
Modeling, Vefirication, and Testing
of Real-time System

(Adapted from Brian Nielsen’s Slides)

Agenda
• Real-time systems

• Timed Automata (TA)

• Modeling real-time systems using Uppaal

• Modelling checking real-time systems

• Model-based testing of real-time systems

Real-time Systems

Real-time Systems

Eg.:
•Real-time Protocols
•Pump Control
•Air Bags
•Robots
•Cruise Control
•Drive-by-Wire
•ABS
•CD Players
•Production Lines

Real Time System
A system where correctness not only depends on the
logical order of events, but also on their timing!!

4 / 25

Real-time System Modelling

coffee

coin

a

cb

1 2

43

interacting models

inputs

outputs

5 / 25

Discrete-Time vs. Continous-Time
• Discrete-time

• Time equally devided into small peices (slices)
• Event can only occur at the end of some time

slice
• Approapriate for synchronous systems

• Continous-time
• Time slices can be ”infinitely” small
• Event can occur anytime
• Appropriate for asynchronous systems

• e.g., distributed systems, comm. Protocols, etc.

that's what we are concerned with

Timed Automata
A formalism for Continous-Time Modeling

of Real-time Systems

Off Bright
press?

press?

press?

press?

WANT: if “press” is issued twice quickly
then the light will get brighter; if “press” is issued
twice slowly the light is turned off.

An Intelligent Light Control

Light

Solution: Add a real-type variable (a real-valued clock) x

X:=0 X<=3

X>3

Timed Automata

n

m

a

(Alur & Dill 1990)

Clocks: x, y

x<=5 & y>3

x := 0

Guard
Boolean combination of comp with
integer bounds

Reset
Action performed on clocks

Transitions

(n , x=2.4 , y=3.1415)
(n , x=3.5 , y=4.2415)

e(1.1)

(n , x=2.4 , y=3.1415)
(m , x=0 , y=3.1415)

a

State
(location , x=v , y=u) where v, u are in R

Action
used

for synchronization

(to receive an input
or to produce an
output)

n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Transitions

(n , x=2.4 , y=3.1415)
(n , x=3.5 , y=4.2415)

e(1.1)

(n , x=2.4 , y=3.1415)
e(3.2)

x<=5

y<=10

Location
Invariants

g1
g2 g3

g4

Invariants ensure progress!!

Timed Automata
location invariants

you cannot stay in this location forever;
you must leave before the deadline! 10 / 25

Example

Reachable?

x

y

(L0,x=0,y=0)
ε(1.4)

(L0,x=1.4,y=1.4)
a

(L0,x=1.4,y=0)
ε(1.6)

(L0,x=3.0,y=1.6)
a

(L0,x=3.0,y=0)

a b

c

a a

11 / 25

Zones
from infinite to finite

a state
(n, x=3.2, y=2.5)

x

y

x

y

a symbolic state (set)

Zone:
conjunction of
x-y<=n, x<=>n

(n, 1≤ x ≤ 4, 1 ≤ y ≤ 3)

this is a time zone

a bunch of concrete states

this is a time point

12 / 25

Symbolic Transition

n

m

x>3

y:=0

delays to

conjuncts to

projects to

x

y
1≤x≤4
1≤y≤3

x

y
1 ≤ x,
1 ≤ y,
-2 ≤ x-y ≤ 3

x

y 3<x,
1 ≤ y,
-2 ≤ x-y ≤ 3

3<x,
y=0

x

y

Thus (n,1 ≤ x ≤ 4,1 ≤ y ≤3) = a => (m, 3 < x, y=0)

a

Finite symbolic simulation graph and
reachable states can be computed

this is a symbolic transition (a
bunch of concrete transitions) 13 / 25

Modelling Real-timeSystems
using Uppaal

The Uppaal Model
= Networks of Timed Automata + Integer Variables + ….

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

………….
Two-way synchronization
on complementary
actions.

Closed Systems!

(l1, m1,………, x=2, y=3.5, i=3,…..) (l2,m2,……..,x=0, y=3.5, i=7,…..)

(l1,m1,………,x=2.2, y=3.7, i=3,…..)
0.2

tau

Example transitions
a! + a? --> tau (internal
component interaction)

15 / 25

Modelling using Uppaal …

16 / 25

Timed Automaton of Coffee Machine

Possible users-model

coin?

thinCof!

strongCof!

request?

Machine Model 17 / 25

A Touch Sensative Light Controller

•Patient user: Wait=∞
•Impatient: Wait=15

18 / 25

Model Checking Real-time
Systems

Uppaal as a box…

System description
Timed Automata in Uppaal Editor

Requirement specification
Temporal logic formula

Yes!

No!
Diagnostic Information

Uppaal

What does Verification do
• Compute all possible execution sequences

• And consequently to examine all states of the
system

• Symbolic approach to infinite state space
exploration

• Check if
• every state encountered does not have the undesired

property --> safety property
• some state encountered has the desired property -->

reachability property

Properties
• Safety

• Nothing bad happens during execution
• System never enters a bad state

• Eg. mutual exclusion on shared resource

• Liveness
• Something good eventually happens
• Eventually reaching a desired state

• Eg. a process’ request for a shared resource is
eventually granted

diffent from reachability property

UPPAAL Property Specification Language

• A[] p
• A<> p

• E<> p
• E[] p
• P --> q

clock guardsdata guardsprocess location

p::= a.l | gd | gc | p and p |
p or p | not p | p imply p |
(p) | deadlock(only for A[],E<>)

A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)

“p leads to p”:
A[] (p imply A< > q)

To quantitatively describe
timing constraints.

23 / 25

Uppaal “Computation Tree Logic”

p

. . .

. . .

. . .

. . .

E<> p Possible

P

P P

. . .

. . .

. . .

. . .

A<> p inevitable

p

P

p

P P

p

. . .

. . .

. . .

. . .

A[] p

p

always

P

P

P

. . .

. . .

. . .

. . .

E[] p potentially always p --> q leads-to

p

. . .

. . .

q q q

. . .

. . .

. . .
(safety)

(reachability)

(liveness) (guaranteed
response)

24 / 25

Example Properties

Wait

Prompt

BrewWeak BrewStrong

CVM
USER

E<> deadlock

E<> (x==2) && (CVM.BrewWeak)

A[] (x==6) imply (CVM.Wait || CVM.Prompt)

	Modeling, Vefirication, and Testing of Real-time System
	Agenda
	Real-time Systems
	Real-time Systems
	Real-time System Modelling
	Discrete-Time vs. Continous-Time
	Timed Automata
	An Intelligent Light Control
	Timed Automata
	Timed Automata
	Example
	Zones�from infinite to finite
	Symbolic Transition
	Slide Number 14
	The Uppaal Model�= Networks of Timed Automata + Integer Variables + ….
	Modelling using Uppaal …
	Timed Automaton of Coffee Machine
	A Touch Sensative Light Controller
	Model Checking Real-time Systems
	Uppaal as a box…
	What does Verification do
	Properties
	UPPAAL Property Specification Language
	Uppaal “Computation Tree Logic”
	Example Properties

