
Verification and Controller Synthesis for Resource-Constrained Real-Time
Systems: Case Study of an Autonomous Truck

Shuhao Li
Center for Embedded Software Systems

Aalborg University
Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark

li@cs.aau.dk

Paul Pettersson
Mälardalen Real-Time Research Center

Mälardalen University
P.O. Box 883, 72123 Västerås, Sweden

paul.pettersson@mdh.se

Abstract

An embedded system is often subject to timing con-
straints, resource constraints, and it should operate prop-
erly no matter how its environment behaves. This paper pro-
poses to use timed game automata to characterize the timed
behaviors and the environment uncertainties, and use piece-
wise constant integer functions to approximate the contin-
uous resources in real-time embedded systems. Based on
these formal models and techniques, we employ the real-
time model checker UPPAAL to verify a system against a
given functional and/or timing requirement. In addition,
we employ the timed game solver UPPAAL-TIGA to check
whether a given control objective can be enforced, and if
so, we synthesize a controller for the system. We carry
out a case study of this approach on a battery-powered
autonomous truck. Experimental results indicate that the
method is effective and computationally feasible.

1 Introduction

When designing and developing a real-time embedded
application, in addition to implementing the required func-
tionalities, designers also need to ensure that the system:

• satisfies the specified timing constraints;
• satisfies the given resource constraints in terms of e.g.,

available CPUs, memory, buses, communication ports,
network bandwidths, or energy; and

• operates properly no matter how its uncontrollable (or
“hostile”) environment behaves.

For such kind of resource-constrained real-time embed-
ded systems, we may use timed automata (TA) [2] as the
analysis framework. To assure the system correctness, we
need to verify the systems against the user-specified require-
ments. It would be even better if we can achieve software

synthesis [4], or synthesize a controller [19] that enforces
the given requiremetns.

There are techniques [3, 7, 10, 13, 11] and tools [8] for
resource-constrained analysis of real-time systems based on
the formalisms of e.g., weighted (priced) timed automata
[3, 7] and multi-priced timed automata [17]. However, they
do not address the controller synthesis problem. On the
other hand, there are techniques [18, 16] and tool UPPAAL-
TIGA [5] for timed game solving and controller synthesis
based on the formalism of timed game automata (TGA)
[18]. However, in those work there is no notion of re-
source usage (e.g., by means of a cost variable). Al-
though resource-constrained controller synthesis for real-
time systems based on weighted (priced) timed game au-
tomata [1, 12] have been attempted in the past few years
[22, 1, 12, 15, 9, 14], the problems have been limited to
reachability games, or systems that have only one clock
[14], or resources that change (piecewise) linearly.

In this paper, we aim to conduct tool-supported, auto-
matic verification and controller synthesis for a class of
resource-constrained real-time systems, where the continu-
ous resources such as memory, network bandwidth and en-
ergy can be consumed at varying rates. Rather than trying
to achieve strict cost-optimality in controller synthesis, we
would like to know whether it is possible to synthesize prac-
tical controllers for the given reachability and safety control
objectives under the given resource constraints?

In order to model continuous resources with timed game
automata which have no continuous cost variables, we
propose to use step functions (a.k.a. piecewise constant in-
teger functions) to over- or under-approximate the evolving
of these resources. We model how these resources are con-
sumed and refilled over time, and how they constrain the
behaviors of the systems. We use CTL logic to specify the
properties and/or control objectives. Then we employ UP-
PAAL [6] to verify the system against the properties, and
employ UPPAAL-TIGA to synthesize controllers for the sys-

tem. We apply this approach on a case study of a battery-
powered autonomous truck. Experimental results indicate
that this approach is effective and computationally feasible.

1.1 Related work

For resource-constrained real-time systems, techniques
such as cost-optimal reachability analysis [3, 7], WCTL
(weighted CTL) model checking [13] and optimal (infinite)
scheduling [10, 11] have been proposed. At a higher de-
scription level, the REMES approach [20] can model dif-
ferent types of resources in component-based real-time em-
bedded systems, and enable rigorous feasibility, trade-off,
and optimal resource utilization analysis by encoding these
problems into the priced timed automata and weighted CTL
frameworks. Some of these research results have been im-
plemented in tools such as UPPAAL-CORA [8].

For real-time applications that are modeled as control-
lable systems and their uncontrollable environments, tech-
niques and methods for game solving and controller syn-
thesis based on timed game automata [18] have been pro-
posed along the years. More recently, an efficient on-the-fly
algorithm for controller synthesis has been proposed [16]
and implemented in tool UPPAAL-TIGA [5]. If the game
is checked to be solvable, then UPPAAL-TIGA can gener-
ate a state-based winning strategy as the synthesized con-
troller, which ensures that the specified control objective is
enforced on the system, no matter how the (hostile) envi-
ronment behaves.

To conduct resource-constrained game solving and con-
troller synthesis for real-time systems, the formalism of
weighted (priced) timed game automata [1, 12] has been
defined. For reachability games, the problem of synthe-
sizing cost-optimal winning strategies for weighted TGA
is decidable under the acyclicity [22] or the strong cost
non-zenoness [1, 12] assumptions. Further results show
that in the general case, cost-optimal strategy synthesis for
weighted TGA with three or more clocks are undecidable
[15, 9], whereas for weighted TGA with only one clock it
is decidable [14]. However for safety games, in general it is
conjectured to be undecidable.

