
Modeling, Verification, and Testing
of Reactive Systems

(Adapted from Brian Nielsen’s slides)

Agenda
• Overview

• Reactive systems
• Formal models (LTS, FSM, EFSM,

Statecharts)
• System modeling

• Simple FSM modeling
• FSM modeling and simulation using Uppaal

• System verification
• Model checking using Uppaal

• Model-based testing 2 / 77

Reactive vs.
Transformational Systems

• reactive systems:
• “process control”
• control-intensive
• running ”forever”

• transformational systems:
• “data processing”
• computation-intensive
• to deliver a result within a time frame 3 / 77

Examples

Reactive
• embedded systems (e.g.,

in consumer electronics,
mobile phones, GPS)

• operating systems
• communication protocols
• web servers
• air traffic control
• computer games
• ...

Transformational
• numerical analysis and

statistics software
packages such as
MatLab, Mathematica, R

• a “filter”, e.g.,
programming language
compilers

• ...

computational science:
huge sparse matrices,

partial differential equations,
...

computer
+ control

+ communication

4 / 77

Why Software Models
• Jumping from informal project (paper)

documentations to code implementation:
• Not advisable, and probably
• Not feasible

• The benefits of models:
• for system development, (model-based

development)
• for system validation,

• Verification
• Simulation
• Testing 5 / 77

A Classification of Software
Models

• Informal model
• Documentation in prose, schematic block

diagrams, etc.

• Semi-formal model
• Unified Modeling Language (UML) diagrams

• Formal model
• Well-formed mathematical models, usually

with clearly defined syntax and semantics6 / 77

Formal Models Classfied
• history-based model (temporal logics)
• state-based models (Z, VDM, B spec.)
• state transition-based models (LTS,

FSM, EFSM, Statecharts)
• scenario-based models (MSC, LSC)
• operational models (Petri nets,

process algrbras)

7 / 77

State Transition-Based
Models

• LTS (Labeled Transition
Systems)

• FSM (Finite State Machines)

• EFSM (FSM + guards +
assignments)

• Statecharts (EFSM +
concurrency + hierarchy +
broadcast communication) 8 / 77

Labeled Transition System
(LTS)

Labeled Transition Systems
• Labeled Transition System (LTS)

• Transition system labeled with (input,
output, or internal) actions

• A very basic model for describing
system behavior

Behavior: How the system accepts inputs
(external stimuli), changes its internal
states, and produce outputs (reactions).

10 / 77

An Example LTS

Labelled Transition System 〈 S, L, T, s0 〉

?coin

?button

!alarm ?button

!coffee

states

actions transitions
T ⊆ S × (L∪{τ}) × S

initial state
s0 ∈ S

IDLE

CHECK_COIN

BREWING

coffee vending machine

11 / 77

Input-Output LTS (IOLTS)
• Special kind of LTS:

Input-Output Labelled Transition System - IOLTS
– Output actions(!), and input actions(?)

• IOLTS with variables - equation solver for y2 =x :
• different implementations

? x (x >= 0)! √x

? x (x < 0)

? y

! -√x? x (x >= 0)! √x

? x (x < 0)

? y

12 / 77

Finite State Machine (FSM)

System Structure
System 1

Component 1

Component 2

Component 3

Component 6

Component 5

Component 4

•How do we model individual components?
•How do components interact? // by message passing
•How do we specify environment assumptions?
•How do we ensure correct behaviour? 14 / 77

Behavior of a Component

Unified Model: State Machine

a

b

x

y
a?

b?

x!

y!b?

Control states

Input
ports

Output
ports

15 / 77

Finite State Machine (Mealy machine)
q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

condition effect
current
state input output next

state
q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

Sample run:

coin/ - coin/- coin/ -cof-but / cof

coin/ -

q1 q2 q3 q1

q2
cof-but / cof q1q3

In Mealy machine the output depends on
the current state as well as the input

coffee
vending
machine

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q1,q2,q3}
Initial state = q1
Transitions= {

