
Games and Scenarios for Real-Time System Validation

Shuhao Li

Aalborg University
Department of Computer Science

Games and Scenarios for Real-Time System Validation

Games and Scenarios for Real-Time System
Validation

Shuhao Li

Ph.D. Dissertation

April 20, 2010

Aalborg University
Department of Computer Science

Abstract

This thesis presents research on the validation of real-time embedded software
systems in the context of model-based development. The thesis proposes scenario-
based and game-theoretic approaches to system analysis, verification, synthesis
and testing to address the challenges that arise from the system characteristics
of environment uncertainties, complex process interactions, quantitative timing
constraints, partial observability and combinations thereof.

We make timed extensions to live sequence chart (LSC) such that the inter-
process behaviors and scenario-based requirements of concurrent communicating
real-time systems can be modeled and specified with LSC. By translating LSC
to timed automata (TAs), we reduce scenario-based model consistency checking
and property verification to CTL real-time model checking problems, and re-
duce scenario-based synthesis to a timed game solving problem. By linking our
prototype translators with existing model checker Uppaal and game solver Up-
paal-Tiga, we show that these methods contribute to the interaction correctness
and timeliness of early system designs.

The thesis also shows that testing a real-time reactive system can be viewed
as playing a timed game between the tester and the system under test (SUT).
We propose methods of using winning strategies as test cases for black-box con-
formance testing. The methods are generalized to problems where only possibly
winning game strategies can be obtained. In this case continued testing requires
some early-stage “cooperations” from the SUT. Furthermore, we adapt the meth-
ods to the partial observability settings where only imperfect information about
the SUT is available. All these methods contribute to the improved ability to
test for reactivity correctness and timeliness of the systems in question. Exper-
imental evaluations with case studies indicate that the proposed approaches are
conceptually, algorithmically and computationally viable.

Keywords: Real-Time Systems, Embedded Systems, Validation, Scenarios,
Live Sequence Charts (LSCs), Consistency, Synthesis, Timed Labeled Transition
Systems (TLTS), Timed Automata (TAs), Timed Games, Timed Game Au-
tomata (TGAs), Controller Synthesis, Strategies, Model-Based Testing, Test
Cases

Dansk sammenfatning

Denne afhandling omhandler forskning i validering af realtidsbaserede indlejrede
software-systemer i forbindelse med modelbaseret udvikling. Afhandlingen præsen-
terer scenariebaserede og spilteoretiske tilgange til systemanalyse, verificering,
syntese samt testning for derved at kunne h̊andtere de udfordringer, der opst̊ar
ved systemkarakteristika for ukontrollerbare miljøer, komplekse procesinterak-
tioner, kvantitative tidsrestriktioner, partiel observerbarhed og kombinationer
heraf.

En udvidelse af live sequence chart (LSC) med tid præsenteres, s̊aledes at in-
dbyrdes procesadfærd og scenariebaserede krav til samtidige og kommunikerende
realtidssystemer kan modelleres og specificeres i LSC. Ved at oversætte LSC
til tidsautomater (TAs), reduceres verifikation af konsistens af scenariebaserede
modeller samt verifikation af egenskaber for disse til verifikation af CTL-egenskaber
for realtidssystemer. Ligeledes reduceres syntese af eksekverbare systemer fra sce-
nariebaserede modeller til at løse tidsafhængige spil. Ved at anvende vores proto-
typeoversætter i samspil med modelverifikationsværktøjet Uppaal og værktøjet
Uppaal - Tiga, som anvendes til at finde løsninger til spil, p̊avises det, at disse
metoder kan bidrage til at sikre korrekt interaktion for tidlige systemdesign, samt
at disse opfylder eventuelle tidskrav.

Afhandlingen viser endvidere, at systematisk gennemprøvning (testning) af
reaktive realtidssystemer kan ses som et tidsafhængigt spil mellem testudføreren
og systemet som afprøves. Derfor præsenteres metoder, hvori vindende strate-
gier anvendes som test-cases for black-box conformance testing. Disse metoder
generaliseres til at imødekomme problemstillinger, der kun giver anledning til
muligt vindende strategier. I disse tilfælde er den fortsatte afprøvning baseret
p̊a kooperative vindende strategier, der kræver samarbejde fra systemet tidligt
i spillet. Endvidere tilpasses metoderne til tilfælde, hvor kun partiel observer-
barhed haves, dvs. hvor kun ufuldstændige oplysninger f̊as fra systemet. Alle
disse metoder bidrager til i højere grad at kunne teste for korrekt reaktion ved
stimuli og rettidige reaktioner fra de p̊agældende systemer. Eksperimentelle eval-
ueringer gennem case-studies indikerer, at de foresl̊aede metoder er realistiske –
b̊ade konceptuelt, algoritmisk og med hensyn til beregnelighed.

Nøgleord: Realtidssystemer, Indlejrede Systemer, Validering, Scenarier, Live

ix

Sequence Charts (LSCs), Konsistens, Syntese, Tidsmærkede Transitionsystemer
(TLTS), Tidsautomater (TAs), Tidsspil, Tidsspilsautomater (TGAs), Kontrol-
syntese, Strategier, Modelbaseret Testning, Test-Cases.

Acknowledgements

My sincere gratitude goes to supervisor Kim G. Larsen. Thank Kim for his con-
tinuous guidance and support throughout the three years, for inspiring me with
his great passion and enthusiasm, and for all his confidence, trust and patience
on me.

I am equally grateful to co-supervisor Brian Nielsen. Thank Brian for advis-
ing, coaching and enlightening me in many respects, for the numerous thought-
provoking discussions, and for the valuable comments and suggestions to each
piece of my work.

I would like to thank Alexandre David for helping me understand the ins and
outs of timed games, Uppaal and Uppaal-Tiga. Thank Saulius Pušinskas for
the collaborations on live sequence charts. Also a thank you to Sandie Balaguer
and Alexandre for joining our efforts in combining these interesting topics and
materializing them.

During the PhD study I had a one-month external stay at MRTC of Mälardalen
University. I would like to thank Prof. Paul Pettersson for hosting me and for
the close collaboration on resource-constrained controller synthesis. Thank Aida
Čaušević, Leo Hatvani, Cristina Seceleanu and Jagadish Suryadevara for receiv-
ing me and for the interesting discussions on components, services, resources and
case studies thereof.

I wish to thank all people in the CISS/DES group at Aalborg for making
it a pleasant, dynamic and stimulating research environment. Special thanks to
Susanne Larsen and Rikke Uhrenholt for helping with a lot of practical issues over
the years; to Anders Ravn for broadening my horizons with the many interesting
conversations; and to István Knoll, Marius Mikučionis, Joseph Okika and Claus
Thrane for the many technical as well as non-technical assistance.

Finally I would like to thank my wife Mianmian. Thank you so much for
always believing in and understanding me, and for all your love, encouragement
and support during this process.

This work has been funded jointly by the Faculty of Engineering, Science and
Medicine of Aalborg University, the Center for Embedded Software Systems
(CISS) at Aalborg University, and the Danish Network for Intelligent Embed-
ded Systems (DaNES) project.

xi

Contents

1 Motivation 1

1.1 Real-time embedded systems . 1

1.2 Model-based development . 2

1.3 System validation . 3

1.4 Research objectives . 5

2 System Modeling and Specification 7

2.1 Labeled Transition Systems . 8

2.2 Timed Automata and Timed Game Automata 10

2.3 Live Sequence Charts . 15

2.4 Requirement specification . 20

3 System Validation 22

3.1 Model checking . 22

3.2 Model-based testing . 24

3.3 Correct-by-construction via synthesis 31

3.4 Dealing with partial observability 34

3.5 The inter-process perspective . 36

3.6 Cross-fertilization . 37

4 The Thesis 41

4.1 Research questions . 41

4.2 Thesis summary . 42

5 Related Work 49

5.1 Scenario-based analysis and synthesis 49

5.2 Model-based testing of real-time systems 54

5.3 Games, controller synthesis and their applications 59

6 Conclusions and Future Work 62

6.1 Conclusions . 62

6.2 Future work . 65

xiii

Paper A: Verifying Real-Time Systems against Scenario-Based
Requirements 67

1 Introduction . 68

2 Modeling and specification of real-time systems 72

3 From LSC to Uppaal timed automaton 73

4 Embedding into Uppaal . 83

5 An example . 85

6 Conclusions . 86

Appendix: Proofs of lemmas and theorems 88

Paper B: Scenario-Based Analysis and Synthesis of Real-Time
Systems Using Uppaal 93

1 Introduction . 94

2 Live Sequence Charts . 97

3 LSC to TA translation . 104

4 Analysis and synthesis problems 108

5 Experiments . 110

6 Conclusions . 111

Appendix A: Timed automata in Uppaal 113

Appendix B: Rules for LSC-to-TA translation 115

Appendix C: Complexity of the outcomes of translation 123

Appendix D: Proofs of lemmas and theorems 124

Paper C: A Game-Theoretic Approach to Real-Time System Test-
ing 135

1 Introduction . 136

2 Test setup . 137

3 Testing with winning strategies 143

4 Case study . 149

5 Conclusions . 150

Appendix: The leader election protocol model 151

Paper D: Cooperative Testing of Timed Systems 157

1 Introduction . 158

2 Test setup . 161

3 Cooperative winning strategy . 164

4 Test case generation . 166

5 Test execution . 168

6 Soundness and completeness . 170

7 Case study . 171

8 Conclusions . 172

xiv

Paper E: Timed Testing under Partial Observability 173
1 Introduction . 174
2 Timed control under partial observability 178
3 Timed conformance testing . 184
4 Experimental results . 190
5 Conclusions and future work . 193
Appendix A: Proofs in Section 3.4 . 195
Appendix B: Fully and partially observable models of the leader election

protocol . 196
Appendix C: Quantitative evaluation of test generation with the leader

election protocol . 203

Bibliography 209

xv

Chapter 1

Motivation

1.1 Real-time embedded systems

An embedded system is an engineering artifact involving computation that is
subject to physical constraints [HS06]. These constraints arise from the compu-
tational processes’ need to react to a physical environment and to execute on a
physical platform. Due to the requirements on computation and reaction timeli-
ness, many embedded systems have real-time computing constraints. Real-time
embedded systems are widely deployed in our society. They exist in consumer
electronics, in domestic appliances, in industrial product lines, and in avionics
and aerospace systems.

Characteristics of the software parts of real-time embedded systems include:

• Environment uncertainties. Many embedded systems are open systems, i.e.,
they are designed to interact with their residing environments, or with the
plants that they are supposed to control. For example, in a wireless sen-
sor network application, the sensor nodes might be placed in environments
with different temperature, humidity, illumination and radiation. For an-
other example, an embedded controller may be deployed to control different
plants that are constructed based on the same formal model that has output
uncertainty and timing uncertainty of outputs;

• Complex interactions. For even small-scaled embedded systems, there could
be a large number of possible interactions among the system processes (or
agents, objects), or between the system processes and the surrounding en-
vironments. For instance in a cell phone application, there could be concur-
rent interactions among the user, the keypad, the chip, the memory stick
and the radio-based station (environment);

• Quantitative requirements. Embedded systems are usually subject to some
quantitative constraints such as energy consumptions, stochastic properties

2 1. Motivation

and timing constraints. In particular quantitative timing constraints are es-
sential in real-time embedded systems – failing to satisfy them will lead to
unacceptable systems. In this project we consider continuous real-time in
the early-stage analysis and design models, which is suitable for charac-
terizing asynchronous systems where time delays between events may be
arbitrarily small; and

• Imperfect information. Due to limited-precision sensors, the measurements
could be fluctuating and thus inaccurate. Due to aging and wearing-out of
some instruments, the measurements could be biased and thus inaccurate.
Consequently, chances are that we can have only incomplete information
of a real-time embedded system, i.e., it is possible that we do not know in
which exact state the plant is in, or what exact values the variables of the
plant are assuming.

Real-time embedded systems need sound methodologies for their design, de-
velopment and validation, because they are:

• Safety-/life-/mission- critical. Even a small software bug might result in the
loss of lives, or severe damages to equipments, or environmental disasters.
For example, the Ariane-5 launch failure [Lio96], the losses of the Mars Polar
Lander [NAS00] and the Mars Climate Orbiter [NAS99]; and

• Financial-critical. Since real-time control software may be embedded (in-
tegrated) into those mass-volume manufactured items, the posterior detec-
tions of design flaws after the release of them may lead to massive recalls
and thus incur substantial economic loss. For example, in 2003 Ford Motor
Company recalled 43459 Lincoln Continental cars due to the airbag control
problems [Aut].

1.2 Model-based development

A fundamental reason why software contain bugs is that there is a gap between
software requirement and software implementation. The requirement (if a clear
one ever exists) comes from the intended (end) users. The implementation is
crafted by the programmers. Between users and programmers are the system
analysts and designers. When evolving from the software requirements through
software designs to software implementations, it is very likely that there will be
semantic losses, or semantic deviations, or there will be introduced some incon-
sistencies. This is especially the case when the programmers build the systems
in an entirely ad hoc manner.

To bridge the gap, the model-based development (MBD) paradigm has been
proposed and advocated. The basic idea of MBD is that the developer creates

1.3 System validation 3

a number of models for the system in question, gradually refines and validates
these models in an iterative way, and finally obtains the implementation. If each
step is well under control and does not introduce errors, then this can achieve
the dream of “correctness-by-design”.

Model-based development enjoys a lot of benefits, e.g.:

• Early-stage, tool-supported simulation, analysis and verification;

• Better traceability and diagnosability;

• Better adaptability and portability; and

• Automatic code generation.

Central to model-based development activities are the system models, which
should be as faithful and analyzable as possible. To well model real-time embed-
ded systems, there are some considerations to be made:

• Environment uncertainties. Since an embedded system might be deployed
in different operational environments, the system (or controller) and its
environment (or the plant) can be modeled separately as Sys and Env,
respectively. With a clearly defined interface between Sys and Env, we
can examine whether the system can properly function in different environ-
ments;

• Complex interactions. When building or before building a state/ transition-
based behavioral model for each system process, we may wish to construct
some scenario-based behavioral models to characterize how different pro-
cesses communicate, collaborate and cooperate, or to specify scenario-based
user requirements. We will use the very expressive graphical specification
language Live Sequence Chart (LSC) [DH01];

• Quantitative requirements. Rather than modeling multiple quantitative re-
quirements such as timing constraints, energy consumptions and stochas-
tic properties at the same time, in this project we will focus only on the
real-time aspect. We will model the dense-time constraints using Timed
Automata (TA) [AD94]; and

• Imperfect information. To analyze system behaviors in a more realistic
setting, we will include this characteristic in the model.

1.3 System validation

The high quality demands of real-time embedded systems call for sound and
powerful validation techniques, which are both needed and (partially) enabled by
the model-based development paradigm.

4 1. Motivation

Various software validation techniques have been developed over the years.
Roughly speaking, these include static verification techniques such as:

• Equivalence and refinement checking, which ask “are two given (design mod-
els of the) systems behavior-equivalent?”, and “does one model refine an-
other one?”;

• Theorem proving, which asks “is some conjecture (the desired property) a
logical consequence of a set of axioms and hypotheses (the system specifi-
cation)?”; and

• Model checking, which asks “does a finite state model satisfy a given tem-
poral logic property?”

and dynamic validation techniques such as:

• Simulation, which asks “does the software function as expected in an ideal
(and often simplified, well-controlled) environment?”; and

• Testing, which asks “does the software or system function as expected?”

