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A program mode is a regular trajectory of the execution of a program that is determined by the

values of its input variables. By exploiting program modes, we may make worst-case execution

time (WCET) analysis more precise. This paper presents a novel method to automatically find

program modes and calculate the WCET estimates of programs. First, the modes of a program

will be identified automatically by mode-relevant program slicing, and the precondition will be

calculated for each mode using a path-wise test data generation method. Then, for each feasible

mode, we show how to calculate its WCET estimate for modern reduced instruction set computer

(RISC) processors with caches and pipelines and for traditional complex instruction set computer

(CISC) processors. We also present a method to obtain the symbolic expression for each mode for

CISC processors. The experimental results show the effectiveness of the method.
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1. INTRODUCTION

Calculation of the worst-case execution time (WCET) of tasks

is of prime importance in the timing analysis of real-time

systems. The purpose of WCET analysis is to estimate

a priori WCET of a piece of code on a given processor. A

main issue in WCET analysis is to avoid pessimism in the

evaluation processes [1]. Precise estimates of WCET enables

better budgeting and scheduling of system resources.

It is noticed that routines, tasks and main programs (all

referred to as programs in this paper) usually have modes. A

mode is a regular trajectory or trace of the execution of a

program that is determined by the values of its input variables.

With these inputs, the program executes along that trace.

Consider the example code segment [2] in Fig. 1.

The function pow computes the power of a floating point

numeral baseexponent. If the parameter exponent in func-

tionpow is not less than zero, then the result is baseexponent,

otherwise the result is 1/base2exponent. This program exe-

cutes along different trajectories depending on whether the

value of input parameter exponent is negative. Therefore,

the WCET estimate depends on the range of exponent.

Bernat and Burns [2] show the result of the WCET estimate

of the example:

WCETpowðexponentÞ¼
1752�434�exponent;exponent,0;
1474þ434�exponent;exponent�0:

�

In the example of Fig. 1, the function pow has two modes:

one when exponent is negative and the other when

exponent is nonnegative. Furthermore, when a program

has more than one mode, it may have different WCET esti-

mates (in the forms of concrete values or parametric formulas)

under different modes. Because the preconditions of modes

can quickly be evaluated and the decisions can be made

when scheduling a task at run time, or calling a routine

under some kinds of contexts, the calculation of the WCET

for each mode of a program can make the WCET estimate

of the whole program more precise.

For example, let us consider the following code segment:

1. result¼0;

2. for (i¼ 2 2;i , 8;i++)

3. result¼resultþPow(3,i);
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The total WCET estimates of calling the function pow

within the body of for statement should be

X�1

i¼�2
ð1752� 434�iÞ þ

X8

i¼0
ð1474þ 434�iÞ:

However, if we do not take the modes into account, the cor-

responding estimate would at least be

X8

i¼�2
ð1752þ 434�jijÞ:

The difference shows that program modes can be used to

calculate a tighter WCET estimate of a whole program.

In this paper, we present a novel method to automatically

obtain the modes of a program and calculate the WCET

estimate for each given mode. Basically, it consists of two

phases. In phase one, we construct a new program by

mode-relevant slicing, a variant of program slicing [3, 4].

We list all the paths of the sliced program. Each path in the

sliced program either corresponds to a mode or is an infeasible

path. For each path, by applying the iterative relaxation

method [5, 6], in most cases, we may compute the precondi-

tion for the path, or assert that the path is infeasible. The pre-

condition of a path is a set of constraints on the input variables

that guarantee the program to execute along the path. In phase

two, we calculate the WCET estimate for each given mode

for reduced instruction set computer (RISC) and complex

instruction set computer (CISC) processors, respectively.

The remainder of this paper is organized as follows. The

preliminary concepts about program analysis are introduced

in Section 2. Section 3 describes the mode-relevant program

slicing technique. Section 4 gives an algorithm to generate

the precondition for each mode. Section 5 presents a WCET

analysis method for a program mode for RISC as well as

CISC processors. Section 6 presents a WCET analysis

method for calculating symbolic expressions for each mode

for CISC processors. Section 7 describes our prototype tool.

Section 8 reports on some experiments on RISC processors

with the tool. In Section 9, we discuss the related work and

conclude the paper.

2. PRELIMINARIES

In this paper, a program M is viewed as a directed control flow

graph CFG ¼ (N, E, entry, exit), where N is a set of nodes, E a

set of edges, entry a unique entry node and exit a unique exit

node of M. A node n [ N represents a single statement or a

conditional expression. A possible transfer of control from

node ni to node nj is mapped to an edge (ni, nj) [ E. A path

P ¼ ,n1, n2, . . . , nkþ1. in CFG is a sequence of nodes

such that (ni, niþ1) [ E, for i ¼ 1, . . . , k. The length of the

path P, denoted by jPj, is the number of nodes on the path.

Let V be the set of all variables that are referenced in M. A

variable in V is an input variable of M if it either appears in an

input statement of M or is an input parameter of M. The

domain Dk of input variable ik is the set of all possible

values, which may be assigned to ik. An input vector

I ¼ ,i1, i2, . . . , im . [(D1 � D2 � � � � � Dm) is called a

program input or input, where m is the number of input

variables.

A multi-way decision statement appears in CFG as a branch

node. The conditional expression of a branch node is called a

branch predicate (or simply predicate). Here, we assume that

the branch predicates are simple relational expressions

(inequalities and equalities) of the form E1 op E2, where E1

and E2 are arithmetic expressions, and op is one of f,, �,

., �, ¼, =g.

For a branch node m, let (m, n) [ E be a branch, Cond(m, n)

be the condition under which the control is transferred from

m to n. That is, node m traverses branch (m, n) when

Cond(m, n) ¼ TRUE.

Each branch predicate E1 op E2 can be transformed into an

equivalent branch predicate of the form F op 0, where F is

an arithmetic expression E1 2 E2. Along a given path, F

represents a real-valued function called a predicate function.

F may be a direct or indirect function of input variables.

Each node n (i.e. each statement in the program or node in

CFG, we do not differentiate them in this paper) is associated

with two sets: Ref(n), the set of variables whose values are

referenced at n, and Def(n), the set of variables whose

values are defined at n.

A node n in CFG is post-dominated by a node m if all the

paths from n to exit pass through m [7]. A node n is control

dependent on a node m if (i) there exists a path P from m to

n with any node u, u = m and u = n, in P, u is post-dominated

by n; (ii) m is not post-dominated by n [7]. For the programs

with structured control flow (there are no goto statements in

program M), the statements in the branches of a predicate b

are control dependent on predicate b. The nodes in the body

of a loop structure are defined as loop controlled nodes.

FIGURE 1. Example code segment #1.