(q1, coin, -, q2),
(q2, coin, -, q3),
(q3, cof-but, cof, q1),
(q3, tea-but, tea, q1)
}

formally,

in tabular form,

16 / 77

Finite State Machine (Moore machine)
q1

q2

q3

coin

tea-butcof-but

condition effect

current
state

input next state

q1 coin q2

q2 coin q3

q3 cof-but q5

q3 tea-but q4

q5 cup-taken q1

q4 cup-taken q1

q4q5

coin

cup-taken

teacof

cup-taken

select

need1

need2

Input sequence: coin.coin.cof-but.cup-taken.coin.cof-but
Output sequence: need2.need1.select.cof. need2.need1.select.cof

e.g., need2 = to prompt “please insert two coins”

In Moore machine the output (or “activity”)
depends on the current state only

condition effect

current state activity

q1 need2

q2 need1

q3 select

q5 cof

q4 tea

17 / 77

Comparing FSM and LTS
• LTS is more fundamental, more naive

and simpler
• each transition step is ”atomic”

• FSM has always alternation between
inputs and outputs
• though sometimes they may be ”-”

• LTS can serve as underlying semantics
model for many other formalisms
(including FSM) 18 / 77

Input-Output FSM (IO-FSM)

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q1,q2,q3}
Initial state = q1
Transitions= {

(q1, coin, q2),
(q2, coin, q3),
(q3, cof-but, q5),
(q3, tea-but, q4),
(q4, tea, q1),
(q5, cof, q1)
}

condition effect

current state action next state

q1 coin? q2

q2 coin? q3

q3 cof-but? q5

q3 tea-but? q4

q4 tea! q1

q5 cof! q1

q1

q2

q3

coin?

tea-but?cof-but?
q4q5

coin?

cof! tea!

Sample run:
coin? coin? cof!cof-but?

coin?

q1 q2 q3 q5

cof! q1q3

action trace: coin?.coin?.cof-but?.cof!.coin?.coin?.cof-but?.cof!
input sequence: coin.coin.cof-but.coin.coin.cof-but
Output sequence: cof.cof

cof-but? q5
coin?q1 q2

In IO-FSM, “activity” is no longer an effect.

19 / 77

Fully Specified FSM (Mealy)

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

condition effect
current
state input output next

state

q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

q1 cof-but - q1

q1 tea-but - q1

q2 cof-but - q2

q2 tea-but - q2

q3 coin coin q3

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -

for each state
for each input

... 20 / 77

Implementing Mealy FSM (1)
// data structures
enum currentState {q1, q2, q3};
enum input {coin, cof_but, tea_but};
int nextStateTable[3][3] = {

q2,q1,q1,
q3,q2,q2,
q3,q1,q1 };

int outputTable[3][3] = {
0,0,0,
0,0,0,
coin,cof,tea};

// skeleton algorithm
While(input = waitForInput()) {
OUTPUT(outputTable[currentState,input])
currentState:=nextStateTable[currentState,input];

}

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -

q1 -- coin/- --> q2

21 / 77

Implementing Mealy FSM (2)
enum currentState {q1, q2, q3};
enum input {coin, tea_but, cof_but};

// algorithm in more details
While(input = waitForInput()){
Switch(currentState){
case q1: {

switch (input) {
case coin: currentState:=q2; break;
case cuf_but:
case tea_but: break;
default: ERROR(”Unexpected Input”);

}
break;

case q2: ...
case q3: {

switch(input) {
case cof_buf: {currentState:=q3;

OUTPUT(cof);
break;}

… }
break;

default: ERROR(”unknown currentState”);
} // end of switch

}

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -

22 / 77

Spontaneous Transitions
q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

condition effect
current
state

input output next
state

q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

q3 - - q4

q4 fix - q1

q4

fix / -

cof-but / -
tea-but / -
coin / -

- / -

alias: internal transition
alias: unobservable transition

A spontaneous transition is a transition
in response to no external input at all.

