Modeling, Verification, and Testing
of Reactive Systems

(Adapted from Brian Nielsen's slides)

Agenda

* QOverview

* Reactive systems

* Formal models (LTS, FSM, EFSM,
Statecharts)

* System modeling

- Simple FSM modeling

* FSM modeling and simulation using Uppaal
» System verification

* Model checking using Uppaal

* Model-based testing .

Reactive vs.
Transformational Systems

* reactive systems:
* "process control”
* control-intensive
* running “forever"”

* tfransformational systems:
* “data processing”
* computation-intensive
* Yo deliver a result within a time frame .,

huge sparse matrices,
partial differential equation

computer
+ control
+ communication

Examples

Reactive Transformational
embedded systems (e.g., + numerical analysis and
in consumer electronics, statistics software
mobile phones, GPS) packages such as
operating systems MatLab, Mathematica, R
communication protocols * a “filter”, eg.,
e programming language

compilers

air traffic control
computer games

4177

Why Software Models

» Jumping from informal project (paper)
documentations to code implementation:
* Not advisable, and probably
* Not feasible

* The benefits of models:

* for system development, (model-based
development)

* for system validation,
Verification

Simulation
Testing 5171

A Classification of Software
Models

* Informal model

* Documentation in prose, schematic block
diagrams, etc.

* Semi-formal model
* Unified Modeling Language (UML) diagrams

=+ Formal model

- Well-formed mathematical models, usually
with clearly defined syntax and semantics

6/77

Formal Models Classfied

* history-based model (temporal logics)
* state-based models (Z, VDM, B spec.)

* state transition-based models (LTS,
FSM, EFSM, Statecharts)

* scenario-based models (MSC, LSC)

* operational models (Petri nets,
process algrbras)

7177

State Transition-Based

Models
* LTS (Labeled Transition
Systems)

* FSM (Finite State Machines)| S

- EFSM (FSM + guards +
assignments)

- Statecharts (EFSM + ,
concurrency + hierarchy + [
broadcast communication) kSl

177

Labeled Transition System
(LTS)

Labeled Transition Systems

* Labeled Transition System (LTS)

* Transition system labeled with (input,
output, or internal) actions

* A very basic model for describing
system behavior

Behavior: How the system accepts inputs
(external stimuli), changes its internal
states, and produce outputs (reactions).

10/ 77

An Example LTS

Labelled Transition System (S, L, T, sp)

states / \ initial state
coffee vending machine < S
actions transitions

TS x (LU} xS
lcoffee

DIN=
?coin lalarm ?button

CHECK_COIN ?button .

Input-Output LTS (IOLTS)

Special kind of LTS:
Input-Output Labelled Transition System - IOLTS

- Output actions(!), and input actions(?)
IOLTS with variables - equation solver for y? =x :
different implementations

Finite State Machine (FSM)

System Structure
// System 1

Component 5
Component 1 Component 3

Component 2 Component 4

Component 6

‘How do we model individual components?
*How do components interact? // by message passing

*How do we specify environment assumptions?
How do we ensure correct behaviour? 14177

Behavior of a Component

Unified Model: State Machine

Input
ports

Control states

1517177

Finite State Machine (Mealy machine)

in tabular form,

coffee
vending condition effect
machine
current - ST next
state P P state
cof-but / d, coin _ d,
g, | coin i s
3 cof-but cof ol
formally,
3 tea-but tea o}
In Mealy machine the output depends on
the as well as the
Sample run:
coin/ - coin/- cof-but / cof coin/ -
s > 0; > 03 >0 &

- cof-but / cof
%m ds >, gt

Finite State Machine (Moore machine)

condition effect condition effect
current input next state R — activity
state

Q; coin 4z o need2

d, elly O3 ds, need1

o cof-but ds O3 select

Js tea-but d4 Qs cof

ds cup-taken o} Os tea

cof select tea o cup-taken N

In Moore machine the output (or “activity”)
depends on the current state only

e.g., need2 = to prompt “please insert two coins” 17177

Comparing FSM and LTS

* LTS is more fundamental, more naive
and simpler

* each transition step is "atomic”