AUTOMATED WCET ANALYSIS BASED ON PROGRAM MODES 531

THE COMPUTER JOURNAL, Vol. 52 No. 5, 2009

 at A
alborg U

niversity Library on D
ecem

ber 1, 2010
com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


The range of influence of a branch statement b, Infl(b), is

defined as the set of statements that are control dependent

on b.

3. MODE-RELEVANT PROGRAM SLICING

A mode of a program keeps the program to execute in the

regular pattern or trajectory that is determined by the values

of input variables. To identify the modes, it is needed to

examine the predicates that are totally dependent on input

variables. These predicates are called input-dependent predi-

cates. A predicate n is an input-dependent predicate if 8x [
Ref(n), x is an input variable or x can directly be calculated

using input variables. In this section, we will extract the input-

dependent predicate-relevant statements from the program to

form a new program, which is called a mode-relevant slice.

The basic idea is to slice the program in a forward way after

determining the input-dependent variables (i.e. the variables

which are totally dependent on input variables) of the

program using a data-flow framework [8].

3.1. Determining input-dependent variables

Let s be a function that maps the variables in V to the values of

a specific value set SV. Here, s is called an abstract state. For a

statement n, the state before the execution of n and the state

after the execution of n are denoted as sW

n and s†
n , respectively.

The specific value set SV is defined as SV ¼ fInDep, Undef,

LCtrlg, where the state of a variable is InDep if it is totally

dependent on input variables and the state of a variable is

LCtrl if the variable is controlled by a loop, i.e. its value is

dependent on a loop. Initially, the states of all variables are

Undef by default. We define a total ordering h over the

specific value set as LCtrl h InDep h Undef.

Our iteration algorithm for determining input-dependent

variables consists of two steps in addition to initialization, as

shown in Fig. 2.

Initialization. For node entry, the input variables are

assigned InDep, other variables are assigned Undef. For any

statement n other than entry, the variables are assigned Undef.

In the first step, a dataflow framework is used to analyze the

program.

(i) For each node n, if variable x [ Def(n) and sW

n(x) ¼

LCtrl then s†
n (x) ¼ LCtrl, else

sn
†ðxÞ ¼

InDep; if x [ Def ðnÞ and 8y [ Ref ðnÞ;

sn
W
ðyÞ ¼ InDep;

sn
W
ðxÞ; otherwise:

8><
>:

The state of a variable x after node n is defined InDep

only when x is defined at n and the states of all the vari-

ables referenced at n is InDep. FIGURE 2. The algorithm for determining input-dependent variables.
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(ii) For each node n, if there is only one node m such that

(m, n) [ E, then sW

n ¼ s†
m; if there are two nodes m1

and m2 such that (m1, n) [ E and (m2, n) [ E, then

sW

n ¼ s†
m1 u s†

m2, i.e.

8x [ V;sn
W
ðxÞ ¼ ðsm1

† u s
m2

† ÞðxÞ ¼ sm1

† ðxÞ u s
m2

† ðxÞ

where u is the infimum operator defined by h such that:

8a [ SV; b [ SV; a u b ¼
a; if a v b;
b; if b v a:

�

The iteration of the first step consists of the above oper-

ations (i) and (ii). Since the ordering is defined on the specific

value set, the iteration will eventually be stablized and termi-

nate. The reason is similar to that in traditional dataflow analy-

sis framework [8].

After the iteration is stabilized, if there exists n [ N such

that x [ Ref(n) and x ¼ Undef, then x is referenced without

definition. This is often the case that the program has an error.

In the second step, we will remove the variables that are

influenced by a loop structure from the set of input-dependent

variables.

For any predicate b of a loop, and for each statement

n [ Infl(b), if x [ Def(n) and sW

n(x) = LCtrl, then update

sW

n(x) to LCtrl. As a consequence, all the variables that are

defined in a loop will be loop-controlled variables and their

pre-states will be LCtrl.

If the state of any variable at any position is changed in the

second step, the control flow will ‘goto’ the first step and do

the checking process of the second step again until nothing

is changed any more.

Because the size of set of input-dependent variables at each

node decreases monotonously as defined by the ordering h,

the iteration of the first and the second steps will eventually

terminate.

By enumerating all the loop constructs of the language, it is

easy to prove that a normal loop predicate will never be input

dependent. For instance,

int wLoop(int lupStart, int lupEnd) f

1. while (lupStart, lupEnd)f

2. . . .

3. lupStart=lupStart+1;g

As lupStart is defined in a loop, the post-state of

lupStart of statement 3,s3
†(lupStart), will be LCtrl.

There are two flows to statement 1, so we have:

s1
W
ðlupStartÞ ¼ sentry

† ðlupStartÞ u s3†ðlupStartÞ:

As a result, the sW

1 (lupStart) will always be LCtrl.

3.2. Slicing input-dependent predicates

For a program M, let PreSet be the set of input-dependent

predicates. On the basis of the result of Section 3.1, we can

easily derive the set of nodes SPreSet, which are relevant to

PreSet,

SPreSet ¼ fn j 8x [ ðDef ðnÞ< Ref ðnÞÞ;sn
†ðxÞ ¼ InDepg:

As mentioned above, there will be no loop predicate in

SPreSet.

Apparently, the resulting set of merging the slices for the

nodes in SPreSet will be SPreSet itself. By adding an empty state-

ment as a branch node in SPreSet for the predicates whose

branch nodes are not in SPreSet, the new formed SPreSet (it is

still referred to as SPreSet) will be a closed up program.

As an example, we consider the subprogram in Fig. 3, which

is partially adapted from [5, 6] and rewritten in C. Part of the

iteration results for code segment #2 in Fig. 3 are listed in

Table 1. Obviously, only the predicate in line 10 is not an

input-dependent predicate.

In Table 1, I is the abbreviation of InDep, and we omit the

variables whose states are Undef.

The mode-relevant slice SPreSet is

SPreSet ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 11; 120; 13; 140g;

where 120 and 140 mean empty statements in lines 12 and 14.

Slicing the example code segment #2 in Fig. 3 will elimin-

ate statements 10, 12, 14, 15.

3.3. Finding all the paths in a mode-relevant slice

Since there is no loop in the mode-relevant slice M0 of a

program M, it is possible to list all the paths of M0 as P1, . . . ,

PN by applying the algorithm presented in [9], where N is the

FIGURE 3. Example code segment #2.
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number of paths in M0. Furthermore, each path Pi of M0 will be

represented as

Pi ¼,i1; i2; . . . ; imi
.; i ¼ 1; . . . ;N;

where i1 is the unique entry node entry, imi
the unique exit node

exit and mi the number of nodes in path Pi.

