
Scenario-Based Analysis and Synthesis of
Real-Time Systems Using Uppaal

Kim G. Larsen, Shuhao Li, Brian Nielsen, and Saulius Pusinskas

Center for Embedded Software Systems (CISS)
Aalborg University

Selma Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark
{kgl, li, bnielsen, saulius}@cs.aau.dk

Abstract. We propose an approach to scenario-based analysis and syn-
thesis of real-time embedded systems. The inter-process behaviors of a
system are modeled as a set of driving universal Live Sequence Charts
(LSCs), and the scenario-based user requirement is specified as a separate
monitored universal or existential LSC. By translating the set of LSCs
into a behavior-equivalent network of timed automata (TA), we reduce
the problems of model consistency checking and property verification to
CTL real-time model checking problems. Similarly, we reduce the prob-
lem of centralized synthesis for open systems to a timed game solving
problem. We implement a prototype LSC-to-TA translator, which can
be linked to our LSC editor and the existing real-time model checker
Uppaal and timed game solver Uppaal-Tiga. Preliminary experiments
on a number of examples and a case study show the applicability and
effectiveness of this approach.

1 Introduction

In the early stage of model-based development of real-time embedded systems,
it is desirable to prototype a system in question and its operating environment
using a number of use cases and scenarios. A next round refinement of the sys-
tem model and the transition from model to implementation can start only if
the scenario-based model is checked to be consistent (i.e., implementable), and
correct with respect to some specified scenario-based user requirements. Further-
more, from a correct-by-construction perspective, as a part of the long-known
dream for “automated system design”, we may wish to synthesize executable
object systems from scenario-based descriptions.

Live Sequence Chart (LSC) [7, 14] is a scenario-based specification and pro-
gramming language, which can describe systems in an assume-guarantee style.
A universal LSC chart can optionally contain a prechart, which specifies the
scenario which, if successfully executed, forces the system to satisfy the sce-
nario given in the actual chart body (the main chart). Essentially, LSC extends
Message Sequence Chart (MSC) [15] by adding modalities. The existential and
cold (resp. universal and hot) modalities represent the provisional (resp. manda-
tory) global and local requirements, respectively. An existential LSC chart (resp.

universal LSC chart) specifies restrictions over at least one satisfying (resp. all
possible) system runs. A cold condition may be violated, whereas a hot one
must be satisfied. The rich language facilities and the unambiguous semantics
make LSC a nice visual formalism for early-stage characterization of distributed,
real-time and embedded systems.

Scenario-based approaches that use LSCs enjoy the advantages of piecewise
incremental construction of system models, i.e., new pieces of scenarios can be
added into the models during the development process. However, scenario-based
analysis such as model consistency checking and property verification (i.e., to
check whether an LSC-modeled system satisfies a scenario-based requirement)
are difficult due to the need to consider both the explicitly as well as implic-
itly specified behaviors in each scenario, and the interplays among the different
scenarios. Scenario-based synthesis is difficult because all possible scenario in-
teractions have to be considered 1. The problems become even more complicated
for real-time systems, as time-enriched LSCs may contain subtle timing errors
that are difficult to diagnose.

Powerful verification techniques and tools are utilized to assist scenario-based
analysis and synthesis for LSCs, e.g. in smart play-out [11, 12, 6], satisfiability
checking [22, 6], consistency checking [22] and synthesis [10, 13, 23, 5, 18].

Some of these efforts address the problems mainly from a theoretical view-
point [10, 5]. Some of them handle property verification with only existential
charts [22, 6]. A number of them have no real-time support [10, 11, 22, 23, 5].
While synthesis for LSC-modeled real-time systems is supported in [13], it is
incomplete in the sense that some systems are announced not synthesizable
while they actually are. The reason is that the smart play-out mechanism [11,
12] that [13] relies on implements only a local consistency checking where the
Play-Engine looks only one super-step ahead in the LSC state space. A recent
work [18] tackles this by employing controller synthesis techniques to achieve
complete consistency checking and subsequent complete synthesis. However as
an extension to smart play-out, this method, like the earlier work [13], is limited
to discrete time and a restricted form of timing constraints 2.

In this paper we equip a kernel subset of the LSC language with timed au-
tomaton (TA)[1] -like real-valued clock variables and clock constraints. We use
a set of driving universal LSC charts (collectively called an LSC system) to
model the inter-process interaction behaviors of the system in question, and
use a monitored universal/existential chart to specify the user requirement. We

1 It has been shown that for an untimed subset of the LSC language, consistency check-
ing and the subsequent synthesis is at least EXPTIME-complete, and model checking
a given system implementation (e.g. in I/O automata) against an LSC specification
is complete for co-NP (for centralized implementation of a closed system) or PSPACE
(otherwise) [4].

2 In the original definition and the Play-Engine implementation of time-enriched LSC
[14], the special Clock object has a property Time which is an integer variable, and
a method Tick which each time increases Time by 1. Timing constraints take the
form of only “Time op (time variable + delay expression)”, where op is an relational
operator.

translate the LSC system into a behavior-equivalent network of interacting timed
automata, which can properly mimic the important LSC features such as mes-
sage sending and intra/inter-chart coordinations. The problems of consistency
checking and property verification can be reduced to CTL real-time model check-
ing problems in Uppaal [3]. Furthermore, by viewing the interaction between
the controllable system processes (Sys) of an LSC system and their “hostile”
(uncontrollable) environment processes (Env) as playing a (safety) game with
the aim of constantly avoiding hot violations, we can reduce the problem of
scenario-based synthesis for open systems (i.e., Sys) to a game solving problem.
The timed game solver Uppaal-Tiga [2] can be employed to check the solvabil-
ity, and if yes, to generate a strategy for Sys. Compared with existing work, our
approach of scenario-based analysis and synthesis features:

– TA-like real-valued clock variables and clock constraints (compared with [12,
13, 6, 18]);

– Complete consistency checking and synthesis (compared with [10, 13]);
– Property verification with the properties being specified as universal charts

(compared with [22, 6]); and
– Automated, tool-supported approach (compared with [10, 5]).

The benefits of building the scenario-based analysis and synthesis methods
on top of the well-developed real-time model checking and timed game solving
engines are twofold: (1) for system analysts and designers who are interested in
early-stage validations and automated system designs using live sequence charts,
now they can carry out scenario-based analysis and synthesis of timed systems
without having to develop and implement the underlying algorithms; (2) for
the users of conventional model checkers that work on state/transition-based
models and temporal logical properties, now they can horizontally scale up to
scenario-based models and scenario-based user requirements.

1.1 Related Work

In addition to being used as a requirement specification language [8, 17, 16], LSC
can also be used as a modeling language [9–12, 4, 22, 23, 13, 6, 18]. In the latter
case, problems of scenario-based analysis such as model consistency checking
and property verification, and of scenario-based synthesis arise. This paper will
mainly consider the latter usage of LSC charts.

Analysis of scenario-based behaviors can be carried out inside the Play-engine
[14] according to the operational semantics of LSC [9–13, 6, 18], or achieved by
first transforming LSCs into other formalisms such as CSP [22, 23] and timed
Büchi automata (TBA) [17], and then calling for other mature techniques and
tools to accomplish the tasks. In this paper we will follow the latter approach to
take advantage of the TA formalism [1], the real-time model checker Uppaal [3]
and the timed game solver Uppaal-Tiga [2]. Similar in spirit to the approaches
of [11, 22], during the translation we will create one process for each instance line
of the charts, and thus avoid the explicit construction of the global transition
system.

A set of LSC charts are consistent if and only if these charts are not internally
contradictory, i.e., they can be satisfied by a certain state-based object system
[9, 10]. Consistency checking of LSC systems is a prerequisite step towards syn-
thesis [13, 4, 22, 23, 18], i.e., to construct one such satisfying state-based object
system. In this paper, we consider both the consistency checking and the syn-
thesis problems, and will reduce them to the model checking and game solving
problems, respectively.

Current work on verification of scenario-based requirement either has state/
transition-based object systems as the subject, e.g., Statemate model imple-
mentations [8, 17] and Kripke structures [16], or has an LSC system as the sub-
ject. In the latter case, existing work mainly concerns satisfiability checking [22,
6], i.e., to check whether the requirement that is expressed as an existential chart
can be satisfied by the LSC system. In this paper we will also check whether a
requirement specified as a universal chart can always be respected by the LSC
system.

1.2 Organization

Section 2 presents our timed extensions to a subset of the LSC language and de-
fines a trace-based semantics. Section 3 describes how we translate LSCs into a
network of timed automata, shows how complex the outcome of the translation
is, and shows the behavior-equivalence of the translation. The scenario-based
analysis and synthesis problems are formulated as model checking and game
solving problems in Section 4. The prototype tool implementation and prelim-
inary experiments are reported in Section 5. We conclude in Section 6. The
detailed translation rules, the complexity analysis of the translation outcomes,
and the proofs of lemmas and theorems in Sections 3.4 and 4 are provided in
the appendices.

2 Live Sequence Charts

In this paper, LSC in its simplest form is a message-only untimed chart, i.e., there
are only language elements of instance lines, locations, messages and precharts/
main charts.

We make the synchrony hypothesis, i.e., system events consume no real time
and time may elapse only between events. In this way message synchronizations
will be instantaneous, i.e., the sending and reception of a message are assumed
to happen at the same moment in time. Therefore the terms of (message sending
or receiving) event and message will be used interchangeably.

A chart has a role, either for system modeling (i.e., as a driving chart), or
for system property specification (i.e., as a monitored chart). Driving charts can
only be universal charts, whereas a monitored chart can be either a universal or
an existential chart. In this paper we use a set of universal charts to model the
behaviors of the system in question, and use a separate universal or existential
chart to specify the system property.

A universal LSC chart has an activation mode, i.e., how often a chart should
be activated. In this paper, we consider the invariant mode, i.e., the prechart is
being constantly monitored, regardless of whether any incarnation of the chart
has entered its main chart portion.

2.1 Syntax and semantics for a single universal chart

A universal LSC chart has a main chart (Mch) and optionally a prechart (Pch). If
it has no prechart, then it can be simply treated as having a satisfying prechart.
In this paper we assume that a universal chart has a prechart.

We start with message-only untimed charts, see Fig. 1 for the examples.

(a) chart 1 (b) chart 2

Fig. 1. Two consistent untimed charts.

Given a universal chart L, let I = inst(L) be the set of instance lines (i.e.,
processes) in L. Along each instance line Ii ∈ I there are a finite set of “po-
sitions” pos(L, Ii) = {0, 1, 2, . . . , p maxL,Ii} ⊂ N≥0. See Fig. 1(a), black filled
circles. Specifically, along each instance line Ii there are four “standard” positions
StdPos(L, Ii) = {Pch top,Pch bot,Mch top,Mch bot} ⊂ pos(L, Ii), denoting the
entry/exit points of the prechart/main chart, respectively, such that:

– 0 = Pch top < Pch bot < Mch top < Mch bot = p maxL,Ii ; and
– Pch bot + 1 = Mch top. ut

A chart location is a position on a certain instance line of the chart. The set
of all locations of chart L are denoted as:

loc(L) = {〈Ii, p〉 | Ii ∈ inst(L), p∈pos(L, Ii)}.

The set of all message-anchoring locations of L are denoted as:

locM (L) = {〈Ii, p〉 | Ii ∈ inst(L), p∈pos(L, Ii)\StdPos(L, Ii)}.

Furthermore, we define function psn : loc(L)→
⋃
Ii∈inst(L) pos(L, Ii) to project

a location to its position on its instance line.
Let ML(L) be the set of message labels (or “signals”, or “channels” in Up-

paal) of chart L. A message occurrence mo = (〈Ii, p〉, m, 〈Ii′ , p′〉) ∈ locM (L)
×ML(L) × locM (L) corresponds to instance Ii, while in its position (p − 1),

sending signal m ∈ ML(L) to instance Ii′ at its position (p′ − 1), and then
arriving at positions p and p′, respectively. We call lab(mo) = m the message
label, head(mo) = 〈Ii′ , p′〉 and tail(mo) = 〈Ii, p〉 the message head and tail loca-
tions, and src(mo) = Ii and dest(mo) = Ii′ the source and destination instances,
respectively. We use loc(mo) = {head(mo), tail(mo)} to denote the message
anchoring locations. The set of all message occurrences in chart L are denoted
as:

MO(L) ⊆ {(〈Ii, p〉,m, 〈Ii′ , p′〉) ∈ locM (L)×ML(L)× locM (L) | i 6= i′,

p ≤ StdPos(L, Ii).Pch bot ⇔ p′ ≤ StdPos(L, Ii′).Pch bot}.

We omit the parameter L in MO(L) (and thus abbreviating it as MO) when
it is clear from the context. Furthermore, we use Σ = MA(L) to denote the
projection of MO(L) onto inst(L) × ML(L) × inst(L). In this way, we get the
message alphabet Σ, where each letter is a message which denotes that a par-
ticular signal is sent from one to another objects (instance lines). For a given
message occurrence, we may overload its “message label” to also denote the
corresponding letter in Σ.

This paper does not consider concurrent messages, thus each location can be
the end point of at most one message occurrence in the chart.

Now we continue to define our timed extensions to the above kernel subset of
the LSC language. In our time-enriched LSC charts, there are further elements of
(clock) variables, conditions (clock constraints), assignments (clock resets) and
simregion (i.e., “simultaneous region”). Fig. 2 gives two example time-enriched
LSC charts.

(a) chart 1 (b) chart 2

Fig. 2. Two consistent time-enriched charts.

Assume that in chart L there are a finite set X of real-valued clock variables
that range over R≥0. A clock valuation is a function v : X → R≥0 that maps
each clock variable to a non-negative real number, also denoted v ∈ R≥0X .