possibly due to internal
sub-components
interactions

23 / 77

Non-deterministic FSM
condition effect

current
state

input output next
state

q1 coin - q2

q1 coin - q1

q2 coin - q3

q3 tea-but tea q1

q3 cof-but cof q1

q3 cof-but mocca q1

q1

q2

q3

coin / -
tea-but / teacof-but / cof

coin / -

coin / -

cof-but / mocca

24 / 77

Extended FSM (EFSM)

q1

coin / -
total++

total>=2 and capacity > 1
cof-but / cof

capacity--, total:=0

•EFSM = FSMs + variables + enabling conditions + assignments
•Can model the control aspects as well as the data aspects
•Can be translated into FSM if variables have bounded domains
•EFSM state: control location + variables’ valuation

total>=1 and capacity > 1
tea-but / tea
capacity--, total:=0

coin / -(q1,0,10) (q1,1,10) coin / - (q1,2,10) cof-but / cof (q1,0,9)

or "guard"

(q, total, capacity)

called “flattening"

these are the
extended parts

25 / 77

Parallel Composition (independently)

q1

q2

q3

j++

j++

p1

p2

p3

i++

i++

P Q P || Q
(p1, q1)

(p2, q1)

(p2, q2)

(p1, q2)

i++
j++

j++ i++
(p3, q1)

i++

(p1, q3)

j++

(p3, q2)

(p3, q3)

(p2, q3)

i++
j++

i++

i++

j++

j++

(0,0)

(1,0)

(2,0)

(2,1)

(2,2)

(1,2)

(0,2)

(0,1)

(1,1)

interleaving "execution“

no coupling
between two
processes

26 / 77

State Space Explosion
• n parallel FSMs (or EFSMs)
• Each with k states
• In parallel they have kn

states
• EXPONENTIAL!

• 10^2 =100
• 10^3 = 1000
• 10^4 = 10000
• 10^10 =10000000000

27 / 77

Parallel Composition (Synchronous)

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof
coin / -

p1

p2

p3

- / coin

cof / cof-but

p3

- / coin

-/ report

Handshake on complementary actions
e.g., one “sending” with another “receiving”

strict synchronization!

the user coffee machine

28 / 77

tight coupling of events
between two components
(FSM's)

Parallel Composition (Asynchronous)

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

p1

p2

p3

- / coin

- / cof-but

p3

- / coin

cof / report

Single output variable per FSM holds last “written” output

no handshaking any more!

loose synchronization!

output
variable

output
variable

the user coffee machine

29 / 77

Parallel Composition (Queued)

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

p1

p2

p3

- / coin

-/ cof-but

p3

- / coin

cof/ report

A system state: a snapshot of all (E)FSMs’ current states and all queues

Output is queued in (un)bounded queue
The queue may be per process (component),
per action, or explicitly defined

even looser synchronization!

the user coffee machine

30 / 77

Refactoring FSM models
• Determinizing FSM model

• Minimizing FSM model
• For improved readability, maintainability,

and implementation efficiency

31 / 77

Determinizing FSM
• How to determinize an FSM?

• ”subset construction” method

• Fundamental result:
• Every FSM may be determinized accepting

the same language.

32 / 77

Minimizing FSM
• Two states s and t are (language) equivalent

iff
• s and t accepts the same language
• have the same set of possible traces: tr(s) = tr(t)

• Two Machines M0 and M1 are equivalent iff
their initial states are equivalent

• A minimized (or “reduced”) M is one that has
no equivalent states
• i.e., for all states s, t : (s equivalent t) ==> (s = t)

33 / 77

Fundamental Results

• For each FSM there exists a language-equivalent
minimal deterministic FSM.

• FSM’s are closed under ∩ and ∪
• Or, their languages are closed under the intersection and

union operators.

• FSM’s may be described as regular expressions (and
vice versa)

34 / 77

High-level
State Transition-Based Models

UML State Machines
UML State Machine

= FSM
+ concurrency
+ hierarchy
+ broadcast communication

36 / 77

Tool: visualSTATE Designer

• Hierarchical state systems
• Flat state systems
• Multiple and inter-related state machines
• Supports UML notation

other supporting
tools exist, e.g.
Rational Rose

37 / 77

SDL language

Specification and Description Language (SDL):
- for unambiguous specification and description of the behaviour of reactive and
distributed systems
- defined by the ITU-T (Recommendation Z.100.)
- originally focused on telecommunication systems
- current areas of application include process control and real-time applications in general

a system is specified as a set of interconnected
abstract machines which are extensions of FSM

38 / 77

Esterel language a synchronous programming language for the
development of complex reactive systems

the development environment: Esterel Studio

39 / 77

Textual Notations for FSM

int x;
proctype P(){
do
:: x<200 --> x=x+1
od}

proctype Q(){
do
:: x>0 --> x=x-1
od}

proctype R(){
do
:: x==200 --> x=0
od}

init
{run P(); run Q(); run
R()}

SERVERv2 = (accept.request
->service>accept.reply->SERVERv2).