In our view, an ideal validation technique should have the following charac-
teristics:

• Early validation. It is reported that the costs of repairing a software flaw
during maintenance are roughly 500 times higher than a fix in an early de-
sign phase [LRRA98]. Therefore bugs should be caught as early as possible;

• Automated validation. Manual validation techniques such as interactive
theorem proving and manual testing are labor-intensive and error-prone. A
survey by IDT (Innovative Defense Technologies) reveals that 30% - 70%
of the overall software development schedule was spent on testing, and
that 40% - 60% of the tests for most projects can and should be auto-
mated [DGG09]. In many areas, the “push-button validation” technologies
are desirable, if they are at all possible. For a validation technique to be of
practical use for large-scale, ever-changing and complex software systems,
the potential for automation will be a major concern. This will also lead
to reduced validation cost and time;

• Rigorous and systematic validation. Many static verification techniques
are systematic approaches in the sense that they exhaustively explore the
reachable state spaces. For ad hoc simulation and testing, the thorough-
ness of exercising the software largely depends on how the user steers the
simulation or prepares the test cases. In contrast, simulation and testing
based on algorithmic traversal of the state spaces of the system models may
lead to systematic and well-steered test executions and thus contribute to
improved test quality [UL06]. This latter kind of testing is usually referred
to as model-based testing (MBT) [BJK+05, UL06]; and

1.4 Research objectives 5

• Debuggability. Since we do not generally view validation simply as ac-
ceptance testing, it is desired that besides giving a verdict, a validation
technique should also provide some diagnostics. It will be more convincing
if it can provide witnesses in case it verifies a claim, and be more helpful if
it can provide counterexamples in case it falsifies that claim.

Considering our validation objectives and the strengths/weaknesses of each
validation technique and the existing algorithm and (in-house) tool support, we
will focus on two of the above mentioned techniques: model checking and model-
based testing.

System designers typically evaluate the quality of a developed software system
against two kinds of requirements: functional requirements and extra-functional
requirements [HS06].

Functional requirements specify the expected functionality, services and fea-
tures. In other words, they characterize what the software should do and what it
should not do. For a multi-object system, designers may inspect it from a global
or local perspective. Accordingly, functional requirements include:

• Interaction correctness, which asks “do the different objects (or processes)
in the system interact as intended?” This is a kind of inter-object (inter-
process) requirement or scenario-based requirement [HM03]; and

• Reactivity correctness, which asks “does each individual object (or process)
in the system accept external stimuli, then carry out certain computations,
and then produce outputs as intended?” We call this intra-object (intra-
process) requirement.

Extra-functional requirements specify: performance, which characterizes the
efficient use of real time and of resources; robustness, which characterizes the
ability to deliver some minimal functionality under circumstances that deviate
from the nominal ones; and other properties, such as security, understandability
and portability.

Among those extra-functional requirements, timeliness is of vital importance
for real-time systems: merely producing logically correct outputs is insufficient;
rather these outputs should be produced in the right time frame. Timeliness
requirements are typically embodied as timing constraints on the systems.

In this project we will focus on functional correctness and timeliness.

1.4 Research objectives

Compared with ordinary reactive systems, real-time embedded systems have their
special characteristics such as environment uncertainties, complex process inter-
actions, quantitative timing constraints and partial observability. Accordingly,
validating these systems is faced with new challenges.

6 1. Motivation

The interaction correctness of a multi-object concurrent communicating sys-
tem should be guaranteed in the very early stage of model-based development.
By ensuring this “global correctness” the system architects and designers can
rest assured that a next round refinement of the system models or the transition
from models to implementations can start safely. This is especially true for real-
time embedded systems where the quantitative timing constraints will usually
interwind with and thus further complicate the complex process interactions.

The environment uncertainties should be well taken care of when designing
real-time embedded systems, because these systems are supposed to interact with
varying, ever-changing and behavior- and timing-unpredictable operating envi-
ronments.

Compared with full observability, partial observability is a more realistic as-
sumption for many embedded systems due to e.g., limited precision sensors, in-
formation hiding and encapsulation, and abstractions. However, the benefit of
modeling with partial observability comes at the expense of adding extra difficulty
to the validation of real-time embedded systems.

As argued above, in this PhD project we strive:

• To validate a given timed system against scenario-based requirements
to ensure its interaction correctness and timeliness ;

• To validate a given timed system against environment uncertainties to
ensure its reactivity correctness and timeliness ; and

• To validate a given timed system in the context of partial observability.

Chapter 2

System Modeling and
Specification

This chapter introduces preliminaries on system modeling and specification for
reactive systems in general and for real-time embedded systems in particular.

Software models are the major visible artifacts of model-based development
activities. They also serve as the starting points of formal validation techniques
such as model checking and model-based testing. As the outcomes of requirement
analysis, models are mathematical abstractions of the systems in question. By
establishing correctness of earlier stage models, developers can gain confidence
on the progress so far, and can hopefully preserve the correctness by gradually
refining the models until the final system implementations are obtained.

Software models could be structural (static) models, which describe how things
are deployed, arranged and inter-connected, or behavioral (dynamic) models,
which characterize the dynamics of the processes in the systems, i.e., how the
software systems behave. Since in this project we are mainly interested in the
functional and timing correctness of real-time embedded systems, we will focus
on behavioral models.

A behavioral model may describe the intra-object (intra-process) behaviors of
a software system, i.e., how an individual object (or process, agent) behaves under
all possible circumstances, e.g., finite state machine (FSM), Statechart [Har87]
and UML State Diagram [Org05]; it may also describe the inter-object (inter-
process) behaviors, i.e., how different objects interact, e.g., Message Sequence
Chart (MSC) [IT99], Live Sequence Chart (LSC) [DH01, HM03] and UML Se-
quence Diagram [Org05].

When looking for a suitable behavioral model, there are several points that
we should take into consideration:

• Expressive power. For example, state-based and functional specifications fo-
cus on sequential behaviors, whereas history-based, state/ transition-based
and operational specifications focus on concurrent behaviors [vL00]. For

8 2. System Modeling and Specification

real-time embedded systems which usually consist of a number of concur-
rent processes, we tend to adopt the latter category of specification models;

• Manageability. Developers are supposed to construct the models in a piece-
wise, incremental rather than a monolithic manner. In this way the com-
plexities of the models can be kept under a manageable level;

• Usability. The model should have a simple theoretical basis and thus be
easy to comprehend and easy to construct. In this sense, visual formalisms
such as FSM, TA, Statecharts, Petri nets, MSC and LSC are considered to
be good candidates; and

• Algorithm and tool support. A model will be more preferable if there exist
mature, powerful and versatile algorithm and tool support.

For intra-process behavior modeling of real-time embedded systems, we tend
to use state/transition-based visual formalisms, more precisely timed automata,
mainly because they can describe complex concurrent real-time systems intu-
itively, they support parallel composition of a number of automata, and we have
in-house algorithm and tool support. For inter-process behavior modeling of
real-time embedded systems, we prefer the visual formalisms, more precisely live
sequence chart, mainly because it adds “liveness” to conventional scenario-based
formalisms.

2.1 Labeled Transition Systems

A labeled transition system is an edge-labeled directed graph which consists of:

• a set of states, each of which represents a particular control location of a
system (or a “process” in the terminology of process algebras);

• a set of labels, each of which represents an action that can be performed;
and

• a transition relation →, which describes the changes in process states.

Definition 1 (labeled transition system, LTS [Kel76]). A labeled transition sys-
tem is a tuple (S, L,→, s0), where

• S is a countable, non-empty set of states (or processes);

• s0 ∈ S is the initial state;

• L is a set of labels (or actions); and

• →⊆ S × (L ∪ {τ})× S is a transition relation, where τ /∈ L represents the
internal actions.

2.1 Labeled Transition Systems 9

For s ∈ S and a ∈ L, we write s
a−→ iff ∃s′ ∈ S . s a−→ s′. The τ -abstracted

transition relation ⇒⊆ S × S is defined as: s
a⇒ s′ ⇔ s

τ→
∗
· a−→ · τ→

∗
s′.

The relation ⇒ can be extended to consume a sequence of actions in the usual
manner.

Fig. 2.1 is an example LTS of a coffee vending machine.

s0start s1

s2

s3

coin?

strongCof!

req?

req?

weakCof!

Figure 2.1: An example LTS of a coffee vending machine.

LTS is a very simple model for describing the behaviors of reactive systems.
On one hand, LTS can describe non-deterministic behaviors. For instance in Fig.
2.1, it is possible that the user presses the “req” button and gets weak coffee, or
she presses the “req” button and gets strong coffee. On the other hand, two or
more LTSs can be parallelly composed. In this case, they can also describe the
concurrency in the system in terms of the different interleaved executions.

One refinement of the LTS definition is to distinguish between input and
output actions. To this end, the set L of actions can be partitioned into LI
and LU , representing the input and output actions, respectively. To abstract
away from unnecessary details of the system, a special action τ /∈ L can be
introduced, denoting an internal (i.e., user-undistinguishable and unobservable)
action. Hence the notion of input/output labeled transition system.

Definition 2 (input/output labeled transition system, IOLTS [Tre96a]). An in-
put/output labeled transition system is a tuple (S, LI , LU ,→, s0), where

• S is a countable, non-empty set of states (or processes);

• s0 ∈ S is the initial state;

• LI and LU are countable sets of input and output actions, respectively, such
that LI ∩ LU = ∅; and

• →⊆ S×(LI∪LU∪{τ})×S is a transition relation, such that every reachable
state is weakly input-enabled: ∀s ∈ S, a ∈ LI . s

a⇒.

10 2. System Modeling and Specification

To model the behavior of real-time systems, an LTS can be extended with the
notion of time. In this way we obtain a timed LTS. A basic difference between a
timed reactive system and an untimed reactive system is that in the former one,
a state contains the control location information as well as the current timing
information, and a transition could be either a discrete (and instantaneous) jump
from one control location to another, or a time delay during which the control
location remains unchanged.

Definition 3 (timed labeled transition system, TLTS). A timed labeled tran-
sition system is a tuple (S, L,→, s0), where

• S is a set of states (or processes) with two dimensions: the control location
and the timing information;

• s0 ∈ S is the initial state;

• L = (Act ∪ {τ} ∪ R≥0) is a set of labels which consist of discrete actions
a ∈ Act, internal action τ /∈ Act, and time delays d ∈ R≥0; and

• →⊆ S × L× S is a transition relation which satisfies the following sanity
rules for time passage:

– time additivity (a delay period can be arbitrarily divided): if s
d−→ s′

and 0 ≤ d′ ≤ d, where s, s′ ∈ S, and d, d′ ∈ R≥0, then there exists

s′′ ∈ S such that s
d′−→ s′′

d−d′−−→ s′;

– zero delay (a delay period of 0 does not change the system state):

∀s ∈ S . s 0−→ s; and

– time determinism (at any state, a given delay transition never leads to

two or more different next states): (s
d−→ s′)∧ (s

d−→ s′′)⇒ s′ = s′′.

We may denote a TLTS as (S, s0,→), since L has already appeared in →.
A timed I/O transition system (TIOTS) [LMN04, BB04] is a TLTS with its

set L of labels replaced by L′ = ActI ∪ ActU ∪ {τ} ∪ R≥0, which correspond to
input, output, internal actions, and time delays, respectively. Also, the weak
input-enabledness requirement should be satisfied.

Both LTS and TLTS are intuitive, precise and easy-to-learn formal models.
In addition to being used to model the systems in question, they are also used
as the underlying semantic models of other (usually richer) models such as FSM,
Statechart and TA.

2.2 Timed Automata and Timed Game Automata

Timed automaton (TA) [AD94] is a popular visual formalism for specifying the
intra-process behaviors of continuous real-time systems. According to Alur and

2.2 Timed Automata and Timed Game Automata 11

Henzinger [AH97], the underlying philosophy of TA is that a real-time system
can be viewed as a discrete system with clock variables:

• The discrete system is represented as a finite directed graph. Each vertex of
this graph represents a (control) location. Each edge represents an instan-
taneous switch (or discrete jump) which might be triggered by an enabled
(observable or internal) event, or by a timeout; and

• The system has a finite set of clock variables. Each clock variable keeps the
elapsed time value since last time this clock was reset. All clock variables
increase at the same speed, reflecting the ideal situation where all the clocks
in the system are perfectly synchronized. Time can elapse in a location.
Each instantaneous switch may be associated with a clock constraint called
condition (or guard), specifying the enabling condition of this discrete jump.
Each location may be associated with a clock constraint called invariant,
specifying the condition under which time can still elapse in this location.

Pragmatically, location invariants are used to allow the system to stay in a loca-
tion for only a limited period of time, and then force it to leave that location.

Let C be a set of real-valued clocks, and B(C) be the set of clock constraints,
i.e., the set of conjunctions over simple conditions of the form x ./ c or x−y ./ c,
where x, y ∈ C, c ∈ N, and ./∈ {<,≤,=,≥, >}. Let Act be the alphabet of
observable actions, and τ /∈ Act be the internal (unobservable) action.

The following definition of TA is excerpted from [BDL04], which in spirit
agrees with the classical definition by Alur and Dill [AD94].

Definition 4 (timed automaton, TA [BDL04]). A timed automaton is a tuple
(L, l0, C, Act, E, Inv), where

• L is a set of locations;

• l0 ∈ L is the initial location;

• C is a set of clocks;

• Act is the alphabet of actions;

• E ⊆ L× (Act ∪ {τ})× B(C)× 2C × L is a set of edges between locations.
Each edge has an action, a guard and a set of clocks to be reset; and

• Inv : L→ B(C) assigns invariants to locations.

Fig. 2.2 is an example timed automaton of a coffee vending machine.
A clock valuation is a function u : C → R≥0 from the set C of clocks to the

non-negative real numbers. Let R≥0
C be the set of all clock valuations. Let u0

be the zero valuation, i.e., ∀x ∈ C . u0(x) = 0. If a clock constraint cc ∈ B(C)

12 2. System Modeling and Specification

s0start s1

s2

s3

x ≤ 30

x ≤ 50

coin?, x := 0

x < 50, req?, x := 0

x > 30, strongCof!

x > 30, req?, x := 0

x > 10, weakCof!

Figure 2.2: An example timed automaton of a coffee vending machine.

evaluates to true under a valuation u ∈ R≥0
C , then we say u satisfies cc, denoted

u |= cc. For the sake of simplicity, we can view a clock constraint as the set of
all clock valuations that satisfy this clock constraint, i.e., ∀cc ∈ B(C) . cc = {u ∈
R≥0

C | u |= cc}. For d ∈ R≥0, we use u + d to denote the valuation that maps
all x ∈ C to u(x) + d. For r ⊆ C, we use [r 7→ 0]u to denote the valuation that
maps all clocks in r to 0, and agrees with u over C\r.

Definition 5 (semantics of TA [BDL04]). Let A = (L, l0, C, Act, E, Inv) be a
timed automaton. The semantics of A is defined as a timed labeled transition
system 〈S, s0,→〉, where S ⊆ L × R≥0

C is the set of states, s0 = (l0, u0) the
initial state, and →⊆ S× (Act∪{τ}∪R≥0)×S the transition relation such that:

• (delay transition): (l, u)
d−→ (l, u + d) if ∀d′ : 0 ≤ d′ ≤ d . u + d′ ∈ Inv(l);

and

• (discrete transition): (l, u)
a−→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E

such that u ∈ g, u′ = [r → 0]u, and u′ ∈ Inv(l′).

Definition 6 (run of a TA). A run of a TA (L, l0, C, Act, E, Inv) is a sequence
of states s0 · s1 · . . . that are connected by transitions, i.e., ∀i ≥ 0 .∃a ∈ (Act ∪
{τ} ∪R≥0) . si

a−→ si+1.

The transition relation → as mentioned above each time consumes only a
single letter a ∈ (Act ∪ {τ} ∪R≥0). We extend it to →∗ such that it consumes a
(finite or infinite) word w ∈ (Act ∪ {τ} ∪R≥0)∗ ∪ (Act ∪ {τ} ∪R≥0)ω. A word w
that corresponds to a run of the TA is called a timed trace of the TA.

In a timed trace, the consecutive delays can be merged into a single delay,
and two consecutive discrete transitions can be connected by a zero length delay
transition. After these merging and insertions, the states in a timed trace will

2.2 Timed Automata and Timed Game Automata 13

be connected by an alternating sequence of discrete and delay transitions. Such
a trace is called a normalized timed trace.

To describe a system which consists of a number of concurrently running
processes, a network of timed automata can be constructed, each for a process.
The composition operator || allows for interleaved executions of different processes
(TAs). According to [AD94], these automata can synchronize on common actions.
In Uppaal, in addition to the CCS-style hand-shake binary synchronizations,
the CBS (Calculus of Broadcasting Systems [Pra95])-style 1-to-many broadcast
synchronizations 1 are also supported.

Uppaal TA supports parallel composition by viewing Act as a set of syn-
chronization channels. Hence for each element a ∈ Act, there are a message
sending action a! and a message receiving action a? (i.e., the co-action). We
denote A = {a!, a? | a ∈ Act} as the set of all observable actions.

