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of Reactive Systems

(Adapted from Brian Nielsen’s slides)



Agenda
• Overview

• Reactive systems
• Formal models (LTS, FSM, EFSM, 

Statecharts)
• System modeling

• Simple FSM modeling
• FSM modeling and simulation using Uppaal

• System verification
• Model checking using Uppaal

• Model-based testing 2 / 77



Reactive vs. 
Transformational Systems

• reactive systems: 
• “process control”
• control-intensive
• running ”forever”

• transformational systems: 
• “data processing”
• computation-intensive
• to deliver a result within a time frame 3 / 77



Examples 

Reactive
• embedded systems (e.g., 

in consumer electronics, 
mobile phones, GPS)

• operating systems
• communication protocols
• web servers
• air traffic control
• computer games
• ...

Transformational
• numerical analysis and 

statistics software 
packages such as 
MatLab, Mathematica, R

• a “filter”, e.g., 
programming language 
compilers

• ...

computational science:
huge sparse matrices,

partial differential equations,
...

computer 
+ control

+ communication
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Why Software Models
• Jumping from informal project (paper) 

documentations to code implementation:
• Not advisable, and probably
• Not feasible

• The benefits of models:
• for system development, (model-based 

development)
• for system validation,

• Verification
• Simulation
• Testing 5 / 77



A Classification of Software 
Models

• Informal model
• Documentation in prose, schematic block 

diagrams, etc.

• Semi-formal model
• Unified Modeling Language (UML) diagrams

• Formal model
• Well-formed mathematical models, usually 

with clearly defined syntax and semantics6 / 77



Formal Models Classfied
• history-based model (temporal logics)
• state-based models (Z, VDM, B spec.)
• state transition-based models (LTS, 

FSM, EFSM, Statecharts)
• scenario-based models (MSC, LSC)
• operational models (Petri nets, 

process algrbras)
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State Transition-Based 
Models

• LTS (Labeled Transition 
Systems)

• FSM (Finite State Machines)

• EFSM (FSM + guards + 
assignments)

• Statecharts (EFSM + 
concurrency + hierarchy + 
broadcast communication) 8 / 77



Labeled Transition System 
(LTS)



Labeled Transition Systems
• Labeled Transition System (LTS)

• Transition system labeled with (input, 
output, or internal) actions

• A very basic model for describing 
system behavior

Behavior: How the system accepts inputs 
(external stimuli), changes its internal 
states, and produce outputs (reactions).
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An Example LTS

Labelled Transition System    〈 S, L, T, s0 〉

?coin

?button

!alarm ?button

!coffee

states

actions transitions
T ⊆ S × (L∪{τ}) × S

initial state
s0 ∈ S

IDLE

CHECK_COIN

BREWING

coffee vending machine
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Input-Output LTS (IOLTS)
• Special kind of LTS:

Input-Output Labelled Transition System - IOLTS
– Output actions(!), and input actions(?)

• IOLTS with variables  - equation solver for y2 =x :
• different implementations

? x (x >= 0)! √x

? x (x < 0)

? y

! -√x? x (x >= 0)! √x

? x (x < 0)

? y
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Finite State Machine (FSM)



System Structure
System 1

Component  1

Component  2

Component  3

Component  6

Component  5

Component  4

•How do we model individual components?
•How do components interact?  // by message passing
•How do we specify environment assumptions?
•How do we ensure correct behaviour? 14 / 77



Behavior of a Component

Unified Model: State Machine

a

b

x

y
a?

b?

x!

y!b?

Control states

Input
ports

Output
ports
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Finite State Machine (Mealy machine)
q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

condition effect
current 
state input output next 

state
q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

Sample run:

coin/ - coin/- coin/ -cof-but / cof

coin/ -

q1 q2 q3 q1

q2
cof-but / cof q1q3

In Mealy machine the output depends on 
the current state as well as the input

coffee 
vending 
machine

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q1,q2,q3}
Initial state = q1
Transitions= {

(q1, coin, -, q2),
(q2, coin, -, q3),
(q3, cof-but, cof, q1),
(q3, tea-but, tea, q1) 
}

formally,

in tabular form,
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Finite State Machine (Moore machine)
q1

q2

q3

coin

tea-butcof-but

condition effect

current 
state

input next state

q1 coin q2

q2 coin q3

q3 cof-but q5

q3 tea-but q4

q5 cup-taken q1

q4 cup-taken q1

q4q5

coin

cup-taken

teacof

cup-taken

select

need1

need2

Input sequence: coin.coin.cof-but.cup-taken.coin.cof-but
Output sequence: need2.need1.select.cof. need2.need1.select.cof

e.g., need2 = to prompt “please insert two coins”