* FSM has always alternation between
inputs and outputs

* though sometimes they may be “-

* LTS can serve as underlying semantics
model for many other formalisms
(inCIUding FSM) 18177

Input-Output FSM (IO-FSM)

< J; > condition effect
current state action next state
d, coin? d,
d, coin? ds
ds cof-but? Js
ds tea-but? d,
04 teal o
0s cof! o

In IO-FSM, "activity” is no longer an effect.

Sample run:
coin? coin? cof-but? cof!
A1 > 03 > 03 >0s >
coin? coin? cof-but? cof!
ql > q2 > CI3 > q5 —>CI1

Fully Specified FSM (Mealy)

ot cof-but / -
. Jtea-but/ -

tea-b\it / tea

~ s cbf-but /-
t?a-but /-

cof-but / gof

coin / coin

for each state
for each input

condition effect
current it | G next
state state
Q: coin - op
q, | coin - s
3 cof-but cof d,
3 tea-but tea dJ,

20/ 77

Implementing Mealy FSM (1)

// data structures

enum currentState {ql, g2, q3}; &, cof-but / -

enum input {coin, cof but, tea but}; -, .~ tea-but/-

Int nextStateTable[3][3] = {
q2,91.q91,

g3,ql,ql }; 1 91-coin/i-->q2

Int outputTable[3][3] = {
0,0,0,
0,0,0,
coin,cof,tea};

cof-but / pof

fcoﬂﬁ/con1
// skeleton algorithm Ry
While(input = waitForlnput()) {
OUTPUT (outputTable[currentState, input])
currentState:=nextStateTable[currentState, input];

} 21177

Implementing Mealy FSM (2)

enum currentState {ql, g2, q3};
enum Input {coin, tea but, cof but};

// algorithm in more details
While(input = wairtForinput()){

}

Switch(currentState){
case ql: {
switch (input) {
case coin: currentState:=g2; break;
case cuf but:
case tea but: break;
default: ERROR(’Unexpected Input™);

+

break;
case (2:
case g3: {

switch(input) {
case cof buf: {currentState:=q3;
OUTPUT (cof);
break;}

-
break;
default: ERROR(C’unknown currentState™);
} // end of switch

~" e cof-but / -
Jtea-but / -

L]

.

A J
*

“

.0

:co
*

L 4

Y
in:/ coin

agps®

22177

Spontaneous Transitions

condition effect
current | Input output next
state state
a, | coin _ s
q; | coin _ s
3 cof-but cof ol
3 tea-but tea d;
fix / - ds i i d4
d,4 fix - d;
&7 cof-but / -
-==*" coin / -

possibly due to internal alias: internal transition

SO CEIEEEE alias: unobservable transition BT
interactions

Non-deterministic FSM

condition effect
current | Input output next
State State
0, coin _ 0
dq coin - ”
q, | coin _ da
3 tea-but tea d,

24 [77

Extended FSM (EFSM)

total++ -
total>=2 and capacity > 1 O to'fal>:fl and capacity > 1
cof-but / cof @
capacity--, total:=0

tea-but / tea
called “fla’r’rening" “““““““

capacity--, total:=0

*Can model th@ control aspects as well as the data aspects
«Can be translated into FSM if variables have bounded domains
EFSM state: control location + variables’ valuation

coin/ - coin/ - cof-but / cof
(02,0,10) *(0,,1,10) -(01,2,10) - (01,0.9) 55,77

Parallel Composition (independently)

g

no coupling
> P ” Q between two

processes

|++

|++

26177

(2,2)

* Each with / states

State Space Explosion
* s1parallel FSMs (or EFSMs)

* In parallel they have
states

- 1072 =100

- 1073 = 1000

- 1074 = 10000

- 10710 =10000000000

Parallel Composition (Synchronous)