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

In: Promela/SPIN In: FSP/LTSA

FSP: Finite State Processes
LTSA: Labelled Transition System Analyser

(Promela language: the input language of tool SPIN) 40 / 77

SPIN, by Gerald Holzmann at AT&T

41 / 77

Simple FSM modeling and
model manipulation

Example: Bank-box Code

To open a bank box
the code must contain at least 2

To open a bank box
the code must end with

To open a bank box
the code must end with a palindrom
e.g:. Orange

Blue
Yellow

……..

?

To open a bank box
the code most end with

or with

Palindrome: A word that reads the same forth and back, e.g., madam, radar, etc.

(1)

(2)

(3)

(4)

, or
, or

43 / 77

http://www.ultrasonic.com/pix/safe.jpg

Tool: The Finite State Machine Explorer
Freely available (http://www.belgarath.org/java/fsme.html)

Many other tools for FSM editing, simulation, determinization, minimization, ...
(http://en.wikipedia.org/wiki/List_of_state_machine_CAD_tools)

try it out!

44 / 77

Note:
• An arbitrary palindrome is not recognizable

by FSM: consider infinitely many/long
palindromes

• FSM can recognize a given bank-box
opening sequence.

• If non-deterministic:
determinize it minimize it (using the

FSME tool)

45 / 77

FSM modeling and simulation
using Uppaal

Uppaal
• An integrated tool environment for modeling,

simulation and verification of real-time systems
modeled as a set of communicating timed
automata, extended with data types

• However, it is also capable of untimed reactive
system modelling, simulation and verification

Freely available
(http://www.uppaal.com) 47 / 77

Working Modes of Uppaal

48 / 77

Uppaal Editor (Modelling View)

an (Extended) FSM

49 / 77

FSM in Uppaal
• Basically an Extended FSM (variables, guards,

assignments)
• Also may be thought of as an LTS, or IO Automaton

• actions are either inputs or outputs
• internal actions are not explicitly given LTS can be viewed as

a degradation of
finite state machine
(FSM)

coffee vending machine

But not a real FSM. Because in Uppaal
model, each edge is an atomic
transition, and it does not take the
form “input/output”

50 / 77

Model Composition
IO Automata (2-way synchronization)

A

B

X

Y

h! h?

AX

BY

or pairwise synchronization

sending or
“writing”

receiving or
“reading”

or “handshaking”

the composition
results in this
internal
transition

51 / 77

Modelling Processes
• A process is the execution of a sequential program
• modelled as a labelled transition system (LTS)

• transits from state to state
• by executing a sequence of atomic actions.

a light switch
LTS

on off on off on off ……….
a sequence of actions

or

a trace

52 / 77

Modelling Choices

• Who or what makes the choice?

• Is there a difference between input and output actions?

53 / 77

Non-deterministic Choice:
modeling random event

• Tossing a coin

• Possible traces?
• Both outcomes (head or tail) possible
• Nothing said about relative frequency
• If coin is fair, the outcome is 50/50

54 / 77

Non-deterministic Choice:
modeling failure

How do we model an unreliable communication channel which
accepts packets, and if a failure occurs produces no output,
otherwise delivers the packet to the receiver?

Use non-determinism...

55 / 77

Internal Actions
• Internal actions are also called

• spontaneous actions, or
• tau-actions

• Internal transitions can be taken on the initiative
of a single machine without coupling with another
one

56 / 77

Modelling Extended FSM (EFSM)

•EFSM = FSM + variables + enabling conditions + assignments
•Transition still atomic (thus not really an EFSM!)
•Can be translated into FSM if variables have bounded domains
•State: control location + variables’ valuation
•(state, total, capacity), e.g.: (s0, 5, 10) 57 / 77

Process Interaction
• “!” denotes output, “?” denotes input
• Handshake communication
• Two-way

Coffee Machine Lecturer
University=
Coffee Machine || Lecturer

4 states
4 states

4 states:
(interactions constrain overall behavior)

synchronization results in internal actions

=

LTS?
How many states?
Traces ?