There are 12 paths in the mode-relevant slice of the example

code segment #2 in Fig. 3, some of them are

P1 ¼,entry; 1; 2; 3; 5; 6; 7; 11; 120; exit .;

P2 ¼,entry; 1; 2; 4; 5; 6; 7; 11; 120; exit .;

P3 ¼,entry; 1; 2; 3; 5; 8; 9; 11; 120; exit . :

According to the theory of slicing [3, 4], a path that is infeas-

ible in M0 must correspond to a path that is also infeasible in M.

However, a feasible path in M0 may correspond to an infeasible

path in M. In the following section, we will find each feasible

path in M0, which corresponds to a mode.

4. GENERATING PRECONDITION OF MODE

Given a program M and its model-relevant slice M0, each path in

M0 either corresponds to a mode of M or is an infeasible path. In

this section, given a path P of M0, we either derive its precondi-

tion or conclude that it is infeasible. We assume that all the pre-

dicates in the programs considered in the paper are linear.

There are many methods to check the feasibility of a path in

a program. We apply the methods in [6], which is an improve-

ment of [5], to our framework. On the basis of an arbitrarily

chosen initial input I0 of program M, which can be applied to

all the paths of M0, the generating process consists of three steps.

(i) Deriving linear arithmetic representation of the predi-

cate functions.

(ii) Constructing a linear constraint system.

(iii) Solving the linear constraint system.

4.1. Deriving linear arithmetic representation

of predicate functions

In this section, we construct a linear arithmetic representation

for the predicate function corresponding to each branch

predicate on path P. For each branch predicate on P, we first

formulate a general linear function of all the input variables.

Here, we assume that the predicate functions for a given

path are linear functions of input variables.

Given a branch predicate node b and its predicate function

F, let input X ¼ ,x1, x2, . . . , xm., we call L(n, X, P) ¼

d1x1þ � � � þdmxmþc a linear arithmetic representation of X

on P at b, where ds ¼ D(n, F, vs, P), c ¼ R(i, X, P) 2

(d1x1 þ � � � þ dmxm). D(n, F, vs, P) is the derivative of

predicate function F of node n on path P for input variable

vs, s [ f1, . . . , mg.

For example, the linear formulations for the predicate func-

tions corresponding to the branch predicates on path P1 of the

sliced code segment in Fig. 3 are as follows:

LF2 : a1X þ b1Y þ c1Zþ d1;

LF5 : a2X þ b2Y þ c2Zþ d2;

LF10 : a3X þ b3Y þ c3Zþ d3:

ð1Þ

The coefficients of the input variables in the above linear

functions represent the slopes of the ith predicate function

with respect to input variables, respectively. We will calculate

these slopes with respective divided differences.

To compute the slope coefficient with respect to a variable,

we execute all the input and assignment statements before

ni along path P and evaluate the predicate function at the

initial input I0 ¼ (i1, . . , ij, . . , im) and at I0 þ (0, . . , Dij, . . , 0),

where m is the number of input variables. Then we compute

the divided differences:

ðFðI0 þ ð0; : : ;Dij; : : ; 0ÞÞ � FðI0ÞÞ=Dij:

This gives the value of the coefficient of xj in the linear

function for the predicate function F corresponding to node

ni in P. Similarly, we compute the other slope coefficients in

the linear function.

For the code segment in Fig. 3, let I0 ¼ (1, 2, 3) and let

DX ¼ 1, DY ¼ 1, DZ ¼ 1. We have: I0 þ (DX, 0, 0) ¼ (2, 2,

3), I0 þ (0, DY, 0) ¼ (1, 3, 3) and I0 þ (0, 0, DZ) ¼ (1, 2, 4).

Let Fi represents the predicate function of the ith statement,

then F2 ¼ X 2 Y, F5 ¼ W þ Z 2 100 and F10 ¼ X þ Y. The

coefficient a2 of the linear function LF5 can be calculated as

below.

a2 ¼
ðF5ðX ¼ 2;Y ¼ 2; Z ¼ 3Þ � F5ðX ¼ 1;Y ¼ 2; Z ¼ 3ÞÞ

DX

¼
ð�97� ð�99ÞÞ

1

¼ 2:

In the same way, we obtain b2 ¼ 22 and c2 ¼ 1.

TABLE 1. Part of the iteration results.

Node sW

n
s†

n

1 X! I;Y! I;Z! I X! I;Y! I;Z! I;U! I

2 X! I;Y! I;Z! I;U! I X! I;Y! I;Z! I;U! I

3 X! I;Y! I;Z! I;U! I X! I;Y! I;Z! I;U! I;

W! I

10 X! I;Y! I;Z! I;U! I;

W! I

X! I;Y! I;Z! I;U! I;

W! I

12 X! I;Y! I; Z! LCtrl;

U! I;W! I

X! I;Y! I;Z! LCtrl;

U! I;W! I
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To compute the constant term di, we compute the predicate

residual of the predicate it corresponds to. The predicate residual

R(n, I, P) of a branch predicate of the statement n for an input I is

the value of the corresponding predicate function computed by

executing the input and assignment statements before n along

path P at the input I. We substitute the linear function with the

value of input variables in I0 and the slope coefficients found

above, and let it equal to the value of the predicate residual at

I0 computed above. This gives a linear equation in one

unknown term and the value of the constant term can be solved.

For the example above, we have

d2 ¼ Rð6; I0;P1Þ � ð2
�1� 2�2þ 1�3Þ ¼ ð�99Þ � 1 ¼ �100:

By this method, we also obtain: a1 ¼ 1, b1 ¼ 21, c1¼ 0,

d1¼ 0, a3 ¼ 3, b3 ¼ 21, c3¼ 0, d3 ¼ 22.

4.2. Constructing linear constraint systems

We construct linear constraints based on the predicates on the

given path, using the linear representations computed above.

We convert the linear arithmetic representations of predicate

functions into a set of inequalities or equalities. If a branch

predicate should evaluate to True for the given path, the

corresponding predicate function is converted into an inequal-

ity/equality with the same relational operator as in the branch

predicate. On the other hand, if a branch predicate should

evaluate to False for the given path, the corresponding predi-

cate is converted into an inequality with reversal of the

relational operator used in the branch predicate. If a branch

predicate has relational operator = and should evaluate to

True for the given path to be traversed, we transform this

inequality into its equivalent form (Exp1 2 Exp2 . 0)_

(Exp1 2 Exp2 , 0) [5].

For the path P1 of the sliced example in Fig. 3, we obtain

X�Y . 0;

2X�2Y þ Z� 100. 0;

3X�Y � 2 ¼ 0:

ð2Þ

4.3. Solving linear constraint systems

We propose to solve the linear constraint system directly using

a linear programming solver [6]. By defining the target func-

tion to be the addition of all the input variables and minimizing

the target function, we obtain a linear programming problem.