Assume that there are a network of n timed automata over a common set C
of clocks and a common set A of actions, Ai = (Li, l

0
i , C, A,Ei, Invi), 1 ≤ i ≤ n.

A location vector l̄ = (l1, . . . , ln) is a vector of locations of the member automata.
We compose the invariants of the member automata into a common invariant
over location vectors Inv(l̄) =

∧
i Invi(li). We write l̄[l′i/li] to denote the vector

where the i-th element li of l̄ is replaced by l′i.

Definition 7 (semantics of a network of TAs [BDL04]). Let Ai = (Li, l
0
i , C, A,

Ei, Invi) be a network of timed automata, 1 ≤ i ≤ n. Let l̄0 = (l01, . . . , l
0
n) be

the initial location vector. The semantics of ||iAi is defined as a timed labeled
transition system 〈S, s0,→〉, where S ⊆ (L1× . . .×Ln)×R≥0

C is the set of global
states, s0 = (l̄0, u0) the initial global state, and →⊆ S × (A∪ {τ} ∪R≥0)× S the
transition relation defined by:

• (delay transition): (l̄, u)
d−→ (l̄, u+ d) if ∀d′ : 0 ≤ d′ ≤ d . u+ d′ ∈ Inv(l̄);

• (internal action): (l̄, u)
τ−→ (l̄[l′i/li], u

′) if there exists an li
τ,g,r−−→ l′i such that

u ∈ g, u′ = [r→ 0]u, and u′ ∈ Inv(l̄[l′i/li]);

• (binary synchronization): (l̄, u)
a−→ (l̄[l′i/li, l

′
j/lj], u

′) if a is a binary channel

and there exist li
a!,gi,ri−−−−→ l′i and lj

a?,gj ,rj−−−−→ l′j such that u ∈ (gi ∧ gj), u′ =
[ri ∪ rj → 0]u and u′ ∈ Inv(l̄[l′i/li, l

′
j/lj]); and

• (broadcast synchronization): (l̄, u)
a−→ (l̄[l′i/li, l

′
j/lj, l

′
k/lk, . . .], u

′) if a is

a broadcast channel and there exist an li
a!,gi,ri−−−−→ l′i and a maximal set 2

1If the emitting edge transition is enabled, then that transition itself can fire. If the emitting
edge transition is fired, then all enabled receiving edge transitions should synchronize.

2We require {j, k, . . .} to be a maximal set because if we choose to synchronize on a broadcast
channel, then all the enabled receiving edge transitions are obliged to engage in the broadcast
synchronization. In a very extreme case, the set could be an empty set. This happens when
only the emitting edge transition itself is fired (i.e., one “speaker”, zero “audience”).

14 2. System Modeling and Specification

{j, k, . . .} : lj
a?,gj ,rj−−−−→ l′j, lk

a?,gk,rk−−−−→ l′k, . . ., such that u ∈ (gi ∧ gj ∧ gk ∧ . . .),
u′ = [ri ∪ rj ∪ rk ∪ . . .→ 0]u and u′ ∈ Inv(l̄[l′i/li, l

′
j/lj, l

′
k/lk, . . .]).

Runs and traces of a network of TAs are defined similarly as those for a single
TA.

In addition to the binary and broadcast synchronizations, the Uppaal TA
modeling language also extends the classical TA with the following features [BDL04]:

• bounded-range variables : Integer and boolean variables can be declared.
They can be used in guards, invariants and assignments;

• urgency : A location is urgent if time is frozen in that location, i.e., once
entered, the location must be exited within 0 time delay. A channel is
urgent if whenever there is an enabled synchronization on this channel,
there cannot be time delay before this synchronization is fired; and

• commitment : A location is committed if it is an urgent location, and all
enabled outgoing transitions from this location have higher priority to be
fired than those enabled outgoing transitions from non-committed locations.

2.2.1 Timed I/O automaton

In order to adapt the timed automata formalism to the testing context, an ex-
tension of it called timed I/O automata (TIOA) is proposed. In the general form,
the actions of a TIOA are partitioned into input and output actions such that:

• input-enabledness : each input is enabled in (the “interior” 3 of the invariant
of) each location. Depending on whether internal actions are considered, it
could be weak input-enabledness or strong input-enabledness.

• non-blocking : for every state, there exists an infinite execution fragment
that starts in this state and contains no input actions, and in this fragment
the sum of the delays diverges.

In order to ensure the “testability” of the model, the following restrictions are
further imposed [SVD01]:

• determinism: if two transitions have the same source location and the same
action label, and their guards are both satisfied, then they must lead to the
same destination location;

• isolated output : for each state, if an output is enabled then no other input
or output transition is enabled.

3This means that inputs are enabled as long as time can progress.

2.3 Live Sequence Charts 15

2.2.2 Timed game automaton

To tackle the controller synthesis problems for timed systems, Maler and col-
leagues adapt timed automata to the game settings, giving rise to the notion of
timed game automata (TGA) [MPS95]. In a TGA, a transition will be mastered
either by the game player, or by the game opponent.

Fig. 2.3 is a (simplified) timed game automaton for the coffee vending ma-
chine. The solid and dashed lines represent the player- (user-) controllable and
opponent- (machine-) controllable transitions, respectively. For example, in lo-
cation s2 there are two outgoing uncontrollable transitions. Intuitively, after the
user inserts a coin (coin?) and makes a request (req?), the machine can choose
either to deliver weak coffee (weakCof !) or to deliver strong coffee (strongCof !)
within 50 time units. The exact coffee delivered and its exact delivery time are
determined solely by the machine.

s0start s1 s2 x ≤ 50
coin?

x := 0

x > 30, req?

x := 0

strongCof!

weakCof!

Figure 2.3: An example timed game automaton of a coffee vending machine.

In a game-theoretic context, the plant specification can be given as a TGA.
If a controller can be synthesized for a particular control objective, then under
its guidance (supervision), the plant TGA will lead to only “good” timed traces.

2.3 Live Sequence Charts

A scenario is a typical interaction among a number of processes (or agents, ob-
jects, components) within a communicating concurrent system. It describes one
“story” for all relevant objects. Scenario-based models specify which scenarios are
allowed, desired, or forbidden. Inter-process behavior modeling (a.k.a. scenario
modeling) is an important method to characterize object interactions. Scenario
modeling and validation usually take place in the early stage of a model-based de-
velopment process, aiming to give the developers a system-wide and component-
wise feel of how the system functions. The reason is that before diving into the
very details about the required functionalities of the individual system processes,

16 2. System Modeling and Specification

the developer wants to make sure that all these processes will collaborate, co-
operate and coordinate in the desired manner and thus as a whole achieve the
intended goals of the system.

One of the earliest and most widespread formalisms for scenario specification
is Message Sequence Chart (MSC) [IT99], which offers an intuitive and visual
way of describing possible interactions of concurrent and distributed systems. It
focuses on message exchanges among communicating processes in the systems.

Fig. 2.4 is an example MSC chart which describes the scenario of opening the
cover of a cell phone. Each participating process in the scenario is represented
by a vertical line that is called the lifeline of that process. A directed m-labeled
arrow from process p to q means that if the system progresses to a situation
where p may send and q may receive this m-labeled message, then there could
be such a message passing between p and q. The “SYNC” condition represents
a rendezvous synchronization between the involved processes.

user cover chip display

open

ring

display

showtime

togglebackground

speaker

msc Openning cell phone cover

SYNC

Figure 2.4: An MSC describing the scenario of opening the cover of a cell phone.

According to the MSC Specification [IT99], basic MSC (bMSC) is the building
block of more complex higher-level scenario models. A bMSC has a finite set P
of processes, a finite message alphabet M , and a finite set Act of actions (here an
action represents a computational task). For any process p ∈ P , along its lifeline,
p can perform some actions a ∈ Act, or send some message m1 ∈ M to other
process p1 ∈ P , or receive some message m2 ∈ M from other process p2 ∈ P .
These are all the actions that a process can execute along its lifeline.

To describe the timing constraints in real-time embedded systems, MSC and
its variants have been extended with various syntactic constructs such as:

• timers [AHP96, IT96], which are used to express timing constraints within

2.3 Live Sequence Charts 17

a single MSC chart and along a single lifeline. The timers can be (pre-)set
to a value, or reset to 0, or observed for timeout. However, timers cannot
be shared among different instances in an MSC; and

• delay intervals [AHP96, Ng93], which are also used to express timing con-
straints within a single MSC.

Basic MSC has limited expressive power. To increase the expressive power
of bMSC and to improve its usability, a lot of extensions have been proposed,
such as High-level MSC (HMSC) [IT99], Dynamic MSC [LMM02], Triggered
MSC [SC02] and Template MSC [GMMP04].

MSC and its many variants have received much attention in academia as
well as in industry (especially in the telecommunication industry). The main
advantages of MSC include:

• Simplicity. There are not excessively many language constructs;

• Intuitiveness. As a graphical formalism, it has good usability and under-
standability, and it does not have a steep learning curve; and

• Standardization by ITU (International Telecommunications Union) [IT99].

Although MSC has been widely applied and has been proved to be an effective
means for early stage modeling and validation, there are some inherent limitations
to this specification language:

• Expressive power. The partial order semantics of basic MSC are rather
weak. While MSC can specify possible (or expected) behaviors, it cannot
specify mandatory behaviors such as “if process P sends message m to Q,
then Q must pass on this message to R”. Nor can we specify forbidden
behaviors with MSC by means of the so-called “anti-scenarios”;

• Semantic gap. MSC is an inter-process specification language which is ba-
sically considered to be declarative rather than imperative. Since MSC
cannot “force” anything to happen, it lacks an executable semantics. Ac-
cordingly, MSC models do not have a perfect semantic mapping to the
intra-process state/transition-based specification formalisms such as State-
chart.

From the above limitations we can see that MSC lacks some necessary ingre-
dients for being an ideal scenario-based system behavior modeling language. This
explains why MSCs are typically used to specify expected scenarios of behaviors
in the requirement stage, or used as test scenarios in the validation activities.

In view of these problems, Damm and Harel propose Live Sequence Chart
(LSC) [DH99, DH01, HM03], a powerful scenario-based executable modeling (i.e.,

18 2. System Modeling and Specification

used as driving charts) and requirement specification (i.e., used as monitored
charts) language. LSC makes fundamental and significant extensions to MSC by
adding chart-level (universal, existential) and element-level (hot, cold) modalities
and by distinguishing between possible, mandatory and forbidden behaviors.

LSC overcomes the limitations of MSC as follows:

• Enhancing the expressive power. LSC can represent liveness requirements.
Such an expressive power of LSC is comparable to that of temporal logics
and state/transition-based executable specifications such as Statechart [HT03].

• Bridging the semantic gap. Since LSC has executable semantics, it is possi-
ble to synthesize a state/transition-based system from a collection of LSC
charts, provided that these charts are consistent [HK00, HK02, HKP05,
KPP09].

Fig. 2.5 shows two example universal LSC charts. They together describe the
scenario of opening the cover of a cell phone: “if the user opens the cover, then
the chip must ask the speaker to ring, and ask the display to show something
(in this order); and if the chip asks the display to show something, then the
display must show the current time and toggle the background color”.

user cover chip display

open

ring

display

speaker

(a) chart 1

chip display

showtime

togglebackground

display

(b) chart 2

Figure 2.5: Two universal LSC charts that describe the scenarios of opening the
cover of a cell phone.

The most notable thing is that LSC extends MSC with the ability to describe
possible (may) and mandatory (must) behaviors, both at the entire chart level
and at the individual chart element level.

At the whole chart level, there are two types of charts, i.e., the universal charts
(uLSCs) and the existential charts (eLSCs). A uLSC chart (see Fig. 2.5(a)) is
used to specify requirements that all the possible runs of the system implemen-
tation must satisfy. It often consists of a prechart (Fig. 2.5(a), dashed hexagon)
that specifies the “premise”, and a main chart (Fig. 2.5(a), solid rectangle) that
specifies the “conclusion” (or “obligation”). The prechart is followed by the main

2.3 Live Sequence Charts 19

chart, and this captures the requirement that if along any system run the scenario
depicted in the prechart occurs, then the run must match the scenario depicted
in the main chart immediately afterwards. In comparison, an eLSC chart is used
to specify sample interactions that at least one system run must satisfy. The
typical usage of eLSC is to specify system tests.

At the chart element level, there are cold (denoted by dashed lines) and hot
(denoted by solid lines) temperatures for the elements (i.e., condition, location,
message, cut), denoting the may- and must- requirements, respectively. A hot
message must be received after it is sent, whereas a cold one (Fig. 2.5(a), the
“open”-labeled message) may be sent but not received, which can be viewed as
a communication failure due to e.g. lossy channels. Cold and hot conditions are
provisional and mandatory guards, respectively. If a cold condition is violated,
then the chart context (i.e., the immediate enclosing scope of this condition, which
is either a control structure like if-then-else or loop, or a subchart, or the whole
chart itself) is exited, and execution may continue. If a hot condition evaluates
to false, then it means that the “hard” requirements have been violated. In this
case, execution may not continue and the system should abort. In modeling
practice, cold conditions can be used to construct e.g. the while loops and repeat-
until loops, whereas hot conditions can be used as assertions, or used to specify
anti-scenarios.

A basic universal LSC over a finite set P of processes (or agents, objects), a
finite message alphabetM , a finite set Act of chart-local actions that represent the
computational steps, and a prechart Pch, is a structure S = (E,4,Pch, λ) [HT03]
where:

• (E,4, λ) is a labeled partial order with λ : E → Σ∪{Pch}, where E is the
set of events in the system, and Σ as defined w.r.t. (P,M,Act) is the set of
actions of all the processes in the system;

• Pch = (EPch,4Pch, λPch) is the prechart such that EPch ∩ E = ∅;

• There is a unique event e0 which is the least under 4, and λ−1(Pch) = e0;
and

• Ch = (E ′,4′, λ′) is a chart called the main chart, where E ′ = E − {e0},
4′=4|E′×E′ , and λ′ = λ|E′×Σ.

In the above definition of universal LSC, e0 represents the event that the
prechart is matched in the system run. The definition requires that whenever the
prechart Pch is executed, it must be followed by an execution of the main chart.

An executable (operational) semantics for LSC was defined by Harel and
Marelly [HM03]. LSC can also be equipped with a trace-based semantics [KHP+05].
Informally, by trace-based semantics, a chart is subject to linearization to get a
trace language that it accepts. Verification problems such as asking whether a

20 2. System Modeling and Specification

system satisfies an LSC specification can boil down to the problems of language
inclusion or language emptiness, depending on whether the specification is given
as a universal chart or an existential chart.

LSC has been extended with timing constructs [HM02] to model real-time
systems. To follow the spirits of timed automata [AD94], a special single object
Clock has been added, which has a single property Time and a method Tick.
The object, its property and method can be referred to in the chart. By adding
these constructs into LSC, it has been shown that a rich set of timing constraints
(such as timers and message delays) and time-based behaviors (such as time
events [HM02]) can be characterized.

It is worth noting that UML 2.0 Sequence Diagram [Org05] has adopted some
important features from MSC-2000 [IT99] such as the InteractionFragment, the
CombinedFragment, and the operators for choice, sequential, parallel and iterative
compositions of either plain interactions or combined fragments. More notewor-
thy things in UML 2.0 Sequence Diagram are the neg operator that defines traces
that may not occur, and the assert operator that defines traces that must occur
at a given point in the scenario.

UML 2.0 Sequence Diagrams are able to express some kind of stronger (i.e.,
mandatory and forbidden) requirements. But since in UML 2.0 Sequence Dia-
grams, assert and neg are used as operators rather than as modalities, there are
some confusions with the semantics of assert and neg [HM08]. This is also a
reason why we prefer LSC in this project.

2.4 Requirement specification

Many formal verification techniques need two inputs: a system model and a prop-
erty specification. The latter input describes which aspects we want to validate
the system against. It will drive or steer the verification engine to explore the
relevant state space of the system.