Among the above-mentioned approaches to cost-optimal
controller synthesis, [22, 1, 15, 9] address the problems
mainly from a theoretical viewpoint. While [12] can syn-
thesize strategies by reducing the problem to games on lin-
ear hybrid automata, the user is supposed to manually im-
plement the solution (i.e., to encode the game solving and
strategy synthesis problems) in the tool HyTech. While the
suggested algorithm in [14] has a prototype implementa-
tion, it applies to priced TGA with only one clock. Fur-
thermore, for solving practical resource-constrained control
problems, there are two common limitations with these ap-
proaches: (1) they consider only reachability games; (2) for

those methods that are based on linear weighted (priced)
timed automata, the derivative of a cost variable in locations
is a constant, which sometimes cannot faithfully character-
ize the dynamics of resource usages.

1.2 Contributions

The main contributions of this paper include:
• We conduct modeling and verification of a class of

resource-constrained real-time systems, where the re-
source may evolve (i.e., consume and refill) at non-
constant rates, and its status may affect the system be-
haviors and timings. We also show how to synthe-
size practical controllers that enforce the user-specified
control objectives;

• We use piecewise constant functions and integer arith-
metics to approximate a class of continuous resources
(e.g., linear, affine and piecewise affine) within the
timed automata framework, thus enabling the auto-
matic verification and controller synthesis for systems
with such resources; and

• We apply the suggested methods and techniques on a
case study of an autonomous truck system, carry out
quantitative evaluations of model checking and con-
troller synthesis, and report the experimental results.

2 Problem description

We consider an autonomous transportation system (Fig.
1(a)), which consists of a battery-powered electric truck, a
straight line track (Fig. 1(a), thick solid line) and some sen-
sors. The system operates as follows:

1. The truck moves along the track (FollowingToEnd
phase), until it arrives at an end of the track;

2. When the truck reaches the track end (the truck will be
signalled of this by a sensor), it will begin turning right
(the Turning phase);

3. After being turning for a certain period of time, the
truck itself determines to stop turning, and then to be-
gin searching for the track (the Searching phase);

4. When the truck finds the track (the truck will again be
signalled of this by a sensor), it aligns itself with the
track, and moves along the track towards the other end
(the FollowingToCenter phase).

Timing constraints
Assume that the truck starts from the middle point of the

track. The truck needs a period of time to follow the track
until it reaches the end. This duration depends on the speed
of the truck.

We assume that the turning angle of the truck is a fixed
value. There are two locations Lmax and Lmin on the turn-
ing trajectory. They correspond to the latest and earliest

1: FollowingToEnd

2: Turning
3: Searching

4: FollowingToCenterLmax

Lmin

 Gas
station

End of track

End of track

(a) Movement of the truck.

beginFollow

turned

trackEndArrived

trackFound

trackCenterArrived

lost

Truck

Battery trackEndArrived

trackFound

trackCenterArrived

reqRecharge

recharged

beginFollow

turned

EnvironmentSystem

Sensors

(b) System structure overview.

Figure 1. An autonomous truck system.

moments that the truck can stop turning and begin search-
ing. Depending on the turning speed, the truck needs some
time to start from the track end and arrive in this “safe zone”
(i.e., between Lmin and Lmax). If it stops turning slightly
too early or slightly too late (there is a tolerance value), it
may risk getting lost. If it stops turning much too early or
much too late (another tolerance value), it will definitely get
lost. As long as the truck is progressing within this “safe
zone”, it has the freedom to choose when to stop turning
and begin searching for the track.

The Searching and FollowingToCenter phases
have similar timing constraints as FollowingToEnd.

Resource constraints

We assume that the electric truck is battery-powered.
The sole resource in this case study is the battery power.

The truck can progress as long as it is not running out of
battery. When it is progressing, the battery power will be
consumed at certain rates, which may differ from phase to
phase, and from round to round of runs.

We assume that there is a “gas station” in the middle
point of the track (Fig. 1(a)), where the truck can get its
battery recharged if it is currently not at full capacity.

Once the truck runs out of battery, it immediately “dies”
(i.e., gets stuck) there. The only exception is that if the
battery power drops to zero when the truck arrives at the gas
station, then it can be “rescued” there (i.e., getting recharged
before dying).

Resource-constrained system behaviors and timings

We assume that the power status of the truck determines
its speed. When the truck battery is high, it runs faster;
when it gets low, it runs slower.

Given a certain distance, if the truck runs faster, then
it needs less time to cover this distance. In the timed au-
tomata framework, this kind of timing can be modeled in
terms of the upper bounds UppBnd of the location invari-
ants “clock ≤ UppBnd” of the relevant timed automata. The
upper bounds will be updated regularly.

Furthermore, the battery needs some time to be
recharged to its full capacity. The (expected) duration de-
pends on how much power are left there right before the
recharging.

Environment uncertainties
We assume that the truck autonomously decides when

to stop turning and begin searching for the track, and also
decides whether or not to get recharged when it arrives at the
gas station. Other actions are mastered by the environment
(e.g., the sensors) and are thus not controllable by the truck.
More precisely, the environment uncertainties include:
• non-deterministic choice of transitions. The environ-

ment can autonomously choose one from several en-
abled uncontrollable transitions to be triggered. For
example, if the truck has been turning for slightly too
short or slightly too long a period of time (i.e., slightly
outside the “safe zone”) when it decides to stop turn-
ing, then it may get lost, or may not; and

• timing uncertainty of uncontrollable transitions. For
example in the FollowingToEnd phase (Fig. 1(a)),
the truck could possibly be signalled of reaching the
end of the track a little earlier than the scheduled ar-
rival time (the FollowingToEnd Delay) due to e.g. the
mild wind resistance, which constitutes an implicit part
of the environment. Similar timing uncertainties ap-
ply to the Searching and FollowingToCenter
phases, and the battery recharging process.