In Moore machine the output (or “activity”)
depends on the current state only

condition effect

current state activity

q1 need2

q2 need1

q3 select

q5 cof

q4 tea
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Comparing FSM and LTS
• LTS is more fundamental, more naive 

and simpler
• each transition step is ”atomic”

• FSM has always alternation between 
inputs and outputs
• though sometimes they may be ”-”

• LTS can serve as underlying semantics 
model for many other formalisms 
(including FSM) 18 / 77



Input-Output FSM (IO-FSM)

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q1,q2,q3}
Initial state = q1
Transitions= {

(q1, coin, q2),
(q2, coin, q3),
(q3, cof-but, q5),
(q3, tea-but, q4), 
(q4, tea, q1),
(q5, cof, q1)
}

condition effect

current state action next state

q1 coin? q2

q2 coin? q3

q3 cof-but? q5

q3 tea-but? q4

q4 tea! q1

q5 cof! q1

q1

q2

q3

coin?

tea-but?cof-but?
q4q5

coin?

cof! tea!

Sample run:
coin? coin? cof!cof-but?

coin?

q1 q2 q3 q5

cof! q1q3

action trace: coin?.coin?.cof-but?.cof!.coin?.coin?.cof-but?.cof!
input sequence: coin.coin.cof-but.coin.coin.cof-but
Output sequence: cof.cof

cof-but? q5
coin?q1 q2

In IO-FSM, “activity” is no longer an effect.
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Fully Specified FSM (Mealy)

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

condition effect
current 
state input output next 

state

q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

q1 cof-but - q1

q1 tea-but - q1

q2 cof-but - q2

q2 tea-but - q2

q3 coin coin q3

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -

for each state
for each input

... 20 / 77



Implementing Mealy FSM (1)
// data structures
enum currentState {q1, q2, q3};
enum input {coin, cof_but, tea_but};
int nextStateTable[3][3] = { 

q2,q1,q1, 
q3,q2,q2,
q3,q1,q1 };

int outputTable[3][3] = { 
0,0,0, 
0,0,0,
coin,cof,tea};

// skeleton algorithm
While(input = waitForInput()) {
OUTPUT(outputTable[currentState,input])
currentState:=nextStateTable[currentState,input];

}

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -

q1 -- coin/- --> q2
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Implementing Mealy FSM (2)
enum currentState {q1, q2, q3};
enum input {coin, tea_but, cof_but};

// algorithm in more details
While(input = waitForInput()){
Switch(currentState){
case q1: {

switch (input) {
case coin: currentState:=q2; break;
case cuf_but:
case tea_but: break;
default: ERROR(”Unexpected Input”);

}
break;

case q2: ...
case q3: { 

switch(input) { 
case cof_buf: {currentState:=q3;

OUTPUT(cof);
break;}

… } 
break;

default: ERROR(”unknown currentState”);
} // end of switch

}

q1

q2

q3

coin / - tea-but / tea

cof-but / cof

coin / -

coin / coin

cof-but / -
tea-but / -

cof-but / -
tea-but / -
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Spontaneous Transitions
q1

q2

q3

coin / -

tea-but / teacof-but / cof

coin / -

condition effect
current 
state

input output next 
state

q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

q3 - - q4

q4 fix - q1

q4

fix / -

cof-but / -
tea-but / -
coin / -

- / -

alias: internal transition 
alias: unobservable transition

A spontaneous transition is a transition 
in response to no external input at all.

possibly due to internal 
sub-components 
interactions
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Non-deterministic FSM
condition effect

current 
state

input output next 
state

q1 coin - q2

q1 coin - q1

q2 coin - q3

q3 tea-but tea q1 

q3 cof-but cof q1

q3 cof-but mocca q1

q1

q2

q3

coin / -
tea-but / teacof-but / cof

coin / -

coin / -

cof-but / mocca
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Extended FSM (EFSM)

q1

coin / -
total++

total>=2 and capacity > 1
cof-but / cof

capacity--, total:=0

•EFSM = FSMs + variables + enabling conditions + assignments
•Can model the control aspects as well as the data aspects
•Can be translated into FSM if variables have bounded domains
•EFSM state: control location + variables’ valuation

total>=1 and capacity > 1
tea-but / tea
capacity--, total:=0

coin / -(q1,0,10) (q1,1,10) coin / - (q1,2,10) cof-but / cof (q1,0,9) 

or "guard"