Property specification languages and system behavior modeling languages
serve different purposes:

• A system modeling language cares about the system dynamics and imple-
mentation details, i.e., to describe the “how”. During system modeling, one
strives to describe the system by providing sufficient details, i.e., to yield a
complete description of the system behaviors; and

• A property specification language just intends to query whether the system
satisfies some specified properties, i.e., to describe the “what”. In this ac-
tivity, one typically makes a partial or incomplete description of a particular
aspect of the system.

In this section we consider how to specify the user requirements on the system.

2.4 Requirement specification 21

Intra-process user requirements

Intra-process user requirement considers whether a single process or several pro-
cesses as a whole (i.e., the “product” process) satisfy some properties such as
reachability, safety, liveness and responsiveness.

In formal verification (e.g., model checking), temporal logics are often used to
specify the properties of state/transition-based models. We choose the CTL logic
as the specification language. CTL has the following abstract syntax:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | E3ϕ | A3ϕ,

where p is an atomic proposition.
After being added with ∧, ⇒, E2 and A2 in the usual manner, CTL can

conveniently describe some very useful property patterns such as:

• (reachability) E3: “eventually on some path . . .”;

• (safety) A2: “always on all paths . . .”;

• (safety) E2: “always on some path . . .”, or alternatively, “something will
possibly never happen”;

• (liveness) A3: “eventually on all paths . . .”; and

• (responsiveness) A2(ϕ ⇒ A3φ): “whenever ϕ, then eventually φ on all
paths afterwards”.

Inter-process user requirements

Inter -process user requirement (a.k.a. scenario-based requirement) considers
whether a set of processes in the system interact properly.

In telecommunication areas, MSC-like formalisms are often used to specify
scenario-based user requirements. In this project, we choose LSC as the spec-
ification language. LSC achieves the goal of property specification through its
monitored charts. These charts act as observers: they just “listen” and never
“speak”. Monitored charts can also have the universal or existential types, rep-
resenting the requirements over all possible system runs and over at least one
satisfying system run, respectively. Furthermore, since monitored universal LSC
charts and driving LSC charts share a lot of semantic interpretations, adopting
LSC as requirement specification language will enable us to validate LSC-modeled
system against LSC-specified requirements in a natural and seamless way.

Chapter 3

System Validation

We give an overview of a number of approaches to the validation of real-time
embedded systems, namely model checking, model-based testing, and methods
that combine model checking, model-based testing and controller synthesis. The
necessary background knowledge and preliminaries for presenting our research
questions for this thesis will be provided.

3.1 Model checking

This section introduces the principles of and tool support for model checking real-
time systems against intra-process requirements. The work on checking systems
against scenario-based requirements will be given in Sections 3.6.1 and 5.1.

3.1.1 Model checking real-time systems

Model checking [CGP99] is an automatic technique for verifying finite state con-
current systems. Given a behavioral model of the system such as a Kripke struc-
ture (or labeled state transition system) and a user requirement on that system
such as a CTL or LTL temporal logic formula, model checking can decide whether
the user requirement is satisfied by means of exhaustive state space exploration.

In the continuous real-time setting, such a behavioral model could be a timed
automaton, and a user requirement could be a formula of (real-time) temporal
logic, say (Timed) CTL. A basic type of user requirement is reachability. For
example, E3ϕ asks whether some “good” system states as described by ϕ can be
eventually reached. Model checking a TA against a reachability property consists
of exploring the state space of the TA to see if the goal states can be reached
after a sequence of action and time delay transitions.

As we know from Section 2.2, the state space SS ⊆ L × R≥0 of a TA is of
infinite size. This implies that we cannot solve the problem straightforwardly,
because model checking algorithms operate only on finite state systems. In order

3.1 Model checking 23

to obtain a finite representation of the infinite state space of a TA, an equivalence
class of TA semantic states can be aggregated as a clock region [AD94]. A TA
has only finitely many regions. Existing state space exploration algorithms can
be applied on these regions.

Model checking of timed automata is decidable, and the notion of region pro-
vides the means of concluding this, giving a finite-state abstraction with respect
to time-abstracted bisimulation. Compared with the fine-grained state space par-
titioning using regions, an improved symbolic approach works on clock zones. A
clock zone ϕ is an equivalence class of semantic states that correspond to the so-
lution set of a conjunction of clock constraints each of which puts a lower or upper
bound on a clock or on difference of two clocks. If a timed automaton has k clocks,
then the set ϕ is a convex set in the k-dimensional Euclidean space. Zone parti-
tioning is much coarser than region partitioning, therefore clock zones are more
compact representation of equivalence classes of TA semantic states than clock
regions. Zones can be represented as difference bound matrices (DBM) [Dil89].
The operations on zones such as intersection, clock reset and delaying can be
efficiently encoded as operations on the respective DBMs.

The decidability and complexity of a number of basic problems of timed au-
tomata have been reported, e.g.:

• The timed bisimulation problem is decidable in EXPTIME [Cer92];

• The untimed bisimulation problem for timed automata is decidable in EX-
PTIME [LY97];

• The time-abstracted simulation and bisimulation problems are decidable for
timed automata [Alu99];

• The reachability and emptiness problems for timed automata are PSPACE-
complete, and they can be solved in time O(m · k! · 4k · (c · c′+ 1)k)), where
m is the number of edges in the TA, k is the number of clocks, c is the
largest numerator in the constants in the clock constraints, and c′ is the
least-common-multiple of the denominators of all the constants in the clock
constraints [AD94];

• The cycle detection problem, i.e., whether there is an infinite timed word
accepted by the TA (or whether we can reach a cycle in the region graph
of the TA from the initial state), is PSPACE-complete [AM04];

• The universality problem is undecidable [AD94]; and

• The trace inclusion and trace equivalence problems are undecidable [AM04].

In particular it has been shown that:

• The TCTL model checking problem is PSPACE-complete [ACD93].

24 3. System Validation

3.1.2 Uppaal

Uppaal [LPY97, BDL04] is an integrated environment for modeling, simulation
and verification of TA-modeled timed systems. A system is modeled as a par-
allelly composed network of timed automata, which have CCS-style hand-shake
synchronization and CBS-style broadcast synchronization. Uppaal also supports
shared-variable communication.

The Uppaal modeling language makes several extensions to the TA formalism
as proposed by Alur and Dill [AD94], e.g., bounded integer and boolean variables,
committed locations, and urgent channels.

Uppaal uses a fragment of the CTL logic as its property specification lan-
guage. As mentioned in Section 2.4 there are five property patterns, namely,
E3, E2, A3, A2 and ϕ φ. However, nested quantification is not supported in
Uppaal, except in ϕ φ which is a shorthand for A2(ϕ⇒ A3φ). Furthermore,
bounded liveness properties such as ϕ ≤t φ can be verified in Uppaal by using
auxiliary clocks or auxiliary TA such as a test automaton [ABL98].

3.2 Model-based testing

This section will sketch out the general framework of model-based testing, with
an emphasis on the principles of conformance testing with labeled transition
systems [BAL+90, Tre99, BT00] and their timed versions.

3.2.1 Overview

Software testing consists of the “dynamic verification of the behavior of a program
on a finite set of test cases, suitably selected from the usually infinite executions
domain, against the expected behavior” [AMB+04].

Classical software testing are typically in the forms of:

• manual testing, where the tester manually derives and executes test cases
based on the (informal) requirement documents; or

• scripted testing, where the tester achieves automated test execution by run-
ning pre-programmed test scripts using some test execution tools.

Manual testing and scripted testing have been widely used in practice. How-
ever, there are some problems inherent to them:

• Late testing. Constructing test cases in these two paradigms usually hap-
pens only at the very late stage of the software life cycle;

• Manual design of test cases. This is a labor-intensive and error-prone step,
and thus constitutes a major bottleneck towards fully automating the test-
ing process;

3.2 Model-based testing 25

• Poor adaptability. In case the software requirement specification is changed,
all test cases and test scripts need to be manually re-designed. This is a
severe problem for regression testing;

• Unguaranteed test coverage. Since the functionality aspects of the SUT are
not systematically explored, it is difficult to evaluate the thoroughness of
the test activities and to gain full confidence on the system in question; and

• Poor traceability. Due to the limitations of test suite maintenance and
management, it is difficult to always relate each test case to the system
requirement specifications.

Model-based testing (MBT) can be defined as the process of generating test
cases with oracles from a behavioral model [UL06]. A model is the starting point
for testing. The oracle information enables us to decide whether a test has passed
or failed.

MBT has the ingredients of an ideal validation method as mentioned in Section
1.3. Specifically, MBT features:

• Early validation. Executable software models can be validated against the
requirement specifications. In this way, some design errors such as conflict-
ing (contradictory) software requirements can be spotted in the prototyped
artifacts in the very early stage of the software development life cycle;

• Automated testing. Automatic generation of test cases from models and
automatic execution of them on the implementation under test (IUT) will
significantly improve the efficiency of the test activities;

• Better adaptability. The requirement changes require only modifications of
the models. Re-generation of tests and executing them is much less costly
than those with manual or scripted testing;

• Rigorous and systematic testing. Many formal methods and techniques
such as static analysis and formal verifications can be applied on models of
software systems. Algorithmic explorations of system models can generate
a large number of test cases and can guarantee required test coverage; and

• Visualization and animation. Some models have executable semantics.
Tests may be visually animated and simulated, and counterexamples of
model checking can be effectively debugged on these models.

As far as the different dimensions of software quality are concerned (see Sec-
tion 1.3), model-based testing is mostly devoted to functionality testing [BGT04],
i.e., we care whether the system does what it is supposed to do in terms of e.g.
correct responses to given stimuli. Furthermore, model-based testing is mainly
considered a kind of black-box testing, i.e., we do not use information about the
internal structure of the implementation code.

26 3. System Validation

3.2.2 Conformance testing framework

In many cases, model-based testing aims to show that a system implementation
behaves in compliance with its behavioral model. In this sense it is a kind of
conformance testing. This section presents the principles of conformance testing,
which mainly follow the theoretical framework by Tretmans [Tre08].

The setup of model-based conformance testing is shown in Fig. 3.1. Under
the model-based testing framework, test generation and test execution could be
two separate phases. In this case, it is called off-line testing (Fig. 3.1(a)). They
can also be tightly combined and thus go hand in hand. In this case it is called
on-line testing (Fig. 3.1(b)).

off-line
test execution

implementation

test verdicts

specification test directives
conformance

relation

test suite

test
generation

(a) off-line testing

on-line
test execution

implementation

test verdicts

specification test directives
conformance

relation

test
generation

input
stimuli

output
responses

(b) on-line testing

Figure 3.1: Schematic views of model-based conformance testing.

Let SPEC be the set of specification models. A specification model s ∈ SPEC
(Fig. 3.1(a)) is assumed to faithfully characterize the expected behaviors of a
system in question. It specifies what the system should do and what it may not.

Let IMP be the set of implementation models. An implementation model
i ∈ IMP is assumed to accurately model the actual behaviors of a physical im-
plementation.

The actual physical implementation under test (IUT) as the test subject is
treated as a black box (Fig. 3.1(a)), whose internal structure is unknown to us.
The only way a tester can control and observe an IUT is via its well-defined
interfaces. By providing stimuli to and observing responses from IUT, the tester
can conclude whether the IUT works as intended.

To enable formal reasoning of the specification and the implementation, a test
assumption has to be made: any physical implementation IUT can be represented

3.2 Model-based testing 27

as some formal object iIUT ∈ IMP.
A conformance relation (a.k.a. implementation relation) (Fig. 3.1(a)) speci-

fies in what sense we can say that an implementation complies with its specifica-
tion. It can be expressed as a binary relation between specification models and
implementation models:

imp ⊆ IMP× SPEC

An implementation model i ∈ IMP conforms to its specification model s ∈
SPEC if (i, s) ∈ imp. This is also denoted as i imp s.

Let TEST be the set of test cases. A test case t ∈ TEST is an experiment
that is carried out on the implementation. It includes the tester stimuli and the
expected responses from the implementation. If all the observed actual responses
coincide with the expected responses 4, then the implementation i is said to pass
the test t, denoted as i passes t; if some observed actual responses do not coincide
with the expected responses, then i is said to fail t, denoted as i fails t. Thus
the successful (passes) and unsuccessful (fails) test execution procedures can be
viewed as binary relations:

passes ⊆ IMP× TEST

fails ⊆ IMP× TEST

The aim of conformance testing is to establish a link between the conformance
relation and the pass/fail test verdicts.

Given a specification model s and a conformance relation imp, a test suite
Ts (Fig. 3.1(a)) is sound with respect to imp if, all conforming implementations
pass all the test cases in Ts. In other words, if a certain implementation i fails
Ts, then i indeed does not comply with the specification.

A test suite Ts is exhaustive (or complete) with respect to imp if, all imple-
mentations that pass Ts are indeed conforming implementations. In other words,
if a certain implementation i does not comply with the specification, then there
must exist a test case t ∈ Ts such that i fails t.

In Fig. 3.1 the user-specified test directives are used to focus testing efforts
on a reduced set of all the possible behaviors. They could be in the forms of
coverage criteria, test purposes, or fault models, among others.

3.2.3 Conformance relation

A widely used implementation relation is the input-output conformance (ioco)
relation [Tre96b]. This relation is defined on IOLTS implementation models

4If the implementation behaves non-deterministically, then the condition needs to hold for
all possible test runs. Similarly for fails, if the implementation behaves non-deterministically,
then the corresponding condition needs to hold for at least one test run.

28 3. System Validation

and LTS specification models. These models share the same input and output
alphabets.

Informally, an implementation i is ioco-conforming to a specification s if, when
any experiment that is derived from s is executed on i:

• if there is an output from i, this output should be allowed by s; and

• if there is no output from i, and the system does not progress unless a
further tester input stimulus is provided, i.e., the system has a quiescence
“action” at this state, then this quiescence should be allowed by s.

The essential idea of the ioco-conformance relation is that the implementation
should do what it is supposed (or allowed) to do (w.r.t. the specification), and
should never do what it is not allowed to do (also w.r.t. the specification).

For real-time system, a number of conformance relations have been defined
on the timed labeled transition system (TLTS) implementation and specification
models, such as tioco (timed ioco) [KT04], rtioco (relativized timed ioco) [LMN04]
and tiocoM (timed ioco for quiescent real-time systems) [BB04]. The basic idea
of them is to adapt the ioco-conformance that is interpreted on untimed traces
of input/output actions to the timed settings.

3.2.4 Test case

A test case is a description of how the tester carries out a finite experiment on the
implementation. If the specification model has totally predictable behaviors (i.e.,
upon receiving an input stimulus it produces at most one output response), then
a test case could be a preset linear sequence of stimuli and responses. Otherwise,
it needs to be adaptive and thus might be in the form of a tree.

A test case typically needs to satisfy the following requirements:

• finiteness. A test case should reach a test verdict within finitely many steps;

• test verdicts. A test case in the end should draw a conclusion on whether
the test run is successful, unsuccessful, or it has deviated from the given
test purpose, and then to issue a pass, fail or inconclusive verdict, re-
spectively;

• determinism. In response to an output from the implementation, the test
case should offer no more than one test stimulus, i.e., from the perspective
of the implementation, a test case is a deterministic process; and

• input-enabledness. A test case should be able to handle output responses
from the implementation at any time, thus it should be input-enabled.

3.2 Model-based testing 29

In the context of conformance testing with labeled transition systems, a test
case could be an IOLTS. In the timed settings, test cases could be preset linear
sequences of timed inputs [SVD01, HLN+03], or adaptive sequences of timed
inputs which depend on the observation history [KT04, BB04], or a timed labeled
transition system.

3.2.5 Test execution

Intuitively, executing a test case t on an implementation i consists in parallelly
composing t with i, and letting them interact with each other via the input and
output actions (i.e., letting them synchronize on the pre-defined channels). Once
a terminal (sink) state of t is reached, the test execution will terminate and a
test verdict will be issued.

If on the parallel composition of a test case t and an implementation i there
is a run r that ends in a terminal state of t, then r is called a test run. An
implementation i is said to pass t if all possible test runs of the composition t || i
end up with a pass-verdict.

3.2.6 Test generation

Test generation consists in algorithmically and systematically deriving test cases
from a given specification model w.r.t. a given conformance relation, and under
the guidance of user-specified test directives such as coverage criteria and test
purposes (Fig. 3.1(a)). For on-line testing, in order to determine which input
stimulus will be generated in the next step, the test generation procedure may
need one more input: the output response that is produced by the implementation
in the previous test execution step (Fig. 3.1(b) 5).