Handshake on complementary actions

-/ report

tea

tight coupling of events
between two components
(FSM's)

strict synchronization! 28/77

Parallel Composition (#synchronous)
Single output variable per FSM holds last "written” output

no handshaking any morel!

the user .~ coffee machine
output < q, >
cof / repaft variable
-/ copin —— —~—>
! tea

-/ ¢oin

output

variable o
synchronization! 29/77

Parallel Composition (Queued)

Output is queued in (un)bounded queue

cof/ repo

A system state: a snapshot of all (E)FSMs' current states and all queues
synchronization! 30/ 77

Refactoring FSM models
* Determinizing FSM model

* Minimizing FSM model

* For improved readability, maintainability,
and implementation efficiency

31/77

Determinizing FSM

* How to determinize an FSM?
- "subset construction” method

* Fundamental result:

FSM may be determinized accepting
the same language.

32177

Minimizing FSM

- Two states - and ' are (language) equivalent
iff
* ~and ' accepts the same language

* have the same set of possible traces: #r() = tr(’)

* Two Machines My and M, are equivalent iff
their initial states are equivalent

* A minimized (or "reduced”) M is one that has
no equivalent states

* i.e., for all states =, 1 : (- equivalent ") ==> (= = 1)

33/77

Fundamental Results

For each FSM there exists a language-equivalent
minimal deterministic FSM.

FSM's are closed under n and U

* Or, their languages are closed under the intersection and
union operators.

FSM's may be described as regular expressions (and
vice versa)

3477

High-level
State Transition-Based Models

ﬁ UML State Machines

UML State Machine

KEY_MO_HOLDO !/
OPENDISPLAY
LIGHT_ONG

power_off KEY_WO_HOLDO !

CLEAR_DISPO)
LIGHT_OFFQ)
SUNITCH_OFFE)

polEr_on

Calling

KEY_DIGITS !
STORE_DIGD
UPDATE_DISPO

tryconnect

KE¥_YES() line_ok
SENDMUMBER?)

KEY _DIGITSO f
CLEAR_DISPO
STORE_DIGOD

UPDATE_DISPO

COMMECT(Nine_weak /
DISPLAY_CONO

CALLING_REQ) OFFQ
CLEAR_DISP
RING_OFF{ LI
KEY_NOQ
CLEAR_DISPO
DISCOMMECTED()

CONMECT Nine_weak #
OISPLAY _COMD

KEY_YES() !

RING_OFFD)

LIGHT_ONG)
DISPLAY_CON

Lire_Control

KE¥_CLR(1/
DELETE_DIG
UPDATE_DISPO

INTERN_CLR() ¢
CLEAR_DISPQ
INT_RESTOREC

CALLING_REQUEST(
LIGHT_BLINKD
RING_OHG

CALLING_REQUESTN !
CLEARAYDISPO
LIGHT_BLIMKG

RING_

call_wait

STROMG_SIGO !

[1SPLAY_MO_S1G{)

line_weak

FSM

concurrency
hierarchy
broadcast communication

FIAGE0

LINE_LOSTO S
CLEAR_DISPD
TESTGED

stand_by

SWITCHEED

ﬁ Tool: visualSTATE Designer

A+ Beologic visualSTATE Classic Diagram Designer - untitled.vsr - [CD_PLAYER] H=] E3
File Edit i jects Oplio

other supporting
tools exist, e.g.
Rational Rose

[TME_Pass)

(TmE_LEFT]

Open the 'Compose Transition' dialog

* Hierarchical state systems

* Flat state systems
* Multiple and inter-related state machines 37177

* Supports UML notation

a system is specified as a set of interconnected
abstract machines which are extensions of FSM

SDL language

process MMohileSt(1,1)

7 Wiobile Station =7 itini
5 waitinit4 power OFf wait CheckF I
:Madels that
the makile can
MONE -!
waitirit] ET5_FIDs(ETS_ID)= send. B oot
- | _FIDs(BTS_ID l 'BTS to anat..

