AGEDIS UML/AML LTS
Uppaal Tron Uﬁiavlzr?sri?ry TA TLTS ;:(n Zgzll Sfor‘ on-line conformance of real-time systems based on Timed Automata
Uppaal Cover Ut{i?;isrc;liiy TA LTS ;:(n Zgzll Sfor‘ off-line conformance of real-time systems based on Timed Automata

73 /81

ommercial

MBT Tools

Tool . Modeling I
Tool name type Manufacturer Web link notation Short description
Telcordia aetgweb.argreenhou .Model of : -
AETG 1 Technologies se.com input data The AETG Web Service generates pairwise test cases.
9 : domain
Diaz & Model of
Case Maker 1 Hilterscheid www.casemakerinter inout data CaseMaker uses the Pairwise method to compute test cases from input parameter
Unternehmensb national.com gomain domain specifications and constraints specified by business rules.
eratung GmbH
Conformi In Conformiq Test Generator, UML statecharts constitute a high-level graphical
Test g 3 Conformi www.conformia.com UML test script. Conformiq Test Generator is capable of selecting from the statechart
Generator q ’ g Statecharts models a large amount of test case variants and of executing them against tested
systems.
Pre-Post UniTESK technology is a technology of software testing based on formal
. . extensions of | specifications. Specifications are written using specialized extensions of
CTesK, JTesK 3 UniTESK www.unitesk.com programming traditional programming languages. CTesK and JTesK can use a formal
languages representation of requirements as a source of test development.
LEIRIOS
Test 3 LEIRIOS www.leirios.com B notation LTG/B generates test cases and executable test scripts from a B model. It
Generator - Technologies ’ ’ supports requirements traceability.
LTG/B
LEIRIOS
Test LEIRIOS . LTG/UML generates test cases and executable test scripts from a UML 2.0 model.
Generator - 3 Technologies www.leirios.com UML 2.0 It supports requirements raceability.
LTG/UML
Model usage MaTelo is based on Statistical Usage Testing and generates test caes from a
MaTelo 2 All4Tec www.all4tec.net editor using
Markov chain | YSa9¢ model of the system under test.
Qtronic derives tests from a design model of the system under test. This tool
Qftronic 3 Conformiq www.conformiq.com supports multi-threaded and concurrent models, timing constraints, and testing of

nondeterministic systems.

Legend for Tool Type Column:

Category 1: Generation of Test Input Data from a Domain Model

Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests

74/ 81

Commercial MBT Tools (cont'd)

Tool name ool v e el Web link izt) Short description
type er notation
Tabular Rave generates test cases from a tabular model. The test cases are then
Rave 3 T-VEC www.T-vec.com notation transformed into test drivers.
. . Mathlab, . A .
. Reactive www.reactive- P Reactis generates tests from Simulink and Stateflow models. This ool targets
Reactis 3 Systems systems.com Simulink, embedded control software
4 Y) Stateflow :
Smartware www.smartwaretech Model of
SmartTest 1 Technologie | nologies.com/smartt input data The SmartTest test case generation engine uses pairwise techniques.
s estprod.htm domain
Statemate
Automatic Test 2:2::'&?‘12
Generator / 3 i-Logix www.Tlogix com and UML ATG is a module of Telelogic(I-Logix) Statemate and Rhapsody products. It allows
Rhapsody 9 Hlogix. State test case generation from a statechart model of the System.
Automatic Test Machine
Generator (ATG)
www.telelogic.com/p
TAU Tester 4 Telelogic roducts/tau/tester/ TTCN-3 An integrated test development and execution environment for TTCN-3 tests
index.cfm
Model of . .
Testcover.c . The Testcover.com Web Service generates test cases from a model of domain
Test Cover 1 www.testcover.com input data . S .
om d . requirements. It uses pairwise techniques.
omain
T-Vec Tester for
Simulink - T-Vec 3 T-Vec www.t-vec.com Simulink and Generates test vectors and test sequences, verifying them in autogenerated code
Tester for ’) MATRIXx and in the modeling tool simulator.
MATRIXx
www.atssoft.com/pr - . .
ZigmaTEST Tools 3 ATS oducts/testingtool.h Finite State ZigmaTEST uses an FSM—bqsed test engine that can generate a test sequence to
Machine cover state machine transitions.