Let imp be an implementation (conformance) relation. In a most generic form,
the test generation can be formulated as a function:

genimp : SPEC→ 2TEST

A test generation algorithm is sound w.r.t. imp if, for all specification models
s ∈ SPEC, the generated test suites genimp(s) = Ts ∈ 2TEST are sound. Likewise,
the algorithm is exhaustive w.r.t. imp if, for all s ∈ SPEC, the generated Ts
is exhaustive. An ideal test generation algorithm should be both sound and
exhaustive.

5In Fig. 3.1(b), although the input stimuli and output responses logically constitute a loop,
they do not necessarily constitute a strictly alternating sequence of inputs and outputs. To
highlight this subtlety they are drawn in dash-dot lines.

30 3. System Validation

3.2.7 Test selection

Generating sound test suites is a reasonable and practical requirement. However,
in most cases, generating exhaustive test suites requires that infinitely many test
cases be derived. In practice, this is not possible. Hence we are faced with the
problem of test selection, i.e., to choose finitely many finite-length test cases to
exercise the behaviors of the implementations.

An ideal test selection should help minimize the test costs and at the same
time maximize the likelihood of fault detection.

Depending on whether the tester has in mind some general selection criteria
or some prioritized test objectives, model-based testing could be:

• randomized testing [TB03];

• fault model-based testing ;

• coverage-based testing. In this case, test selection may be based on some
structural coverage criteria such as state coverage and transition coverage
of an LTS, or based on equivalence class partitioning or boundary value
analysis of data-intensive systems; or

• targeted testing, where the tester tries to focus testing efforts on some par-
ticular portions of the system or on some particular properties of the system
[HN04, JJ05].

For on-line testing of real-time systems, the test selection usually lies in the
non-deterministic test case construction procedure. As such, it is usually ran-
domized, e.g. in tools TorX [BB05] and Uppaal-Tron [LMN04].

For off-line real-time testing, test selection can be based on various criteria
such as:

• fault model, which are often used by methods that reduce timed testing to
untimed FSM-based testing, e.g. [ENDKE98] and [SVD01];

• structural coverage or behavioral coverage, which could be e.g. location
(state) coverage, edge (transition) coverage or symbolic state equivalence
class coverage [NS03]; or

• test purpose, which could be given as temporal logic formulas [HLN+03],
observer automata [BHJP04] or test views [CO00].

In this project we consider targeted testing. To steer the test selection we
may specify a test purpose which could be in the forms of temporal logic proper-
ties [HLN+03], test automata (observer automata) [JJ05] or interaction scenarios
such as MSCs [DEF+96, HN04] and LSCs.

3.3 Correct-by-construction via synthesis 31

3.3 Correct-by-construction via synthesis

Formal reasonings of software designs using techniques such as static analysis
and model checking are generally considered a posteriori approach to quality
assurance. If some faults are revealed by these techniques, the design models
have to be modified accordingly. This process will be repeated until the system
is gradually refined to the desired level of details.

The correct-by-construction approach to software development aims at auto-
mated system design, where the problem is: given the model of an open system
and given our requirements on the system, how can we synthesize an executable
system that is guaranteed to satisfy the requirements? Clearly, this is an a priori
approach to quality assurance.

3.3.1 Control system model

From a control engineering perspective, an embedded application consists of:

• the plant (Sys), which is an open system to be controlled; and

• the controller (C), which is the control program.

The plant and the controller are modeled separately. The plant can be viewed
as the “environment” of the controller. The plant and the controller communicate
via synchronization channels (i.e., coupled message sending/receiving actions).
The controller provides input stimuli to and accepts output responses from the
plant. The inputs are controllable by the controller, but the outputs are not
controllable by the controller.

Fig. 3.2 uses an elevator system as the illustrating example. The controller
issues commands goUp, goDown and stop (in solid lines) to the plant via actu-
ators, and it observes outputs ascending, descending, approaching and arrived (in
dashed lines) from the plant via sensors.

3.3.2 Controller synthesis

A control objective specifies what properties the system in question is supposed
to satisfy. For examples,

• reachability property, which requires to eventually enforce some good states,
e.g. in ACTL 6 formula A3 goodState; and

• safety property, which requires to constantly avoid some bad states, e.g. in
ACTL formula A2 ¬badState.

6ACTL is the universal fragment of CTL where path quantifiers can only be A.

32 3. System Validation

controller
synthesis

elevator
system

elevator
software

"never miss
user requests"

open system
to be controlled

(Sys)

controller
(C)goUp, goDown, stop

(controllable)

ascending, descending,
approaching, arrived

(uncontrollable)

winning strategy
as the controller

Figure 3.2: An example control problem of the elevator system.

Given a plant model Sys and a control objective ϕ, the control problem
asks whether there exists a controller C such that Sys supervised by C (denoted
Sys || C) will satisfy ϕ, no matter how Sys behaves. See Fig. 3.2.

The interactions between C and Sys can be viewed as game activities, where
C is a game player and Sys is the game opponent. The control objective ϕ may
be viewed as a winning condition of the game. Since only a subset of the actions
are controllable by C, the plant Sys could be “hostile” in the sense that it may
spoil the game by not cooperating with C.

With this game-theoretic interpretation, the control problem is equivalent to
the game solving problem: there exists a controller if and only if the game is
solvable.

If there exists a controller, the controller synthesis problem is to come up
with such a controller (Fig. 3.2, dash-dotted lines). This is equivalent to finding
a winning strategy for the game. Such a strategy is used as the controller.

3.3.3 Controller synthesis for discrete event systems

Controller synthesis for discrete event systems was introduced by Ramadge and
Wonham [RW87] some two decades ago. Since then the problems in this field
have been studied extensively. In a simple case, a plant Sys is modeled as a
finite automaton where the actions (or the edges that they are attached to) Act
are classified as the controllable ones (Actc) that are controlled by the controller,
and the uncontrollable ones (Actu) that are only controlled by the plant (i.e., the
“hostile” environment). A control objective may be a predicate over the state
space specifying some “good” states to be enforced or some “bad” states to be
avoided.

3.3 Correct-by-construction via synthesis 33

A strategy will give instructions on which controllable action to take. If the
strategy gives instructions based on the information of a trace that has been
made so far, it is said to be a history-based strategy; if it is based only on the
information of the current state, it is a state-based (or memoryless) strategy.

A strategy is winning from a state s if, all strategy-supervised system runs
that start from s win (or do not lose) the game. Specifically, if a strategy is
winning from the initial state s0, it is called a winning strategy.

It has been proven that for a finite state game and an ω-regular winning
condition, the control problem and the controller synthesis problem are decidable.

Two-player games include:

• turn-based games, where the player and the opponent take turns firing their
choices;

• competing game, where in each step the player can be preempted by the
opponent; and

• concurrent games, where each player chooses a move, and the next state is
the result of the combination of the two choices.

3.3.4 Controller synthesis for timed systems

A timed control problem asks: given a real-time system model Sys and a property
(control objective) ϕ which is to be enforced on Sys, whether there exists a timed
control program (or controller) C such that Sys supervised by C satisfies ϕ, i.e.,
(Sys || C) |= ϕ? A timed controller synthesis problem consists in finding such a
timed controller if it ever exists.

Maler and colleagues [MPS95] propose to characterize the control problem for
timed systems using game theories. An open system is specified using a timed
game automaton (TGA).

In order to enforce the property ϕ, a strategy can guide the system to take
appropriate controllable actions at appropriate moment in time. It could be:

• history-based strategy, which is a partial function from the set of runs of
the system (i.e., sequences of alternating discrete and time steps) to the set
Actc ∪ {λ}, where λ stands for a special move which means “do nothing at
this moment in time”; and

• state-based (“memoryless”) strategy, which is a partial function from the
set of states of the system to the set Actc ∪ {λ}.

If all possible runs of a strategy-supervised system win the game, the strategy
is said to be a winning strategy.

34 3. System Validation

Since the pioneering work on controller synthesis for dense-timed systems
by Maler and colleagues [MPS95], there have been a number of improvements
[AMPS98, TA99, AT02].

Initially, controller synthesis for timed systems is based on backward fix-point
computations of the set of winning states [MPS95, AMPS98]. To improve the
efficiency, a partially on-the-fly method for timed game solving is proposed [TA99,
AT02]. However, the method involves an expensive preprocessing step in which
the quotient graph of the dense time transition system w.r.t. time-abstracted
bisimulation needs to be built.

More recently, a truly on-the-fly algorithm for efficient timed game solving has
been proposed [CDF+05] and implemented in the tool Uppaal-Tiga [BCD+07].
This algorithm combines forward symbolic explorations and backward propaga-
tions of information of winning states and losing states, and yields very encour-
aging performance results [CDF+05].

Uppaal-Tiga accepts a network of timed game automata and a reachability
or safety winning objective (in ACTL formulas) as inputs. It can check whether
the timed game is solvable, and if yes, it can generate a winning strategy for the
controller.

A winning state is a state from which there is a winning strategy. If the initial
state is not a winning state, but a certain winning state can be reached from the
initial state if the environment is willing to cooperate in some way (i.e., it is not
“hostile” enough), then for the game there is a cooperative winning strategy from
the initial state. Uppaal-Tiga is able to generate such a cooperative winning
strategy if it ever exists [BCD+08].

3.4 Dealing with partial observability

In an ideal situation of the game problem, one can make the “perfect information”
assumption, i.e., at any state, the controller (or strategy) C knows precisely what
state the plant Sys is in, or C is able to deduce what state Sys is in by analyzing
the outputs that are uncontrollable but all observable.

In a more practical setting, C will only have imperfect (or partial) information
of Sys due to e.g.:

• limited-precision sensors, which means that the occurrences of some outputs
from Sys may escape from our observation;

• limited-precision measurements and noises, which means that by reading a
data variable we can get only an interval of possible values rather than an
exact value; and

• imperfect clock synchronizations, which means that different clocks do not
always progress at the same speed, and therefore we cannot read the exact
values of the clocks in Sys.

3.4 Dealing with partial observability 35

In the above cases, either not all uncontrollable actions are observable, or
the Sys state information cannot be exactly read. Such systems are said to be
partially observable.

Fig. 3.3 gives an example of a turn-based (untimed) game structure under
partial observation. In each turn, Player 1 chooses a letter (a or b), and Player
2 resolves non-determinism by choosing the successor state. However, Player 1
cannot distinguish between states l2 and l′2, or between l3 and l′3. She can only
make four possible observations (obs1 - obs4) on the system states. If the winning
objective of Player 1 is to have observation obs4, i.e., to reach state l4, then for
this partially observable game there is no surely winning strategy for Player 1.

l1start l2

l′2

l3

l′3 l4

a, b

a, b

a

bb

a a, b
a, b

a, b

obs1 obs2 obs3 obs4

Figure 3.3: A turn-based game with imperfect information [CDHR06].

The partial observability of timed systems can be characterized in different
ways:

• controllable-observable partitioning approach [BDMP03], i.e., to partition
the alphabet Σ of actions into a set ΣC of controllable actions and a set ΣE

of uncontrollable actions. Here ΣE is further partitioned into a set Σo
E of

observable actions and a set Σu
E of unobservable actions. Similarly, the set

X of clocks of Sys is partitioned into a set Xo of observable (or readable)
clocks and a set Xu of unobservable (or unreadable) clocks; and

• observation-based approach [CDL+07], i.e., to give a finite number of possi-
ble observations to be made on the system configurations. These observa-
tions provide the sole basis for the strategy of the controller.

Partial observability adds extra difficulty to the control problem and the con-
troller synthesis problem. For discrete event systems, these problems are by now
well studied and well understood, e.g., by means of nonemptiness test of alter-
nating tree automaton [KV97] or subset construction [CDHR06].

The timed control problem under partial observability is in general undecid-
able [BDMP03]. By fixing the resources of the controller (i.e., a maximum number

36 3. System Validation

of clocks and maximum allowed constants in clock guards), the decidability can
be regained [BDMP03]. In a recent work [CDL+07], by means of knowledge-
based subset construction, it is possible to transform a class of timed control
problems under imperfect information into those under perfect information. An
efficient algorithm to solve these games and to synthesize state observation-based
stuttering-invariant (OBSI) winning strategies has been proposed [CDL+07] and
implemented in Uppaal-Tiga [BCD+08]. These existing algorithm and in-house
tool support motivate us to adopt the state observation-based approach to partial
observability in this project.

Some partial observability information can be quantified such as the toler-
ance metrics of clock deviations in the robust semantics of robust timed au-
tomata [GHJ97, AM04]. While previous work on robust timed automata in-
vestigates the problems of emptiness [GHJ97] and safety [DWDMR08] checking,
in this project we will study the partial observability in the context of (timed)
controller synthesis and its applications in system validations.

3.5 The inter-process perspective

The development so far in this chapter (Chapter 3) concerns with only the state/
transition-based models and the intra-process requirements. This section consid-
ers some scenario-based counterparts of those problems.

Scenario-based testing and verification

Given a system model and given a scenario-based requirement which is spec-
ified as e.g. a set of sequence diagrams, the goals of scenario-based testing and
verification are to check whether the system operates in the desired manner as
specified by those scenarios.

For requirements that are specified using LSCs, the verification must make
sure that the LSC-required scenarios will indeed happen (within certain time
frames) and that the LSC-disallowed scenarios (the anti-scenarios) will indeed
never happen.

The LSC Play-Engine [HM03] implements the play-in/play-out methodology.
It checks whether a set of monitored universal as well as existential charts can
be satisfied by the executions that are induced by a set of driving (universal)
charts. Monitored universal charts are used for the purpose of run-time verifica-
tion, whereas monitored existential charts are used to specify tests. This kind of
testing has been applied to industrial case studies [KSH07].

MSCs as test purposes can be used to specify scenario-based requirements on
state/transition-based system models such as SDL, and then translated to TTCN
for test execution [GH02].

Scenario-based synthesis

3.6 Cross-fertilization 37

Synthesis from state/transition-based models has been long studied. If we
use scenario-based formalisms such as LSC to model the inter-process behav-
iors of a system, then we are faced with the problem of synthesizing executable
state/transition-based models from scenario-based descriptions. A major concern
of this synthesis is how to bridge the gap between these two paradigms and their
semantics.

A prerequisite for scenario-based synthesis is that the scenario descriptions
are consistent, i.e., there are no conflicting requirements on different scenario
fragments. Consistency is also called realizability, implementability, i.e., whether
there exists any executable system model that satisfies the requirements.

Since being consistent is equivalent to the existence of a satisfying system
model, a constructive proof of consistency can be used to synthesize such an
executable system model.

3.6 Cross-fertilization

Model checking techniques have reached an encouraging level of academic and
industrial maturity. In its initial form model checking operates on state transition
systems (e.g. Kripke structures) and temporal logic specifications (e.g. CTL and
LTL properties) [CGP99]. By means of model transformations, model checking
can accommodate a wider class of modeling and specification paradigms, e.g.,
inter-process behavioral models and scenario-based requirements.

Although model checking is invented as a formal verification method, its many
algorithms, techniques and tools could aid and support analysis problems beyond
formal verification. For example, a number of model checking algorithms such
as state space traversal and on-the-fly exploration have been adopted by model-
based test generation; and quite a few model checkers such as SMV, SPIN and
Uppaal have been employed to generate counterexamples/witnesses as test cases.

The original purpose of controller synthesis is for automated system design.
A synthesized controller can guarantee some nice properties, no matter how the
environment behaves. This lends itself to the testing of embedded software sys-
tems which are characterized by environment uncertainties. In this case testing
can be viewed as playing a game towards the test purpose (winning objective).

3.6.1 Scenario-based analysis via model checking

Scenario-based models such as LSCs characterize the system-wide behaviors nat-
urally. Given a set of driving universal LSC charts modeling the behaviors of the
system in question, and given a monitored universal or existential chart specifying
the requirements on the system, we identify the following problems of scenario-
based analysis:

38 3. System Validation

• consistency checking, i.e., whether there is any internal contradiction among
the set of driving charts;

• reachability (satisfiability) checking, i.e., whether an existential chart can
be satisfied by a set of driving charts; and

• property checking, i.e., whether a universal chart can be satisfied by a set
of driving charts.