For instance, for the constraints of path P1 of the sliced

example in Fig. 3, we obtain

min X þ Y þ Z;

satisfying :

X � Y . 0;

2X � 2Y þ Z� 100. 0;

3X � Y � 2 ¼ 0: ð3Þ

Using the linear programming solver lp_solve (freely avail-

able from ftp://ftp.es.ele.tue.nl/pub/lp_solve), we obtain a sol-

ution ,X ¼ 250, Y ¼ 251, Z ¼ 100.. This means that path

P1 of the sliced example in Fig. 3 is feasible and it is indeed a

mode of the program M, and furthermore the precondition of

the mode is specified by the constraint (2). If the solver

detects contradictions in the constraint (3), it will conclude

that path P1 is infeasible.

The method proposed in [6] has been proved to be equal to

that proposed in [5], so Theorem 1 [5] is also valid to our

method.

THEOREM 1. If the functions of input computed by all the

predicate functions for a path are linear, then either the

desired program input for the traversal of the path is obtained

directly or the path is guaranteed to be infeasible.

Theorem 1 shows that, for a given linear path, our method

can either obtain the precondition of the mode directly or con-

clude that the path is infeasible.

5. WCET ANALYSIS FOR A GIVEN MODE

After determining the modes of a program M, the WCET esti-

mate will be calculated for each mode to complete the whole

task of WCET analysis. Bernat and Burns [2] and Chapman

et al. [10] present a method of WCET calculation for anno-

tated modes on a simple CISC processor. Here, we present a

new WCET analysis method under a given mode both for

modern RISC processors and CISC processors.

In the following sections, we present the framework of

mode-based WCET analysis in Section 5.1, the principle of

WCET analysis for a given mode in Section 5.2 and its appli-

cations to modern RISC processors with pipelines and caches

in Section 5.3 and to CISC processors in Section 5.4.

5.1. Mode-based WCET analysis framework

The framework of mode-based WCET analysis is depicted in

Fig. 4. Besides compilation, it consists of three parts: program

analysis, processor characteristic analysis and WCET calcu-

lation for a mode. Program analysis (high-level analysis)

FIGURE 4. Framework of mode-based WCET analysis.
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derives information about the possible program flows (such as

loop range) and the modes of a program from its source code.

Processor characteristic analysis (low-level analysis) decides

the execution time for atomic parts of the code based on the

performance model of the target architecture. The effect of

pipelining and caching is considered in low-level analysis

for RISC processors. The low-level analysis will make a

more precise analysis if it takes the program flow information

into account and analyzes individually for each mode. Calcu-

lation for a mode takes the information of the two analyses

together for each mode in order to derive the exact WCET

estimates.

5.2. Principle of WCET analysis for a given mode

Let M0 be the mode-relevant slice of program M, and md be a

mode of M. As mentioned before, there will be a path P0 in M0

that corresponds to md and for each predicate b0 in M0 there

exists a predicate b in M such that b is just the same as b0.

Here, we call these predicates as the predicates of mode md.

A path P in M is dominated by a mode md if (i) all the predi-

cates of md appear in the path P in the same order of the

predicates in P0; (ii) the predicates of md in P and P0 evaluate

to the same values. When a path P is dominated by a mode

md, and jPj � 1, then the node/basic block on P is said to be

dominated by mode md. More generally, a node/basic block

of M is dominated by mode md if there is a path P of M that

is dominated by md.

For each predicate b of md, there are two sets of statements,

which are control dependent on b. One is true control depen-

dent on b, which is executed under the condition of b evaluat-

ing to true. The other is false control dependent on b under the

condition of b evaluating to false.

Each predicate b of md should take (evaluate to) a value

(true/false) to make it traverse the path P0 in M0. If b takes

the value true, then the nodes that are true control dependent

on b are dominated by md and the nodes that are false control

dependent on b are not dominated by md and vice versa.

For example, for the mode A corresponding to P1, the pre-

dicate ((W þ Z) . 100) of line 5 in Fig. 3 is on the path of

mode A and it should take the value true. Therefore, the

basic block consisting of lines 6 and 7 in Fig. 3 is dominated

by mode A, and the basic block consisting of line 9 is not

dominated by mode A.

During WCET analysis of a given mode md, we will take

the nodes (statements/basic blocks [11]) that is not dominated

by md out of our consideration. This is the essential reason that

the WCET estimates can be obtained more precisely by mode-

based approach.

5.3. WCET analysis for RISC processors

The caching analysis [12–14] for WCET exploits traditional

data flow analysis framework [8] to obtain the cache state of

each instruction. A cache state is simply the subset of all

program lines, which can potentially be cached at that point

in the control flow [15]. On the basis of its cache state, each

instruction is classified as one of four categories: always hit,

first hit, first miss and always miss.

Let L be the program line that contains an instruction

within a basic block. An instruction is categorized as an

always hit if it is not the first instruction encountered in L

in the block, or if L is in the abstract cache state and it

does not conflict with any other program line in the same

abstract cache state. The instruction is categorized as a

first hit if the first reference to the instruction will be a hit

and all the remaining references during the execution of

the loop will be misses. A first miss simply indicates that

the first reference to the instruction should be treated as a

cache miss and all remaining references during the

execution of the loop should be considered cache hits. In

all other cases, the instruction is conservatively categorized

as an always miss.

Let L be the program line that contains an instruction

within a basic block. The caching analysis for WCET

under a given mode md is refined as follows: an instruction

is categorized as an always hit if it is not the first instruc-

tion encountered in L in the block, or if L is in the abstract

cache state and it does not conflict with any other

md-dominated program line in the same abstract cache

state; as a first hit if the first reference to the instruction

will be a hit and all remaining references during the

execution of the loop will conflict with any other

md-dominated program line in the same abstract cache

state. Otherwise, if an instruction is categorized as first

miss, it is categorized as always miss.

Let n be the maximum number of iterations associated

with a loop lp, and Pathlp be the longest path within loop

lp that is measured with the WCET estimate [13]. The

path-based WCET calculation [12, 13] for loop lp can be

simplified as

WCETlp ¼ n�WCETðPathlpÞ; ð4Þ

where WCET(Pathlp) is the WCET of Pathlp.

For a given mode md, we should restrict the longest path

Pathlp to be dominated by md. If the longest path Pathlp

within loop lp is not dominated by mode md, we check the

second longest path to see if it is dominated by mode md.

If the second longest path is dominated by mode md, it is

used as the longest path in the calculation of formula (4). If

the second longest path is not dominated by mode md, we

continue to check the third longest path within loop lp.