A clock constraint is of the form x ./ n or x − y ./ n where x, y ∈ X,
n ∈ Z, and ./ ∈{<,≤,=,≥, >}. Let B(X) be the set of finite conjunctions over
these constraints. The set of conditions (or guards) in the chart are denoted

G ⊆ B(X). A condition g ∈ G has a temperature, denoted g.temp, which may
be either hot or cold in the main chart, and only cold in the prechart.

A clock reset is of the form x := 0 where x ∈ X. An assignment (or update)
a is the union of a finite set of clock resets. For simplicity we use a to denote
the set of clocks to be reset. The set of all assignments in the chart is denoted
A ⊆ 2X . We can also view a ∈ A as a transformer on the functions of clock
valuations, and as such the new valuation of v after assignment a is denoted as
v′ = a(v).

In our time-enriched LSCs, each message occurrence mo can be optionally
associated with a condition g and/or an assignment a. The intuitive meaning of
message synchronization [g]mo/a from location 〈Ii, p〉 to 〈Ii′ , p′〉 is that, if when
mo occurs, the clock valuation v satisfies g, then this synchronization can fire;
and immediately after the firing, v will be updated according to a. A message
occurrence and the corresponding condition and/or assignment attached thereto
can be collectively viewed as an atomic step of LSC execution, i.e., they take
place at the same moment in time, hence they constitute a simregion. We denote
the set of all simregions as SR. For simplicity, we do not consider stand-alone
conditions or assignments, i.e., we assume that any condition and assignment is
associated with a certain message.

In an LSC chart L, every location is either associated with a simregion, or it
is an entry/exit point of the prechart/main chart. We define a labeling function
λ : loc(L)→ SR ∪{nil} to map a location of the former type to its corresponding
simregion, and a location of the latter type to nil.

Locations in a chart L are partially ordered by the following rules:

– Along each instance line Ii: location l is above l′ ⇒ (l ≤ l′) ∧ ¬(l′ ≤ l); and
– All locations in the same simregion have the same order, ∀s ∈ SR,∀l, l′ ∈
loc(L) . (λ(l) = s) ∧ (λ(l′) = s)⇒ (l ≤ l′) ∧ (l′ ≤ l). ut

The partial order relation 4⊆ loc(L)× loc(L) is defined as a transitive clo-
sure of ≤.

Definition 1 (cut of an LSC chart). A cut of a chart L is a set c ⊆ loc(L) of
locations that span across all the instance lines in L which satisfies the properties
of:

– Downward-closure. If a location l is included in cut c, so are all of its pre-
decessor locations: ∀l, l′ ∈ loc(L). (l ∈ c ∧ l′4 l)⇒ l′ ∈ c; and

– Intra-chart coordination integrity. If a Mch top position of a certain instance
line is included in the cut, then the Mch top positions of all other instance
lines are also included in the cut: ∃l∈ loc(L), Ii ∈ inst(L) . ((
StdPos(L, Ii).Mch top ≤ psn(l)) ∧ (psn(l) ≤ StdPos(L, Ii).Mch top) ∧ (l ∈
c) ⇒ ∀l′∈ loc(L), Ii′ ∈ inst(L) . ((StdPos(L, Ii′).Mch top≤psn(l′)) ∧ (psn(l′)
≤StdPos(L, Ii′).Mch top)⇒ l′∈c)). ut

For a cut c, we use loc(c) to denote its frontier, i.e., the set of locations
that constitute the downward borderline progressed so far. The location where
c “cuts” instance line Ik ∈ I is denoted loc(c)〈k〉.

Given a cut c ⊆ loc(L) and a simregion s ∈ SR, we say s is enabled at

cut c (with respect to the partial order relation), denoted c
s−→, if, ∀ l ∈ c, l′ ∈

loc(s) . ((l 4 l′) ∧ ¬(l′ 4 l)) ∧ (@ l′′ ∈ loc(L)\(c ∪ loc(s)) . (l 4 l′′ ∧ l′′ 4 l′)). The
enabledness of message occurrences can be defined similarly.

A cut c′ is an s-successor of cut c, denoted c
s−→ c′, if s is enabled at c (w.r.t.

the partial order), and c′ is achieved by adding the set of locations that s anchors

into c, or formally, (c
s−→) ∧ (c′ = c ∪ loc(s)).

A cut c is minimal, denoted >, if it “cuts” each instance line at its top loca-
tion; and c is maximal, denoted ⊥, if if it “cuts” each instance line at its bottom
location. The minimal and maximal cuts of the prechart and main chart are de-
noted Pch.>, Pch.⊥, Mch.> and Mch.⊥, respectively. The frontiers of minimal
and maximal cuts do not contain simregion anchoring points. Rather the cuts
Pch.⊥ and Mch.⊥ each represent a requirement for compulsory synchronization
for all the instance lines in the chart. Thus the partial order relation 4 on loc(L)
is extended as follows (and finally also extended to its transitive closure):

– All locations in the frontier of the same minimal or maximal cut have the
same order, ∀c ∈ {Pch.>, Pch.⊥,Mch.>,Mch.⊥} , ∀l, l′ ∈ loc(c) . (l 4 l′) ∧
(l′4 l). ut

Definition 2 (configuration). A configuration of an LSC chart is a tuple
(c, v), where c is a cut and v is a clock valuation. ut

For d ∈ R≥0, notation (v+d) : X → R≥0 means that the function v is shifted
by d such that ∀x ∈ X . (v(x+ d) = v(x) + d).

A configuration at the minimal cut > with all clocks assigned their initial
values (e.g., 0’s) is called the initial configuration.

A configuration can be viewed as a “semantic state” of a time-enriched LSC
chart. A universal chart starts from the initial configuration, advances from one
to a next configuration, until a hot violation 3 occurs, or until the chart arrives
at the maximal cut configuration and then starts all over again (i.e., to begin a
next round execution).

There could be three kinds of advancement steps between two configurations
(c, v) and (c′, v′) of a time-enriched LSC chart:

– Message synchronization step. Given a simregion s which consists of an m-
labeled message occurrence mo (m ∈ Σ), and optionally a condition g

and/or an assignment a, there is a message synchronization step (c, v)
m−→

(c′, v′) if,

• (normal advancement). c
s−→ c′, v |=g, and v′ = a(v); or

3 A hot violation means that some mandatory requirements are not satisfied. In this
paper, it refers to the situations that in the main chart the event partial order is
violated or a hot condition evaluates to false. In comparison, a cold violation means
that some provisional requirements are not satisfied (therefore it is not a big deal).
In this paper, it refers to the situations where the event partial order is violated in
the prechart, or a cold condition evaluates to false.

• (cold violation). c′ = Pch.>, v′ = v, and either
- mo is not enabled at cut c in the prechart (w.r.t. the partial order

relation); or
- (v 2 g) ∧ (g.temp = cold);

– Silent step. There is a silent step (c, v)
τ−→ (c′, v′) if either

• (c = Pch.⊥, c′ = Mch.>, v′ = v); or
• (c = Mch.⊥, c′ = Pch.>, v′ = v); or
• c′ is reached because an instance line moves to its bottom location in

Pch or Mch autonomously (this happens when the instance line will not
interact with other instance lines before it reaches its bottom location in
Mch or Pch). Formally, there exists an instance Ik such that v′ = v and
either

- loc(c′)〈k〉 = (loc(Pch.⊥))〈k〉, psn(loc(c′)〈k〉) = psn(loc(c)〈k〉)+1, and
loc(c′)〈i〉 = loc(c)〈i〉 for all i 6= k; or

- loc(c′)〈k〉 = (loc(Mch.⊥))〈k〉, psn(loc(c′)〈k〉) = psn(loc(c)〈k〉) + 1,
and loc(c′)〈i〉 = loc(c)〈i〉 for all i 6= k;

– Time delay step. There is a time delay step (c, v)
d−→ (c′, v′) where d ∈ R≥0

if: c′ = c, v′ = v + d, and whenever there are message occurrences that are
enabled at cut c (w.r.t. both the partial order relation and the guard), then
after delay d there exists at least one of them that is still enabled at the
same cut, i.e., ∃s ∈ SR .∃mo, g ∈ s .∀d′∈ [0, d] . (c

s−→) ∧ (v + d′) |= g. ut

Similarly, if in the main chart, an m-labeled message violates 4, or (v 2
g ∧ g.temp = hot), then the configuration (c, v) is said to be hot-violated, denoted

(c, v) ��
m−→.

Definition 3 (run of an LSC chart). A run of a time-enriched universal LSC
chart is a sequence of configurations (c0, v0)·(c1, v1)·. . . that are connected by the

advancement steps, i.e., ∀i≥0 .∃ui ∈ (Σ ∪ {τ} ∪R≥0) . (ci, vi)
ui−→ (ci+1, vi+1).

ut

The transition relation → as mentioned above each time consumes only a
single letter u ∈ (Σ ∪ {τ} ∪R≥0). We extend it to →∗ such that it consumes a
(finite or infinite) word w ∈ (Σ ∪ {τ} ∪R≥0)∗ ∪ (Σ ∪ {τ} ∪R≥0)ω.

Let Π correspond to the set of all possible messages that occur in a state/
transition-based system model (i.e., a network of timed automata), or be the
set of all messages in an object interaction-based system model (i.e., a set of
driving universal LSC charts). In the latter case, the message alphabet for the
LSC system model LS = {Li | 1 ≤ i ≤ n} is Π =

⋃n
i=1Σi =

⋃n
i=1 MA(Li).

Definition 4 (satisfaction of a prechart/main chart). A timed trace γ ∈
(Π ∪ {τ} ∪R≥0)∗ ∪ (Π ∪ {τ} ∪R≥0)ω satisfies an LSC prechart or main chart
C, denoted γ |= C, if its projection γ|(Σ∪{τ}∪R≥0) has a prefix µ which is the
accepted word of a run that successfully exercises C, and no prefix of it ever
leads to a hot violation. Formally, (∃µ ∈ (Σ ∪ {τ} ∪ R≥0)∗, ξ ∈ (Σ ∪ {τ} ∪

R≥0)∗∪ (Σ ∪ {τ} ∪ R≥0)ω .∃v′ ∈ R≥0X . (γ|(Σ∪{τ}∪R≥0) = µ · ξ) ∧ (>, v0)
µ

→∗

(⊥, v′)) ∧ (@µ′ ∈ (Σ∪{τ}∪R≥0)∗, ξ ∈ (Σ∪{τ}∪R≥0)∗∪(Σ∪{τ}∪R≥0)ω .∀m∈

Σ . ((γ|(Σ∪{τ}∪R≥0) = µ′ ·m · ξ) ∧ (>, v0)
µ′

→∗ •��
m−→)). ut

A finite trace γ ∈ (Π∪{τ}∪R≥0)∗ satisfies chart C exactly, denoted γ C, iff

(γ |= C) ∧ ∃µ∈(Π ∪ {τ} ∪R≥0)∗, v′∈R≥0X . (γ|(Σ∪{τ}∪R≥0) = µ) ∧ ((>, v0)
µ

→∗
(⊥, v′)).

Now we define the satisfaction relation for a full universal chart (under the
invariant activation mode):

Definition 5 (satisfaction of a universal LSC chart). A timed trace γ ∈
(Π ∪ {τ} ∪ R≥0)ω satisfies (passes) a universal chart L, denoted γ |= L, iff
whenever a finite sub-trace matches the prechart, then the main chart is matched
immediately afterwards. Formally, ∀α, µ ∈ (Π ∪ {τ} ∪ R≥0)∗, β ∈ (Π ∪ {τ} ∪
R≥0)ω . (α · µ · β = γ) ∧ (µ Pch)⇒ (β |= Mch). ut

A timed language Lang ⊆ (Π ∪ {τ} ∪R≥0)
ω

satisfies L, denoted Lang |= L,
iff ∀γ ∈ Lang . γ |= L. Clearly, Lang characterizes the system behaviors that
respect L.

When L is used as a monitored chart, then for a network S of timed automata,
we use S |= L to denote that the timed traces (language) of S satisfy LSC L.

2.2 Semantics for a set of universal charts

For an LSC system LS which consists of a set of driving universal charts L1,L2, . . . ,
Ln, we denote c̄ = (c1, c2, . . . , cn) as a cut vector, and v as a valuation of all of the
clock variables in LS. Each member cut of c̄ is denoted as ci = (c̄)i, 1 ≤ i ≤ n.
We call (c̄, v) a global configuration of LS.

Let (c̄, v) be a global configuration of an LSC system LS. Assume that there
are message occurrences mo1, . . . ,mok (1 ≤ k ≤ n, each in a different chart)
that are simultaneously enabled at ((c̄)i, v), 1 ≤ i ≤ k, and that these message
occurrences are the same message, i.e., they have exactly the same message label
and the same source and destination instances, i.e., ∃m ∈ Π, Lj ∈ LS .∃Ia, Ib ∈
inst(Lj) .∀1 ≤ i ≤ k . (lab(moi) = m) ∧ (src(moi) = Ia) ∧ (dest(moi) = Ib). In
this case, these identically labeled message occurrences are said to be enabled at
global configuration (c̄, v) w.r.t. their respective partial order relations.