It has been shown that by constructing a transition system which has one
process for each actual object, consistency check can be encoded as a model
checking problem [HKP05].

The reachability checking [HKMP02] and property verification [BS07] prob-
lems can both be reduced to model checking problems, and they are both PSPACE-
complete.

3.6.2 Test generation via model checking

The capability of state space exploration and the features of counterexample/wit-
ness generation of model checkers can be utilized in model-based test generation.

It is possible to directly employing model checkers for model-based test gen-
eration. The principle is that test purposes [CSE96, EFM97, HLN+03, BHJP04]
or test coverage criteria (such as control-flow coverage [GH99, RH01, HLSU02,
HLN+03, GRR03, BHJP04], data-flow coverage [HLSU02, HCL+03, HLN+03,
BHJP04] or mutation test coverage [ABM98, AB99]) can be encoded as tempo-
ral logic (such as CTL or LTL) formulas, which together with the system mod-
els will be fed into the model checkers (such as SMV [GH99, RH01, HCL+03],
SPIN [EFM97, GH99, RH01, GRR03], Uppaal [HLN+03, BHJP04]). A wit-
ness/counterexample can be generated by the model checkers as a test case for a
reachability/safety property. For example, off-line generation of test cases in this
way has been implemented in the tool Uppaal-Cover [Hes07], which proves to
be useful for some industrial case studies [HP06].

Another line of research is not to employ a model checker directly. Rather
they adapt the model checking algorithms for test generation. This idea has been
embodied in tools like:

• Trojka [dVT00], which adapts the state space exploration algorithms of
the Spin model checker for on-the-fly testing;

• TGV [JJ05], which can handle non-deterministic specifications. A test
purpose can be provided to guide test selections; and

• Uppaal-Tron [LMN04], which exploits the Uppaal symbolic state space
manipulation and exploration algorithms to do on-line test generation and
execution.

3.6 Cross-fertilization 39

3.6.3 Testing as playing games

In software testing, the tester and the implementation under test (IUT) can be
viewed as being engaged in binary synchronizations on input and output channels.

From a game theory point of view, the testing activity can be viewed as a
two-player game between the tester and the IUT (Fig. 3.4). The tester as a
game player masters a set of controllable actions (i.e., the input stimuli), and
the IUT as the game opponent masters a set of tester-uncontrollable actions
(i.e., the output responses). The tester tries to uncover faults by offering certain
controllable inputs, whereas the IUT may try to “hide” them by producing some
outputs that are not desired by the tester.

strategy
synthesis

implementation
under test

tester

(test generation)

consult

controllable actions

uncontrollable
(but observable) actions

strategy
(test case)

open system
game model

winning
objective (test

purpose)

conform?

guidance

Figure 3.4: The schematic view of testing as playing games.

The tester may have a goal (test purpose), e.g., to eventually arrive at some
good states (reachability objective), or to constantly avoid some bad states (safety
objective). These test purposes can serve as the winning objective of a reachability
game and safety game, respectively.

Given a game model and a winning objective, it is possible to synthesize a
strategy (resp. an adaptive test) for the player (resp. the tester). A winning
strategy will constantly guide the player what to do (i.e., which input stimulus
to offer) such that the winning objective will be met. See Fig. 3.4.

If the winning objective is a reachability objective, the synthesized winning
strategy can be used as a test case for reachability testing, i.e., the tester takes
initiatives to offer test inputs and makes observations, and she is guaranteed
to arrive at the goal state if the IUT is correct. If the winning objective is a
safety objective, the synthesized winning strategy can be used to validate the

40 3. System Validation

implementation against the safety requirement, i.e., the tester takes initiatives
to offer test inputs and makes observations, and she is guaranteed to constantly
avoid the bad states if the IUT is indeed correct.

Chapter 4

The Thesis

4.1 Research questions

In this PhD project, we will be interested in the validation of real-time and embed-
ded systems in the context of model-based development, where we are challenged
by (combinations of) environment uncertainties, complex inter-process interac-
tions, quantitative timing constraints and partial observability.

We would like to know whether scenario-based and game-theoretic approaches
are (conceptually as well as algorithmically) well-suited to address these chal-
lenges.

Specifically, is it possible to adapt some of the existing methods and techniques
on scenario-based analysis, model checking, model-based testing and controller
synthesis to the above-mentioned settings?

In particular, we pose the following research questions:

Question 1 : Can we verify a state/transition-based real-time system against
scenario-based user requirements that are specified using Live Sequence
Charts (LSCs)?

Question 2 : Can we model and specify a real-time system entirely using
LSCs, and carry out automated scenario-based analysis, verification and
synthesis?

Question 3 : Can we view real-time embedded system testing as playing a
timed game, and synthesize winning strategies for the given test purposes,
and use the strategies as test cases for conformance testing? Specifically,

(3a) What if there exist only possibly rather than surely winning strategies?
and

(3b) What if we have only imperfect information of the system in question?

42 4. The Thesis

4.2 Thesis summary

We present a global picture of the working framework for this PhD project (Fig.
4.1). The shaded portions represent external inputs. The dash-dot rectangles
sketch out the pieces of work in this PhD project, answering research questions
#1 (paper A), #2 (paper B), #3 (paper C), #3a (paper D) and #3b (paper E),
respectively.

As can be seen from Fig. 4.1, the work in this thesis constitutes two parts:

• Scenario-based approaches to system analysis, verification and synthesis,
with the aims of revealing system-wide faults which arise from incorrectly
designed inter-process interactions, and synthesizing executable object sys-
tems directly from the (checked-to-be-consistent) scenario-based models;
and

• Game-theoretic approaches to reachability testing and safety validation,
with the aims of checking whether the implementation of a real-time em-
bedded system complies with its intra-process specification model (more
precisely the timed automaton model) w.r.t. given test purposes in differ-
ent settings.

These two parts are connected in the sense that:

• Game-theoretic testing can be carried out on the translated and synthesized
real-time system models of timed game automata in Paper B (Fig. 4.1,
dashed line connection); and

• We can possibly substitute a CTL test purpose (Fig. 4.1) with a monitored
LSC chart. For example, if we replace it with an existential chart, then
we can conduct game-theoretic reachability testing against scenario-based
requirements.

4.2 Thesis summary 43

test execution
and case studies

(surely)
winning
strategy

partially-
observable

winning strategy

cooperative
winning
strategy

LSC-to-TA
translation

monitored
LSC chart

driving
LSC charts

(one-TA-
per-chart)

(scenario-based
requirement
specification)

(scenario-
based
system
model)

LSC-to-TA
translation

translated
network of TAs

translated
observer TA

LSC-to-TA
translation

(one-TA-
per-process)

translated
network of TAs

consistency
checking
(Uppaal)

CTL
property

CTL
property

CTL
property

property
verification
(Uppaal)

controller
synthesis

(Uppaal-TIGA)

model
checking
(Uppaal)

(one-TA-
per-process)

test case
generation

test case

implementation
under test

test
verdicts

paper Bpaper A

paper Cpaper D paper E

Env/Sys
partitioning
directives

CTL
test purpose

partial
observability
information

controller
synthesis

(Uppaal-TIGA)

controller
synthesis

(Uppaal-TIGA)

network of
TAs

(compose)

network of
TGAs

Figure 4.1: A global picture of real-time embedded system validation.

44 4. The Thesis

Paper A: Verifying Real-Time Systems against Scenario-
Based Requirements

Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen, Saulius Pusinskas

In: Proc. 16th International Symposium on Formal Methods (FM’09), Eind-
hoven, the Netherlands, November 2009, LNCS 5850, Springer.

We propose an approach to automatic verification of real-time systems against
scenario-based requirements. A real-time system is modeled as a network of
timed automata (TA), and a scenario-based requirement is specified as a moni-
tored Live Sequence Chart (LSC). We make timed extensions to a kernel subset
of the LSC language, and define a trace-based semantics. By equivalently trans-
forming an LSC chart into an observer TA and then non-intrusively composing
this observer automaton with the original system model, the problem of verifying
a real-time system against a scenario-based requirement reduces to a CTL real-
time model checking problem. We show how this is accomplished in the context
of the Uppaal model checker.

Contributions

• We define a kernel subset of the LSC language that is suitable for capturing
scenario-based requirements of real-time systems, and define a trace-based
semantics;

• We propose to translate an LSC chart into an observer timed automaton
based on the concepts of LSC cuts and advancement steps, and prove the
behavior-equivalence of this translation;

• We present a method of embedding the translated observer timed au-
tomaton in the Uppaal verification framework, and prove the behavior-
equivalence of this embedding; and

• We describe a prototype tool implementation of this approach, and show
how it works on an example.

4.2 Thesis summary 45

Paper B: Scenario-Based Analysis and Synthesis of Real-
Time Systems using Uppaal

Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen, Saulius Pusinskas

In: Proc. 13th Conference on Design, Automation and Test in Europe (DATE’10),
Dresden, Germany, March 2010.

We propose an approach to scenario-based analysis and synthesis of real-time
embedded systems. The inter-process behaviors of a system are modeled as a set
of driving universal Live Sequence Charts (LSCs), and the scenario-based user
requirement is specified as a separate monitored universal or existential LSC. By
translating the set of LSCs into a behavior-equivalent network of timed automata
(TA), we reduce the problems of model consistency checking and property ver-
ification to CTL real-time model checking problems. Similarly, we reduce the
problem of centralized synthesis for open systems to a timed game solving prob-
lem. We implement a prototype LSC-to-TA translator, which can be linked to
our LSC editor and the existing real-time model checker Uppaal and timed game
solver Uppaal-Tiga. Preliminary experiments on a number of examples and a
case study show the applicability and effectiveness of this approach.

Contributions

• We propose timed extensions to a subset of the LSC language for modeling
and property specification of real-time systems, and define a trace-based
semantics;

• We present a method to translate an LSC system into a behavior-equivalent
network of timed automata, where each process (instance line) in each
chart corresponds to a timed automaton. We analyze the complexities
of the translated timed automata, and prove the behavior equivalence of
the translation;

• We show how to reduce the problems of scenario-based consistency check-
ing and property verification to CTL real-time model checking problems in
Uppaal, and reduce the problem of centralized synthesis for open systems
to a timed game solving problem in Uppaal-Tiga; and

• We implement a prototype “one-TA-per-instance line” translator, and re-
port preliminary experimental results.

46 4. The Thesis

Paper C: A Game-Theoretic Approach to Real-Time Sys-
tem Testing

Alexandre David, Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen

In: Proc. 11th Conference on Design, Automation and Test in Europe (DATE’08),
Munich, Germany, March 2008.

We present a game-theoretic approach to the testing of real-time embedded sys-
tems whose models may have output uncertainty and timing uncertainty of out-
puts. By modeling a system in question using timed game automata (TGA) and
specifying the test purpose as an ACTL formula, we employ a recently developed
timed game solver Uppaal-Tiga to synthesize winning strategies, and then use
these strategies to conduct black-box conformance testing of the system. The
testing process is proved to be sound and complete with respect to the given test
purpose. Case study and preliminary experimental results indicate that this is a
viable approach to real-time embedded system testing.

Contributions

• We show how to formulate timed testing as a timed game problem, and
how to use tool to synthesize winning strategies as test cases;

• We show how to execute winning strategies as test cases in the context of
real-time conformance testing;

• We prove the soundness and completeness of the proposed test methods;
and

• We conduct experimental evaluation of test generation with case studies.

4.2 Thesis summary 47

Paper D: Cooperative Testing of Timed Systems

Alexandre David, Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen

In: Proc. 4th Workshop on Model-Based Testing (MBT’08), Budapest, Hungary,
March 2008, ENTCS 200(1): 79-92, Elsevier.

This paper deals with targeted testing of real-time embedded systems. The test-
ing activity is viewed as a game between the tester and the system under test
(SUT) towards a given test purpose (winning objective). The SUT is modeled
using timed game automata (TGA) and the test purpose is specified as an ACTL
formula. We employ a timed game solver Uppaal-Tiga to check if the timed
game is solvable, and if yes, to generate a winning strategy and use it for black-
box conformance testing of the SUT.

Specifically, we show that in case the game solving yields a negative result,
we can still possibly test the SUT against the test purpose. In this case, we use
Uppaal-Tiga to generate a cooperative winning strategy. The testing process
will continue as long as the SUT reacts to the tester stimuli in a cooperative
manner. In this way we can hopefully arrive at a certain state in the “surely
winning” zone of the game state space, from which cooperation from SUT is
no longer needed. We present an operational framework of cooperative winning
strategy generation, test case derivation and test execution. The test method is
proved to be sound and complete. Preliminary experimental results indicate that
this approach is applicable to non-trivial timed systems.

Contributions

• We show how to test real-time embedded systems when the timed game
between the tester and the SUT is not solvable with respect to the given
test purposes (winning objectives);

• We present algorithms for the generation and execution of test cases in the
context of conformance testing;

• We prove the soundness and exhaustiveness of the proposed test methods;
and

• We conduct experimental evaluation of the methods, and report the per-
formance results on a case study.

48 4. The Thesis

Paper E: Timed Testing under Partial Observability

Alexandre David, Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen

In: Proc. 2nd International Conference on Software Testing, Verification, and
Validation (ICST’09), Denver, Colorado, April 2009.

This paper studies the problem of model-based conformance testing of partially
observable timed systems. We model the system under test (SUT) using timed
game automaton (TGA) that has internal actions, output uncertainty and tim-
ing uncertainty of outputs. We define the partial observability of SUT using a
set of observable predicates over the TGA semantic state space, and specify the
test purposes as ACTL logic formulas. A partially observable timed game solver
Uppaal-Tiga is used to generate winning strategies, which are then used as test
cases. We propose a conformance testing framework for this particular setting,
define a partial observation-based conformance relation, present the test execu-
tion algorithms, and prove the soundness and completeness of this test method.
Experiments on some non-trivial examples show that this method yields encour-
aging results.

Contributions

• We propose a framework of conformance testing of uncontrollable timed
systems which are only partially observable;

• We define an observation-based conformance relation between the specifi-
cation and the implementation;

• We propose test execution algorithms based on the conformance relation,
and prove their soundness and completeness; and

• We conduct case studies of test generation and report the experimental
results. In particular, we show how the method scales and how it performs
with different levels of controllability and observability; we also conduct
comparative studies of test generations from fully observable and partially
observable system models.

Chapter 5

Related Work

5.1 Scenario-based analysis and synthesis

This section surveys scenario-based analysis and synthesis methods, techniques
and their tool support, both untimed and timed. Among the various visual
formalisms for scenario-based modeling and specification, our emphasis will be
laid on LSC.

5.1.1 Scenario-based consistency checking

A scenario-based model that consists of a set of driving universal LSC charts is
consistent if and only if these charts are not internally contradictory, i.e., they can
be satisfied by a certain state-based object system [HK00]. Consistency checking
helps uncover conflicting requirements in the early stage of system design.

The smart play-out mechanism [HKMP02] implements a lightweight consis-
tency checking for open systems. The idea is that given an environment stimulus,
the Play-Engine will employ model checking techniques to compute a path (i.e.,
a sequence of reaction steps) for the system processes, such that along this path
there will be no internal contradiction among all the involved processes. In this
method, each instance line (process) will be represented by an automaton, and
the consistency checking will be encoded as a model checking problem. Follow-up
work [HKP04] supports smart play-out (and thus consistency checking) of timed
systems.

The consistency checking as implemented in smart play-out is a local approach
in the sense that the Play-Engine looks only one super-step ahead in the LSC state
space. This implies that if the environment is too “hostile”, the play-out could be
spoiled after interacting with the environment for a certain number of super-steps.
To overcome this, Kugler and colleagues [KPP09] present a complete approach to
consistency checking, i.e., they can thoroughly check whether the different system
processes are consistent, no matter how the environment behaves.

50 5. Related Work

An alternative approach [SD05a] to consistency checking of LSC charts is
to transform LSCs into CSP processes, also one process per LSC instance line.
Existing model checker FDR is employed to check the consistency.

The method of [SD05a] handles untimed LSC charts only. The method
of [KPP09] supports time-enriched LSC which is defined in [HM03]. They use
a special Clock object. This object has a property Time which is an integer
variable, and a method Tick which each time increases Time by 1. Timing con-
straints in the charts take the form of only “Time op (time variable + delay
expression)”, where op is a relational operator.