Considering that we will use the timed automata frame-
work where the synchrony assumption is adopted by the
channel synchronizations, it makes sense to allow timing
uncertainty of the uncontrollable actions of the environ-
ment. For example, the amount of “tolerance” can be used
to model the message transmission delays under the asyn-
chronous communication mode.

Analysis and synthesis problems
For this case study, we would like to know whether some

particular properties are satisfied by the system models, e.g.,

• “Will the system ever get deadlocked?”
• “Is it at all possible for the truck to “die” in the journey

or get lost?”

We would also like to know whether the truck can be
guided by a controller to make the turnings and rechargings
at appropriate moments in time such that a given control
objective is enforced on the system, e.g.,

• “Can we synthesize a controller for the truck to ensure
that the truck will never get lost, never run out of bat-
tery, and in the first 327 time units it makes 8 rounds
with no more than 3 rechargings and no more than 78
units power consumption, no matter how the uncon-
trollable (or “hostile”) environment behaves?”

3 System modeling

Fig. 1(b) outlines the system architecture, i.e., how many
components are there in the system, and how they com-
municate. The UPPAAL timed automata framework allows
handshake/broadcast channel synchronizations as well as
shared variable communications. For simplicity, in Fig.
1(b) we do not show how these processes read and write
the shared data variables.

In Fig. 1(b) the Truck is the system in question, and the
other processes (i.e., Sensors and Battery) constitute the
environment (in shaded area). Environment-emitted events
are uncontrollable, and are thus drawn in dashed lines.

3.1 Behavioral models

Fig. 2 and 3 present the timed game automata (TGA)
models for the components of the truck system, where
dashed lines represent uncontrollable (message or silent)
transitions that are mastered only by the environment.

In the TGA of the Truck (Fig. 2), when the Truck is in
location Idle, it can choose either to follow the track, or
to get the battery recharged (provided that the battery is not
currently at full capacity). When the Truck is in location
Turning, it can choose to stop turning and begin to search
for the track by issuing turned! at an appropriate moment
in time. In locations FollowingToEnd, Searching,
FollowingToCenter and Recharging, the Truck
can just passively wait to be signalled of the completions of
the relevant phases. Note that in urgent location (i.e., a spe-
cial location that should be exited in zero time delay after it
is entered) L2, the Truck can choose to progress on to loca-
tion Searching. But if at this moment the environment
issues a lost!, then the Truck-controllable transition will be
preempted (this is because that UPPAAL-TIGA operates on
competing timed games, and it assumes higher priority for
uncontrollable edges).

trackFound?

trackCenterArrived?trackEndArrived?

beginFollow!

turned!lost?

recharge!

FollowingToCenter

Lost Searching

Turning

L1

L2

Recharging Idle

recharged?

numberOfRuns < MAX_RUNS

numberOfRuns == MAX_RUNS

FollowingToEnd

everLost := true

numberOfRuns := 0,
moreThanMaxRuns := true

numberOfRuns += 1

Figure 2. Timed game automaton of the Truck.

In the TGA of the Sensors (Fig. 3(a)), there
could be non-deterministic choices of transitions in lo-
cations L2 and L3. It means that when the Truck
has been turning for a slightly longer or slightly shorter
period of time, then the Truck may or may not get
lost. In locations FollowingToEnd, Searching and
FollowingToCenter, there are timing uncertainty of
uncontrollable transitions. It means that the environment
may be less hostile such that the Truck can complete these
phases a little earlier than it normally does.

In the TGA of the Battery (Fig. 3(b)), there is timing un-
certainty in location Recharging, meaning that the Bat-
tery may finish with the recharging a little earlier than it
normally does.

The detailed models can be found in http://www.
cs.aau.dk/˜li/papers/TruckCaseStudy.pdf.

3.2 Modeling continuous resources using step
functions

Popular real-time model checkers (such as KRONOS and
UPPAAL) and existing timed game solver (like UPPAAL-
TIGA) support no more than boolean and bounded integer
data types. This section shows how to model a class of con-
tinuous resources using step functions (i.e., piecewise con-
stant functions) and integer arithmetics.

This case study will consider only a single continuous
resource, i.e., the battery power (i.e., energy) of the truck.

Let the full capacity of the truck battery be a constant
CAP ∈ R>0. Let p and v be the current battery power
and velocity of the truck, respectively. We assume that v is
determined by p as follows:

v = k1/(k2 + (CAP − p)) , (1)

where k1, k2 ∈ R>0 are constants, and 0 < p ≤ CAP.
Let s be a distance, and t the time (duration) that is

needed to cover this distance. According to the formula

lost!

turned?

trackCenterArrived!

trackFound!

lost!

x := 0

x := 0

lost!

x := 0

x := 0

x := 0

trackEndArrived!

beginFollow?

Turned
Searching

L2

Idle

FollowingToEnd

x <= Turning_Delay + 2

LostL1

FollowingToCenter

Turning

L3

x := 0

x >= FollowingToCenter_Delay − 1

x >= Searching_Delay − 1

x < Turning_Delay − 3

x > Turning_Delay + 1

x <= FollowingToEnd_Delay

x >= FollowingToEnd_Delay − 1

x >= Turning_Delay − 3 && x < Turning_Delay − 2

x >= Turning_Delay − 2 &&
x <= Turning_Delay

x > Turning_Delay &&
x <= Turning_Delay + 1

x <= FollowingToCenter_Delay

x <= Searching_Delay

(a) TGA of the Sensors.