Given a global configuration (c̄, v) of LS and a message m ∈ Π, there is a

message synchronization step (c̄, v)
m−→ (c̄′, v′) in LS if:

– A maximal set of m-labeled message occurrences are enabled at (c̄, v), and
there is no chart Li whose local configuration ((c̄)i, v) will be hot-violated by
an m-labeled message. In this case, for all charts Lj which each has an m-

labeled message occurrence enabled at (c̄, v), the
m−→message synchronization

steps will occur simultaneously; and

there is a silent step (c̄, v)
τ−→ (c̄′, v) in LS if:

– There is a chart Li such that ((c̄)i, v)
τ−→ ((c̄′)i, v). In this case, for all j 6= i,

we have c̄′j = c̄j ; and

there is a time delay step (c̄, v)
d−→ (c̄, v + d) in LS if:

– For all 1 ≤ i ≤ n, we have ((c̄)i, v)
d−→ ((c̄)i, v + d). ut

In the first case above, the global condition for all m-labeled message occur-
rences is the conjunction of all individual conditions, and the global assignment
is the union of all individual assignments.

Similarly, we can define runs and →∗ for a set of time-enriched LSC charts.

Definition 6 (satisfaction of an LSC system). A timed trace γ ∈ (Π∪{τ}∪
R≥0)ω satisfies (passes) an LSC system LS iff, γ corresponds to an infinite run
of LS, and it satisfies each chart Li in LS separately. ut

3 LSC to TA translation

3.1 Motivation

Similar to [19], in this paper our scenario-based analysis and synthesis methods
rely on a translation of the LSC charts to timed automata. However, unlike in
[19] where each monitored chart specifies a user requirement individually, in this
paper a set of driving charts are supposed to characterize the inter-object be-
haviors of the system collectively. When the system consists of a large number
of driving charts, then the cut-based LSC-to-TA translation will encounter the
state explosion problem: the number of possible global cuts (i.e., the number of
possible system states) will increase rapidly, and explicit encoding and storing
these information need a lot of space. Furthermore, the outcome of the trans-
lation as a single huge timed automaton will be difficult to visualize, to debug
and to diagnose.

To overcome the above problems, in this paper we propose a different method
for translating LSC charts to timed automata. For each driving LSC chart L in
the system model, we view the instance lines in L as a set of parallelly run-
ning processes that communicate with one another and collaborate to achieve
a common goal as specified by chart L. Since Uppaal also operates on a net-
work of parallelly composed processes (TAs) that communicate with each other,
this motivates us to translate each instance line of L to a timed automaton. In
this way we avoid the explicit construction of a global automaton. This idea in
spirits resembles the approaches of [11, 22]. Thanks to the Uppaal features of
broadcast channels, boolean and integer variables and committed locations in
timed automata, we are able to appropriately translate the LSC features such
as message sending, intra/inter-chart coordinations and cold/hot violations to
timed automata. Compared with the “one-TA-per-chart” approach that can be
viewed as a kind of centralized translation [19], the “one-TA-per-instance line”
approach of this section can be viewed as a kind of distributed translation.

3.2 Mapping LSC instance to Uppaal timed automaton

Basic structure mapping Each instance line Ii in chart Lu of the LSC sys-
tem LS is mapped into a timed automaton Au,i, where each position on Ii
corresponds to a TA location in Au,i, and each discrete advancement step (i.e.,
a message synchronization step or a silent step) on Ii corresponds to a TA edge
in Au,i. The sending (resp. receiving) of an m-labeled message on Ii corresponds
to an m! (resp. m?)-labeled TA edge in Au,i.

Handling intra/inter-chart coordinations In the prechart (resp. main chart)
of an LSC chart, once all the participating instance lines have progressed to
their Pch bot (resp. Mch bot) positions, then the prechart (resp. main chart)
is successfully matched. In this case, the prechart (resp. main chart) will be
exited immediately, and the main chart (resp. prechart) will be entered imme-
diately afterwards. To synchronize all the participating instance lines for such a
prechart/main chart (resp. main chart/prechart) transfer, for each LSC chart L,
we create a dedicated (auxiliary) coordinator automaton CoordL. This automa-
ton will communicate with the timed automata for the instance lines by using
auxiliary binary synchronization channels such that it can bookkeep how many
instance lines are done with their prechart (resp. main chart) portions. Once the
coordinator automaton realizes that the prechart (resp. main chart) has been
successfully matched, it will immediately launch a broadcast synchronization
with the timed automata for all the relevant instance lines.

In scenario-based modeling, the same message may well appear in two or more
charts. To be more specific, it is possible that anm-labeled message from instance
line A to instance line B has its occurrences in LSC charts L1,L2, . . . ,Ln. If
these messages are all enabled and one of them is chosen to be fired, then all
the others must also be fired simultaneously. Clearly, this requires an inter-chart
coordination. To achieve this, we use broadcast synchronization channels rather
than binary synchronization channels for these messages. In the translated timed
automata, if there is an m!-labeled edge from one to another TA locations, then
we add an m?-labeled edge between these two TA locations to “accompany” the
m!-labeled edge.

Handling cold and hot violations Once a cold violation occurs, we let the
timed automaton that corresponds to the message sending instance line report
to the coordinator automaton in charge, which in turn immediately synchronizes
all the timed automata that correspond to the relevant instance lines in the chart
for a reset (i.e., to go back to their initial TA locations).

In the translated network of timed automata NTA, we maintain a global
flag boolean variable hotviolated, which indicates whether a hot violation has
occurred in the LSC system. This variable is initialized to false, and it will be
set to true whenever a hot violation occurs.

Dealing with time To mimic the behaviors of a clock constraint and clock reset
in an LSC chart, we use a linked sequence of TA edges, whose atomicity is ensured

by the Uppaal feature of committed location 4. Upper bound constraints in the
conditions can be extracted and used as TA location invariants to ensure that
the constrained messages are sent out within the specified time frames; lower
bound and clock difference constraints can be extracted and tested immediately
after the message synchronizations.

Translating environment processes The processes (instance lines) in an LSC
system can be partitioned into two sets: the environment processes (Env) and
the system processes (Sys). From the system’s perspective, the messages sent
from Env to Sys processes are uncontrollable, whereas other message sendings
are controllable. To model this edge controllability for the purpose of timed game
solving, we mark the message-sending edges in the translated timed automata
of the Env processes as uncontrollable edges (in dashed lines), and other edges
as controllable edges (in solid lines). In this way, we obtain the timed game
automata [20] models.

Translating monitored chart In comparison with a driving universal chart,
the translation of a monitored chart to timed automata is different in the point
that a monitored chart only “listens to” the messages in the LSC system and
never emits messages by itself. When translating such a chart into a network
of timed automata, if at position s of instance line Ik there is a sending of an
m-labeled message, then we add an m?-labeled TA edge from ls−1 to ls, and not
an m!-labeled one.

The translation rules, the detailed explanations and the translation examples
can be found in Appendix B.

3.3 Complexity of translated timed automata

Let LS be a set of LSC charts L1,L2, . . . ,Ln, and let NTALS be the translated
network of timed automata. Let inst(Li), ML(Li), MA(Li) and MO(Li) denote
the set of instance lines, the set of message labels (i.e., “signals”), the message
alphabet and the set of message occurrences of chart Li, respectively.

Table 1 summarizes the complexity of the outcomes of the translation in
different settings, namely, a single LSC chart or an LSC system; untimed LSC
chart or time-enriched LSC chart.

How we obtain these analysis results can be found in Appendix C.

3.4 Behavior equivalence of LSC and translated TAs

Theorem 1. Let LS be a set of time-enriched LSC charts whose message alpha-
bet is Π, and let NTALS be the translated network of timed automata which have

4 A committed location is an urgent location whose outgoing transitions have higher
priority to be taken than those from non-committed ones.

Table 1. The complexity of the outcomes of LSC-to-TA translation

number of
A single chart L

untimed chart time-enriched chart

TAs |inst(L)|+ 1 |inst(L)|+ |MA(L)|+ 1

channels |ML(L)|+ 2 · |inst(L)|+ 4 |ML(L)|+ 2 · |inst(L)|+ 4 + 3 · |MA(L)|
auxiliary
variables

2 · |MA(L)|+ 2 4 · |MA(L)|+ 2 · |MO(L)|+ 2

number of
A set of driving charts L1,L2, . . . ,Ln

untimed charts time-enriched charts

TAs
∑n

i=1(|inst(Li)|+ 1)
∑n

i=1(|inst(Li)|+ 1) + |
⋃n

i=1 MA(Li)|
channels |

⋃n
i=1 ML(Li)|+∑n
i=1(2 · |inst(Li)|+ 4)

|
⋃n

i=1 ML(Li)|+
∑n

i=1(2 · |inst(Li)|+4)+
3 · |

⋃n
i=1 MA(Li)|

auxiliary
variables

2 · |
⋃n

i=1 MA(Li)|+ 2n 4·|
⋃n

i=1 MA(Li)|+2·
∑n

i=1 |MO(Li)|+2n

a set Act of normal and auxiliary channels. Then ∀γ1 ∈ (Π∪{τ}∪R≥0)ω . ((γ1 |=
LS)⇒ ∃γ2 ∈ (Act∪ {τ} ∪R≥0)ω . (γ2 |= NTALS)∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))),
and ∀γ2 ∈ (Act∪{τ}∪R≥0)ω . ((γ2 |= NTALS)⇒ ∃!γ1 ∈ (Π∪{τ}∪R≥0)ω . (γ1 |=
LS) ∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))).

Theorem 1 indicates that each accepted timed trace γ1 in LS uniquely corre-
sponds to a cluster of accepted timed traces in NTALS . All these traces project
to exactly the same trace on the message alphabet and time delays (Π ∪ R≥0)
as γ1 does.

The lemmas for theorems in Sections 3.4 and 4, and the proofs of them can
be found in Appendix D.

4 Analysis and synthesis problems

4.1 Consistency checking

An LSC system is inconsistent if and only if the system model has internal
contradictions [10], i.e., there does not exist an infinite message sequence such
that it satisfies all driving universal LSC charts. Alternatively, an LSC system is
inconsistent iff, along all possible paths there will eventually be a hot violation of
the main chart of a certain LSC chart (i.e., the flag boolean variable hotviolated,
which has been initialized to false, will eventually be set true in the translated
network of timed automata).

Uppaal uses a fragment of the CTL logic as its query language. Formulas
could take the forms E♦φ, E�φ, A♦φ, A�φ, φ1 φ2, where φ, φ1 and φ2 are
state formulas. In particular φ1 φ2 (“φ1 leads-to φ2”) is a shorthand for
A�(φ1 ⇒ A♦φ2), which characterizes the assume-guarantee style liveness (or
responsiveness).

Theorem 2. LS = {L1,L2, . . . ,Ln} are inconsistent ⇔ NTALS |=
true (hotviolated == true).

Theorem 2 indicates that in order to check the inconsistency of a set of driving
LSC charts, we can instead check whether it is true that the translated network
of timed automata will eventually have its boolean flag variable hotviolated set
to true.

For example, by model checking the corresponding translated network of
timed automata, we find out that the two driving universal LSC charts in Fig.
1 are consistent, whereas the two charts in Fig. 3 are inconsistent.

(a) chart 1 (b) chart 2

Fig. 3. Two universal charts which are inconsistent.

4.2 Property verification

Property verification asks whether a system that is modeled as a set of driving
universal LSC charts LS satisfies the requirement that is specified as a separate
monitored universal or existential chart L′. Here L′ will be translated into a
network of “observer” timed automata NTAL′ , i.e., they only “listen to” the
messages in the network of timed automata NTALS for LS, and never emit
messages by themselves.

Theorem 3. Let LS be an LSC system, and L′ be a monitored universal chart.
LS |= L′ ⇔ (NTALS ||NTAL′) |=(CoordL′ .Mch top CoordL′ .Mch bot).

In the above theorem, CoordL′ .Mch top and CoordL′ .Mch bot say that the
coordinator timed automaton CoordL′ for chart L′ is in its locations Mch top
and Mch bot, respectively.

Theorem 3 indicates that in order to check whether a system LS satisfies the
requirement in a universal chart L′, we only need to check whether the paralelly
composed translated network of timed automata satisfy the aforementioned re-
sponsiveness property.

For example, after model checking the corresponding translated network of
timed automata, we find out that the (single chart) LSC system in Fig. 4(a)
satisfies the requirement that is specified in Fig. 4(b).

(a) chart 1 (b) chart 2

Fig. 4. Chart 1 (model) satisfies chart 2 (property).

Theorem 4. Let LS be an LSC system, and L′ be a monitored existential chart.
LS |= L′ ⇔ (NTALS ||NTAL′) |=(E♦ CoordL′ .Mch bot).

Theorem 4 indicates that in order to check whether a system LS satisfies the
requirement in an existential chart L′, we only need to check whether LS have
a trace that can be observed by L′ as a satisfying run.

4.3 Centralized synthesis for open systems

A timed automaton with its edges partitioned into controllable and uncontrol-
lable ones is called a timed game automaton (TGA) [20]. A network of parallelly
composed timed game automata for Env and Sys can be viewed as a timed game
structure: as a player, the timed game automata for Sys (noted NTASys) master
the set Ac of controllable edges; as the opponent, the timed game automata for
Env (noted NTAEnv) master the set Au of uncontrollable edges. Given a winning
objective, NTASys will take moves in order to win the game (i.e., to bring the
system into a winning state, or to prevent the system from entering a losing
state), whereas NTAEnv may spoil the game.

Let S be the state space of NTAEnv ||NTASys, and ε /∈ (Ac∪Au∪{τ}) be an
empty action which means “do nothing at this moment in time”. A state-based
(or memoryless) strategy for NTASys is a (partial) function

ρ : S → (Ac ∪ {ε}),

which constantly guides the timed automata in NTASys to take appropriate
controllable actions, or just delay (and wait for the semantic state to be changed
by an uncontrollable action of NTAEnv, or by the elapse of time).