Similar in spirit to [HKMP02, HKP05] and [SD05a], our LSC consistency
checking (Paper B) also needs to translate each instance line to a process (au-
tomaton). A resemblance between [KPP09] and our method is that complete
consistency checking is supported; a difference is that in our time-enriched version
of LSC, there could be TA-like real-valued clock variables and clock constraints.

5.1.2 Scenario-based verification

By “scenario-based verification”, we mean that either the system in question is
modeled using a scenario-based formalism (more precisely LSC in this section),
or we have scenario-based requirements in the forms of e.g. observer automata
or LSC.

Table 5.1 summarizes the different approaches to scenario-based verification
of reactive and real-time systems. Among them the combination of “inter-process
model (LSC)” and “observer automata” will not be discussed here, because as
far as we know there is very little research on this topic.

Table 5.1: Classification of scenario-based verification techniques.
Requirement specification

observer
automata

scenario-based
requirement (LSC)

System

intra-process
model (TA)

[ABL98, HLS99, Lah08] [LK01, DK01, KW01,
STMW04, BGS05,
KTWW06]

inter-process
model (LSC)

/ [HM03, Bon05, CHK08,
SD05a, WRYC04]

Intra-process model, observer automata requirement

Observer automata (a.k.a. test automata [ABL98]) is an approach to charac-
terization of complex properties or scenario-based requirements. The basic idea
of this verification is to construct a number of auxiliary automata to capture
the scenario-based requirements, and then use these automata to “observe” the
original system models. This approach should have the following characteristics:

5.1 Scenario-based analysis and synthesis 51

• compatibility, i.e., the observer should be able to communicate with the
original system through synchronization channels or shared variables;

• non-intrusiveness, i.e., the observer should only monitor the progress of
the system model passively and thus be side-effect free. For instance, an
observer timed automaton does not need to emit messages to the original
system model, and it does not need to have location invariants to force the
system to progress; and

• efficiency, i.e., the observation should incur as little communication and
computation overheads as possible.

An observer timed automata approach to real-time system verification is sug-
gested in [ABL98], which aims to reduce safety and bounded liveness property
(i.e. property stating that some desired state will be reached within a given time)
checking to reachability checking of the product automaton of the original system
model and the observer automaton. An application of this technique for property
verification has been described in [HLS99].

An observer timed automaton can describe scenario-based requirements such
as “if process A sends message m1 to B, and C sends m2 to D (in any order),
then E will send m3 to F within 3− 5 time units”.

The observer automata approach has been used to model check practically
relevant systems such as the B&O power controller [HLS99] and some timed
safety instrumented systems [Lah08]. Case studies indicate that the approach is
effective.

However, there are some limitations with the observer automaton approach,
especially when it comes to real-time system verifications:

• Manual constructions of observer automata could be labor-intensive and
error-prone, and this is especially the case when the observer automaton
grows large;

• To synchronize with the observer automata, the original system model may
need to be modified and annotated. During this modification process, some
new errors might be introduced. Things become more complicated if new
timing errors are introduced; and

• Since the observer automata and the original system engage in normal chan-
nel synchronizations, they specify process interactions only liberally (i.e., no
particular sending and receiving process is specified for a synchronization
on a certain channel (message label)). To capture non-trivial scenario-
based requirements, the synchronizations between the observer automata
and the original system should be carefully designed by using e.g. auxiliary
variables, semaphores or locking mechanisms.

52 5. Related Work

Our method of verifying TA-modeled real-time systems against scenario-based
requirements (Paper A) relies on a reduction to the observer automata approach.
Compared with existing observer automata approaches, our observer automaton
is constructed automatically, and it is guaranteed to observe the original system
in a non-intrusive way. Furthermore, the automatically created auxiliary vari-
ables in our observer automata will enable our method to communicate with the
original systems to faithfully reflect the LSC requirements.

Intra-process model, scenario-based requirement

LSCs can be used to capture scenario-based requirements on state/transition-
based system models. Lettrari and Klose [LK01] introduce a number of LSC
features into UML Sequence Diagrams, and develop a tool to monitor and test the
executable UML models. Damm and Klose [DK01] propose to use LSCs to specify
scenario-based requirements on Statemate models, and then carry out model
checking. This methodology has been concretized and implemented in [KW01],
where an LSC chart is transformed into a timed büchi automaton (TBA), which
is further transformed into a temporal logic formula. Further descriptions of how
LSC as a specification language can be used in a UML verification environment
for the Rhapsody tool are presented in [STMW04].

In [BGS05], LSC is applied in hardware verification, where the system models
are given in Verilog and the user requirements are specified as LSCs. These LSCs
are translated to LTL formulas and then fed into the verification environment
FormalCheck.

Verification techniques that are based on LSC-to-temporal logic translation
suffer from scalability problems. Industrial case studies [Klo03] show that the LTL
formulas grow large even for LSCs of moderate size, and thus formal verification
becomes expensive. To overcome this limitation, Klose and colleagues [KTWW06]
investigate efficient model checking of Kripke structures against LSC require-
ments. The authors identify two sub-classes of LSCs that are easier to verify,
although they are less powerful than full LTL model checking.

In our method of verifying TA-modeled real-time system against LSC-specified
user requirements (Paper A), we translate a monitored LSC chart to an observer
automaton and then compose it with the original system in a non-intrusive way.
Since our observer automaton is tightly coupled with the original system, a very
simple CTL property 7 can be extracted from the observer automaton to cap-
ture the LSC requirements. In this way we avoid translating LSCs to complex
temporal logic formulas.

Inter-process model, scenario-based requirement

7For example, for a monitored universal chart L, if the minimal cut of the main chart of L
corresponds to location lmin in the observer automaton, and the maximal cut corresponds to
lmax, then we can extract from the observer automaton the CTL formula A2(lmin ⇒ A3 lmax).

5.1 Scenario-based analysis and synthesis 53

In this case, the system is modeled as a set of driving universal LSC charts
and the requirement is specified as a set of monitored universal or existential
charts. Monitored universal charts should not be hot-violated, and monitored
existential charts should be matched at least once [HM03, Bon05].

In the execution (or play-out) [HM03] of scenario-based models, the Play-
Engine checks whether the monitored charts are respected. This is enhanced in
the smart play-out mechanism, where planned state space exploration via model
checking is added to the Play-Engine to bypass some avoidable hot violation situa-
tions that are caused by some “blind” interactions among the system processes. In
a case study of a telecommunication application, Combes and colleagues [CHK08]
check whether a set of monitored existential charts can be satisfied by a set of
driving charts without violating any of them. Their verification method is based
on the play-out and smart play-out mechanisms in the Play-Engine. The method
supports timing constraints.

As mentioned earlier, LSC can be encoded as CSP processes. The CSP verifi-
cation tool FDR can be employed to check whether a set of monitored existential
charts can be satisfied by a set of driving universal charts [SD05a]. This work
considers untimed charts only.

Wang and colleagues [WRYC04] employ constraint logic programming (CLP)
techniques to enable the symbolic execution of LSC models. Their implemen-
tation supports both universal and existential charts, and supports timing con-
straints.

Compared with [SD05a, CHK08], our method (Paper B) of property verifi-
cation (i.e., to check whether an LSC-modeled system satisfies an LSC-specified
requirement) allows the requirements to be specified as universal charts. Further-
more, our method uses TA-like clock variables and clock constraints.

5.1.3 Scenario-based synthesis

Automated synthesis of state/transition-based executable object systems from
scenario-based model is the key objective of a long-known dream of “automated
system design”.

According to [BS07], the synthesis problems can be classified as

• centralized synthesis, where a single strategy (which can be represented as
a single automaton) will be used to supervise all the system processes; and

• distributed synthesis, where the strategy will be distributed among all the
system processes such that each process will be individually supervised by
a “local” strategy.

Bontemps and colleagues [BS07] present a number of theoretical results on
the decidability and complexity of synthesis from LSC specification models. For

54 5. Related Work

an open system, the problem of centralized synthesis is complete for EXPTIME,
and the problem of distributed synthesis is undecidable.

Algorithmic synthesis for LSC is first studied by Harel and colleagues [HK00]
and later detailed in [HK02]. They define the notion of consistency of LSC mod-
els, relate it to the problem of realizability or implementability, and then generate
a state-based object system (e.g., a collection of finite state machines or state-
charts) as a witness of proving this realizability. Since this approach needs to
construct a global system automaton, it suffers from the state explosion problem.
Moreover, the approach is mainly a theoretical contribution. The authors con-
tinue with that research by applying new verification-based techniques [HKP05].
They present a sound but not yet complete algorithm for statechart synthesis,
and make a prototype implementation. To tackle the problem of incomplete
synthesis of [HKP05], Kugler and colleagues [KPP09] apply the results from con-
troller synthesis to the LSC synthesis problem. In this way, they can guarantee
that if an LSC requirement model is indeed realizable, then they can synthesize
an executable state-based object system that satisfies the model, no matter how
the environment processes behave. This approach has been implemented in the
Play-Engine as an extension to the smart play-out mechanisms. The method can
support timing constraints.

A game-theoretic approach to synthesis from LSCs is presented in [BSL04]. By
equipping LSC with a game-based semantics, the synthesis problem is reduced
to a parity game problem. Initially, only a small subset of LSC features are
considered, e.g., there is no LSC element of conditions [BSL04]. More features
of LSC have been added later [Bon05]. The incomplete distributed synthesis has
been implemented in the tool REMoRDS [Bon05].

Other attempts on synthesizing distributed processes from LSC by using CSP
as the carrier have been reported in [SD05b, WQSD07]. CSP algebraic laws are
used to group the behaviors of each object. This overcomes the problem of
constructing a global system automaton [HK02]. However, there is no real-time
support.

More recently, a compositional approach to synthesis has been proposed [KS09],
where small parts of the scenario-based specification can be synthesized separately
and then composed together.

Our method of scenario-based synthesis (Paper B) is a kind of centralized
synthesis for open systems. Compared with [KPP09], our complete synthesis
supports TA-like clock variables and clock constraints.

5.2 Model-based testing of real-time systems

This section surveys some existing work on conformance testing of real-time sys-
tems based on the timed automaton models.

5.2 Model-based testing of real-time systems 55

5.2.1 Models

Different testing methods may need different variants of the timed automaton
models. These models may characterize the systems in question at different
granularities or at different levels of abstraction.

Since testing is an interaction activity between the tester (or environment)
and the system under test (SUT), it makes sense to model the inputs (stimuli)
from tester to SUT and the outputs (reactions) from SUT to tester separately.
Hence the refined versions of timed automaton where inputs are distinguished
from outputs. There are a large body of testing work based on the TIOA (timed
input/output automaton) models [SVD01, ENDKE98, HNTC99, LMN04], the
TAIO (timed automaton with inputs and outputs) model [KT04], the TIOSM
(timed input/output state machine) model [CKL98] or the more fundamental
timed input/output transition system (TIOTS) models [BB04].

When modeling reactive and real-time systems, an important decision is:

• Should we assume perfect knowledge of the system, and thus model it as a
deterministic system? or

• Should we abstract away some low-level details of the system, and thus
model it as a non-deterministic system?

Depending on how much non-determinism are allowed, we classify the timed
automaton models as:

• (Fully) deterministic timed automata [SVD01, HLN+03]. In order to ensure
“testability”, the timed automaton models should be controllable in the
sense that it should be possible for an environment (tester) to drive a timed
automaton through all of its transitions [SVD01]. Controllability 8 requires
a timed automaton (more precisely a TIOA) to have the following features:

– determinism: the same source location and the same action will lead
to the same target location;

– isolated output : for each state, if an output is enabled, then no other
input or output transition is enabled at that state; and

– output urgency (or “input-enabledness only in the interior of the in-
variant of each location” [SVD01]): for each state, if there is an output,
this output must be produced immediately and cannot be delayed.

The full determinism assumptions lead to a number of nice properties of
the system models. However, they come with some disadvantages: firstly,

8In this thesis, if a timed automaton model does not satisfy the “isolated output” or “output
urgency” requirements (i.e., in some state of the timed automaton there are output uncertainty
and/or timing uncertainty of outputs), then it is said to be an uncontrollable timed automaton.

56 5. Related Work

it requires more efforts to ensure that the models are indeed fully deter-
ministic; furthermore, systems specified in this way sometimes appear to
be over-specified ;

• Restricted non-deterministic timed automata [NS01a, Kho02, NS03]. In or-
der to model the systems in a natural and faithful manner, and at the same
time to regain the nice properties of fully deterministic timed automata,
some determinizable subclass of timed automata are used for modeling
the systems and for subsequent test generation from those determinized
models. For example, the Event Recording Automaton (ERA) [AFH94]
in [NS01a, NS03], the Determinizable Timed Automaton (DTA) [KJM03]
and the set-exp-Finite State Automaton (se-FSA) [Kho02] that does not
require output urgency; and

• Non-deterministic timed automata [CO00, KT04, LMN04]. In many cases
of system modeling, non-determinism is desired in order: (1) to naturally
describe the unforeseeable interleaved executions of different components of
a concurrent system; (2) to allow implementation freedom (i.e., not to over-
specify the systems in question); and (3) to focus only on the interesting
behaviors of the systems. Non-deterministic timed automata can suit these
needs.

The timed I/O game automata (TIOGA) model that we use in this thesis has
output uncertainty and timing uncertainty of outputs. Despite some restrictions
and assumptions such as deterministic transition (i.e., same source and same
action lead to same destination) and input-enabledness, our model can be viewed
as non-deterministic in the sense that after the tester offers an input stimulus,
she cannot predict the exact out response.

5.2.2 Conformance relations

Various conformance relations for real-time system testing have been proposed
over the years [ST08]. A number of them can be viewed as timed extensions to
the classical ioco relation [Tre99] that is used for untimed systems:

• tioco (timed ioco) [KT04], which is defined by including time delays in the
set of observable outputs;

• rtioco (relativized timed ioco) [LMN04], which takes the explicitly modeled
environment of the SUT into account.

For both conformance relations, the incorporation of time makes it possible to
check whether an output from the SUT is produced too early or two late. Only

5.2 Model-based testing of real-time systems 57

timely outputs are considered valid behaviors. Otherwise the SUT is considered
non-conforming to the specification.

Another timed extension to ioco is tiocoM [BB04], which is developed for
quiescent real-time systems. The basic idea is that to conclude that there is a
quiescence in a certain state, we do not need to wait forever without observing
an output. Rather we can make that conclusion as soon as a given period of time
M has elapsed, during which there is no output.

Comparisons of several conformance relations for real-time systems have been
made in [KT06, ST08], where it has been shown that tioco and rtioco are essen-
tially equivalent.

The conformance relation that we use in Papers C and D is tioco. In Paper E,
we propose a new conformance relation poco, which requires state observations
to be made on partially observable timed systems.

5.2.3 Test case representation

A real-time test case t is derived from the real-time system model, and will be
applied on the system under test. Basic requirements are that: t should be an
experiment which specifies the tester inputs and desired delay, and should have
a test verdict of pass or fail in the end.

Depending on whether the system under test has a deterministic model or
non-deterministic model, test cases could be:

• (for deterministic systems) preset linear sequences of timed inputs [SVD01,
HLN+03]; or

• (for non-deterministic systems) adaptive tests which depend on the obser-
vation history [KT04, BB04]. They can be defined as a function which maps
a timed trace observed so far to a certain suggested input action, or the
instruction of “delay at this moment”, or a test verdict [KT04]. They can
also be defined as a timed labeled transition system (TLTS) [BB04]. Es-
sentially, tests for non-deterministic systems are tree-structure descriptions
of the tester’s strategy against the SUT.

In this thesis, a winning strategy will be used as an adaptive test case. The
next move suggested by the test case depends on the current observation (Papers
C and D) of the system, or on the observation history made so far (Paper E).

5.2.4 Test generation and execution

To generate preset test sequences, classical FSM-based test generation algorithms
such as the W-method [Cho78] can be applied on the discretized model of a deter-
ministic timed system [SVD01]. Real-time model checkers such as Uppaal can
also be used to generate a witness/counterexample as a test sequence [HLN+03].