C nith1S (ETS_ID

I
The real behawiour
begins here, before it is
SDL configuration stuff.
[BT5_PIDs(ETS_ID)= send.] |:FA'-5E:|

(l L
pu:uwerI:Iff) ‘Marmally a3k)]
=2 me == FIN 3 times] | 1stening
checkFIN(p ¥ - "Frompts
I:Duke:l |: Ann:l BTSreceived:= user durin.t;:]
| | —— SIMLocked PEWBTS | imulation.
f= pin_a| | pi=pin_k waltlhec
| | | | i ; ‘Mo, this rmokile
“Mrong P receives from
SiMLocked} .
isink stat.. ETSreceived, until the

PIN_OK¢status)

(THUE) CellEntry Or Cha...

[ETS_PIDs(ETS_ID}= send.]

waltInit3
nithS (BTS_ID)

[BT5_PIDs(ETS_ID)= send.]

next change of cell”
wait hit2

F To store the SDL FID of the Base T« Stations. Necessary
to send a sighal 1o a given BTS. *f

MNEWTYPE BETS_FIDs_t
ARRAN{BTS_ID_t, PIDY;

EMDMEWTYPE;

DCL
e Mokile_ID_t, replaces context parameters.”s
IMEI IMEI_t, & replaces context parameters ™/
B PIM_T,
status BEOOLEAN,
sender BTS,
ETSreceived BTS_ID_t,
BTS_FIDs BTS_FIDs_t;

‘Display lewel of the
radio signal received
fram the BTS*

TO

log Ot VBTSreceived”.
(e, BTSreceived, IMEIR, 'Missing in the
ETS_FIDs{BTSreceive '

=t

Specification and Description Language (SDL):
- for unambiguous specification and description of the behaviour of reactive and

distributed systems

- defined by the ITU-T (Recommendation Z.100.)
- originally focused on telecommunication systems
- current areas of application include process control and real-time applications in general

Tells where | a..

(Tizal G5k boa..

E .'. l I a synchronous programming language for the
S e r. e G ng U 09 e development of complex reactive systems
- ReflexGameNormal.scg - ReflexGameMormal #0 =10lx|

M ame i Walue I Format Code Coverage Help

RingBel B X |0 o | | & Q| 1| [Mede Al@cayy o
Ga-nrﬁlnla_l;lrver Eﬂ| .f-‘-.bhrevl | F'rinrl | =]
Go

Drizplay integer

ReflexGameNormal

3 armer] ormal. B emaininghd e integer

ol I Dutputs | Locals | Traps | Yariables | "Watch |

_loix|

Mame i MachineON

Dn_off/ On_offf

zignal AemainingM easures:integer,

A INUED

Al |In|:|uts | SENS0rS | Return Signals |

—iCammands ”Current Session GAME

] Resetl [Keep Inputs _ﬁj l(_l 1
—Flavback Sessian
I EI EI ¥ Reset on Loading
et
S|

deasures[MEASURE_NUMBER])

| v s | (35| Speedl ,J

PAUSE_LENGTH M5/
Display(?MEAN/MEASURE_MUMBER])

— Dump control
—Waveform
Qutput file [Start

mainingM easures » 0]/

Configuration File I Edit | Shop

[Coverage

Output file [Start |

[Compack Coverage Files Stop |

Textual Notations for FSM

In: Promela/SPIN In: FSP/LTSA

SERVERvV2 (accept.request
->service>accept.reply->SERVERvV2).

CLIENTV2 (call _request
->call.reply->continue->CLIENTV2).

int x;
proctype PQ{
do
I X<200 --> x=x+1

od}

| ICLIENT_SERVERv2 = (CLIENTvV2 || SERVERV2)
/{call/accept}.