58 / 77

Broadcasts

• the sending party: one automaton outputs join!
• the receiving party: several automata accept join!,

• each of them makes a move upon receiving join!,
• ie. every automaton with enabled “join?” transition moves

in one step
• the number of recipients may be 0 (one “speaker”,

but zero “audience”)

chan coin, cof, cofBut;
broadcast chan join;

59 / 77

Committed Locations
• Locations marked “C”

• No delay in committed location
• Next transition must involve one of those

automata in committed locations

• Handy to model atomic sequence of actions
• An ”input/output”-style transition of Mealy

machine can be modelled by 2 atomic
actions ”input?” and ”output!”, which are
connected by a committed location

• The use of committed locations
significantly reduces the state space of a
model, thus allows for more efficient
analysis and verification

s0 to s5 executed atomically
they will not be interrupted

Committed locations help regain
the FSM expressiveness of
Uppaal models.

60 / 77

Uppaal Network of Automata

system state = snapshot of (all machines’ control locations + local variables
+ global variables)

They constitute a closed system.
61 / 77

Uppaal Simulator Screenshot

62 / 77

Model Simulation in Uppaal
the enabled transitions
that the user can choose

the system state
variables

graphical display of the
current system state

history information as
trace

history information on component
interaction as documented in
Message Sequence Chart

63 / 77

System verification using
Uppaal

Uppaal Model Checking as a box

System description
Timed Automata in Uppaal Editor

Requirement specification
Temporal logic formula

Yes!

No!
Diagnostic Information

Uppaal

65 / 77

What does Verification do
• Compute all possible execution sequences

• And consequently to examine all states of the
system

• Exhaustive search => proof

• Check if
• every state encountered does not have the undesired

property --> safety property
• some state encountered has the desired property -->

reachability property

66 / 77

Properties
• Safety

• “Nothing bad happens during execution”
• System never enters a bad state

• Eg. mutual exclusion on shared resource

• Liveness
• “Something good eventually happens”
• Eventually reaching a desired state

• Eg. a process’ request for a shared resource is
eventually granted

diffent from reachability property

67 / 77

UPPAAL Property Specification Language

• A[] p
• A<> p

• E<> p
• E[] p
• P --> q

clock guardsdata guardsprocess location

p::= a.l | gd | gc | p and p |
p or p | not p | p imply p |
(p) | deadlock(only for A[],E<>)

A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)

“p leads to p”:
A[] (p imply A< > q)

path quantifier
state quantifier

68 / 77

Uppaal “Computation Tree Logic”

p

. . .

. . .

. . .

. . .

E<> p ”possible”

P

P P

. . .

. . .

. . .

. . .

A<> p ”inevitable”

p

P

p

P P

p

. . .

. . .

. . .

. . .

A[] p

p

”always”

P

P

P

. . .

. . .

. . .

. . .

E[] p ”potentially always” p --> q ”leads-to”

p

. . .

. . .

q q q

. . .

. . .

. . .
(safety)

(reachability)

(liveness) (guaranteed
response)

69 / 77

State Space Exploration

1111

11

11

1

22

2

0

0

0

• Each trace = a program execution
• Uppaal checks all traces

count==1

count==1count==1

count==1

count++

count++ count++

count++ count++count--count--

count--
count--

count--

• Is count possibly 3 ? E<> count==3
• Is count always 1 ? A[] count==1

Int count:=1

70 / 77

Reachability Analysis

Passed:=Ø //already seen states
waiting:={S_0} //states not examined yet
While(waiting!=Ø) {
waiting:=waiting\{s_i}
if s_i ∉ Passed

whenever (s_j → s_j) then
waiting:=waiting ∪ s_j

}

Depth-First: maintain waiting as a stack

Breadth-First: maintain waiting as a queue
(shortest counter example)