Uppaal-Tiga [2] is a timed game solver. Its inputs include a set of timed
game automata, and a winning objective that is formulated as an extended ACTL
(the universal fragment of CTL) formula. For example, property “control: A� ϕ”
asks whether there exists a strategy ρ for NTASys such that if NTASys is super-
vised (or “restricted”, “guided”) by ρ, then the system NTALS is guaranteed to
always (i.e. invariantly) satisfy ϕ. If the property is satisfied, then Uppaal-Tiga
will be able to synthesize a winning strategy for NTASys.

Synthesis for Sys is possible only if the entire system LS can be guaranteed
not to be hot-violated no matter how the Env processes behave. By means of

trace-wise behavior equivalence, this boils down to finding a winning strategy
ρ for NTASys. Since the strategy (if ever exists) will oversee all Sys processes
rather than being distributed to supervise each individual Sys process, it is a
kind of centralized synthesis. It is clear that NTALS as supervised by ρ constitute
one such desired executable (state/transition-based) object system.

Theorem 5. An executable object system for Sys can be synthesized ⇔ NTALS |=
(control: A� (hotviolated == false)).

Theorem 5 indicates that the problem of centralized synthesis for open sys-
tems can be reduced to a timed game solving problem in Uppaal-Tiga.

5 Experiments

Fig. 5 shows our scenario-based analysis and synthesis framework. Among those
inputs (the shaded elements), the Env/Sys partitioning directives specify which
processes in the charts of LS belong to Env and which belong to Sys, respec-
tively.

Env/Sys
partitioning
directives

monitored
LSC chart

driving
LSC charts

(scenario-based
requirement
specification)

(scenario-based
system model)

LSC-to-TA
translation

network of TA

LSC-to-TA
translation

network of TA

consistency
checking
(Uppaal)

CTL
property

CTL
property

property
verification
(Uppaal)

control
synthesis

(Uppaal-TIGA)

("listening"
 only)

network of
TA for Sys

LSC-to-TA
translation

network of
TA for Env

Fig. 5. Scenario-based analysis and synthesis framework.

We build a GUI-based LSC editor, with which we can construct either uni-
versal or existential charts. A prototype command line LSC-to-TA translator has
been implemented, which is capable of batch translation of monitored and driv-
ing charts. The translator-generated timed automata and CTL formulas comply

with the Uppaal timed automaton, Uppaal-Tiga timed game automaton and
their query language syntaxes, and can thus be fed into Uppaal and Uppaal-
Tiga directly.

Preliminary translation experiments have been conducted on an Intelligent
Mouse (# of charts, instance lines, message labels, message occurrences, clocks:
4, 3, 3, 12, 2), a refrigeration (4, 3, 3, 14, 1) and an ATM Machine (12, 3, 6, 21,
0) examples, and a DHCP (Dynamic Host Configuration Protocol) (34, 3, 17, 44,
0) case studies. Some comparative experiments reveal that the translation has
negligible time overheads and memory consumptions than the subsequent model
checking and game solving of the translated network of timed automata. This
is reasonable, because the complexity of scenario-based analysis and synthesis
mainly lies in the LSC models themselves. As a syntactical level manipulation,
the translation only introduces some auxiliary channels and bookkeeping vari-
ables (not clock variables) to implement the LSC semantics.

6 Conclusions

We present timed extensions to a kernel subset of the LSC language and define
a trace-based semantics. We show how to transform LSC charts into a network
of behavior-equivalent timed automata. The LSC consistency checking, prop-
erty verification and synthesis problems can be reduced to CTL real-time model
checking and timed game solving problems. We implement a prototype LSC-
to-TA translator. When linked with our LSC editor and the existing real-time
model checker Uppaal and timed game solver Uppaal-Tiga, they constitute
a tool chain for automated, scenario-based analysis and synthesis of real-time
systems. Preliminary experiments on a number of examples show that it is a
viable approach.

Scenario-based approaches enjoy the advantages of incremental construction
of models, i.e., new pieces of scenarios can be added into existing ones during
the development process. In order to keep the driving LSC charts and their
complexity within human readable and manageable levels, a single LSC chart
needs not to be very large and complex. Rather the complexity of scenario-based
models mainly lies in the interplays of a large number of relatively simple charts.
Our “one-TA-per-instance line” translation is in accordance with this philosophy.
Instead of constructing a complex global state machine that handles all possible
activities explicitly, we leave the intricate semantics of LSC chart progress and
intra/inter-chart coordinations mostly up to Uppaal.

As future work, we may consider the translation of more LSC constructs into
timed automata, such as co-region, symbolic instance, control structures, etc.
Other chart activation modes also need to be dealt with. The implementation of
a full-fledged translator and the application of the tool chain to industrial case
studies are desirable. Furthermore, scenario-based synthesis for systems with
imperfect information (e.g., some uncontrollable actions are not observable) is
also worth investigation.

Acknowledgements We would like to thank Itai Segall for helpful discussions
and for pointing out an error in the DATE’10 conference version of this paper.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

2. Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim Guld-
strand Larsen, and Didier Lime. Uppaal-Tiga: Time for playing games! In Proc.
19th International Conference on Computer Aided Verification (CAV’07), pages
121–125, 2007.

3. Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on
uppaal. In Marco Bernardo and Flavio Corradini, editors, SFM, volume 3185 of
Lecture Notes in Computer Science, pages 200–236. Springer, 2004.

4. Yves Bontemps. Relating Inter-Agent and Intra-Agent Specifications - The Case
of Live Sequence Charts. PhD thesis, University of Namur, Namur, Belgium, 2005.

5. Yves Bontemps and Pierre-Yves Schobbens. The computational complexity of
scenario-based agent verification and design. J. Applied Logic, 5(2):252–276, 2007.

6. Pierre Combes, David Harel, and Hillel Kugler. Modeling and verification of a
telecommunication application using live sequence charts and the play-engine tool.
Software and System Modeling, 7(2):157–175, 2008.

7. Werner Damm and David Harel. LSCs: Breathing life into message sequence
charts. Formal Methods in System Design, 19(1):45–80, 2001. Preliminary version
in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-Based Distributed
Systems/(FMOODS’99), P. Ciancarini, A. Fantechi and R. Gorrieri, eds., Kluwer
Academic Publishers, 1999, pp. 293-312.

8. Werner Damm and Jochen Klose. Verification of a radio-based signaling system
using the statemate verification environment. Formal Methods in System Design,
19(2):121–141, 2001.

9. David Harel and Hillel Kugler. Synthesizing state-based object systems from lsc
specifications. In Proc. 5th International Conference on Implementation and Ap-
plication of Automata (CIAA’00), pages 1–33, 2000.

10. David Harel and Hillel Kugler. Synthesizing state-based object systems from lsc
specifications. Int. J. Found. Comput. Sci., 13(1):5–51, 2002.

11. David Harel, Hillel Kugler, Rami Marelly, and Amir Pnueli. Smart play-out of
behavioral requirements. In Proc. 4th International Conference on Formal Methods
in Computer-Aided Design (FMCAD’02), pages 378–398, 2002.

12. David Harel, Hillel Kugler, and Amir Pnueli. Smart play-out extended: Time and
forbidden elements. In Proc. 4th International Conference on Quality Software
(QSIC’04), pages 2–10, 2004.

13. David Harel, Hillel Kugler, and Amir Pnueli. Synthesis revisited: Generating stat-
echart models from scenario-based requirements. In Proc. Formal Methods in Soft-
ware and Systems Modeling, pages 309–324, 2005.

14. David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based Programming
Using LSC’s and the Play-Engine. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2003.

15. ITU-T. Message sequence charts – msc-2000, itu-t recommendation z.120, 1999.
16. Jochen Klose, Tobe Toben, Bernd Westphal, and Hartmut Wittke. Check it out: On

the efficient formal verification of live sequence charts. In Proc. 18th International
Conference on Computer Aided Verification (CAV’06), pages 219–233, 2006.

17. Jochen Klose and Hartmut Wittke. An automata based interpretation of live
sequence charts. In Proc. 7th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’01), pages 512–527, 2001.

18. Hillel Kugler, Cory Plock, and Amir Pnueli. Controller synthesis from lsc require-
ments. In Proc. 12th International Conference on Fundamental Approaches to
Software Engineering (FASE’09), pages 79–93, 2009.

19. Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen, and Saulius Pusinskas. Verifying
real-time systems against scenario-based requirements. In Proc. 16th International
Symposium on Formal Methods (FM’09), pages 676–691, 2009.

20. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete con-
trollers for timed systems (an extended abstract). In Proc. 12th Annual Symposium
on Theoretical Aspects of Computer Science (STACS’95), pages 229–242, 1995.

21. K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Program.,
25(2-3):285–327, 1995.

22. Jun Sun and Jin Song Dong. Model checking live sequence charts. In Proc.
10th International Conference on Engineering of Complex Computer Systems
(ICECCS’05), pages 529–538, 2005.

23. Jun Sun and Jin Song Dong. Synthesis of distributed processes from scenario-based
specifications. In John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors, FM,
volume 3582 of Lecture Notes in Computer Science, pages 415–431. Springer, 2005.

Appendix A: Timed automata in Uppaal

We use the following notations: C is a set of real-valued clocks, and B(C) is the
set of conjunctions over simple conditions of the form x ./ c or x− y ./ c, where
x, y ∈ C, c ∈ N, and ./∈{<,≤,=,≥, >}.

Definition 7 (timed automaton, TA [3]). A timed automaton is a tuple
(L, l0, C,Act, E, Inv), where L is a set of locations, l0 ∈ L is the initial location,
C is a set of clocks, Act is the alphabet of actions, E ⊆ L × (Act ∪ {τ}) ×
B(C)× 2C × L is a set of edges between locations, each of which has an action,
a guard and a set of clocks to be reset, and Inv : L → B(C) assigns invariants
to locations. ut

Uppaal has defined a number of extensions to the standard notations of
timed automata. Specifically, an urgent location is such a TA location that freezes
time, i.e., time is not allowed to elapse when a process is in an urgent location. A
committed location is a special kind of urgent location whose outgoing transitions
always have higher priority to be fired than those from non-committed locations.

Uppaal uses a mixture of handshake communication and broadcast com-
munication. The CBS (Calculus of Broadcasting Systems [21])-style broadcast
channels allow 1-to-many synchronization. If the emitting edge is enabled, then

it can always fire. If the emitting edge is fired, then all enabled receiving edges
(might be 0 edge) will synchronize.

In Uppaal an urgent channel means that if it is possible to trigger a syn-
chronization over that channel, then it cannot delay in the source state.

Furthermore, Uppaal also supports bounded-range integer and boolean data
variables, which can be used in the guards, assignment and location invariants.

A clock valuation is a function u : C → R≥0 from the set of clocks to the non-
negative real numbers. Let R≥0

C be the set of all clock valuations. Let u0(x) = 0
for all x ∈ C. We will abuse the notation by considering guards and invariants
as sets of clock valuations, writing u ∈ Inv(l) to mean that valuation u satisfies
Inv(l).

Definition 8 (semantics of TA [3]). Let (L, l0, C,Act, E, Inv) be a timed
automaton. The semantics is defined as a labeled transition system 〈S, s0,→〉,
where S ⊆ L × R≥0C is the set of states, s0 = (l0, u0) the initial state, and
→⊆ S × (Act ∪ {τ} ∪R≥0)× S the transition relation such that:

– (l, u)
d−→ (l, u+ d) if ∀d′ : 0 ≤ d′ ≤ d . u+ d′ ∈ Inv(l); and

– (l, u)
a−→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E such that u ∈ g, u′ =

[r → 0]u, and u′ ∈ Inv(l′),

where for d ∈ R≥0, u + d maps each clock x in C to the value u(x) + d, and
[r → 0]u denotes the clock valuation which maps each clock in r to 0 and agrees
with u over C\r. ut

Definition 9 (run of TA). A run of a TA (L, l0, C,Act, E, Inv) is a sequence
of states s0 · s1 · . . . that are connected by the transitions, i.e., ∀i ≥ 0 .∃ui ∈
(Act ∪ {τ} ∪R≥0) . si

ui−→ si+1. ut

The transition relation → as mentioned above each time consumes only a
single letter u ∈ (Act∪ {τ} ∪R≥0). We extend it to →∗ such that it consumes a
(finite or infinite) word w ∈ (Act ∪ {τ} ∪ R≥0)∗ ∪ (Act ∪ {τ} ∪ R≥0)ω. A word
w that corresponds to a run of the TA is called a timed trace of the TA.

A number of timed automata can be parallelly composed into a network of
timed automata over a common set of clocks and actions,Ai = (Li, l0,i, C,Act, Ei,
Invi), 1 ≤ i ≤ n. A location vector l̄ = (l1, . . . , ln) is a vector of locations of
the member TA. We compose the invariant functions into a common function
over location vectors Inv(l̄) =

∧
i Invi(li). We write l̄[l′i/li] to denote the vector

where the i-th element li of l̄ is replaced by l′i.