Searching_Delay :=
 calc_Searching_Delay(bp)

FollowingToCenter_Delay :=
 calc_FollowingToCenter_Delay(bp)

numberOfRecharge += 1

FollowingToEnd_Delay :=
 calc_FollowingToEnd_Delay(bp),
bpClock := 0

recharged!

recharge?

numberOfRecharge := 0,
moreThanMaxRecharge
 := true

Recharging_Delay := calc_Recharging_Delay(bp),
bpClock := 0

bp := bp − 1,
inc_ubp(),
bpClock := 0

bp := bp − 1, inc_ubp(), bpClock := 0

bp := bp − 1,
inc_ubp(),
bpClock := 0

bp := bp − 1, inc_ubp(), bpClock := 0

bp := BP_FULL

trackCenterArrived?

turned?

trackFound?

trackEndArrived?

beginFollow?

Idle

FollowingToEnd

Turning

bpClock <= Recharging_Delay

bpClock <= 4

bpClock <= 3

L3

L2

Searching

FollowingToCenter

L1 Recharging

Turning_Delay :=
 calc_Turning_Delay(bp)

bpClock >= 4
 && bp >= 1

bpClock >= 3 && bp >= 1

numberOfRecharge ==
 MAX_RECHARGE

bp < BP_FULL

bp := bp − 1, inc_ubp(),
bpClock := 0

bpClock >= 3 && bp >= 1

numberOfRecharge <
 MAX_RECHARGE

bpClock >= 4
 && bp >= 1

bpClock <= 3

bpClock > 3 && bp >= 1

bpClock >= Recharging_Delay − 1

bpClock <= 3

bpClock <= 4

(b) TGA of the Battery.

Figure 3. Timed game automata of the environment components.

s = v · t and by Eq. (1),

t =
s

v
=

s(k2 + (CAP − p))

k1
=

s · k2
k1

+
CAP − p

k1

s

, (2)

where s ∈ R>0, k1, k2 ∈ R>0, and 0 < p ≤ CAP.
By Eq. (2), in the best case (i.e., when the truck battery

is at full capacity), the truck needs (s · k2/k1) time units
to cover the distance. When p decreases by k1/s, then t
increases by 1. We call BCD = (s · k2/k1) the best-case
duration, and STEP = k1/s the step length. Therefore,
t = f(p) = BCD + (CAP − p)/STEP, where between
(CAP − p) and STEP it is a normal (i.e., a mathematical
or a floating point) division. For example, let CAP be 100,
BCD be 15, and STEP be 10. Then function f(p) is plotted
in Fig. 4(a), the thick solid slanted line.

If we define a step integer function t = sf(p) = BCD +
(CAP − p)/STEP, where between (CAP − p) and STEP
it is an integer division, then the function sf(p) is plotted
in Fig. 4(a), the thick solid horizontal line segments which
each has a hollow and a solid end points.

To model environment uncertainties, we assume that the
truck may take a slightly shorter or slightly longer period of
time to cover the distance. Let this tolerance be ∆, which
could be e.g. 1, 2, 3, . . . time units. In the ideal case, the
possible durations for completing the distance are shown in
Fig. 4(a), the shaded area. Accordingly, the possible dura-
tions with the step function sf(p) are shown in Fig. 4(a), the
areas inside the three dash-dot line rectangles which each
span across a thick solid horizontal line segment.

We can calculate how well the step function approxi-
mates the continuous function with respect to the given tol-
erance ∆. For over-approximation, we calculate the degree
of approximation doaO as the ratio of the area of the con-
tinuous function to that of the step function. For example,
in Fig. 4(a),

doaO =
(2 ·∆) · STEP

(2 · (∆ + 1)) · STEP
= 1− 1

∆ + 1
, (3)

where ∆ > 0.
In the calculation of Eq. (3), we are assuming symmet-

ric (equal-length) tolerances above and below the horizontal
line segments. By using asymmetric tolerance intervals, we
can achieve better degrees of approximation. For example,
in each rectangle of Fig. 4(a), we may remove the square
below the dash-dot-dot lines. By doing so, the degree of
approximation in Eq. (3) is improved to

doa′O =
(2 ·∆) · STEP

(2 · (∆ + 1)− 1) · STEP
= 1− 1

2·∆+ 1
, (4)

where ∆ > 0.
We can achieve tighter approximations by considering

half-step length (note that the step length is uniquely deter-
mined by constant k1 and distance s, see Eq. (2)). In this
case, the integer arithmetic in Listing 1 improves the step
function sf(p) to sfT (p), which is plotted in Fig. 4(b), the
thick solid horizontal line segments which each has a hol-
low and a solid end points.

100908070

15

16

17

18

19

14

delta

power

duration

STEP

20

13

12

(a) over-approximation

100908070

15

16

17

18

19

14

delta

power

duration

STEP

20

13

(b) tight over-approximation

Figure 4. Normal and tight over
approximations using step functions.

Listing 1. The step function sfT () for tight ap
proximations in UPPAAL.�

const int CAP := 100; // Full capacity of truck battery
const int BCD := 15; // Best case duration
const int STEP := 10; // batteryPower drops by STEP

int sf T (int batteryPower) {
if ((CAP − batteryPower) % STEP >= STEP / 2)

return BCD + (CAP − batteryPower + STEP / 2) / STEP;
else

return BCD + (CAP − batteryPower) / STEP;
}�

When tightly over-approximating f() with asymmet-
ric tolerances, we let the upper and lower tolerances be
DeltaUpper and DeltaLower, respectively. When the bat-
tery power is p, then the lower and upper bounds of the
approximated delaying period will be sfT (p)− DeltaLower
and sfT (p)+DeltaUpper, respectively. Listing 2 shows how
to calculate DeltaUpper and DeltaLower externally (i.e.,
outside UPPAAL). The degree of approximation in Fig. 4(b)
is:

doaTO
′
=

(2 ·∆) · (12 · STEP)
(2 ·∆+ 1

2 · 1) · (12 · STEP)
= 1− 1

4·∆+ 1
,

(5)
where ∆ > 0.