Because it is apparently that there is at least one path

within loop lp, which is dominated by mode md, we can

eventually obtain the longest path Pathlp, which is dominated

by md.
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5.4. WCET analysis for CISC processors

Generally speaking, CISC processors are less complex than

modern RISC processors that usually have pipelines and

(multi-level) caches. So it is easier to calculate the numerical

WCET of a program for CISC processors [1] according to

Section 5.2. For a given mode md of a program M, we only

consider the nodes that are dominated by md when computing

the WCET of M for mode md, and the method is simply the

same as the existing techniques, such as [16, 17].

6. SYMBOLIC WCET ANALYSIS FOR CISC

PROCESSORS

In this section, we present a method to calculate the symbolic

WCET of a program for CISC processors based on the method

presented in [18]. We assume that the WCET of each basic

block is constant and it can be determined at compile time.

In other words, it is assumed that the target hardware platform

is the processors with fixed instruction execution time, or the

processors whose instruction execution time depends on the

operands. For instance, although the multiplication and div-

ision instruction execution time of some micro instruction pro-

cessors may vary according to the operands provided, the

WCET is constant. Therefore, each node in CFG corresponds

to a WCET, which is a constant. We use tn to denote the

WCET of node n, and use tn1
, . . . , nk to denote the sum of

the WCET values of nodes n1, . . . , n1.

6.1. WCET calculation based on branch execution

frequencies

This section discusses how to obtain the execution frequencies

of symbolic branches using static analysis and how to calcu-

late the WCET values based on branch execution frequencies.

The execution frequency p(m, n) of an edge (m, n) of the

CFG is a real number satisfying

0 � pðm; nÞ � 1; ð5ÞX
j[SuccsðmÞ

pðm; jÞ ¼ 1; ð6Þ

where Succs(m) is the set of all successors of node m.

p(m, n) ¼ 0 denotes (m, n) infeasible.

The execution frequencies of branches are often denoted by

numerical values. If we use algebraic expressions to denote the

execution frequencies of the branches, we will obtain the sym-

bolic representation. Given the conditional recursion relation-

ship of the programs, the symbolic formulas of the basic block

execution frequencies can be calculated using symbolic instru-

mentation [18].

We define a symbolic integer variable bi for each node i.

The initial value of bi is 0. On each access to node i, bi

increases by 1. The calculated symbolic value of bi is called

the execution count of node i. bi is called an instrumentation

variable.

If we can obtain the symbolic expressions of all the instru-

mentation variables, then the following equations can be

established.

bi ¼
X

j [ SuccsðiÞ

cij; ð7Þ

bi ¼
X

k [ PredsðiÞ

cki; ð8Þ

where cij is the symbolic count assigned to edge (i, j), and

Preds(i) and Succs(i) are the sets of predecessors and succes-

sors of node i, respectively.

According to (7) and (8), we can obtain the expression for cij

using substitution and reduction, and obtain the symbolic

execution count for the corresponding edges by back substi-

tution. After knowing the symbolic execution counts of the

edges, by (5) and (6) we have

pði; jÞ ¼
cijP

k [ SuccsðiÞ
cik

: ð9Þ

With the execution frequencies of each edges, the generating

function Gm(z) of node m for variable z is defined as

follows [18].

GmðzÞ ¼ ztm
P

j [ PredsðmÞ

pð j;mÞGjðzÞ;

GentryðzÞ ¼ ztentry :

(
ð10Þ

As known in [19], the WCETTask is

WCETTask ¼
d

dz
GexitðzÞjz¼ 1; ð11Þ

which means that we differentiate Gexit(z) with respect to z and

then set z ¼ 1.

6.2. WCET analysis for programs containing

input-dependent branches

For loop-controlled branches (which corresponds to a loop in

program), we can determine their execution frequencies using

simple nested heuristics [20] or static analysis [21–23].

However, for non-loop-controlled branches, it is difficult to

determine their execution frequencies. Blieberger [18] gives

a method to calculate the execution frequencies of loop-

controlled branches. Here, we make extension to [18] such

that it can be used to the programs, which contain input-

dependent branches. It is assumed that the execution fre-

quency of each loop-controlled branch is known, and it is
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either a numerical value or a symbolic expression, and it

satisfies (5)–(8).

Using the methods such as symbolic evaluation, we can ulti-

mately determine the conditional expressions of the input-

dependent nodes. These expressions are symbolic expressions

that are determined by the input parameters.

For a branching node depending on inputs, its evaluation

behavior does not depend on which loop it is in. Therefore,

when the loop is executing, such a branch is either executed

or not executed, i.e. its execution frequency is either 1 or 0.

Thus, the WCET of the programs that contain input-dependent

branches is also determined by the input parameters.

THEOREM 2. Assuming that node m is an input-dependent

branching node and its execution count is Cnt, m has two

input-dependent branches (m, n1) and (m, n2). Let

pðm; niÞ ¼
1; if Condðm; niÞ ¼ TRUE;
0; otherwise:

�

Then the execution count of node ni is p(m, ni)*Cnt, where

p(m, ni) is the execution frequency of branch (m, ni), i ¼ 1, 2.

Proof. First, we define the recursive counterpart of a variable.

Let v be a variable. v(k) is called a recursive counterpart of v,

where k denotes the kth occurrence of v in the loop execution.

According to [18], there exists the following recursion

relation on the instrumentation variable bm of node m:

bmðk þ 1Þ ¼ eðkÞ; if CmðkÞ evaluates to TRUE;

where e(k) and Cm(k) mean that all the variables in e and C are

substituted by their recursive counterparts, and e is the sym-

bolic expression of bm, and Cm is the condition.

Clearly, bni
(k þ 1) ¼ e(k) if Cm(k) evaluates to TRUE, and

Cond(m, ni) ¼ TRUE.

Thus, bni
(k þ 1) ¼ p(m, ni)*e(k) if Cm(k) evaluates to

TRUE.

Because the execution count of node m is Cnt, the execution

count of node ni is p(m, ni)*Cnt.

Notice that

0 � pðm; niÞ � 1; i ¼ 1; 2;P2
i¼ 1

pðm; niÞ ¼ 1:

8<
:

It follows that p(m, ni) is the execution frequency of branch

(m, ni). A

If the execution frequency p(m, ni) is given for input-

dependent branch, we can still obtain Equation (11) according

to the method in Section 6.1. In this case, Equation (11) is the

WCET formula that contains the execution frequencies of

input-dependent nodes, where p(m, ni) is a symbol which is

either 1 or 0 that denotes the corresponding evaluation of

branching node m, respectively. For a better description, we

make a sequential numbered list of the execution frequencies

p(m, ni) of all the input-dependent branches accordingly, and

make such a convention: if p(m, n1) is on the TRUE branch

of branching node m, and it is labeled pj, then p(m, n2) at the

FALSE branch is labeled 1 2 pj. Moreover, for convenience,

we call all the pj and 1 2 pj collectively as p. In this way,

Equation (11) is a symbolic formula that contains all the p’s.