Definition 10 (semantics of a network of TAs [3]). Let Ai = (Li, l0,i, C,
Act, Ei, Invi) be a network of timed automata, 1 ≤ i ≤ n. Let l̄0 = (l0,1, . . . , l0,n)
be the initial location vector. The semantics is defined as a transition system
〈S, s0,→〉, where S = (L1 × . . . × Ln) × R≥0C is the set of global states, s0 =
(l̄0, u0) the initial global state, and →⊆ S× (Act∪{τ}∪R≥0)×S the transition
relation defined by:

– (l̄, u)
d−→ (l̄, u+ d) if ∀d′ : 0 ≤ d′ ≤ d . u+ d′ ∈ Inv(l̄);

– (l̄, u)
τ−→ (l̄[l′i/li], u

′) if there exists li
τ,g,r−−−→ l′i such that u ∈ g, u′ = [r→ 0]u

and u′ ∈ Inv(l̄[l′i/li]);

– (l̄, u)
a−→ (l̄[l′i/li, l

′
j/lj], u

′) if a is a binary channel and there exist li
c!,gi,ri−−−−→ l′i

and lj
c?,gj ,rj−−−−−→ l′j such that u ∈ (gi ∧ gj), u′ = [ri ∪ rj → 0]u and u′ ∈

Inv(l̄[l′i/li, l
′
j/lj]); and

– (l̄, u)
a−→ (l̄[l′i/li, l

′
j/lj , l

′
k/lk, . . .], u

′) if a is a broadcast channel and there exist

an li
c!,gi,ri−−−−→ l′i and a maximal set {j, k, . . .}: lj

c?,gj ,rj−−−−−→ l′j, lk
c?,gk,rk−−−−−→ l′k,

. . ., such that u ∈ (gi ∧ gj ∧ gk ∧ . . .), u′ = [ri ∪ rj ∪ rk ∪ . . . → 0]u and
u′ ∈ Inv(l̄[l′i/li, l

′
j/lj , l

′
k/lk, . . .]). ut

Runs and traces of a network of TAs are defined similarly as those for a single
TA.

Appendix B: Rules for LSC-to-TA translation

B1. Translating message-only charts

As mentioned in Section 2.1, along each instance line Ii in chart L, there
are a set pos(L, Ii) of positions, among which there are a set StdPos(L, Ii) ⊂
pos(L, Ii) of four “standard” positions. For example in instance line A of Fig.
1(a), there are 7 positions (black filled circles), where the four standard ones are
Pch top (0),Pch bot (3), Mch top (4) and Mch bot (6).

Given Ii ∈ inst(L), p ∈ StdPos(L, Ii), we use L.Ii.p to denote the position
ID of standard position p on instance line Ii of chart L. For example in Fig. 1(a),
we have L.A.Pch bot = 3.

Fig. 6 shows the translated network of timed automata for the chart L1 of
Fig. 1(a).

(1) Basic mapping rules

Let LS be an LSC system, Lu be a chart in LS, and Ii be an instance line in
Lu. We map each such Ii to a timed automaton Au, i using the following rules:

R1 Each position k on Ii of Lu corresponds to a TA location lk in Au, i, 0≤k≤
p maxLu, Ii . See Fig. 6(a), locations l0 - l6.

R2 If at position k on Ii of Lu there is a sending of an m-labeled message to
instance Ij , then there will be assigned an m!-labeled TA edge from location
lk−1 to lk in Au, i. See Fig. 6(a), straight line edges (l0, l1), (l1, l2), (l4, l5).

R3 If at position k on Ii of Lu there is a reception of an m-labeled message from
instance Ij , then there will be assigned an m?-labeled TA edge from location
lk−1 to lk in Au, i. See Fig. 6(b), straight line edges (l0, l1), (l1, l2), (l4, l5).

l5 m2src == A &&
m2dest == B

l2 m4src == A &&
m4dest == B

l1
m1src == A &&
m1dest == B &&
prematch_1 == false

l3 (pch_bot)

l6 (mch_bot)

l4 (mch_top)

l0 (pch_top)

m1!
m1src := A, m1dest := B,
prematch_1 := true

reset_1?

m2? m2!
m2src := A, m2dest := B

m4? m4!
m4src := A, m4dest := B

reset_1?

pch_over_1A!

mch_over_1A!

m1?

activate_1?

over_1?

m1!
m1src := A, m1dest := B

(a) TA for instance A

m1src == A && m1dest == B
 && prematch_1 == true

Err2
m4src == A &&
m4dest == B

Err1
m1src == A &&
m1dest == B

Rst2

m2src == A &&
m2dest == B

Rst1

m1src == A &&
m1dest == B

l2 m4src == A &&
m4dest == B

l6 (mch_bot)

l3 (pch_bot)

l1
m1src == A &&
m1dest == B &&
prematch_1 == false

l5 m2src == A &&
m2dest == B

l4 (mch_top)

l0 (pch_top)

prematch_1 := falsem1?

reset_1?

reset_1?

m4?
hotviolated := true

m1?
hotviolated := true

pch_vio_1!pch_vio_1!

m2?

m1?

m4?

pch_over_1B!

mch_over_1B!

m2?

activate_1?

over_1?

m1?

(b) TA for instance B

Rst

l2 (mch_top)

l3 (mch_bot)

l1 (pch_bot)

l0 (pch_top)

reset_1!
dInst_1 := 0

pch_vio_1?

dInst_1 + 1 == nInst_1
mch_over_1A?

dInst_1 + 1 < nInst_1
mch_over_1B?
dInst_1 += 1

dInst_1 + 1 < nInst_1
mch_over_1A?
dInst_1 += 1

dInst_1 + 1 < nInst_1
pch_over_1B?
dInst_1 += 1

dInst_1 + 1 < nInst_1
pch_over_1A?
dInst_1 += 1

dInst_1 + 1 == nInst_1
pch_over_1A?

dInst_1 + 1 == nInst_1
pch_over_1B?

dInst_1 + 1 == nInst_1
mch_over_1B?

over_1!
dInst_1 := 0

activate_1!
dInst_1 := 0

(c) The coordinator TA

Fig. 6. Translated TAs for the untimed chart L1 of Fig. 1(a)

We abuse the notations Pch top,Pch bot, Mch top and Mch bot to also denote
the TA locations that correspond to these LSC positions. For any position k other
than the aforementioned four, it corresponds to a TA location lk, meaning that
upon sending/receiving the message that anchors at position k, we now arrive at
lk. Furthermore, position 0 (i.e., Pch top) corresponds to the initial TA location
l0 (i.e., Pch top).

When R2 is applied, the TA edge can be associated with an assignment
“m src := Ii, m dest := Ij”, where m src and m dest are fresh auxiliary
(bounded integer) variables, meaning that an m-labeled message is sent from
instance Ii to Ij in chart Lu. In R2 and R3, the destination location lk will have
invariant “(m src == Ii)∧ (m dest == Ij)” and “(m src == Ij)∧ (m dest ==
Ii)”, respectively. See Fig. 6(a), locations l1, l2, l5, and Fig. 6(b), l1, l2, l5.

(2) Handling intra-chart coordinations

In an LSC chart, if an instance line (process) in its prechart portion has
no more interactions with the other instance lines (e.g., it has successfully
sent/received the last message, or it has no interactions with other instance
lines at all), then it will immediately progress to the bottom position Pch bot
of its prechart portion, to be ready for a next mandatory synchronization that
involves all the instance lines in that chart.

R4 At position k on the prechart portion of Ii of Lu, if k = Lu.Ii.Pch bot − 1,
then we mark lk as a committed location in Au, i, and we add a pch overu, i!-
labeled edge from lk to lk+1 in Au, i. See Fig. 6(a), location l2.

The auxiliary channel pch overu, i (meaning “prechart portion is over”) is
used to notify the coordinator automaton Coordu (explained below) of the com-
pletion of instance line Ii with its prechart portion in chart Lu.

When all the instance lines in chart Lu progress to their respective Pch bot
positions, the prechart is now successfully matched. Once this happens, all these
instance lines must immediately synchronize and progress to their respective
Mch top positions, meaning that the main chart is now activated. To model
this kind of intra-chart coordination at the prechart/main chart interface, for
each chart Lu, we create a dedicated (auxiliary) coordinator automaton Coordu.
This automaton will communicate with the automata that correspond to the
instance lines of Lu by using auxiliary binary channels such that it can book-
keep how many instance lines are done with their prechart portions. Once the
coordinator automaton realizes that the prechart has been successfully matched,
it will immediately launch a broadcast synchronization with the automata that
correspond to the instance lines.

Fig. 6(c) gives an example of the coordinator timed automaton for chart L1

of Fig. 1(a), where pch over1, A and pch over1, B are binary channels, activate1
is a broadcast channel (meaning that the main chart is to be activated), nInst1
is a constant that denotes the number of instance lines that participate in chart
L1, and dInst1 is an integer variable that denotes the number of instance lines
that are done with their prechart (or main chart) portions of L1.

The coordinator TA synchronizes with the timed automata that correspond
to the instance lines in the prechart/main chart according to the following rule:

R5 At position k of Ii of Lu, if k = Lu.Ii.Pch bot, then there will be assigned
an activateu?-labeled TA edge from lk to lk+1 in Au, i. See Fig. 6(a), l3, and
Fig. 6(b), l3.

Similarly, intra-chart coordination upon main chart completion will corre-
spond to the channels mch overu, i and overu (meaning that the main chart has
been successfully matched).

(3) Handling inter-chart coordinations

In scenario-based modeling, the same message may well appear in two or
more charts. For example given an LSC system LS, in chart L1 there is an m-
labeled message occurrence mo1 from instance I1 to I2, and in chart L2 there is
an m-labeled message occurrence mo2, also from I1 to I2. If at a certain global
configuration (c̄, v) these message occurrences (in the above example mo1 and
mo2) are all enabled, then their firings should be synchronized, i.e., either all of
them are chosen to be fired, or none of them is chosen. This is considered a kind
of inter-chart coordination.

In the translated network of timed automata, this can be accomplished by
using a broadcast synchronization. Recall that in a broadcast synchronization,
there is only one sender. Therefore, when translating the message occurrences (in
the above example mo1 and mo2) to edges in their respective timed automata,
only one of the LSC positions that are associated with the message tails (i.e.,
sending locations) in LS can correspond to the TA location that has the sole
outgoing message-emitting TA edge in the translated TAs, and all others will
correspond to TA locations that have outgoing message-receiving TA edges. Since
all message-sending instance lines in the relevant charts should have the equal
possibility to initiate the message synchronization, we consider a universal and
symmetric solution: for each m!-labeled edge from one to another TA locations,
we add an m?-labeled edge between these two TA locations to “accompany”
the m!-labeled edge. In other words, we let all translated TA locations that
correspond to the message-sending locations (in the above example two locations
in the translated TAs A1, 1 and A2, 1) have the equal chance to act also as the
broadcast synchronization initiator.

R6 If at position k on Ii of Lu there is a sending of an m-labeled message, then
there will be added an m?-labeled TA edge from lk−1 to lk in Au, i. In the
translated TAs, m will be changed from a binary to a broadcast channel.
See Fig. 6(a), polyline edges (l0, l1), (l1, l2), (l4, l5).

(4) Handling cold and hot violations

Along an instance line of an LSC chart, if an arriving message is not en-
abled at the current cut in the prechart, then there will be a cold violation.

In this case, all participating instance lines in this chart should be reset (i.e.,
brought back to their initial positions) immediately. In our translation, this is
implemented by letting the timed automaton that corresponds to the message
receiving instance line “report” the cold violation to the coordinator automaton
in charge, which in turn immediately initiates a broadcast synchronization to
ask the timed automata that correspond to all other instance lines of the chart
to do a reset.

R7 Assume that at position k on the prechart portion of instance line Ii of chart
Lu, there is a reception of an m-labeled message from instance Ij . If k ≥
Lu.Ii.Pch top +2, then for all m′-labeled message in Lu such that m′ 6= m
(note that m,m′ ∈ Π), there will be added first an m′?-labeled outgoing
TA edge from lk−1, then a fresh intermediate committed TA location with
invariant m′ src == src(m′) ∧m′ dest == dest(m′), and then a pch viou!-
labeled TA edge that leads to l0 in Au, i. See Fig. 6(b), TA location Rst1,
and TA edges (l1, Rst1), (Rst1, l0).

In the above rule, the auxiliary binary channel pch viou (meaning “prechart
violation” of chart Lu) is used to notify the coordinator TA Coordu of the cold
violation. The resetu!-labeled broadcast edge will be added in Coordu. See Fig.
6(c), TA edges (l0, Rst), (Rst, l0). In the prechart of Lu, for all positions s on
all instance lines It such that Lu.It.Pch top + 1 ≤ s ≤ Lu.It.Pch bot, we add a
resetu?-labeled edge from ls to l0 in Au, t. See Fig. 6(a), TA edges (l1, l0), (l3, l0).

If a message violates the partial order in the main chart, then it is a hot
violation. Once this happens, the corresponding TA will immediately go to a
deadend error location (Err).

R8 If at position k on the main chart portion of instance line Ii of chart Lu,
there is a reception of an m-labeled message from instance Ij , then for all m′-
labeled message in Lu such that m′ 6= m, there will be added to location lk−1
an m′?-labeled outgoing TA edge, which arrives at a deadend error location.
See Fig. 6(b), locations Err1, Err2 and edges (l4, Err1), (l4, Err2).

(5) Prechart pre-matching

According to the semantics for invariant mode LSC chart, minimal events
in the prechart are constantly being matched for. For example in Fig. 1(a),
m1 ·m1 ·m4 ·m2 is a matching sequence for the second incarnation of chart L1

under the invariant mode.

R9 If at position 1 on the prechart portion of instance line Ii of chart Lu, there
is a sending of an m-labeled message to instance line Ij at its position 1,
then there will be added to location l0 of Au, i an m!-labeled self loop edge
with assignment “m src := Ii,m dest := Ij , prematchu := true”. If location
l0 in Au, i has an invariant, then it will be enhanced with a further constraint
“prematchu == false”. See Fig. 6(a), location l0.

Similarly, if there is a reception of an m-labeled message from Ij , then we add
to l0 an m?-labeled edge, followed by an intermediate committed location which
has invariant “(m src == Ij) ∧ (m dest == Ii) ∧ (prematchu == true)”, and
then an internal transition edge with assignment “prematchu := false” leading
back to l0. See Fig. 6(b).

The flag boolean variable prematchu is initialized to false. Once it is set
true, it means that chart Lu is currently undergoing a process of prechart pre-
matching.