T
prgg e FSP: Finite State Processes
LTSA: Labelled Transition System Analyser

o x>0 --> x=x-1
od}

proctype R(O{
do

oo x==200 --> x=0
od}
init
{run PQ; run QQ; run
RO}

(Promela language: the input language of tool SPIN)

40/ 77

SPIN CONTROL 3.1.3 ~ 16 March 1398 —
Fle.. | Eait.. | Run.. | Help | SPIN DESIGN VERIFICATION
S ntype

chan
chan

Line#:||15

{ msql, msgl, ackl, ackl };
sender =[1] of { byte };
receiver=[1] of { byte };

proctype Sender()
{ byte any;
agaln:

: sender?ackl -»> break
o sender?any J* lost */
. timeout /* retransmit +/
fi
od;
do
: receiver lmsgl;
if
:: sender?ackl -» break
. sender?any /+ lost +/
;o timeout /* retransmit */
fi

od;

N SPIN, b
i
proctype Receiver () Y Y

{ byte any;
again:
do
: receivertmsgl -» senderlackl; bresk
: receivertnsgl -» sender!ackl
o receiver?any /* lost */
od;

do
:: receivertnsgl -» senderlackl; break

in/spin -X -p -v -g -1 -8 -r -t -j0 pan_in

end of tr

J line 41 “"pan_in" (state 16)
line 23 "pan_in" (state 1&)
line 50 "pan_in" (state 4)
ne

63 "never" (state 0) [printf {"MSC:

Message Sequence Chart

Line 54

line &3 "pan_in" ({stz

Save in:

LB N

Gerald Holzmann at AT&T

Wenfication Dutput

(never claims generated from LTL formulae are stutter-closed)
pan: acceptance cycle (at depth 53}
pan: wrote pan_in. trail
{Spin Version 3.1.2 —— 16 March 1998)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:
never-clain
assertion violations
acceptance cycles
invalid endstates

¥
+ (if within scope of claim)
+ (fairness disabled)
- {(disabled by never-claim)
State-wvector 32 byte, depth reached 67, errors: 1

L states, stored (41 visited)

& states, matched

47 transitions (= visited+matched)

1 atomic steps
hash conflicts: 0 (resolved)
(max size 2719 states)

2,542 memory usage (Mbyte)

Save in: | pl2a.out

Swarning‘ for p.o. reduction to be wvalid the never claim must be stutter-closed

Clear Close | |

I [=] P

Smaller | Larger | 3ave in: msc.ps | Close | _| Preserve

=

Simple FSM modeling and
model manipulation

Example: Bank-box Code

@® Orange
@® Blue
® VYellow

(1) To open a bank box
the code must contain 2 @

(2) To open a bank box
the code must 00

(3) To open a bank box
the code mostendwith @@ @

with @ @ @

(4) To open a bank box
the code must end with a

€9:. @00® or
0000 or
00000

Palindrome: A word that reads the same forth and back, e.g., madam, radar, etc.

43177

http://www.ultrasonic.com/pix/safe.jpg

Tool: The Finite State Machine Explorer

Freely available (http://www.belgarath.org/java/fsme.html)

a The Finite State Machine Explorer

Move states or connections by dragging them...

122
Zo0m: "'"' Simulate Medium -

Start Mew [raterministic™ Auto Layout lemove inacc limize Monlet-= Det

Many other tools for FSM editing, simulation, determinization, minimization, ...
(http://en.wikipedia.org/wiki/List_of_state_machine_CAD_tools) 44 | 77

Note:

* An arbitrary palindrome is not recognizable
by FSM: consider infinitely many/long
palindromes

* FSM can recognize a given bank-box
opening sequence.