Listing 2. Calculating the asymmetric toler
ances of Fig. 4(b).

void AsymTolerance4TightAppr (int batteryPower, Delta) {
if ((CAP − batteryPower) % STEP >= STEP / 2) {

DeltaUpper := Delta;
DeltaLower := Delta + 1/2;}

else {
DeltaUpper := Delta + 1/2;
DeltaLower := Delta;}

}

As can be seen in Eq. (3), (4) and (5), the larger the value
of ∆, the better the degrees of the approximation. Further-
more, the degree of approximation of sfT () is much better
than that of sf(). This agrees with our intuitive comparisons
of Fig. 4(b) with Fig. 4(a).

Similarly, we can achieve under-approximation of con-
tinuous resources using step functions.

The variables FollowingToEnd Delay, Turning Delay,
Searching Delay and FollowingToCenter Delay that appear
as the upper bounds of the location invariants of the Sen-
sors automaton (Fig. 3(a)) are updated in the Battery au-
tomaton (Fig. 3(b)) by the relevant step functions (we may
use the approximation of either sf() or sfT ()), see Appendix
A of the full version of this paper. These updates occur at
the very beginning of each phase. Since the battery will
get lower and lower, the truck will progress more and more
slowly phase by phase. In this way, we manage to approxi-
mate how the continuous resources affect the system behav-
iors and timings by using step functions.

We should stress that in this case study, for simplicity, we
assume that sf(p) is an affine function of p, which has a neg-
ative coefficient. By programming sf(p) with appropriate
integer arithmetics, it is possible to approximate other types
of resource usage modes such as piecewise affine functions.

4 Verification and controller synthesis

Given a network of timed game automata and a CTL
property, UPPAAL can carry out the automatic verifica-
tion. Furthermore, if a control objective is given, then
UPPAAL-TIGA can check whether it can be enforced, and if
so, UPPAAL-TIGA can generate a state-based (memoryless)
strategy, which is a partial function that maps a semantic
state to a controllable action or “delay”, i.e.,

f : S → (Actc ∪ {delay}).

4.1 Effectiveness and (computational) feasibility

We can verify the autonomous truck system against a
number of properties (P), and synthesize controllers for a
number of control objectives (CO), such as:

// There will be no deadlocked situation.
P1: A[] not deadlock

Table 1. Verification and synthesis results.
properties/
control
objectives

satisfied?
performance results

states time memory strategy
explored (s) (KB) size(KB)

P1 N
P6 N

CO6 Y 987307 24.45 271992 52480
CO15 Y 1235764 15.14 192492 12443

System parameters: BP FULL: 30; MAX RECHARGE: 10;
MAX RUNS: 10; MAX USED POWER: 70. (cf. full version paper)

Experiment platform: Dell PowerEdge 2950, 2×2.5GHz CPU, 32GB
RAM; Redhat Enterprise Linux 5 - 64bit; UPPAAL-TIGA 0.13.

// The Truck will never “die” in the journey, and never get lost.
P6: A[] (bp == 0 imply Battery.Idle) && not Truck.Lost

// There exists a winning strategy for the system (i.e., Truck) such that the Truck will
never “die” in the journey or get lost, no matter how the environment (i.e., Sensors
and Battery) behaves.
CO6: control: A[] (bp == 0 imply Battery.Idle) && not
Truck.Lost

// There exists a winning strategy for the system (i.e., Truck) such that it can be
guaranteed to have worked for no less than 8 rounds with no more than 3 rechargings
and no more than 78 units power consumptions after the passage of 327 time units.
CO15: control: A<> (bp == 0 imply Battery.Idle) && (not
Truck.Lost) && globalClock == 327 && numberOfRecharge <=
3 && (moreThanMaxRecharge == false) && numberOfRuns >= 8
&& (moreThanMaxRuns == false) && (ubp <= 8) &&
(moreThanMaxUsed == true)

Table 1 shows the results of verification and controller
synthesis for the properties and control objectives (more of
them can be found in a full version of this paper). The “Y”
(“Yes”) answers to the “satisfied?” column indicate that it is
possible to synthesize resource-constrained controllers for
safety (CO6) and reachability (CO15) winning objectives.
As the experimental results in Table 1 suggest, controller
synthesis for non-trivial control objectives can be carried
out with reasonable time overheads and memory consump-
tions. The synthesized controllers are of manageable sizes.

4.2 Scalability

Given a system model and a control objective (e.g.,
CO6), Table 2 shows how the performances of game solv-
ing and controller synthesis scale with the range of the vari-
able that is used to model the quantity of the resource (in
this case study, the variable bp that models battery power).

As can be seen from Table 2, with the increase of
BP FULL (the constant value of full battery power), the
time overheads and memory consumption increase rapidly
(however, the function seems to have a negative deriva-
tive). The game solving problem becomes intractable af-
ter BP FULL gets larger than 100. A possible justification
of the sensitivity of the range of a resource variable (e.g.,
bp) is that this resource variable determines the values of
the durations (e.g., FollowingToEnd Delay, Turning Delay)
that will serve as the upper bounds of the location invariants
of the relevant timed automata.

Table 2. Method scalability w.r.t. control ob
jective CO6 and model constant BP FULL.