For simplicity, the semantics of prechart pre-matching has not been consid-
ered in Section 2.1. A remedy to this is to add one more bullet to the “silent
step” case, stating that an m-consuming advancement step will just remain at
the top cut >.

B2. Dealing with time

For time-enriched LSCs, there are further constructs (i.e., clock constraints and
clock resets) to be considered during the translation. To mimic the behaviors of
each clock constraint and clock reset in an LSC chart, we use a linked sequence
of edges in the corresponding time automaton. The atomicity of executing this
sequence is ensured by the Uppaal feature of committed location.

(1) Translation of guards (clock constraints)

If an instance line has an m-labeled message sending that is guarded by
a clock constraint, then a natural idea is to put this constraint on the m!-
labeled edge of the translated TA. While this is feasible in the “one-TA-per-
chart” translation method, it does not work in the “one-TA-per-instance line”
method of this section. The reason is that we need to use broadcast channel
m to handle the inter-chart coordination (see Section 6); however, due to the
restriction of Uppaal, broadcast channels cannot carry clock constraints [3]. To
overcome this problem, in the translated TA, the upper bound constraint (if
any) such as x ≤ 5 will be tested prior to the message sending, and the lower
bound and/or clock difference constraints (if any) such as x ≥ 3 and x− y ≤ 2
will be tested immediately after the message sending.

R10 If at position k on the main chart portion of instance line Ii of chart Lu
there is a sending of an m-labeled message which is guarded by a clock
constraint (see Fig. 7(a)), then in Au, i there will be first an intermediate
committed location for upper bound constraint test. If true, then the next
will be a normal location lk with the upper bound constraint as the location
invariant, which will in turn be immediately followed by a message sending
edge. Finally, there will be another intermediate committed location for lower
bound or clock difference constraint test. See Fig. 7(b).

For the receiving position of the guarded message, the translation is similar,
see Fig. 7(c).

(a) a guarded message

m3src == B &&
m3dest == C

y <= 10

x >= 3

m3? m3!
m3src := B, m3dest := C

y <= 10

x < 3
hotviolated := true

y > 10
hotviolated := true

(b) TA for the sending instance
line

m3src == B &&
m3dest == C

y <= 10

x >= 3

m3?

y <= 10

x < 3
hotviolated := true

y > 10
hotviolated := true

(c) TA for the receiving
instance line

Fig. 7. Translating a guarded message to TA fragments

(2) Translation of assignments (clock resets)

In a time-enriched LSC chart, an assignment (i.e., clock resets) should take
place immediately after the synchronization of the message occurrence that it
is attached to. But in the translated TA, it cannot be put on the very edge
that corresponds to the message sending/receiving, because clock resets should
not occur before the lower bound or clock difference constraint test which is
supposed to happen immediately after the message synchronization. Neither can
we append the TA edge that carries the assignment to the destination locations of
the lower bound or clock difference constraint test, because if several identically-
labeled message occurrences are simultaneously enabled in their respective charts
where those charts have different guards and/or assignments for those message
occurrences (see Fig. 2, the m3-labeled message occurrences), then there could
be racing conditions (e.g., the assignment x := 0 that is attached to m3 in Fig.
2(a) should happen before the lower bound test x ≥ 3 in Fig. 2(b); however, we
are unable to guarantee this).

To model the clock resets properly, for each message m ∈ Π in an LSC
system, we use a dedicated process (TA) Am to coordinate the clock resets of
the corresponding message occurrences that are engaged in the same broadcast
synchronization on m. When the broadcast synchronization happens, we use an
integer variable m count to bookkeep how many instance lines have participated
in this broadcast synchronization. Whenever one of these instance lines is done
with its lower bound constraint test (if any), it will immediately notify Am of its
completion using a binary channel m Rpt (“reporting” to Am), and after that
it will wait for a synchronization on the broadcast channel m Rst (“resetting
clocks” command from Am), along with which it can carry out its clock resets.
In Am, an integer variable m done is increased by 1 each time when Am is

notified by an instance line (via m Rpt?). Once m done rises up to m count,
Am will immediately initiate the broadcast synchronization (via m Rst!).

R11 If at position k on instance line Ii of chart Lu there is a reception of an
m-labeled message which has clock resets (see Fig. 8(a), instance line on the
right), then there will be first an m Rpt!-labeled outgoing edge from location
lk in Au, i, then a normal location, and then an m Rst?-labeled outgoing TA
edge that carries the clock resets. See Fig. 8(b).

(a) a message with
clock reset

m2src == A &&
m2dest == B

m2_Rst?
y := 0

m2_Rpt!

(b) TA for the
receiver

m2_done < m2_count
m2_Rpt?

m2_done += 1

m2_done ==
 m2_count
m2_Rst!
m2_count := 0,
m2_done := 0

m2_Rpt?
m2_done += 1

(c) the dedicated TA
Am2

Fig. 8. Translating a message with clock reset to TAs

The dedicated TA Am just waits for all the relevant instance lines to be done
with their lower bound constraint tests, and then synchronizes them for clock
resets. See Fig. 8(c).

(3) Just-in-Time message upper bound constraint test

When time-enriched LSC charts have upper-bound clock constraints, there
are conditional tests before message sending/receiving in the translated timed
automata. Given an m-labeled message occurrence in a chart, a potential prob-
lem is that in the translated timed automata for the sending and receiving in-
stance lines, the TA locations that correspond to the sending and the receiving
positions of this message may not be ready for this message synchronization at
the same time (see Fig. 2(b), the m1-labeled message occurrence). In the sym-
bolic exploration of the state space of the translated network of timed automata,
problems will arise if the upper bound of some message sending/receiving is
tested when actually it should not. For example in Fig. 2, assume that a message
sequence m1 · m2 has been observed, and both charts have just entered their
main charts, respectively. Note that a next m1 is not enabled at the current
cut (w.r.t. 4). But its guard will incorrectly add further constraint “x ≤ 2”
to “(x ≤ 5) ∧ (x ≥ 3 ∧ y ≤ 10)”. Consequently, according to our translation

method mentioned earlier in this section, all possible paths will end up with hot
violations.

To avoid this kind of premature tests of upper bound constraints for message
occurrences, we associate each message occurrence mo in each chart Lu with
two flag boolean variables mo u maySnd and mo u mayRcv, denoting whether
this message may be sent or received in chart Lu, respectively. The upper bound
constraint of mo can be tested only if both flag variables evaluate to true.

R12 If at position k on instance line Ii of chart Lu there is a sending of message
occurrence mo which has a clock constraint (see Fig. 7(a)), then there will
be a preceding edge carrying the predicate “mo u mayRcv == true”. Once
this message synchronization is fired, mo u maySnd will be cleared.

For the receiving instance line of message occurrence mo, the corresponding
predicate will be “mo u maySnd == true”.

Ifmo is a minimal event in the prechart (resp. main chart), thenmo u maySnd
and mo u mayRcv will have initial values true (resp. will be set to true by the
activateu synchronization). If mo is not a minimal event, then the flag variables
will be set to true by its predecessor event.

Given a message mo, if the predecessor positions of the head/tail positions of
mo are also the head/tail (or tail/head) positions of another message occurrence,
or mo is a minimal event, then mo u maySnd and mo u mayRcv will be both
true prior to the constraint tests. Otherwise, their truth values may differ, e.g.
in Fig. 9(a), message occurrence m1 for the current cut (the solid free line). In
this case, the translated TA A2, A will go to location Wait to “sleep”, and will
then be woken up by a dedicated message mo1 Rcv that is sent by the TA A2, B .
See Fig. 9(b).

(a) an LSC fragment

Wait

Mch_top

x <= 2

m1_Rcv?

m1_c2_mayRcv
 == false

m1_c2_mayRcv
 == true

x <= 2 x > 2
hotviolated
 := true

(b) a fragment of the TA for in-
stance line A

Fig. 9. An LSC fragment in Fig. 2(b) and the corresponding TA fragment for its
instance line A

Appendix C: Complexity of the outcomes of translation

For a time-enriched LSC system, we analyze the complexity of the translated
network of timed automata as follows:

Let the set LS of time-enriched charts L1,L2, . . . ,Ln have messages m1,m2,
. . . ,mk, message occurrences mo1,mo2, . . . ,mos, and instance lines Ii,1, Ii,2, . . . ,
Ii,ini

, where 1 ≤ i ≤ n, ini = #(inst(Li)) = |inst(Li)|.
According to Section 6 (“Handling intra-chart coordinations”) and Section

6 (“Translation of assignments”), the translated network of timed automata
will be NTALS = {Ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ #(inst(Li))} ∪ {Coordi | 1 ≤
i ≤ n} ∪ {Ami | 1 ≤ i ≤ k}. Therefore, the number of timed automata is∑n
i=1(|inst(Li)|) + n+ |

⋃n
i=1 MA(Li)|. See Table 1, lower part right column.

According to rule R2, each message label corresponds to a channel in NTALS .
According to R4, R5 and R7, there will be a set of auxiliary channels Aux1 =
{pch overu, i, mch overu, i | 1 ≤ u ≤ n, 1 ≤ i ≤ #(inst(Lu))}∪{activateu, overu,
pch viou, resetu | 1 ≤ u ≤ n} that will be used in NTALS . According to Section 6
(“Translation of assignments”), in the worst case, there will be a set of auxiliary
channels Aux2 = {mi Rpt,mi Rst, mi Rcv | 1 ≤ i ≤ k} for translating clock
resets. Therefore, in the worst case, the number of channels in NTALS will be
|
⋃n
i=1 ML(Li)| +

∑n
i=1(2 · |inst(Li)| + 4) + 3 · |

⋃n
i=1 MA(Li)|.

According to Section 6 (“Basic mapping rules”), there will be a set of aux-
iliary variables {mi src, mi dest | 1 ≤ i ≤ k}. According to rules R4, R8 and
R9, there will be a set of auxiliary variables {prematchu, dInstu | 1 ≤ u ≤ n}.
According to Section 6 (“Translation of assignments”), there will be auxiliary
variables {mi count, mi done | 1 ≤ i ≤ k}. Furthermore, according to R12, there
will be auxiliary variables {moi maySnd, moi mayRcv | 1 ≤ i ≤ s}. Therefore,
the total number of auxiliary variables in NTALS will be (2 · |

⋃n
i=1 MA(Li)|) +

2n+ 1 + (2 · |
⋃n
i=1 MA(Li)|) + (2 ·

∑n
i=1 |MO(Li)|). ut

The complexities for the other three settings can be analyzed similarly.

Appendix D: Proof of Lemmas and Theorems

Let L be an untimed LSC chart whose instance lines I1, I2, . . . , In correspond
to timed automata A1, A2, . . . , An, respectively, then the translated network of
TAs will be NTAL = {Ai | 1 ≤ i ≤ n} ∪ {Coord}. According to rules R4, R5
and R7, there will be a set of auxiliary channels Aux = {pch overi,mch overi |
1 ≤ i ≤ n} ∪ {activate, over, pch vio, reset} that will be used in NTAL. Let the
message alphabet of L be Σ, then the alphabet of observable actions in NTAL
will be Act = (Σ ∪Aux).

Lemma 1. Let L be an untimed LSC chart whose message alphabet is Σ, and
let NTAL be the translated network of timed automata which have a set Act
of observable actions. Then ∀γ1 ∈ (Σ ∪ {τ})ω. ((γ1 |= L) ⇒ ∃γ2 ∈ (Act ∪

{τ})ω.(γ2 |= NTAL)∧ (γ2|Σ = γ1|Σ)), and ∀γ2 ∈ (Act∪{τ})ω. ((γ2 |= NTAL)⇒
∃!γ1 ∈ (Σ ∪ {τ})ω.(γ1 |= L) ∧ (γ2|Σ = γ1|Σ)).

Proof. We can prove the above two implications by proving that each cut of chart
L uniquely corresponds to a location vector in the network of timed automata
NTAL, and each advancement step in L uniquely corresponds to either a message
synchronization transition (ranging on Σ ∪Aux) or a sequence of concatenated
message synchronization and internal action transitions in NTAL, such that
they consume exactly the same letter from Σ if they are both projected to Σ.
Note that we restrict the LSC advancement steps to represent only legal (i.e.
admissible) behaviors.

Let the instance lines in chart L be I1, I2, . . . , In. They will be translated
into timed automata A1, A2, . . . , An, respectively. Together with the auxiliary
timed automaton Coord they constitute NTAL.

The initial cut c0 of chart L corresponds to the LSC initial position vector
(01, 02, . . . , 0n), where ij means that instance Ij ∈ inst(L) is currently in its
position i ∈ pos(L, Ij). In the translated network of timed automata NTAL,
automaton Coord is initially in its location l0coord. By rule R1, each 0i in position
vector (01, 02, . . . , 0n) corresponds to a TA location l0i (denoting location 0 in
timed automaton Ai). Therefore, cut c0 uniquely corresponds to the NTAL initial
location vector l̄0 = (l01, l

0
2, . . . , l

0
n, l

0
coord).

We show how the advancement steps from the LSC initial position vector
correspond to the transitions in the network of timed automata. At LSC position
vector (01, 02, . . . , 0n), there are two kinds of possible advancement steps:

– If there is an m-labeled message occurrence mo from position 1i of instance
Ii to position 1j of instance Ij (i.e., mo is a minimal event), then:
On one hand, by rules R2 and R3, there will be an m!-labeled TA edge from

location l0i to l1i in Ai, and an m?-labeled TA edge from location l0j to

l1j in Aj . According to the LSC semantics, there is a message synchro-
nization advancement step on m in L from (01, . . . , 0i, . . . , 0j , . . . , 0n)
to (01, . . . , 1i, . . . , 1j , . . . , 0n). Accordingly, in NTAL there exists exactly
a corresponding binary synchronization on channel m between Ai and
Aj , and the location vector of NTAL will change from (l01, . . . , l

0
i , . . . , l

0
j ,

. . . , l0n, l
0
coord) to (l01, . . . , l

1
i , . . . , l

1
j , . . . , l

0
n, l

0
coord).