0

1

3

6 7 8 9

4 5

2

Order: 0 1 3 6 7 4 8 2 5 9

Order: 0 1 2 3 4 5 6 7 8 9
71 / 77

‘State Explosion’ problem

a

cb

1 2

43

1,a 4,a

3,a 4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

72 / 77

Limitations to Reachability Analysis

system size
(#parallel processes)

State Space /
Time Usage /
Memory Usage

Exhaustive feasible10^7

Controlled partial10^9

Random - low coverage

• n parallel FSMs
• k states each
• k^n states in parallel

composition
• EXPONENTIAL

GROWTH
• 10^2 =100
• 10^3 = 1000
• 10^4 = 10000
• 10^10=10000000000

73 / 77

What Influences System Size?
• Number of parallel processes
• Amount of non-determinism
• Queue sizes
• Range of discrete data values
• Environment assumptions

• Speed
• Kinds of messages that can be sent in what

states
• Data values

74 / 77

Counter Measures
• Use abstraction, simplification

• Only model the aspects relevant for the property in question
• Economize with (loosely synch’ed) parallel processes
• Make precise assumptions and restrictions
• Range of data values

• Use bounded data values: integer (0:4);
• Reset variables to initial value whenever possible
• Avoid complex data structures

• Partial (controlled) search heuristics
• Bit-State hashing
• Limit search depth
• Restrict scheduling

• Priority to internal transitions over env input
• Schedule process in FIFO style rathar than ALL interleavings

75 / 77

Does verification guarantee
correctness?

• Only models verified,
not (physical)
implementations

• Made the right model?
• Properties correctly

formulated?
• The right properties?
• Enough properties?
• System size too large

for exhaustive check

• Modelling effort itself
revealing

• Increased confidence
earlier

• Cheaper
• Even partial and

random search
increases confidence

76 / 77

Any other remedy?
– Model-Based Testing!

	Modeling, Verification, and Testing of Reactive Systems
	Agenda
	Reactive vs. Transformational Systems
	Examples
	Why Software Models
	A Classification of Software Models
	Formal Models Classfied
	State Transition-Based Models
	Labeled Transition System (LTS)
	Labeled Transition Systems
	An Example LTS
	Input-Output LTS (IOLTS)
	Finite State Machine (FSM)
	System Structure
	Behavior of a Component
	Finite State Machine (Mealy machine)
	Finite State Machine (Moore machine)
	Comparing FSM and LTS
	Input-Output FSM (IO-FSM)
	Fully Specified FSM (Mealy)
	Implementing Mealy FSM (1)
	Implementing Mealy FSM (2)
	Spontaneous Transitions
	Non-deterministic FSM
	Extended FSM (EFSM)
	Parallel Composition (independently)
	State Space Explosion
	Parallel Composition (Synchronous)
	Parallel Composition (Asynchronous)
	Parallel Composition (Queued)
	Refactoring FSM models
	Determinizing FSM
	Minimizing FSM
	Fundamental Results
	High-level �State Transition-Based Models
	UML State Machines
	Slide Number 37
	SDL language
	Esterel language
	Textual Notations for FSM
	Slide Number 41
	Simple FSM modeling and model manipulation
	Example: Bank-box Code
	Tool: The Finite State Machine Explorer
	Note:
	Slide Number 46
	Uppaal
	Working Modes of Uppaal
	Uppaal Editor (Modelling View)
	FSM in Uppaal
	Model Composition�IO Automata (2-way synchronization)
	Modelling Processes
	Modelling Choices
	Non-deterministic Choice: modeling random event
	Non-deterministic Choice:�modeling failure
	Internal Actions
	Modelling Extended FSM (EFSM)
	Process Interaction
	Broadcasts
	Committed Locations
	Uppaal Network of Automata
	Uppaal Simulator Screenshot
	Model Simulation in Uppaal
	Slide Number 64
	Uppaal Model Checking as a box
	What does Verification do
	Properties
	UPPAAL Property Specification Language
	Uppaal “Computation Tree Logic”
	State Space Exploration
	Reachability Analysis
	‘State Explosion’ problem
	Limitations to Reachability Analysis
	What Influences System Size?
	Counter Measures
	Does verification guarantee correctness?
	Any other remedy?�– Model-Based Testing!