BP FULL performance results
states explored time(s) mem(KB) strategy size(KB)

20 211719 3.31 67388 23291
30 987307 24.45 271992 52480
50 4454542 301.49 1280004 491284
70 13112137 2250.27 3644156 886748

System parameters: MAX RECHARGE: 10; MAX RUNS: 10;
Experiment platform: (same as in Table 1)

The restriction of the resource variables to limited ranges
indicate that our approach in it current form enables only
limited-precision resource modeling.

4.3 Comparing different approximation methods

The results in Table 2 are based on the “normal” approx-
imation using step functions. If we use the tight approxi-
mation, then we get the results in Table 3, where all system
parameters remain the same as in Table 2.

Table 3. The “tight” version of Table 2.

BP FULL performance results
states explored time(s) mem(KB) strategy size(KB)

20 174668 2.74 55660 21690
30 888747 22.19 243284 52464
50 4354723 292.31 1245720 245492
70 13231301 2312.92 3698704 835936

System parameters: MAX RECHARGE: 10; MAX RUNS: 10;
Experiment platform: (same as in Table 1)

By comparing Table 3 with Table 2, we notice that
tight approximation does not necessarily require more CPU
time or more memory. In this case study, it is actually
slightly cheaper than the normal approximation version
when BP FULL is relatively small.

4.4 Method applications

Although UPPAAL-TIGA does not support (strict) cost-
optimal controller synthesis, we can still try to make worst-
case execution time or resource constraints (or both com-
bined) guarantees by synthesizing controllers for the rele-
vant control objectives. Before doing this, we can use wild
guess, binary search, and model checking to conduct pre-
determination of the (near-optimal) relevant values.

5 Conclusions

We show how to model, verify, and synthesize practi-
cal controllers for a class of resource-constrained real-time

systems. By employing existing model checker UPPAAL
and game solver UPPAAL-TIGA, and modelling the ap-
proximations of continuous resource constraints into these
tools using step functions and integer arithmetics, the ver-
ification and controller synthesis for these systems are
fully automated. Experimental results on a case study of
an autonomous truck indicate that this approach is fea-
sible and computationally solvable. Another advantage
of our approach is that the synthesized strategy is eas-
ily understandable. It can be generated as federations
of DBMs (Difference Bound Matrices), or combined BD-
D/CDDs (Clock Difference Diagrams), or the even-closer-
to-implementation form of “label-test-jump” style C-code
[5]. From a methodological point of view, our approach
facilitates the design of timing- and resource constraints-
predictable building blocks for component-based develop-
ment of real-time embedded systems [21].

One limitation of our approach is that the step functions
must be designed with care. If a step function-updated vari-
able is used in the upper bounds of the location invariants,
then the range of this variable should be of reasonable size.
Furthermore, the number of step function-updated variables
that are used in the location invariants is limited. When
the number grows large, the memory consumption may in-
crease rapidly.

Compared with the cost variable approaches in
weighted (priced) timed automata, our step function ap-
proach has limited precision (granularity) for modeling con-
tinuous resources in timed systems. Furthermore, approx-
imations of complex functions such as quadratic functions
and logarithmic functions may require variable step lengths
or large ranges of the relevant variables, and thus might be
hard to manage and difficult to be faithful.

Future work with the autonomous truck case study in-
clude: model reductions for improved performances; and
enhancing the case to consider more features and more in-
teresting scenarios, e.g., two or more trucks follow a double
line track which has a switch, and truck collisions will occur
if a certain separation distance is not respected.

At the methodology level, we hope to improve the
method scalability (e.g., by defining partial observability
to achieve a coarser partitioning of the timed game state
space), and to consider the problems of resource-efficient
(infinite) (near-)optimal scheduling which may possibly in-
volve verification-guided parameter (pre-)estimations for
controller synthesis.

References

[1] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reach-
ability for weighted timed games. In Proc. ICALP’04, 2004.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[3] R. Alur, S. L. Torre, and G. J. Pappas. Optimal paths in
weighted timed automata. In Proc. HSCC’01, 2001.

[4] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, A. L. Sangiovanni-Vincentelli, E. Sentovich,
and K. Suzuki. Synthesis of software programs for embed-
ded control applications. IEEE Trans. on CAD of Integrated
Circuits and Systems, 18(6):834–849, 1999.

[5] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G.
Larsen, and D. Lime. UPPAAL-TIGA: Time for playing
games! In Proc. CAV’07, pages 121–125, 2007.

[6] G. Behrmann, A. David, and K. G. Larsen. A tutorial on
uppaal. In Proc. SFM’04, pages 200–236, 2004.

[7] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pet-
tersson, J. Romijn, and F. W. Vaandrager. Minimum-cost
reachability for priced timed automata. In Proc. HSCC’01.

[8] G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal
scheduling using priced timed automata. SIGMETRICS Per-
formance Evaluation Review, 32(4):34–40, 2005.

[9] P. Bouyer, T. Brihaye, and N. Markey. Improved undecid-
ability results on weighted timed automata. Inf. Process.
Lett., 98(5):188–194, 2006.

[10] P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as
cheaply as possible. In Proc. HSCC’04, 2004.

[11] P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite
scheduling for multi-priced timed automata. Formal Meth-
ods in System Design, 32(1):3–23, 2008.

[12] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Op-
timal strategies in priced timed game automata. In Proc.
FSTTCS’04, pages 148–160, 2004.

[13] P. Bouyer, K. G. Larsen, and N. Markey. Model-checking
one-clock priced timed automata. In Proc. FoSSaCS’07.