* ITf non-deterministic:

-~ determinize it - minimize it (using the
FSME tool)

4577

FSM modeling and simulation
using

Uppaal

* An integrated tool environment for ,
simulation and verification of real-time systems
modeled as a set of communicating timed
automata, extended with data types

* However, it is also capable of untimed reactive
system modelling, simulation and verification

Freely available < Q)
(h'rtp : //www . uppaal . com) f1l._hl.:rg::l.r1.-;|l?-.'-2:5$r?mh‘.:!-r.-sr.t-ll and Aalborg University. All nghts rersnes

UPPAAL 4.0.3 (rev. 2758}, October 2006,

Working Modes of Uppaal

Verification

48 77

Uppaal Editor (Modelling View)

B C:/uppaal-4.0. 6/demo/ftrain-gate.>anl - UPPAAL @@

File Edit Miew Tools Options Help

LaEE @ & & B @

Editor | Simulator || Yerifier

[Drag out]: Mame: |Train Parameters: |constid_tid

__} Project
Declarakions

X=>=

Safe ©_(leave[id]!

apprid]!
x=0

an (Extended) FSM g

x<=10
stop[id]?

FSM in Uppadl

* Basically an Extended FSM (variables, guards,
assignments) :

* Also may be thought of égs an LTS, or IO Automaton
* actions are either inputs of outputs .

* internal actions are not explicitly given RN TYEPY

a degradation of
finite state machine
(FSM)

. cof_but?: : . tea_but?

But not a real FSM. Because in Uppaal
model, each edge is an atomic

transition, and it does not take the
form “input/output”

coffee vending machine

S

Model Composition
IO Automata (2-way synchronization)

:
)

¢

4

o
X

)

or pairwise synchronization

>

the composition
results in this

transition

joy

51/77

Modelling Processes

* A process is the execution of a sequential program

* modelled as a labelled transition system (LTS)
° transits from state to state
* by executing a sequence of atomic actions.

a light switch
LTS

a sequence of actions
on>off>on>off>on>off> ...

or

a frace

52177

Modelling Choices

* Who or what makes the choice?

+ Is there a difference between input and output actions?

53/77

Non-deterministic Choice:
modeling random event

* Tossing a coin

* Possible traces?

* Both outcomes (head or tail) possible
* Nothing said about relative frequency
» If coinis fair, the outcome is 50/50

54177

Non-deterministic Choice:
modeling failure

How do we model an unreliable communication channel which

accepts packets, and if a failure occurs produces no output,
otherwise delivers the packet to the receiver?

Use hon-determinism...

55/77

Internal Actions

* Internal actions are also called
°* spontaneous actions, or
* tau-actions

« Internal transitions can be taken on the initiative
of machine coupling with another
one

conn_req.!

[: ACC Ei LI 17 Do om

1 1 om ;:i Litin |{

A =a-amounk
b *t|+1rnnur|t .

56/ 77

Modellmg ETende FSM (EFSM)

jamol.jnt:=a:mount+1

amount==prlce

Capamty_ _____________ ___________ ______________ c ap_ap_l_ty?_*_ﬂ ________ e o -

capaclty 1 com capamty =

‘EFSM = FSM + var‘iables + + assignments

* Transition still atomic (thus not really an EFSMI)

Can be translated into FSM if variables have bounded domains

State: control location + variables' valuation

‘(state, total, capacity), e.g.: (sO, 5, 10) 57177

Process Interaction

* """ denotes output, " denoTes input
* Handshake communication pyag
Two-way .

University=

Coffee Machine Lecturer Coffee Machine || Lecturer

cﬁfbﬁtl
‘O—1

4 states

4 states

synchronization results in internal actions LTS

How many states?

Traces ?
4 states: 58/77

(interactions constrain overall behavior)

Broadcasts

chan coin, cof, cofBut;
join;

* the sending party: one automaton outputs join!