tm

Legend for Tool Type Column:
Category 1: Generation of Test Input Data from a Domain Model

Category 2: Generation of Test Cases from a Model of the Environment
Category 3: Generation of Test Cases with Oracles from a Behavioral Model
Category 4: Generation of Test Scripts from Abstract Tests

75/ 81

Summary

LTS Testing vs. FSM Testing

FSM good at:

- FSM has "more intuitive” theory

- FSM test suite is complete
-- but only w.r.t. assumption on number of states

- FSM test theory has been around for a number (>40) of years

FSM bad at:

- Restrictions on FSM (to enable driving the test executions):
- deterministic
- completeness

- FSM has always alternations between inputs and outputs
- Difficult to specify interleaving in FSM
- FSM is not compositional

771 81

Benefits of Model-Based Testing

-Automated testing

full automation: test generation + execution + analysis
*Early testing

-design errors found during validation of model
-Systematic and rigorous testing

‘model is precise and unambiguous basis for testing
‘longer, cheaper, more flexible, and provably correct tests

. '; system under test
complexityl \

/'\ model

software life cycle
78/ 81

Obstacles to Model-Based Testing

Comfort factor
- Learning curve

Skill sets
- Need testers who can design

Expectations

- Models can be a significant upfront investment
- But will never catch all bugs

Metrics

- Bad metrics: bug counts, nhumber of test cases
- Better metrics: spec coverage, code coverage

79/ 81

Main Readings

Gerard J. Holzmann. Design and Validation of Computer
Protocols, Chapter 9 "Conformance Testing"

Jan Tretmans. Model Based Testing with Labelled Transition
Systems. In: Formal Methods and Testing, An Outcome of the
FORTEST Network, Revised Selected Papers. Lecture Notes in
Computer Science 4949 Springer 2008, 58.1-38.
(http://www.springerlink.com/content/y390356226x154j0/)

80/ 81

Further Readings

PRACTICAL
MODEL-BASED

TESTING .

ol
o

* Books:

"Practical Model-Based Testing: A Tools Approach" by Mark
Utting and Bruno Legeard, Morgan-Kaufmann, 2007.

"Model-Based Testing of Reactive Systems", Advanced Lectures
edited by M. Broy et al., LNCS 3472, Springer, 2005.

"Black-Box Testing : Techniques for Functional Testing of
Software and Systems” by Boris Beizer of Beasos Syvioms,

"Testing Object-Oriented Systems: Models, Patterns, and Tools"
by Robert Binder

"Software Testing: A Craftsman's Approach” by Paul Jorgensen

[t H
i i Pl

* Papers:
David Lee, Mihalis Yannakakis. Principles and methods of testin

finite state machines - A survey. In: Proceedings of the IEEE,
84(8) 1090-1126, 1996. by Black-Bux Testing

.?-.- Baizer

81/ 81

Other resources
* Model-based testing website:

www.model-based-testing.org

- General conferences

- FORTE (International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols)

- TACAS, FM/FME, ISSTA, ...

» Specialized conferences/workshops:

TestCom'00- TestCom'O8 (IFIP Int. Conference on Testing of
Communicating Systems), and previously as

+ IWPTS'88 - IWPTS'96 (International Workshop for Protocol Test Systems)

« IWTCS'97 - IWTCS'99 (International Workshop on Testing of Communicating Systems)

FATES (Int. Workshop on Formal Approaches to Testing of Software)
MBT (Int. Workshop on Model-Based Testing)
A-MOST (Workshop on Advances in Model Based Testing)

82/ 81