Assume that all the branching nodes of all p’s of program M

lie in the mode-relevant slice M0. Sections 3 and 4 show that

each feasible path in M0 corresponds to a mode. For each

feasible path in M0, there is a value for each p. With the

values of all the p’s, Equation (11) can be reduced and simpli-

fied. According to the value of each p or straightforwardly

according to the results in Section 4, we can obtain the precon-

ditions of each mode.

6.3. An example

Figure 5 is a schematic example program adapted from [24].

Figure 6 is the control flow graph of this program. The notes

on the right-hand side of the program show the correspon-

dence between the source program statements and the

control flow graph. The entry node of Fig. 6 is denoted by a

double blank circle, whereas the exit node is denoted by a

double filled circle.

6.3.1. Computing the execution counts of the nodes and the

execution frequencies of the edges

The execution counts of the various nodes and the execution

frequencies of the various edges of this program are listed in

FIGURE 5. A schematic example program.

FIGURE 6. Control flow graph for the example program.
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Table 2. We use pi to denote the execution frequency of the

TRUE branch of the input-dependent node, and 1 2 pi to

denote the other branch. pi will not appear in the resultant

formulae, it is just a means to obtain the WCET formulae

and their precondition.

6.3.2. Computing the generating functions and

the symbolic expressions of the WCET

of the programs

The generating function that contains input-dependent

branches is given by the following equations.

Gentry(z) ¼ ztentry

G1(z) ¼ zt1 Gentry(z)

G2(z) ¼ zt2(G1(z) þ G12(z))

G3(z) ¼ zt3(n/(n þ 1))G2(z)

G4(z) ¼ zt4p1G3(z)

G5(z) ¼ zt5((n 2 x)/n)G4(z)

G6(z) ¼ zt6(x/n)G4(z)

G7(z) ¼ zt7p2G6(z)

G8(z) ¼ zt8(1 2 p2)G6(z)

G9(z) ¼ zt9((1 2 p1)G3(z) þ G5(z) þ G7(z) þ G8(z))

G10(z) ¼ zt10p3G9(z)

G11(z) ¼ zt11(1 2 p3)G9(z)

G12(z) ¼ zt12(G10(z) þ G11(z))

Gexit(z) ¼ ztexit(1/(n þ 1))G2(z)

Since the control flow graph CFG is at most a strongly con-

nected graph, the complexity of computing the generating

functions of the nodes of CFG is O(N2), where N is the

number of nodes of CFG.

According to the above equations, we can obtain the

following equation after substitution and reduction.

G2¼ztentry;1;2þzt3;9;12 ½p3zt10þð1�p3Þz
t11 �

½ð1�p1Þnþðn�xÞp1zt4;5þxp1p2zt4;6;7þxp1ð1�p2Þz
t4;6;8 ��

G2

ðn�1Þ
:

After eliminating the recurrence of G2, we obtain

G2 ¼
ztentry;1;2 ðnþ 1Þ

ðnþ 1� zt3;9;12 ½ p3zt10 þ ð1� p3Þzt11 �VÞ
;

where

V ¼ ð1� p1Þnþ ðn� xÞp1zt4;5 þ xp1p2zt4;6;7

þ xp1ð1� p2Þz
t4;6;8 :

Thus, we have

Gexit ¼
ztentry;1;2;exit

ðnþ 1� zt3;9;12 ½ p3zt10 þ ð1� p3Þzt11 �CÞ
;

where

C ¼ ð1� p1Þnþ ðn� xÞp1zt4;5 þ xp1p2zt4;6;7

þ xp1ð1� p2Þz
t4;6;8 :

After differentiating on z and then substitute z with 1, we have

d

dz
Gexitjz¼1 ¼ Dþ ð p3t10 þ ð1� p3Þt11

Þnþ ðn� xÞp1t4;5

þ xp1p2t4;6;7
þ xp1ð1� p2Þt4;6;8

;

where D denotes tentry,1,2,3,9,12,exit.

6.3.3. Listing paths and their p combinations

According to Section 3, after mode-relevant program slicing,

we obtain the mode-relevant slice and list all the paths in

the slice. For the example in Fig. 5, only statements 4, 7, 9,

11, 13 remain in the mode relevant slice; we list their paths

and the corresponding p combinations in Table 3.

6.3.4. Generating the corresponding conditional

expressions

By applying the method presented in Section 4, we can check

whether a path in mode-relevant slice is feasible or not. There

are four feasible paths in Table 3. The first and third paths are

infeasible.

TABLE 2. Node execution counts and edge execution frequencies.

Node Execution count Edge Execution frequency

entry 1 (entry,1) 1

1 1 (1,2) 1

2 n þ 1 (2,3) n/(n þ 1)

3 n (2,exit) 1/(n þ 1)

4 p1*n (3,4) p1

5 p1*(n 2 x) (3,9) 1 2 p1

6 p1*x (4,5) (n 2 x)/n

7 p1*p2*x (4,6) x/n

8 p1*(1 2 p2)*x (6,7) p2

9 n (6,8) 1 2 p2

10 p3*n (9,10) p3

11 (1 2 p3)*n (9,11) 1 2 p3

12 n (12,2) 1

exit 1
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For the four feasible paths, their individual symbolic

expressions and the corresponding conditions are listed below.

Dþnt
4;11
þðn� xÞt

5
þ xt

6;7
(ðcnd1. 4Þ and ðcnd2¼ 1Þ;

Dþnt
4;11
þðn� xÞt

5
þ xt

6;8
(ðcnd1. 4Þ and ðcnd2= 1Þ;

Dþnt
10

(ðcnd1 ,3Þ;
Dþnt

11
(ðcnd1� 4Þ and ðcnd1� 3Þ:

8>><
>>:

Comparing to the unconditional symbolic expression above,

it is clear that the symbolic expressions for each mode have

been simplified, and their corresponding conditions are

orthogonal, i.e. there is no overlapping among their domains.

7. PROTOTYPE TOOL

7.1. Tool architecture

On the basis of our previously developed tools—a path-wise

test data generator [25] and a WCET Analyzer [26], we

have implemented the presented method and developed a

program mode-based WCET automatic analysis tool for C

source code. As shown in Fig. 7, our prototype tool is

mainly composed of three parts: a parser and a program ana-

lyzer, a mode generator and a mode-based WCET analyzer.