[14] P. Bouyer, K. G. Larsen, N. Markey, and J. I. Rasmussen.
Almost optimal strategies in one clock priced timed games.
In Proc. FSTTCS’06, pages 345–356, 2006.

[15] T. Brihaye, V. Bruyère, and J.-F. Raskin. On optimal timed
strategies. In Proc. FORMATS’05, pages 49–64, 2005.

[16] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime.
Efficient on-the-fly algorithms for the analysis of timed
games. In Proc. CONCUR’05, pages 66–80, 2005.

[17] K. G. Larsen and J. I. Rasmussen. Optimal conditional
reachability for multi-priced timed automata. In Proc. FoS-
SaCS’05, pages 234–249, 2005.

[18] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of dis-
crete controllers for timed systems (an extended abstract). In
Proc. STACS’95, pages 229–242, 1995.

[19] L. Palopoli, C. Pinello, A. L. Sangiovanni-Vincentelli, L. El-
ghaoui, and A. Bicchi. Synthesis of robust control systems
under resource constraints. In Proc. HSCC’02, 2002.

[20] C. C. Seceleanu, A. Vulgarakis, and P. Pettersson. Remes:
A resource model for embedded systems. In Proc.
ICECCS’09, pages 84–94, 2009.

[21] S. Sentilles, A. Pettersson, D. Nyström, T. Nolte, P. Petters-
son, and I. Crnkovic. Save-ide - a tool for design, analy-
sis and implementation of component-based embedded sys-
tems. In Proc. ICSE’09, pages 607–610, 2009.

[22] S. L. Torre, S. Mukhopadhyay, and A. Murano. Optimal-
reachability and control for acyclic weighted timed au-
tomata. In Proc. IFIP TCS’02, pages 485–497, 2002.

Appendix A: The Uppaal model declarations of the Autonomous Truck case study

The UPPAAL-TIGA tool can be downloaded from http://www.cs.aau.dk/˜adavid/tiga/, and the model files
of the Autonomous Truck system are here http://www.cs.aau.dk/˜li/papers/AutonomousTruck.zip.

The UPPAAL global declarations of the model are shown in Listing 3.

Listing 3. UPPAAL global declarations for the autonomous truck system.�
// the full capacity of the battery of the Truck. (BP FULL: FULL ”Battery Power”)
const int BP FULL := 30;
typedef int [0, BP FULL] bp t;
// At the beginning, the Truck is fully recharged. (bp: ”battery power”)
bp t bp := BP FULL;

const int MAX RECHARGE := 10;
// how many times has the Truck been recharged until now?
int [0, MAX RECHARGE] numberOfRecharge := 0;
bool moreThanMaxRecharge := false;

const int MAX RUNS := 10;
int [0, MAX RUNS] numberOfRuns := 0;
bool moreThanMaxRuns := false;

// uncontrollable actions
broadcast chan trackEndArrived, trackFound, trackCenterArrived;
chan lost, recharged;

// controllable actions
broadcast chan beginFollow, turned;
chan recharge;

// best case durations (BCDs)
const int minFollowingToEnd Delay := 15;
const int minTurning Delay := 4;
const int minSearching Delay := 5;
const int minFollowingToCenter Delay := 12;
const int minRecharging Delay := 6;

// step lengths (STEPs)
const int stepSize FollowingToEnd := 5;
const int stepSize Turning := 10;
const int stepSize Searching := 10;
const int stepSize FollowingToCenter := 5;
const int stepSize Recharging := 5;

typedef int [minFollowingToEnd Delay , minFollowingToEnd Delay +
(BP FULL − 0) / stepSize FollowingToEnd] FollowToEnd t;

typedef int [minTurning Delay , minTurning Delay +
(BP FULL − 0) / stepSize Turning] Turning t ;

typedef int [minSearching Delay , minSearching Delay +
(BP FULL − 0) / stepSize Searching] Searching t;

typedef int [minFollowingToCenter Delay, minFollowingToCenter Delay +
(BP FULL − 0) / stepSize FollowingToCenter] FollowingToCenter t;

typedef int [minRecharging Delay , minRecharging Delay +
(BP FULL − 0) / stepSize Recharging] Recharging t;

FollowToEnd t FollowingToEnd Delay;
Turning t Turning Delay;
Searching t Searching Delay;
FollowingToCenter t FollowingToCenter Delay;
Recharging t Recharging Delay;

clock globalClock; // for verification only.

// How much time the Truck needs to go from the middle point to the track end?
FollowToEnd t calc FollowingToEnd Delay(bp t batteryPower) {

return minFollowingToEnd Delay +
(BP FULL − batteryPower) / stepSize FollowingToEnd;

}

// How much time the Truck needs to make the turning?
Turning t calc Turning Delay(bp t batteryPower) {

return minTurning Delay +
(BP FULL − batteryPower) / stepSize Turning;

}

// How much time the Truck needs to make the searching?
Searching t calc Searching Delay(bp t batteryPower) {

return minSearching Delay +
(BP FULL − batteryPower) / stepSize Searching;

}

// How much time the Truck needs to go from the landing point to the middle point?
FollowingToCenter t calc FollowingToCenter Delay(bp t batteryPower) {

return minFollowingToCenter Delay +
(BP FULL − batteryPower) / stepSize FollowingToCenter;

}

// How much time the Truck needs to get recharged to full capacity?
Recharging t calc Recharging Delay(bp t batteryPower) {

return minRecharging Delay +
(BP FULL − batteryPower) / stepSize Recharging;

}

const int MAX USED POWER := 70;
int [0, MAX USED POWER] ubp := 0; // ”ubp”: the ”used battery power” thus far.
bool moreThanMaxUsed := false;

// Whenever the variable is decreased, then ”ubp” will be increased accordingly.
void inc ubp() {

if (ubp < MAX USED POWER)
ubp += 1;

else {
ubp := 0;
moreThanMaxUsed := true;

}
}�

The UPPAAL local declarations of the Sensor and Battery models are shown in Listings 4 and 5, respectively.