(q, total, capacity)

called “flattening"

these are the 
extended parts
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Parallel Composition (independently)

q1

q2

q3

j++

j++

p1

p2

p3

i++

i++

P Q P || Q
(p1, q1)

(p2, q1)

(p2, q2)

(p1, q2)

i++
j++

j++ i++
(p3, q1)

i++

(p1, q3)

j++

(p3, q2)

(p3, q3)

(p2, q3)

i++
j++

i++

i++

j++

j++

(0,0)

(1,0)

(2,0)

(2,1)

(2,2)

(1,2)

(0,2)

(0,1)

(1,1)

interleaving "execution“

no coupling 
between two 
processes
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State Space Explosion
• n parallel FSMs (or EFSMs)
• Each with k states
• In parallel they have kn

states 
• EXPONENTIAL!

• 10^2 =100
• 10^3 = 1000
• 10^4 = 10000
• 10^10 =10000000000
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Parallel Composition (Synchronous)

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof
coin / -

p1

p2

p3

- / coin

cof / cof-but

p3

- / coin 

-/ report

Handshake on complementary actions
e.g., one “sending” with another “receiving”

strict synchronization!

the user coffee machine

28 / 77

tight coupling of events 
between two components 
(FSM's)



Parallel Composition (Asynchronous)

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

p1

p2

p3

- / coin 

- / cof-but

p3

- / coin 

cof / report

Single output variable per FSM holds last “written” output

no handshaking any more!

loose synchronization!

output 
variable

output 
variable

the user coffee machine
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Parallel Composition (Queued)

q1

q2

q3

coin / -
tea-but / tea

cof-but / cof

coin / -

p1

p2

p3

- / coin 

-/ cof-but

p3

- / coin 

cof/ report

A system state: a snapshot of all (E)FSMs’ current states and all queues

Output is queued in (un)bounded queue
The queue may be per process (component), 
per action, or explicitly defined

even looser synchronization!

the user coffee machine
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Refactoring FSM models
• Determinizing FSM model

• Minimizing FSM model
• For improved readability, maintainability, 

and implementation efficiency
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Determinizing FSM
• How to determinize an FSM?

• ”subset construction” method

• Fundamental result:
• Every FSM may be determinized accepting 

the same language.
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Minimizing FSM
• Two states s and t are (language) equivalent

iff 
• s and t accepts the same language
• have the same set of possible traces: tr(s) = tr(t)

• Two Machines M0 and M1 are equivalent iff 
their initial states are equivalent

• A minimized (or “reduced”) M is one that has 
no equivalent states
• i.e., for all states s, t : (s equivalent t) ==> (s = t) 
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Fundamental Results

• For each FSM there exists a language-equivalent 
minimal deterministic FSM.

• FSM’s are closed under ∩ and ∪
• Or, their languages are closed under the intersection and 

union operators.

• FSM’s may be described as regular expressions (and 
vice versa)
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High-level 
State Transition-Based Models



UML State Machines
UML State Machine

= FSM 
+ concurrency 
+ hierarchy
+ broadcast communication
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Tool: visualSTATE Designer

• Hierarchical state systems
• Flat state systems
• Multiple and inter-related state machines
• Supports UML notation

other supporting 
tools exist, e.g. 
Rational Rose
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SDL language

Specification and Description Language (SDL):
- for unambiguous specification and description of the behaviour of reactive and 
distributed systems
- defined by the ITU-T (Recommendation Z.100.)
- originally focused on telecommunication systems
- current areas of application include process control and real-time applications in general

a system is specified as a set of interconnected 
abstract machines which are extensions of FSM
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Esterel language a synchronous programming language for the 
development of complex reactive systems

the development environment: Esterel Studio
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Textual Notations for FSM

int x;
proctype P(){
do
:: x<200 --> x=x+1
od}

proctype Q(){
do
:: x>0 --> x=x-1
od}

proctype R(){
do
:: x==200 --> x=0
od}

init 
{run P(); run Q(); run 
R()}

SERVERv2 = (accept.request
->service>accept.reply->SERVERv2).

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

In: Promela/SPIN In: FSP/LTSA

FSP: Finite State Processes
LTSA: Labelled Transition System Analyser

(Promela language: the input language of tool SPIN) 40 / 77



SPIN, by Gerald Holzmann at AT&T

41 / 77



Simple FSM modeling and 
model manipulation



Example: Bank-box Code

To open a bank box
the code must contain at least 2 

To open a bank box
the code must end with 

To open a bank box 
the code must end with a palindrom
e.g:. Orange

Blue
Yellow

……..