The mode generator is composed of Mode Relevant Slicer, a

Constraint Constructor and a Constraint Solver. The WCET

analyzer is composed of Static Cache Monitor and Time Ana-

lyzer. The program flow analysis method is based on the value

range propagation method [27], which is supported by

Abstract Interpretation [28].

A C language compiler generates the mapping information

between source code and object code. On the basis of this

information, the program flow information mentioned above,

and the cache configuration information, the static cache

monitor categorizes each instruction access. Time analyzer

calculates the execution time of each basic block based on

the pipelining information of the instruction, and computes

the upper bounds of the processor execution time of

program based on the program flow information and the

instruction and data caching categorization.

The methods used by static cache monitor and time analyzer

are mainly from [12, 13] and are modified for mode.

Time analyzer has been implemented for Alpha 21064,

which is a super-scalar and super-pipeline microprocessor

with 64-bit load/store RISC architecture and 8 k instruction

cache and 8 k data cache in chip [29]. For the simplicity of cal-

culation, we do not take branch prediction and data cache into

consideration.

Most parts of the tool execute automatically. All programs

flow, but unbounded loops are automatically generated. The

tool supports the identification of modes and can determine

if a path is dominated by a mode. Static caching monitor

and time analyzer can automatically categorize the instruction

cache and calculate WCET estimates, respectively. However,

the mapping between source code and object code should

manually be established by the users at the moment, though

it can be established by compiler developers.

7.2. Mode-detection mechanism

We demonstrate mode-detecting process in detail. The flow

chart of mode-detecting process is demonstrated in Fig. 8.

The input variable information of the tool includes its name,

location (line number) and type in program structure which is

generated by a parser. On the basis of this information,

mode-relevant slicer generates slices and their paths using

the method presented in Section 3. For each path in the

slices, constraint constructor generates its constraint system.

By invoking Matlab, constraint solver makes decision on

whether the path is feasible or not.

Table 3. Paths in mode relevant slice and their p combinations.

No. Paths p combinations

1 4, 50, 7, 80, 11, 120 p1, p2, p3

2 4, 50, 7, 80, 11, 13 p1, p2, 1 2 p3

3 4, 50, 7, 9, 11, 120 p1, 1 2 p2, p3

4 4, 50, 7, 9, 11, 13 p1, 1 2 p2, 1 2 p3

5 4, 11, 120 1 2 p1, p3

6 4, 11, 13 1 2 p1, 1 2 p3

FIGURE 7. Framework of the prototype tool. FIGURE 8. Flow chart of mode-detecting process.
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Matlab is a mathematical software that integrates calcu-

lation and programming. It can resolve several kinds of con-

straint systems and provide Application Programming

Interface (API) for Cþþ compiler such as the cl.exe of

Visual Cþþ. By invoking library functions with Cþþ API

of Matlab, the program of modes based-WCET analysis tool

is compiled into an execution file, which is executed stand

alone.

According to the input variable information, constraint con-

structor constructs a linear arithmetic representation for the

predicate function corresponding to each branch predicate in

the slice, and instruments the slice before and after each

branch with assertions. The instrumented slice is compiled

and run with various inputs to obtain the executed path and

coefficients of the input variables in the linear arithmetic

representation as mentioned before. The execution process

of mode detecting is depicted in Fig. 9.

8. EXPERIMENTAL RESULTS

With the prototype tool support, we have performed the

experiments of worst-case time analysis for RISC processors

using SNU-RT Benchmark Suite [30]. There are 17 C pro-

grams in the suite, 10 of them contain functions that have

modes. In total, there are 57 functions in these 17 programs

and 23 of them have modes. Observe that 59% of these pro-

grams have modes and that the seven not-have-mode programs

only contain five functions in total. Table 4 lists all the pro-

grams and functions in the SNU-RT Benchmark Suite.

Using our tool and by selecting the initial input value for a

program to be analyzed, we can obtain the list of modes of the

program, which include the WCET estimate and the precondi-

tion for each mode.

For those experiments, Table 5 lists the preconditions and

WCET estimates of each mode of some of the functions

in the SNU-RT Benchmark Suite that have modes. Each con-

dition in the Preconditions column corresponds to a mode. For

example, the third function in Table 5 has three preconditions,

i.e. (nbl , 0), (0 � nbl � 18432) and (nbl . 18432). So it has

three modes, one for each precondition. Each value in WCET

column corresponds to the WCET estimate of the mode. The

Comments column specifies the conditions under which the

WCET estimate is computed. To satisfy this condition, some

source codes have to be modified. For instance, some data

arrays are enlarged.

By examining the suite, we notice that most mode-relevant

predicates are directly represented by input variables.

FIGURE 9. Execution process of mode detecting.

TABLE 4. Functions in SNU-RT that have modes.

No. Program Functions

1 adpcm-test.c abs, fabs, quantl, logscl, upzero, logsch

2 crc.c icrc

3 fft1.c fabs, fft1

4 fft1k.c fabs

5 fir.c fabs, sqrt

6 lms.c fabs, sqrt

7 ludcmp.c fabs, ludcmp

8 minver.c fabs, mmul, minver

9 qurt.c fabs, sqrt, qurt

10 sqrt.c sqrt

TABLE 5. Preconditions and WCET estimates of the modes of

some functions.

No. Function Preconditions WCET

(cycles)

Comment

1 fabs (n � 0) 36

(n , 0) 38

2 sqrt (val ¼ 0) 48

(val = 0) 2225

3 logscl (nbl , 0) 84

(0 � nbl � 18432) 85

(nbl . 18432) 86

4 upzero (dlt ¼ 0) 303

(dlt = 0) 493

5 icrc ( jinit � 0 ^ jrev , 0) 33 364 len ¼ 100

( jinit � 0 ^ jrev � 0) 31 937

( jinit , 0 ^ jrev , 0) 33 398

( jinit , 0 ^ jrev � 0) 31 956

6 fft1 (n , 2) 32

(n � 2^flag ¼ 0) 412 702 n ¼ 16

(n � 2^flag = 0) 413 805

7 ludcmp (n . 99_eps � 0.0) 46

(n � 99^eps . 0.0) 99 013 n ¼ 10

8 mmul (row_a , 1_row_b , 1_

col_b , 1_

col_a = row_b)

60

(row_a � 1^row_b � 1

^col_b � 1^

col_a ¼ row_b)

125 433 row_a ¼ 10

row_b ¼ 10

col_b ¼ 10
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However, there are still some exceptions, such as the function

icrc in source file ‘crc.c’ of the suite, whose mode-relevant

predicates are in loop, and there are even eight infeasible

paths in the mode-relevant slice.

On the basis of the WCET estimates of functions listed in

Table 5, we obtain the WCET estimates of invoking these

functions in programs, as shown in Table 6.