On the other hand, according to the semantics of the invariant mode univer-
sal chart, the message as a minimal event can be constantly matched for
with L staying in the initial cut. By rule R9, in NTAL there will be first a
binary synchronization on channelm, i.e., (l01, . . . , l

0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord)

m−→ (l01, . . . , l
0
i , . . . , l

PM
j , . . . , l0n, l

0
coord), and then an immediately follow-

ing internal action transition that leads back to the initial location vector,
i.e., (l01, . . . , l

0
i , . . . , l

PM
j , . . . , l0n, l

0
coord)

τ−→ (l01, . . . , l
0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord).

Here lPMj is an auxiliary TA location that is specially used for prechart
pre-matching. In this sub-case of pre-matching, the m-synchronization
advancement step in L uniquely corresponds to a sequence of the tightly
concatenated

m−→ and
τ−→ transitions.

Since a dedicated flag boolean variable prematch has been used to strengthen
the TA transition guards, assignments and the location invariants, it
follows that at NTAL location vector (l01, . . . , l

0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord),

there are only the two above-mentioned possible interleaved executions
between the two m!-labeled outgoing edges from l0i in Ii and the two
m?-labeled outgoing edges from l0j in Ij .

– If instance Ii has no interactions with other instance lines in the prechart,
then there is an immediate silent advancement step from (01, . . . , 0i, . . . , 0n)
to (01, . . . , 1i, . . . , 0n). By rule R4, l0i will be a committed location in NTAL,
and there will be a pch overi!-labeled edge from l0i to l1i . Furthermore, in
automaton Coord there will be a coupling pch overi?-labeled edge either
• from l0coord to l1coord, corresponding to the case where Ii is the very last

instance to complete the prechart; or
• from l0coord to l0coord, corresponding to the case where Ii is not yet the

last instance to complete the prechart.
In the two cases, the location vector of NTAL will be changed from (l01, . . . , l

0
i ,

. . . , l0n, l
0
coord) to (l01, . . . , l

1
i , . . . , l

0
n, l

1
coord), and from (l01, . . . , l

0
i , . . . , l

0
n, l

0
coord)

to (l01, . . . , l
1
i , . . . , l

0
n, l

0
coord), respectively. However, in both cases, there will

be exactly one binary synchronization transition on pch overi in NTAL.

The above two kinds of possible advancement steps indicate that there is an ini-
tial correspondence between the position vector of L and the location vector of
NTAL

5. Since an untimed chart is a message-only chart, a cut vector is itself an
LSC configuration, and a location vector is itself a semantic state of the trans-
lated network of timed automata 6. Therefore, there is an initial “cut-to-location
vector”, and “advancement step-to-(sequence of) transition” correspondence be-
tween L and NTAL.

The above correspondence can be generalized by using induction. Assume
that at a cut c that corresponds to a position vector (p11, . . . , pii, . . . , pjj , . . . , pnn)
in the prechart of L, there is an m-labeled message occurrence sent from position
(pi + 1)i of instance Ii to position (pj + 1)j of instance Ij . If for cut c, there
uniquely exists a corresponding location vector l̄ in NTAL, then similar to the
case of the initial cut, we can prove that the message synchronization advance-
ment step on m in L uniquely corresponds to a binary synchronization transition
in NTAL; and after this message synchronization advancement step, the new cut
c′ uniquely corresponds to the destination location vector l̄′ in NTAL. Proof by
induction ensures that any normal (i.e., other than the prechart pre-matching
ones) message synchronization advancement step in the prechart of L uniquely
corresponds to a message synchronization transition in NTAL.

5 More precisely the sub-location vector of NTAL that is projected to A1||A2|| . . . ||An.
Note that the edges in Coord correspond only to auxiliary messages rather than the
observable messages in Σ or the internal (τ) action.

6 Note that in the LSC chart, the message sender/receiver and other relevant informa-
tion are not defined as a part of the chart configuration. Accordingly, the auxiliary
and bookkeeping variable information are excluded from the semantic states of the
translated timed automata.

In case that (p11, . . . , pii, . . . , pjj , . . . , pnn) is a position vector in the main
chart of L, the unique correspondence relation can be proved similarly.

Now we prove the unique correspondence for the case that involves the intra-
chart coordination (e.g., the prechart to main chart transition). Assume that in
the prechart of L, a cut c corresponds to position vector (p11, . . . , pii, . . . , pnn),
where pi+ 1 = L.Ii.Pch bot. If (p11, . . . , pii, . . . , pnn) uniquely corresponds to a
location vector (lp11 , . . . , l

pi
i , . . . , l

pn
n , l0coord), then by rule R4, the internal advance-

ment step (p11, . . . , pii, . . . , pnn)
τ−→ (p11, . . . , (pi+1)i, . . . , pnn) in L corresponds

to either

– transition (lp11 , . . . , l
pi
i , . . . , l

pn
n , l0coord)

pch overi−−−−−−→ (lp11 , . . . , l
pi+1
i , . . . , lpnn , l1coord)

in NTAL, in which case Ii is the very last instance to complete the prechart;
or

– transition (lp11 , . . . , l
pi
i , . . . , l

pn
n , l0coord)

pch overi−−−−−−→ (lp11 , . . . , l
pi+1
i , . . . , lpnn , l0coord)

in NTAL, in which case Ii is not yet the last instance to complete the
prechart.

The above-mentioned first case will be followed by an intra-chart coordi-
nation, i.e., there will be an immediately following silent advancement step
in L, i.e., all instance lines will move from their Pch bot positions to their
Mch top positions at the same time. By rule R5, the binary synchronization
transition will be immediately followed by a broadcast synchronization transition

(lp11 , . . . , l
pi+1
i , . . . , lpnn , l1coord)

activate−−−−−→ (lp1+1
1 , . . . , lpi+2

i , . . . , lpn+1
n , l2coord), where

p1 + 1 = L.I1.Mch top, . . . , pi + 2 = L.Ii.Mch top, . . . , pn + 1 = L.In.Mch top.
Therefore in this case, there is a correspondence between the behaviors of L and
NTAL.

In case that (p11, . . . , pii, . . . , pnn) is a position vector in the main chart of
L, the unique correspondence for the case that concerns main chart completion
can be proved similarly.

Now we prove the unique correspondence for the case that involves cold
violations. Since an untimed chart has no conditions, a cold violation is caused
only by the violation of the partial order in the prechart. In this case, all the
instance lines in the prechart of L will be brought from where they are back to
their initial positions. Recall that psn : loc(L) →

⋃
Ii∈inst(L) pos(L, Ii) projects

a location to its position on its instance line. Formally, let us assume that L is
in the cut c which corresponds to the position vector (p11, . . . , pii, . . . , pjj , . . . ,
pnn) such that pkk < L.Ik.Pch bot, 1 ≤ k ≤ n. For any message label m ∈ Σ, if
@mo ∈ MO(L).(lab(mo) = m)∧ (∃Ii, Ij ∈ inst(L).((src(mo) = Ii)∧ (dest(mo) =
Ij) ∧ (psn(tail(mo)) = pi + 1) ∧ (psn(head(mo)) = pj + 1))), then at cut c,
the partial order will be cold-violated by any m-labeled message from Ii to Ij .
For such an m-labeled message occurrence mo, by rule R7, the cold violation
step (p11, . . . , pii, . . . , pjj , . . . , pnn)

m−→ (01, . . . , 0i, . . . , 0j , . . . , 0n) in L uniquely
corresponds to a sequence of three concatenated synchronizations in NTAL:

(lp11 , . . . , l
pi
i , . . . , l

pj
j , . . . , l

pn
n , l0coord)

m−→

(lp11 , . . . , l
pi+1
i , . . . , lRstj , . . . , lpnn , l0coord)

pch vio−−−−−→

(lp11 , . . . , l
pi+1
i , . . . , l0j , . . . , l

pn
n , lRstcoord)

reset−−−→
(l01, . . . , l

0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord).

Note that according to rule R8, a hot violation in the main chart of L will
end up with a semantic state that has a deadend location in a certain TA of
NTAL. This transition will not be considered as a part of an accepted trace of
NTAL.

In conclusion, each possible advancement step in L uniquely corresponds to
a sequence of concatenated message synchronization and internal action transi-
tions in NTAL. They consume exactly the same message label in Σ. Therefore,
each accepted trace in L uniquely corresponds to an accepted trace in NTAL
modulo the message alphabet Σ. ut

Let LS be a set of untimed LSC charts L1,L2, . . . ,Ln. Each chart Li contains
the instance lines Ii,1, Ii,2, . . . , Ii,ini

, where 1 ≤ i ≤ n, and ini = #(inst(Li))
denotes the number of instance lines in Li. The entire translated network of TAs
will be NTALS = {Ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ #(inst(Li))}∪{Coordi | 1 ≤ i ≤ n}.
The message alphabet of LS will be the union of all the message alphabets for
the individual charts, i.e., Π =

⋃n
i=1Σi. The alphabet of observable actions will

be Act = (Π ∪Aux).

Lemma 2. Let LS be a set of untimed LSC charts whose message alphabet is
Π, and let NTALS be the translated network of timed automata which have a set
Act = Π∪Aux of normal and auxiliary channels. Then ∀γ1 ∈ (Π∪{τ})ω. ((γ1 |=
LS) ⇒ ∃γ2 ∈ (Act ∪ {τ})ω.(γ2 |= NTALS) ∧ (γ2|Π = γ1|Π)), and ∀γ2 ∈ (Act ∪
{τ})ω. ((γ2 |= NTALS)⇒ ∃!γ1 ∈ (Π ∪ {τ})ω.(γ1 |= LS) ∧ (γ2|Π = γ1|Π)).

Proof. In this case, in order to prove the above two implications, we need to prove
that each cut vector of LS uniquely corresponds to a location vector in NTALS ,
and each advancement step in LS uniquely corresponds to an equivalence class
of sequences of concatenated (broadcast) synchronization and internal action
transitions in NTALS . Although elements in the equivalence class have different
intermediate location vectors, they have the same initial and final location vec-
tors. They consume exactly the same message in Π. Note that an advancement
step in LS always represents a legal behavior.

By Lemma 1, for each untimed chart Li in LS, each cut in Li uniquely cor-
responds to a location vector in the corresponding network of timed automata
NTALi , and each advancement step in Li uniquely corresponds to either a sin-
gle message synchronization transition, or a sequence of concatenated message
synchronization and internal action transitions in NTALi

.
The only semantic difference between the advancement steps of a single un-

timed chart and of a set of untimed charts is that in the latter case there exist
inter-chart coordinations, i.e., across-chart broadcast synchronization on mes-
sage occurrences of the same message is possible. This implies that:

(1) At a cut vector of LS, if in more than one chart there are enabled message
occurrences of the same message, then either all of them are chosen to be
fired simultaneously, or none of them is chosen to be fired;

(2) Due to the nature of broadcast synchronization in the translated network
of TAs, while a message at a cut vector of LS could correspond to a legal
message synchronization advancement step in a certain chart, meanwhile it
could also lead another chart to be reset by cold-violating the prechart of
that chart (case 2.1), or lead another chart to a deadlocked situation by
hot-violating the main chart of that chart (case 2.2).

In case (1), given a set LS of untimed LSC charts L1,L2, . . . ,Ln, we let ini =
#(inst(Li)), 1 ≤ i ≤ n. We assume that the current cut vector c̄ of LS uniquely
corresponds to the position vector (p1,1, p1,2, . . . , p1,in1

, p2,1, p2,2, . . . , p2,in2
, . . . ,

pn,1, pn,2, . . . , pn,inn
), where pi,j ∈ pos(Li, Ij) denotes the current position on

instance Ij of chart Li. Without loss of generality, we assume that two m-labeled
message occurrences mo1 and mo2 are enabled at cut vector c̄ in two charts Li
and Lj , respectively. Specifically, let (pi,a + 1) and (pi,b + 1) be the sending and
receiving positions of mo1 in Li, where 1 ≤ a, b ≤ ini, and let (pj,c + 1) and
(pj,d+1) be the sending and receiving positions of mo2 in Lj , where 1 ≤ c, d ≤ vj .
According to the trace-based semantics for a set of charts, these two message
synchronization advancement steps in Li and Lj will occur simultaneously. By

rules R2 and R3, there will be an m!-labeled edge from location l
pi,a
i,a to l

pi,a+1
i,a in

Ai,a, and an m?-labeled edge from location l
pi,b
i,b to l

pi,b+1
i,b in Ai,b, and similarly

for chart Lj . By rule R6, there will be added an extra m?-labeled edge from

location l
pi,a
i,a to l

pi,a+1
i,a in Ai,a, and similarly in chart Lj . Consequently, there

will be a broadcast synchronization on m among Ai,a, Ai,b, Aj,c, Aj,d, initiated
either by Ai,a, or by Aj,c. In either case, after this broadcast synchronization on

m in NTALS , the locations of Ai,a, Ai,b, Aj,c and Aj,d will progress to l
pi,a+1
i,a ,

l
pi,b+1
i,b , l

pj,c+1
j,c and l

pj,d+1
j,d , respectively. Therefore, the message synchronization

advancement step on m in LS corresponds to two possible interleaved executions
among Ai,a, Ai,b, Aj,c and Aj,d. Since both interleavings consume the same
message label m, they correspond to the same portion of the accepted trace in
NTALS . These two interleaved executions constitute an equivalence class with
respect to the message synchronization advancement step on m.