Listing 4. UPPAAL local declarations for the Sensor model.�
// To manage the timings of the uncontrollable environment events.
clock x;�

Listing 5. UPPAAL local declarations for the Battery model.�
// To manage the timing of the (uncontrollabe) battery consumption and battery recharging behaviors.
clock bpClock; // (bpClock: ”battery−power−Clock”)�

The system component declarations of the truck system in UPPAAL is shown in Listings 6.

Listing 6. System component declarations for the truck system in UPPAAL.�
system Sensor, // The (uncontrollable) environment event generator.

Battery, // The (uncontrollable) recharging and consumption of battery power along time.
Truck; // How the Truck behaves during its life cycle.�

Appendix B: Properties, control objective, and verification and controller synthesis results

In this case study, we verify the system against a number of properties (P), and solve the timed games towards a number
of control objectives (CO), such as:

P1: A[] not deadlock
P2: A[] deadlock imply ((bp == 0 && not Battery.Idle) || Truck.Lost)

P3: A[] not Truck.Lost
CO3: control: A[] not Truck.Lost

P4: E<> bp == 0 && not Battery.Idle

P5: A[] bp == 0 imply Battery.Idle
CO5: control: A[] bp == 0 imply Battery.Idle

P6: A[] (bp == 0 imply Battery.Idle) && not Truck.Lost
CO6: control: A[] (bp == 0 imply Battery.Idle) && not Truck.Lost

CO7: control: A<> (bp == 0 imply Battery.Idle) && (not Truck.Lost) && globalClock == 111 && (numberOfRecharge == 0 &&
moreThanMaxRecharge == false)

CO9: control: A[] (bp == 0 imply Battery.Idle) && (not Truck.Lost) && ((globalClock <= 80) imply (numberOfRecharge
== 0 && moreThanMaxRecharge == false))

CO12: control: A<> (bp == 0 imply Battery.Idle) && (not Truck.Lost) && globalClock <= 327 && numberOfRecharge <= 3 &&
(moreThanMaxRecharge == false) && numberOfRuns >= 8 && (moreThanMaxRuns == false)

CO13: control: A[] (bp == 0 imply Battery.Idle) && (not Truck.Lost) && (globalClock <= 323 imply (numberOfRecharge <=
3 && moreThanMaxRecharge == false))

CO15: control: A<> (bp == 0 imply Battery.Idle) && (not Truck.Lost) && globalClock == 327 && numberOfRecharge <= 3 &&
(moreThanMaxRecharge == false) && numberOfRuns >= 8 && (moreThanMaxRuns == false) && (ubp <= 8) && (moreThanMaxUsed ==
true)

For example, property P3 asks whether the Truck can always (invariantly) avoid getting lost. Accordingly, the control
objective CO3 asks whether there exists a winning strategy for the system (i.e., Truck) such that the control objective can be
enforced, no matter how the environment (i.e., Sensors and Battery) behaves.

Note that not all constants and variables are defined for all properties or control objectives. For example, the constant
MAX USED POWER and the variable ubp (i.e., the “used battery power”) are defined only for CO15. See Appendix A for
the inline explanations of these variables.

Table 4 shows the results of verification and controller synthesis for those properties and control objectives.

Table 4. Experimental results on method effectiveness and feasibility.
properties/
control
objectives

satisfied?
performance results

states time memory strategy
explored (s) (KB) size(KB)

P1 N
P2 Y
P3 N

CO3 Y 947738 26.02 306640 52464
P4 Y
P5 N

CO5 Y 805123 21.04 259972 141568
P6 N

CO6 Y 987307 24.45 271992 52480
CO7 Y 3482 0.05 132 127
CO9 Y 977464 25.45 271796 87616
CO12 Y 594242 10.00 92104 4019
CO13 Y 1435923 52.74 360724 84640
CO15 Y 1235764 15.14 192492 12443

System parameters: BP FULL: 30; MAX RECHARGE: 10;
MAX RUNS: 10; MAX USED POWER: 70. (see Appendix A)

Experiment platform: Dell PowerEdge 2950, 2×2.5GHz CPU (Quad
Core Intel Xeon), 32GB RAM; Redhat Enterprise Linux 5 - 64bit;
UPPAAL-TIGA 0.13.

The “Y” (“Yes”) answers to “satisfied?” in Table 4 show that it is possible to synthesize resource-constrained controllers
to ensure that:

• (safety) The Truck will never “die” in the journey, and never get lost (CO6);
• (reachability) The Truck can always work for 111 time units without a recharging (CO7);
• (safety) The Truck needs no recharging in the first 80 time units (CO9);
• (reachability) The Truck can be guaranteed to work for no less than 8 rounds with no more than 3 rechargings in the

first 327 time units (CO12);
• (safety) The Truck needs no more than 3 rechargings in the first 323 time units (CO13); and
• (reachability) The Truck can be guaranteed to have worked for no less than 8 rounds with no more than 3 rechargings

and no more than 78 units power consumptions after the passage of 327 time units (CO15).

As can be seen from Table 4, all these game solving can be carried out with reasonable time overheads (< 53s) and
memory consumptions (< 390MB). The synthesized controllers are of manageable sizes (< 139MB).