There are five columns in Table 6 except the first column

‘No.’. Function/program column specifies which function is

measured in some program. For example, function fabs

occurs in programs 1 and 3–9, however we only list its

measurements in program ‘fir.c’ and ‘lms.c’.

Column ‘WCET without modes’ specifies the WCET esti-

mates of invoking the function while NOT taking mode into

consideration. In this case, the WCET estimate is calculated

as the maximum estimate of all the modes of the function to

be measured.

Column ‘WCET with modes’ specifies the WCET estimates

of invoking the function when we take mode into consideration.

In this case, the WCET estimate is calculated by accumulating

each estimate with different mode. For instance, function

upzero has two modes, one for (dlt¼ 0) and the other for

(dlt = 0). Mode (dlt ¼ 0) is executed 2370 times and mode

(dlt = 0) is 1630 times in program adpcm.c. Therefore, the

WCET with mode for upzero is 2370 * 303 þ 1630 * 493 ¼ 1

521 700. However, the WCET without mode is 493 * 4000 ¼

1 972 000.

The ‘percentage’column specifies the percentage of the esti-

mate with modes to the estimate without modes. It specifies

the accuracy we improved for the functions that have

modes. For example, for function sqrt in program qurt.c, the

percent of the estimate with mode to the estimate without

mode is 4498/6675 ¼ 67%.

Comments column also specifies the conditions under which

the WCET estimate is computed.

By examining the programs above, we can find that modes

are set for two cases: one for code sharing and another for

input variable range checking. For the former, each mode is

a ‘normal’ case, so each mode has a good chance to be

taken. Functions ‘fabs’, ‘sqrt’, ‘upzero’, ‘icrc’ and “fft1” are

such cases. For the latter, some modes are normal cases,

whereas the others are abnormal and they happen unexpect-

edly. We set the invoking context to be that normal modes

happen regularly and abnormal modes happen one-tenth.

The meaning of comment ‘n ¼ 0, ,¼100; þ10’ for the

sixth program is that we changed the invoking context

from original

chkerr=ludcmp(nmax, n, eps);

to

for (n=0;n ,=100;n+10)

chkerr=ludcmp(nmax, n, eps);

As we mentioned before, the function ludcmp will be called

ten times as mode (n � 99) and once as mode (n . 99).

The comment of seventh item in Table 6, ‘Param ¼ 1�10’,

means all the four parameters of function mmul are same and

will traverse from 1 to 10. That is, it will be called 10 times.

The comment of the third and eigth items mean the same as

that of seventh item.

Some functions that have modes have not been listed in

Table 6, such as quantl, logscl and logsch in program

adpcm.c. The functions are not listed in Table 6 either

because they are invoked in the mode that has the

maximum estimate of all the modes or because the precon-

dition of each mode is hard to evaluate. For these functions,

we take their estimates with mode to the same as without

mode.

There are 23 functions in Table 4. As program sqrt.c is not

an executable program, we do not take function sqrt in it into

account. Therefore, the average percentage of the estimate

with mode to the estimate without modes for this example

is (77 þ 96 þ 75 þ 91 þ 90 þ 90 þ 67 þ 9 * 99 þ 100 * 6)/

22 ¼ 94%, i.e. the improvement of our method for this

example is 6%. Here, we take all the fabs and abs functions

as 1% improved.

TABLE 6. WCET estimates with modes vs. without modes for some of the programs that have modes.

No. Function/program WCET without modes WCET with modes Percentage Comment

1 upzero/adpcm.c 1 972 000 1 521 700 77

2 icrc/crc.c 300 582 289 626 96 jint ¼ 21, 0, 1

jrev ¼ 21, 0, 1

3 fft1.c 6 620 880 4 959 170 75 n ¼ 0�8

flag ¼ 0, 1

4 fabs/fir.c 10 792 10 708 99

5 fabs/lms.c 132 772 131 428 99

6 ludcmp.c 1 089 143 990 176 91 n ¼ 0, ,¼100; þ10

7 mmul/minver.c 1 254 330 1 128 957 90 Param ¼ 1�10

8 minver/minver.c 2 013 580 1 812 278 90 Param ¼ 1�10

9 sqrt/qurt.c 6675 4498 67
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In general, the improvement made by our method is depen-

dent on (i) that a function has several modes and the difference

between the modes is significant; (ii) how often the mode with

minor WCET estimate is invoked.

It is noticed that some precondition is hard to evaluate stati-

cally. To evaluate the precondition, the other techniques such

as constant propagation [31] should be applied.

9. RELATED WORK AND CONCLUSIONS

The modes of programs in WCET analysis have been investi-

gated in [2, 10]. They annotate programs with modes and

compute the WCET value for each given mode using a tree-

based method. Our method automatically finds the modes of

a program and calculates the WCET estimates under a given

mode using a path-based method.

Using a tree-based method, Gheorghita et al. [32] have

explored the scenario that is defined as the application beha-

vior for a specific type of input data, which is a specific type

of mode. Our method is more general and the method of iden-

tifying infeasible paths is also more general.

A key point of WCET analysis is to ensure the accuracy of

the resulting WCET estimates. Exploiting program modes can

make WCET analysis more accurate. In this paper, we present

a novel method for deriving modes of a program and calculat-

ing the WCET estimate under a given mode automatically. On

the basis of program slicing and iterative relaxation method, a

general method is presented to obtain the program modes and

it works well in practical programs with linear branching pre-

dicates. The WCET analysis of a given mode for modern RISC

processors with caches and pipelines is simple and can be

automated. For non-linear predicates, the constraint systems

are not always solvable to obtain its precondition for a mode

as linear constraint systems.

Blieberger [18] uses data flow framework to estimate the

symbolic WCET of real-time programs. If the conditional

recursion relation of the program is already known, then this

method can compute the symbolic execution frequencies of

CFG nodes using symbolic instrumentation techniques. The

generating functions are employed to acquire the accurate

WCET symbolic expressions. Note that this method considers

only the execution frequencies of loop-controlled branches,

which are relatively easy to determine. However, the

execution frequencies of non-loop-controlled branches are dif-

ficult to determine [33]. Input-dependent branches are just

non-loop-controlled branches. On the basis of the Blieberger’s

work [18], our method can conduct mode-based symbolic

WCET analysis for traditional CISC processors. Grounded

on the analysis of program modes, we directly generate the

WCET symbolic expressions of a program for each mode.

However, existing symbolic WCET analysis methods [21,

34] are not targeted at program modes.

As future work, we plan to apply our method to detect

program modes for the calculation of energy cost in

power-aware computing. We will extend the work in finding

approximate preconditions for nonlinear branching predicates

and detecting modes for multi-task applications.
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