In case (2.1), assume that the current cut vector c̄ of LS corresponds to po-
sition vector (p1,1, p1,2, . . . , p1,in1 , p2,1, p2,2, . . . , p2,in2 , . . . , pn,1, pn,2, . . . , pn,inn).
Without loss of generality, we assume that an m-labeled message occurrence mo
is currently enabled in Li, but not in Lj , and that c̄ “cuts” Lj in the prechart
of Lj . According to the semantics for a set of LSC charts, when message m is
encountered, there will be a normal advancement step in Li, and a cold violation
advancement step in Lj . By Lemma 1, such a cold violation advancement step
uniquely corresponds to a sequence of synchronizations in the relevant timed
automata. Therefore, the system-wide synchronization on m will also uniquely
correspond to a system-wide sequence of synchronizations in NTALS .

In case (2.2), assume that the current cut vector c̄ of LS corresponds to po-
sition vector (p1,1, p1,2, . . . , p1,in1

, p2,1, p2,2, . . . , p2,in2
, . . . , pn,1, pn,2, . . . , pn,inn

).
Without loss of generality, we assume that an m-labeled message occurrence mo
is currently enabled in Li, but not in Lj , and that c̄ “cuts” Lj in the main chart

of Lj . According to the semantics for a set of LSC charts, when message m is
encountered, there will be a normal message synchronization advancement step
in Li, and a hot violation in Lj . Specifically, let pi,a and pi,b be the sending and
receiving positions of mo in Li, where 1 ≤ a, b ≤ ini. We let the sub-position
vector in Lj be cj = (pj,1, pj,2, . . . , pj,inj

). Obviously, mo is not enabled at sub-
cut cj . Since Lj is hot-violated by mo, there must exist a position, say pj,x,
1 ≤ x ≤ inj , such that there is an m?-labeled edge from pj,x to a sink error
location Err in Aj,x. Furthermore, there could possibly exist another position,
say pj,y, 1 ≤ y ≤ inj , such that there is an m!-labeled edge from position pj,y to
(pj,y + 1) in Aj,y. This means that there could be one or two possible initiating
TAs of the broadcast synchronization. Whichever case could it be, the same la-
bel (m) will be consumed, and the same next semantic state of NTALS will be
reached. This semantic state will have a deadend location Err, which indicates
that the system will be deadlocked. Therefore, the TA transition step leading to
this semantic state will not be considered as a part of the accepted trace. In this
case, m will not be allowed to occur at cut vector c̄. This demonstrates how the
different charts constrain the behaviors of each others. In summary, in case (2.2),
a to-be-hot violating message in LS uniquely corresponds to a to-be-deadlocked
TA transition in NTALS .

Based on the above discussions, we conclude that there exists a unique cor-
respondence between the observable traces of a set of untimed LSC charts and
their corresponding network of timed automata. ut

Let L be a time-enriched chart whose instance lines I1, I2, . . . , In correspond
to timed automata A1, A2, . . . , An, respectively. Let the message alphabet of L be
{m1,m2, . . . ,mk}. According to Section 6 (“Translation of assignments”), there
will be an auxiliary timed automaton Ami

for each mi, 1 ≤ i ≤ k. Consequently,
the translated network of TAs will be NTAL = {Ai | 1 ≤ i ≤ n} ∪ {Coord} ∪
{Ami | 1 ≤ i ≤ k}.

According to rules R4, R5 and R7, there will be auxiliary channels Aux =
{pch overi, mch overi | 1 ≤ i ≤ n} ∪ {activate, over, pch vio, reset} used in
NTAL. According to rule R11, there will be auxiliary channels Aux′ = {mi Rpt,
mi Rst,mi Rcv | 1 ≤ i ≤ k} used in NTAL. Let the message alphabet of L be Σ,
then the alphabet of observable actions in NTAL will be Act = Σ ∪Aux∪Aux′.

Lemma 3. Let L be a time-enriched LSC chart whose message alphabet is Σ,
and let NTAL be the translated network of timed automata which have a set
Act = Σ∪Aux∪Aux′ of normal and auxiliary channels. Then ∀γ1 ∈ (Σ∪{τ}∪
R≥0)ω. ((γ1 |= L) ⇒ ∃γ2 ∈ (Act ∪ {τ} ∪ R≥0)ω.(γ2 |= NTAL) ∧ (γ2|(Σ∪R≥0) =
γ1|(Σ∪R≥0))), and ∀γ2 ∈ (Act∪{τ}∪R≥0)ω. ((γ2 |= NTAL)⇒ ∃!γ1 ∈ (Σ∪{τ}∪
R≥0)ω.(γ1 |= L) ∧ (γ2|(Σ∪R≥0) = γ1|(Σ∪R≥0))).

Proof. In order to prove the above two implications, we need to show that each
configuration of chart L uniquely corresponds to a certain semantic state of
NTAL, and each advancement step in L uniquely corresponds to a sequence of
concatenated message synchronization transitions, and/or internal action tran-
sitions, and/or time delay transitions in NTAL such that they either consume

exactly the same letter from Σ, or undergo exactly the same period of time
delay.

By Lemma 1, each cut of an untimed chart L uniquely corresponds to a
semantic state in NTAL, and each advancement step in L uniquely corresponds
to either a message synchronization transition, or a sequence of concatenated
message synchronization and internal action transitions in NTAL. For a time-
enriched LSC chart, we keep this skeleton correspondence, i.e., we map position
pii of instance line Ii to location lpii of the timed automaton Ai. Note that along
an instance line of the time-enriched chart, two adjacent LSC positions typically
do not correspond to two adjacent locations in the corresponding translated TA.
Between location lpii and lpi+1

i , where 0 ≤ pi ≤ (p maxL,Ii − 1), according to
rules R10, R11 and R12, we will add some intermediate auxiliary TA locations,
and add some TA edges to connect them.

Now we prove that a message synchronization advancement step on m in L
uniquely corresponds to a sequence of transitions in NTAL that consumes m
exactly. Assume that at a configuration c which corresponds to position vector
(p11, . . . , pii, . . . , pjj , . . . , pnn) in the prechart of L and clock valuation v, there
is an m-labeled message occurrence mo with condition (clock constraints) g and
assignment (clock resets) a sent from position (pi+ 1)i of instance Ii to position
(pj + 1)j of instance Ij . Assume that position pii corresponds to location lpii in

Ai, and position (pi + 1)i corresponds to location lpi+1
i in Ai, then there will

be 5 intermediate locations between lpii and lpi+1
i in Ai, which we denote as

lpi,1i , lpi,2i , lpi,3i , lpi,4i and lpi,5i . Here

– between lpii and lpi,1i , there is a TA edge with the guard “m mayRcv ==
true”;

– between lpi,1i and lpi,2i , there is a TA edge which tests the upper bound
constraints;

– between lpi,2i and lpi,3i , there is an m!-labeled TA edge;

– between lpi,3i and lpi,4i , there is a TA edge which tests the lower bound and/or
clock difference constraints;

– between lpi,4i and lpi,5i , there is an m Rpt!-labeled TA edge;

– between lpi,5i and lpi+1
i , there is an m Rst!-labeled TA edge.

Similarly, there will be 5 intermediate locations and edges that connect them in
Aj . Specifically, if there are positions on other instance line that are waiting for
the completion of this message synchronization according to the partial order
relation, then there will be one more intermediate location lpi,6i , and an m Rcv!-

labeled edge connecting lpi,6i to lpi+1
i . According to rule R12, the position sub-

vector (pii, pjj) corresponds to the TA location sub-vector (lpii , l
pj
j), where both

locations are committed locations. After these two transitions from (lpii , l
pj
j), the

new location sub-vector (lpi,1i , lpj,1j) will be reached, which are also committed
locations. Since a legal advancement step in L will not violates the upper bound
of the clock constraints, the upper bound constraint will evaluate to true and
thus the next location sub-vector will be (lpi,2i , lpj,2j). From (lpi,2i , lpj,2j) there will

be the message synchronization on m leading to (lpi,3i , lpj,3j), which are again
committed locations. After comparing the lower bound of clock constraints, the
location sub-vector (lpi,4i , lpj,4j) will be reached. Now instance lines Ii and Ij
will immediately report to the automaton Am, telling it that the instances are
done with testing the guarding flag boolean variables, testing the upper bound,
message synchronization, and testing the lower bound or clock difference. Once
both instance lines have notified Am of their completions, Am will immediately
initiate an m Rst-labeled broadcast synchronization which brings Ai from lpi,5i

to lpi+1
i , and brings Aj from lpj,5j to lpj+1

j . Specifically, if there is an lpi,6i in Ai,

then the m Rst?-labeled edge will be from lpi,5i to lpi,6i in Ai, and there will be an

m Rcv!-labeled edge from lpi,6i to lpi+1
i . This latter edge can occur autonomously

without synchronizing with a message-receiving TA, because m Rcv is declared
as a broadcast channel. In summary, the message synchronization step on m in
L will uniquely correspond to such a sequence of transitions in NTAL.

For a silent advancement step in L, it is the same as in the untimed case. In
other words, the corresponding proof for Lemma 1 also applies here.

For a time delay advancement step in L, since the upper bounds and lower
bounds of clock constraints are properly translated to tests that are prior to and
after the message synchronization in NTAL, a time delay of a period of d ∈ R≥0
is allowed in NTAL if and only if the same period d of time delay is allowed in
L.

In all the three possible cases of an advancement step in L, there will be a
uniquely corresponding sequence of transitions in NTAL such that this sequence
consumes exactly the same message, or amount of time delay as that step in
L. ut

Let LS be a set of time-enriched LSC charts L1,L2, . . . ,Ln. Each chart
Li contains the instance lines Ii,1, Ii,2, . . . , Ii,ini

, where ini = #(inst(Li)). Let
the message alphabet Π of LS be Π =

⋃n
i=1Σi = {m1,m2, . . . ,mk}. Then

the translated network of TAs will be NTALS = {Ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤
#(inst(Li))} ∪ {Coordi | 1 ≤ i ≤ n} ∪ {Ami

| 1 ≤ i ≤ k}. Similarly to Lemma 3,
we let Act = Π ∪Aux ∪Aux′.

Theorem 1. Let LS be a set of time-enriched LSC charts whose message alpha-
bet isΠ, and let NTALS be the translated network of timed automata which have
a set Act of normal and auxiliary channels. Then ∀γ1 ∈ (Π∪{τ}∪R≥0)ω. ((γ1 |=
LS)⇒ ∃γ2 ∈ (Act ∪ {τ} ∪R≥0)ω.(γ2 |= NTALS) ∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))),
and ∀γ2 ∈ (Act∪{τ}∪R≥0)ω. ((γ2 |= NTALS)⇒ ∃!γ1 ∈ (Π∪{τ}∪R≥0)ω.(γ1 |=
LS) ∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))).

Proof. We need to prove that each cut vector of LS uniquely corresponds to a
location vector in NTALS , and each message synchronization advancement step
in LS uniquely corresponds to a sequence of concatenated message synchroniza-
tion transitions, and internal action transitions in NTALS . These transitions are
connected by committed locations in NTALS . Because any committed location

appears as a junction location only when it will be immediately followed (only)
by a condition test, these concatenated transitions can be viewed as an atomic
step. Although for the sake of inter-chart coordination, the outgoing transitions
from locations of different TAs may be executed in an interleaved manner, the
order of the consumed words in (Π ∪{τ})∗ remains the same. In other words, an
accepted timed trace γ ∈ (Π ∪ {τ} ∪ R≥0)ω may correspond to an equivalence
class of timed traces in (Act∪{τ}∪R≥0)∗. They consume exactly the same timed
trace in (Π∪R≥0)∗. Proof details concerning the translations of inter-chart mes-
sage coordinations and message occurrences that are associated with conditions
and/or assignments are similar to that for Lemmas 2 and 3, respectively. ut

Let LS be an LSC system which consists of a set of (untimed or timed)
driving universal charts L1,L2, . . . ,Ln. We translate LS to a network of timed
automata NTALS . Let L′ be a separate monitored universal chart (the “property
chart”), which will be translated to another network of timed automata NTAL′ .
As explained earlier, the TA locations CoordL′ .Mch top and CoordL′ .Mch bot
denote that the main chart of L′ has just been activated and has just been suc-
cessfully matched, respectively. We have:

Theorem 3. LS |= L′ ⇔ (NTALS ||NTAL′) |= CoordL′ .Mch top CoordL′ .Mch bot.

Proof. By Theorem 1, each accepted trace in LS uniquely corresponds to a
cluster of accepted traces in NTALS which consume exactly the same string
from (Π ∪R≥0)ω. And similarly for L′ and NTAL′ .

The TA location CoordL′ .Mch top represents the situation where the property
chart L′ is activated, and CoordL′ .Mch bot the situation where L′ is satisfied (i.e.,
successfully matched).

Since L′ is a property chart, its corresponding network of timed automata
NTAL′ will never interfere with (or “drive”) the network of timed automata
NTALS . This means that after parallelly composing the TAs in NTAL′ with
the TAs in NTALS , the behaviors in NTALS will not be further constrained.
Since both CoordL′ .Mch top and CoordL′ .Mch bot are locations in the product
automaton of (NTALS ||NTAL′), the right hand side formula of this theorem
captures exactly the assume-guarantee style responsiveness property of the LSC
requirement, which is exactly what we require of LS |= L′. ut

An LSC system LS satisfies a monitored existential chart L′ iff one of the
traces in LS is included in the traces of L′.

Theorem 4. LS |= L′ ⇔ (NTALS ||NTAL′) |= E♦ CoordL′ .Mch bot.

Proof. This theorem can be proved similarly to Theorem 3, except that an ex-
istential chart has no prechart. ut