?

To open a bank box
the code most end with 

or with

Palindrome: A word that reads the same forth and back, e.g., madam, radar, etc.

(1)

(2)

(3)

(4)

, or
, or

43 / 77
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Tool: The Finite State Machine Explorer
Freely available (http://www.belgarath.org/java/fsme.html)

Many other tools for FSM editing, simulation, determinization, minimization, ...
(http://en.wikipedia.org/wiki/List_of_state_machine_CAD_tools)

try it out!

44 / 77



Note:
• An arbitrary palindrome is not recognizable 

by FSM: consider infinitely many/long 
palindromes

• FSM can recognize a given bank-box 
opening sequence.

• If non-deterministic: 
determinize it minimize it (using the 

FSME tool)
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FSM modeling and simulation 
using Uppaal



Uppaal
• An integrated tool environment for modeling, 

simulation and verification of real-time systems 
modeled as a set of communicating timed 
automata, extended with data types

• However, it is also capable of untimed reactive 
system modelling, simulation and verification

Freely available 
(http://www.uppaal.com) 47 / 77



Working Modes of Uppaal
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Uppaal Editor (Modelling View)

an (Extended) FSM
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FSM in Uppaal
• Basically an Extended FSM (variables, guards, 

assignments)
• Also may be thought of as an LTS, or IO Automaton

• actions are either inputs or outputs
• internal actions are not explicitly given LTS can be viewed as 

a degradation of 
finite state machine
(FSM)

coffee vending machine

But not a real FSM. Because in Uppaal 
model, each edge is an atomic
transition, and it does not take the 
form “input/output”
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Model Composition
IO Automata (2-way synchronization)

A

B

X

Y

h! h?

AX

BY

or pairwise synchronization

sending or 
“writing”

receiving or 
“reading”

or “handshaking”

the composition 
results in this 
internal
transition
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Modelling Processes
• A process is the execution of a sequential program 
• modelled as a labelled transition system (LTS) 

• transits from state to state
• by executing a sequence of atomic actions.

a light switch 
LTS

on off on off on off ……….
a sequence of actions

or 

a trace
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Modelling Choices

• Who or what makes the choice?

• Is there a difference between input and output actions?
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Non-deterministic Choice: 
modeling random event

• Tossing a coin

• Possible traces?
• Both outcomes (head or tail) possible
• Nothing said about relative frequency
• If coin is fair, the outcome is 50/50
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Non-deterministic Choice:
modeling failure

How do we model an unreliable communication channel which 
accepts packets, and if a failure occurs produces no output, 
otherwise delivers the packet to the receiver?

Use non-determinism...
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Internal Actions
• Internal actions are also called

• spontaneous actions, or
• tau-actions

• Internal transitions can be taken on the initiative 
of a single machine without coupling with another 
one
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Modelling Extended FSM (EFSM)

•EFSM = FSM + variables + enabling conditions + assignments
•Transition still atomic (thus not really an EFSM!)
•Can be translated into FSM if variables have bounded domains
•State: control location + variables’ valuation
•(state, total, capacity), e.g.: (s0, 5, 10) 57 / 77



Process Interaction
• “!” denotes output, “?” denotes input
• Handshake communication
• Two-way

Coffee Machine Lecturer 
University=
Coffee Machine || Lecturer

4 states
4 states

4 states:
(interactions constrain overall behavior)

synchronization results in internal actions

=

LTS?
How many states?
Traces ?
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Broadcasts

• the sending party: one automaton outputs join!
• the receiving party: several automata accept join!,

• each of them makes a move upon receiving join!,
• ie. every automaton with enabled “join?” transition moves 

in one step
• the number of recipients may be 0 (one “speaker”, 

but zero “audience”) 

chan coin, cof, cofBut;
broadcast chan join;
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Committed Locations
• Locations marked “C”

• No delay in committed location
• Next transition must involve one of those 

automata in committed locations

• Handy to model atomic sequence of actions
• An ”input/output”-style transition of Mealy

machine can be modelled by 2 atomic 
actions ”input?” and ”output!”, which are 
connected by a committed location

• The use of committed locations 
significantly reduces the state space of a 
model, thus allows for more efficient 
analysis and verification

s0 to s5 executed atomically
they will not be interrupted

Committed locations help regain
the FSM expressiveness of 
Uppaal models.
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Uppaal Network of Automata

system state = snapshot of (all machines’ control locations + local variables 
+ global variables)

They constitute a closed system.
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Uppaal Simulator Screenshot
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Model Simulation in Uppaal
the enabled transitions 
that the user can choose

the system state 
variables

graphical display of the 
current system state

history information as 
trace

history information on component 
interaction as documented in 
Message Sequence Chart
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System verification using 
Uppaal



Uppaal Model Checking as a box

System description
Timed Automata in Uppaal Editor

Requirement specification
Temporal logic formula

Yes!