* the receiving party: several automata accept joinl,
each of them makes a move upon receiving join!,
ie. every automaton with enabled " join?" transition moves
in one step

* the number of recipients may be O (one "speaker”,

but “audience”) -

Committed Locations

Locations marked "C"
No delay in committed location

Next transition must involve one of those
automata in committed locations

Handy to model atomic sequence of actions
*An "input/output”-style transition of
machine can be modelled by 2 atomic TR S
actions "input?” and “output!”, which are a:Ta-amount,
connected by a b:=b+a

The use of committed locations A
significantly reduces the state space of a accountA =a.
model, thus allows Tor more efficient B
analysis and verification |

acfcountéB:=b§

Committed locations help regain
the FSM expressiveness of
Uppaal models.

sO to s5 executed atomically o
they will not be interrupted

177

Uppaql Network of Au’roma’ra

Bc .-‘uppaal -4.0.6/d

Train(3)

system state = snapshot of (all machines’ control locations + local variables
+ global variables)

They constitute a system.
61/ 77

Uppaal Simulator Screenshot

File Templates Wiew Queries Options Help

Bla|@m|a|a|al® @]

System Editor Simulator]'u'erifier |

Drag ouk N Drag ouk

Variables
Enabled Transitions —_—m engine0ff?

eln = 1 : __--——'@*‘——T__—_ R . Sy

brk = 0O | engineD'l;f?-'
engnedn?

throttleContr

Cime = 0

(cc.4 recordSpeed!, sc.8.record3pead?)

disable Contra!
dearfpeed!

Mexk I Reset J

¥
gl throte Cortral =0

Sirmulation Trace o

on_requested ()
-, inactive, disabled, -, -
- H il record Speed!

(u.1.engineon!, cc.l.engineQn?)
angine Cf? rezume

(-, -, disabled, -, -) throtte Contral =0
enable Control!

2 | Ay 7 acoelaratar?
(e, 2. dearSpeed!, sc.7.clearSpeed?) R oS

-

u cc sC e ufix
(u.3.0nl, cc.3.0n?)

(-, on_requested, disabled, -, -) I\% [inacl:ti\re] [disa|bled lg EI

(e.2.speedl, sc.6,5peed?)

8 @

clearSpeed

(-, active, disabled, -, -

Trace File: j

Prev [actve] |[disa

Cpen

[— on_requested

Model Simulation in Uppaal

the enabled transitions the system state graphical display of the
that the user can choose variables current system state

ain(3)

history information as history information on component
trace intferaction as documented in
Message Sequence Chart

63 /77

System verification using

Uppaal Model Checking as a box

System description

Timed Automata in Uppaal Editor
k J Diagnostic Information
K’ Uppaal Y\
Yes! “i
V)

Requirement specification
Temporal logic formula

65/ 77

What does Verification do

Compute a// possible execution sequences

And consequently to examine a// states of the
system

Exhaustive search => proof

Checklf

every state encountered does not have the undesired
property --> safety property

* some state encountered has the desired property -->
reachability property

66 /77

Properties

- Safety
* "Nothing bad happens during execution”

* System never enters a bad state
Eg. mutual exclusion on shared resource

diffent from reachability property

* Liveness
* "Something good eventually happens”

* Eventually reaching a desired state

Eg. a process’' request for a shared resource is
eventually granted

67177

UPPAAL Property Specification Language

path quantifier
state quantifier

k//////

-A[l p *E<>p
°A<>p “E[]l p
o P ——_> o

p::=a.l] g1 9. | pand p |

porp | notp | p imply p |
(p) | deadlock(only for A[],E<>)

A[] (mcl.finished and mc2.finished) imply (accountA+accountB==200)
68 /77

Uppaal “CompuTaTion Tree Logic“
E<> p ,OOSSIb/e ALL P

LSS

oA .&

69 /77

State Space Exploration

Int count:=1

count==1

countt \\ count++

el el)

L ©

e Each trace = a program execution

e Uppaal checks 2!l traces

* Is count possibly 3 ? E<> count==3

e Is count always 1 ? A[] count==1 0177

Reachability Analysis

Passed:=(0 //already seen states
waiting:={S 0} //states not examined yet
While(waiting!=0) {
waitting:=warting\{s 1}
IT s 1 ¢ Passed
whenever (s_J — s }J) then
walting:=waiting U S J

+
Depth-First: maintain waiting as a Order:0136748259
Breadth-First: maintain waiting as a Order:0123456789

71177
(shortest counter example)

'State Explosion’ problem

M Ié M2

Limitations to Reachability Analysis

1079

1077

| State Space/

Time Usage /
Memory Usage

Random - low coverage

Controlled partial

v

Exhaustive feasibl

* n parallel FSMs
e k states each

. states in parallel
composition

1072 =100

* 1073 = 1000

* 10”4 = 10000

* 10710=10000000000

system size
(#parallel processes)

73177

What Influences System Size?