No!
Diagnostic Information

Uppaal
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What does Verification do
• Compute all possible execution sequences

• And consequently to examine all states of the 
system

• Exhaustive search => proof

• Check if
• every state encountered does not have the undesired 

property --> safety property
• some state encountered has the desired property --> 

reachability property
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Properties
• Safety

• “Nothing bad happens during execution”
• System never enters a bad state

• Eg. mutual exclusion on shared resource

• Liveness
• “Something good eventually happens”
• Eventually reaching a desired state

• Eg. a process’ request for a shared resource is 
eventually granted

diffent from reachability property
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UPPAAL Property Specification Language

• A[] p 
• A<> p

• E<> p 
• E[] p
• P --> q

clock guardsdata guardsprocess location

p::= a.l | gd | gc | p and p |
p or p | not p | p imply p |
( p ) | deadlock(only for A[],E<>)

A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)

“p leads to p”:
A[ ] (p imply A< > q)

path quantifier
state quantifier
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Uppaal “Computation Tree Logic”

p

. . .

. . .

. . .

. . .

E<> p ”possible”

P

P P

. . .

. . .

. . .

. . .

A<> p ”inevitable”

p

P

p

P P

p

. . .

. . .

. . .

. . .

A[] p

p

”always”

P

P

P

. . .

. . .

. . .

. . .

E[] p ”potentially always” p --> q ”leads-to”

p

. . .

. . .

q q q

. . .

. . .

. . .
(safety)

(reachability)

(liveness) (guaranteed 
response)
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State Space Exploration

1111

11

11

1

22

2

0

0

0

• Each trace = a program execution
• Uppaal checks all traces

count==1

count==1count==1

count==1

count++

count++ count++

count++ count++count--count--

count--
count--

count--

• Is count possibly 3 ?  E<> count==3
• Is count always 1 ?  A[] count==1

Int count:=1
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Reachability Analysis

Passed:=Ø        //already seen states
waiting:={S_0}   //states not examined yet
While(waiting!=Ø) {
waiting:=waiting\{s_i}
if s_i ∉ Passed

whenever (s_j → s_j) then
waiting:=waiting ∪ s_j

}

Depth-First: maintain waiting as a stack

Breadth-First: maintain waiting as a queue
(shortest counter example)

0

1

3

6 7 8 9

4 5

2

Order: 0 1 3 6 7 4 8 2 5 9

Order: 0 1 2 3 4 5 6 7 8 9
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‘State Explosion’ problem

a

cb

1 2

43

1,a 4,a

3,a 4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2
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Limitations to Reachability Analysis

system size 
(#parallel processes)

State Space / 
Time Usage /
Memory Usage

Exhaustive feasible10^7

Controlled partial10^9

Random  - low coverage

• n parallel FSMs
• k states each
• k^n states in parallel 

composition
• EXPONENTIAL 

GROWTH
• 10^2  =100
• 10^3 = 1000
• 10^4 = 10000
• 10^10=10000000000
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What Influences System Size?
• Number of parallel processes
• Amount of non-determinism
• Queue sizes
• Range of discrete data values
• Environment assumptions

• Speed
• Kinds of messages that can be sent in what 

states
• Data values 
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Counter Measures
• Use abstraction, simplification

• Only model the aspects relevant for the property in question
• Economize with (loosely synch’ed) parallel processes
• Make precise assumptions and restrictions
• Range of data values

• Use bounded data values: integer (0:4);
• Reset variables to initial value whenever possible 
• Avoid complex data structures

• Partial (controlled) search heuristics 
• Bit-State hashing
• Limit search depth
• Restrict scheduling

• Priority to internal transitions over env input
• Schedule process in FIFO style rathar than ALL interleavings
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Does verification guarantee 
correctness?

• Only models verified, 
not (physical) 
implementations

• Made the right model?
• Properties correctly 

formulated?
• The right properties?
• Enough properties?
• System size too large 

for exhaustive check

• Modelling effort itself 
revealing

• Increased confidence 
earlier

• Cheaper
• Even partial and 

random search 
increases confidence
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Any other remedy?
– Model-Based Testing!
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