* Number of parallel processes
* Amount of non-determinism

* Queue sizes

* Range of discrete data values

* Environment assumptions
* Speed
* Kinds of messages that can be sent in what
states

* Data values

74177

Counter Measures

Use abstraction, simplification
* Only model the aspects relevant for the property in question

Economize with (loosely synch'ed) parallel processes
Make precise assumptions and restrictions

Range of data values
* Use bounded data values: integer (0:4);
* Reset variables to initial value whenever possible
* Avoid complex data structures

Partial (controlled) search heuristics
* Bit-State hashing
* Limit search depth

* Restrict scheduling
Priority to internal transitions over env input
Schedule process in FIFO style rathar than ALL interleavings

75177

Does verification guarantee
correctness?

* Only models verified,
not (physical)
implementations

* Made the right model?

* Properties correctly
formulated?

* The right properties?
* Enough properties?

* System size too large
for exhaustive check

* Modelling effort itself

revealing

* Increased confidence

earlier

* Cheaper
* Even partial and

random search
increases confidence

76177

Any other remedy?
- Model-Based Testing!

	Modeling, Verification, and Testing of Reactive Systems
	Agenda
	Reactive vs. Transformational Systems
	Examples
	Why Software Models
	A Classification of Software Models
	Formal Models Classfied
	State Transition-Based Models
	Labeled Transition System (LTS)
	Labeled Transition Systems
	An Example LTS
	Input-Output LTS (IOLTS)
	Finite State Machine (FSM)
	System Structure
	Behavior of a Component
	Finite State Machine (Mealy machine)
	Finite State Machine (Moore machine)
	Comparing FSM and LTS
	Input-Output FSM (IO-FSM)
	Fully Specified FSM (Mealy)
	Implementing Mealy FSM (1)
	Implementing Mealy FSM (2)
	Spontaneous Transitions
	Non-deterministic FSM
	Extended FSM (EFSM)
	Parallel Composition (independently)
	State Space Explosion
	Parallel Composition (Synchronous)
	Parallel Composition (Asynchronous)
	Parallel Composition (Queued)
	Refactoring FSM models
	Determinizing FSM
	Minimizing FSM
	Fundamental Results
	High-level �State Transition-Based Models
	UML State Machines
	Slide Number 37
	SDL language
	Esterel language
	Textual Notations for FSM
	Slide Number 41
	Simple FSM modeling and model manipulation
	Example: Bank-box Code
	Tool: The Finite State Machine Explorer
	Note:
	Slide Number 46
	Uppaal
	Working Modes of Uppaal
	Uppaal Editor (Modelling View)
	FSM in Uppaal
	Model Composition�IO Automata (2-way synchronization)
	Modelling Processes
	Modelling Choices
	Non-deterministic Choice: modeling random event
	Non-deterministic Choice:�modeling failure
	Internal Actions
	Modelling Extended FSM (EFSM)
	Process Interaction
	Broadcasts
	Committed Locations
	Uppaal Network of Automata
	Uppaal Simulator Screenshot
	Model Simulation in Uppaal
	Slide Number 64
	Uppaal Model Checking as a box
	What does Verification do
	Properties
	UPPAAL Property Specification Language
	Uppaal “Computation Tree Logic”
	State Space Exploration
	Reachability Analysis
	‘State Explosion’ problem
	Limitations to Reachability Analysis
	What Influences System Size?
	Counter Measures
	Does verification guarantee correctness?
	Any other remedy?�– Model-Based Testing!