58 5. Related Work

The non-deterministic test case construction procedure for untimed labeled
transition systems [Tre96b] can be adapted to the timed settings [BB04, KT04].
To generate adaptive test trees, the procedure involves the non-deterministic
and recursive application of the three steps, i.e., to offer an input, to wait for an
output, or to terminate the test case and announce pass. Compared with [Tre96b],
some timing constraints are added to the former two steps in [BB04, KT04]. The
soundness [BB04, KT04] and exhaustiveness [BB04] properties are proved of the
test generation procedures.

Test generation from and execution on real-time systems can be two separate
steps of the software testing process (Fig. 3.1(a)). In this case, test cases are
first derived by the test generators, and then fed into the test execution engines.
This is usually referred to as off-line testing [HLN+03]. With off-line testing,
one can do a priori test selection and posterior test coverage evaluation based
on certain criteria. However, compared with untimed systems, off-line testing
of real-time systems is more likely to suffer from the scalability problems: on
one hand, for large systems, off-line testing can easily encounter the state space
explosion problem when it tries to systematically explore the whole state space;
on the other hand, off-line generated timed test cases (trees) may be very large.

An alternative approach is to combine test generation and execution and let
them progress hand in hand (Fig. 3.1(b)). In this case, one test input is generated
at a time, then it is offered to the SUT, and then the output from the SUT
together with its timing is observed and checked against the specification model
to see if it is allowed. Only if it is allowed, a next test input can be generated.
The process repeats in this way. This is known as on-line testing [LMN04, BB05].
On-line testing suffers less from the state space explosion problem. Furthermore,
it can be used on non-deterministic models. The disadvantages are that the
implementation of this method is likely to introduce extra communication and
computation delays that may need to be compensated, and the fault diagnosis is
in general more difficult.

Our methods can be viewed as off-line testing, because the test case (strategy)
generation does not need to interact with the SUT. Since our methods allow
output uncertainty and timing uncertainty of outputs, they can be applied on a
wider class of models than those of conventional off-line testing methods such as
[SVD01, HLN+03]. Furthermore, in our targeted testing methods, for each given
test purpose only one test case will be generated. Using particular test purposes
instead of the more generic test selection criteria such as structural coverage or
fault models ensures that our off-line methods generate only a limited number of
test cases.

5.2.5 Tools and experiences

To implement the automatic test case generation technique which features sym-
bolic reachability analysis and equivalence class partitioning [NS01a], a prototype

5.3 Games, controller synthesis and their applications 59

test generation tool RTCAT [NS01b] has been developed. Application of the
technique and tool to a realistic case study, the Philips Audio Protocol, shows that
encouragingly small test suites can be generated.

The on-line on-the-fly testing technique is an important feature of the (un-
timed) TorX test methodology and tool. Researchers have successfully adapted
this technique to the timed settings. Tools and experiences include:

• Uppaal-Tron (testing real-time systems online) [MLN04], which has
been applied to an industrial electronic refrigeration controller case [LMNS05].
The general finding is that real-time online testing is an effective means of
detecting discrepancies between the model and the implementation in prac-
tice; and

• (timed) TorX [BB05], which conducts on-the-fly testing of real-time sys-
tems where quiescence is allowed.

In addition there are on-the-fly test generation tool and experience for real-
time systems such as:

• TTG (timed test generation) [KT04, KT09], which implements the on-
the-fly generation of (digital-clock) tests. The tool has been applied to
Bounded Retransmission Protocol (BRP), a protocol for transmitting files
over an unreliable (lossy) medium. Experiments with BRP show that only
a few tests suffice to cover thousands of reachable symbolic states in the
specification.

Uppaal-Cover [Hes07] is a tool for off-line testing of real-time systems. A
number of guidance for test selection are supported by Uppaal-Cover, such
as test purposes in the forms of temporal logic formulas, coverage criteria and
observer automata. An industrial case study with a WAP protocol [HP06] us-
ing Uppaal-Cover has successfully revealed several discrepancies between the
model and the actual implementation.

5.3 Games, controller synthesis and their appli-

cations

5.3.1 Games for untimed testing

The idea of using games for (untimed) testing is initially proposed by Alur and
colleagues [ACY95], where a major aim is to generate adaptive test cases for non-
deterministic systems. A more detailed description of using games in testing is
given by Yannakakis [Yan04], where the systems are modeled as a (deterministic
or non-deterministic) FSM. Quiescence at the IUT side is modeled as a timeout

60 5. Related Work

or null output. It has been shown that the complexity of the existence of almost
surely (a.s.) winning adaptive strategies is EXPTIME-complete [ACY95].

Test generation by means of turn-based reachability games has been studied
in [NVS+04, BGNV05]. Abstract State Machine (ASM) is used as the system
model. In order to generate optimal strategies, reachability games are formulated,
analyzed and solved by means of linear programming and value iteration methods.
This approach is supported by the tool SpecExplorer. There are extensions
of this work to on-the-fly online testing [VCST05] and optimized test design by
reinforcement learning [VRC06].

The work of synthesizing reactive planning tester for non-deterministic sys-
tems [VRKE07] is similar to a game-theoretic approach. The difference is that
it makes a trade-off between random selection of test stimuli and perfect plan-
ning of test stimuli (e.g., in terms of winning strategies) such that models with
abundant data variables (e.g., EFSM) can be handled.

Compared with existing work, our methods have a number of distinguishing
features: firstly, they can be applied to real-time systems; secondly, they can
handle both reachability and safety games; thirdly, they can be adapted to both
the cooperative and the partial observability cases.

5.3.2 Timed controller synthesis and its applications

The timed game solver Uppaal-Tiga accepts a network of timed game automata
and an ACTL control objective as inputs. For partially observable systems, the
inputs also include a set of observable predicates on the system state space.
Uppaal-Tiga has the following features [BCD+08]:

• synthesizability checking;

• winning strategy generation. A strategy could be stored in the forms of
federations of clock zones or clock difference diagrams (CDDs) [LPWY99].
It can also be output as pseudo code;

• cooperative winning strategy generation. In this case, the first part of the
strategy claims only “possibly winning”, and the second part guarantees
“surely winning”;

• strategy generation for partially observable timed systems; and

• strategy generation for büchi winning conditions.

In combination with Simulink and Real-Time Workshop, Uppaal-Tiga
has been used to construct a tool chain for synthesis, simulation and automatic
generation of production code for a climate control system [JRLD07]. Uppaal-
Tiga has also been used for autonomous robot control [AAG+07].

5.3 Games, controller synthesis and their applications 61

More recently it has been shown that Uppaal-Tiga, when combined with
Phaver and Simulink, can be used to achieve the tasks of automatic synthesis
of provably correct, robust and near-optimal controllers for a real industrial case
study — an Oil Pump Control problem [CJL+09].

In addition to being used to synthesize strategies for timed control problems,
timed games and Uppaal-Tiga can be used to study the relationships between
timed games themselves. In [CDL09], the problem of checking whether one timed
game automaton simulates another one can be reduced to the problem of solving a
reachability game, which can be tackled in Uppaal-Tiga. The tricky encoding of
the simulation checking problem as a (competing) timed game has been improved
in [BCDL09], where the problem is instead encoded as a turn-based game.

Furthermore, the problems of consistency checking and composability check-
ing in the fields of model-based development based on timed interface theories can
also be encoded as timed games and thus solved using Uppaal-Tiga [DLL+10].

Compared with the afore-mentioned applications, our methods put timed
games and controller synthesis in a model-based testing context. This enables
us to test real-time embedded systems that are characterized by environment
uncertainties, quantitative timing constraints and partial observability.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

As mentioned in Section 4.1, the scope of this PhD project is validation of real-
time embedded software systems in the context of model-based development. The
challenges are that while validating these systems, we have to consider (combina-
tions of) the environment uncertainties, the complex inter-process interactions,
the quantitative timing constraints and the partial observability. The overall ob-
jective is to come up with methods, techniques and prototype tools for early-stage
verification and testing of the behaviors of such systems.

By answering the research questions in Section 4.1, in short, we conclude
that game-theoretic and scenario-based approaches are well-suited to address these
challenges conceptually, algorithmically and computationally.

As depicted in Fig. 4.1, the work in this thesis constitutes two related parts:
scenario-based approaches to system analysis, verification and synthesis; and
game-theoretic approaches to reachability testing and safety validation.

In the first part of work (Research questions #1, #2), we make timed exten-
sions to LSC such that TA-like real-valued clock variables, clock constraints and
clock resets can be used in the LSC models. We define trace-based semantics for
the time-enriched LSC. Based on these semantics, we propose the “one-TA-per-
LSC chart” (Paper A) and “one-TA-per-LSC instance line” (Paper B) methods
for translating LSC charts into behavior-equivalent timed automata.

We find out that the existing semantics of TA, our proposed time-enriched
LSC and its semantics, and the existence of the powerful real-time model checker
Uppaal make it conceptually, algorithmically and computationally feasible for
us to reduce the problems of: (1) verifying a state/transition-based real-time sys-
tem against LSC requirement, (2) consistency checking of a set of driving LSC
charts, and (3) verifying a set of driving LSC charts against a monitored univer-
sal/existential LSC chart to CTL real-time model checking problems. Similarly,

6.1 Conclusions 63

we find out that the semantics of TGA and the existence of the timed game
solver Uppaal-Tiga enable us to reduce the problem of centralized synthesis for
the system processes of a set of driving LSC charts into a timed game solving
problem.

The first LSC-to-TA translation method was initially implemented in a stand-
alone prototype translator, which can handle more LSC features than what we
have described in Paper A, such as control constructs and scoping [Pus10]. A
better tailored translator for this method (with chart elements of instance lines,
messages, clock constraints, clock resets and prechart) was later implemented
and integrated into the Uppaal GUI and verification server by Sandie Bala-
guer [Bal09]. The methods and tools have been tried out on a number of exam-
ples such as the Train-Gate problem. Results indicate that the approach is viable
and effective.

The second LSC-to-TA translation method has been implemented in a pro-
totype translator. The timed automata models generated by the translator can
be fed into Uppaal and Uppaal-Tiga directly. A number of illustrating exam-
ples such as the Vending Machine, the ATM machine and the DHCP protocol
have been tried on the prototype implementations. Experimental results show
the feasibility and applicability of the proposed methodologies.

In both of the above-mentioned methods, compared with the subsequent ver-
ification efforts, the LSC-to-TA translations themselves consume negligible CPU
time and memory.

Furthermore, our experience indicates that if we use LSC only as a require-
ment specification language (Paper A), then it is relatively easy and straightfor-
ward to capture the scenario-based requirements; if we use it both as a system
modeling and as a requirement specification language (Paper B), then system
modeling and property specification will require us to have a deeper understand-
ing of the desired system behaviors and the chart activation modes. It is no
surprise that there could be some unintended or unconscious design errors in
the initial versions of the user-created driving and monitored LSC charts. For-
tunately, many of them can be caught by using our consistency checking and
property verification methods on the translated network of TAs.

We have found that our LSC charts could benefit from more expressivity
after being enriched with LSC constructs such as subchart, if-then-else structure,
loop, forbidden and ignored event, co-region and symbolic instances. However,
even with the current simple form of LSC, we can conclude that our scenario-
based approaches to real-time system analysis, verification and synthesis can solve
problems that are not previously easily specified (Paper A), or can effectively
handle TA-like clock variables and clock constraints (Paper B).

In the second part of work (Research questions #3,#3a,#3b), we propose
a framework for applying timed games and winning strategies to model-based
conformance testing of real-time embedded systems. The framework can be used

64 6. Conclusions and Future Work

or tailored to test:

• systems with output uncertainty and/or timing uncertainty of outputs;

• systems where only possibly rather than surely winning game strategies
exist for a given property (winning objective); and

• partially observable systems, from which the tester can obtain (or can infer)
only imperfect information of the system under test.

For the case where a winning strategy can be synthesized for a class of real-
time embedded system models which are previously considered not testable due
to the characteristics of output uncertainty and timing uncertainty of outputs, we
propose algorithms for reachability testing and safety validation via interpreting
strategies for the relevant timed games. We continue with the case where cooper-
ative rather than surely winning game strategies can be synthesized for a class of
systems and requirements. Algorithms for test case generation and test execution
are developed. Then we generalize the first case to the partially observable set-
tings, and show how a strategy for timed game under partial observability can be
used to conduct conformance testing. In each of these cases, the soundness and
the (partial) completeness of the proposed test methods can be proved. Based on
these work we conclude that game-theoretic approaches are conceptually and al-
gorithmically well-suited to address the challenges in the aforementioned settings
of real-time embedded system validation.

Experimental evaluations of test generation on some illustrating examples and
case studies show the computational feasibility and applicability of the proposed
methods. We evaluate how the different factors such as the system sizes and
the levels of controllability and observability affect the performance of test gen-
erations. The results can help us to pinpoint the performance bottlenecks, to
improve the system models and to define a sufficiently but not excessively large
set of well-chosen observable predicates.

We also carry out comparative studies of test generation for systems with full
observability and with partial observability. The results indicate that the latter
method appears to be more cost-efficient and seems to yield smaller test cases.

We can make a corollary jointly from Paper B and Paper C that scenario-based
synthesis and game-theoretic testing can be combined to horizontally “scale” the
latter approach to inter-process behavioral models (Fig. 4.1, dashed line). The
benefit is clear: in an earlier prototyping stage, designers will be able to gener-
ate tests (strategies) to make sure whether the interactions among the system
processes satisfy some given property. Similarly, combining the work of Paper
A and Paper C will horizontally “scale” game-theoretic testing to scenario-based
requirements.

Our scenario-based and game-theoretic approaches both operate on the early
stage behavioral models of real-time embedded systems, therefore they can achieve

6.2 Future work 65

early validation. By building automated tool chains and by employing existing
automatic timed game solver, we can do automated analysis, verification, syn-
thesis and test generation. The rigorousness of our approaches lies in the under-
lying real-time model checker and timed game solver, and in our provably correct
model transformation and test execution algorithms. Similarly, the debuggability
is offered by the underlying model checker and game solver. In this sense, our
approaches have many ingredients that characterize an ideal validation technique.

6.2 Future work

Continued efforts on thesis work

For the approaches that are proposed in this thesis to be applicable to more
practically relevant systems in a convenient way, continued efforts need to be
made both to enhance the methods and to build complete tool chains. Specif-
ically, the LSC language that we define in Paper B needs to be extended with
the features of e.g. simregion, co-region, symbolic instance, symbolic message,
control constructs and scoping rules. Accordingly, these features need to be sup-
ported by the translator. For game-based testing, we need to fully implement
the test execution algorithms/procedures for each setting (e.g., reachability test-
ing/safety validation, testing based on surely-/cooperatively- winning strategies,
testing based on full/partial observations, and combinations thereof), and to as-
sociate them with appropriate coverage metrics both to evaluate test adequacy
and to guide the creation of further test purposes (winning objectives).

Beyond reachability and safety test purposes (winning objectives)

The test purposes (or winning objectives) in this thesis are specified as ACTL
formulas. More precisely, they are restricted to the forms of: A3ϕ, A[ϕUφ],
A[ϕWφ] (weak “until”) and A2ϕ. A recent feature of Uppaal-Tiga is the
büchi acceptance condition (winning objective) for timed games, e.g., ABϕ which
stands for A2 (A3ϕ), and A[ϕBφ] which stands for A2 (ϕ ∧ A3φ). This adds
LTL expressivity to the test purposes, and will thus enable the characterization
of some interesting properties such as the infinite alternation between certain
system states, and the guaranteed time divergence. Validating systems against
such a broader class of properties needs to be explored.

Scenario-based testing

As can be seen in Fig. 4.1, we test an implementation that is based on the
timed automata model against an ACTL requirement (Paper C). One can natu-
rally come up with the idea of testing an implementation that is based on the
timed automata model against an LSC requirement. This can be achieved by
first translating the LSC into an observer TA, then generating strategies for the

66 6. Conclusions and Future Work

parallelly composed TGA models and the extracted characteristic ACTL formula,
and then using the strategies for testing. For existential charts, we can build a
timed game with a reachability test purpose of the form A3ϕ. However for
universal charts, considering that Uppaal-Tiga in its current version does not
support winning objectives of the form ϕ φ, we need either to enhance the
game solving algorithm, or to find alternative ways to tackle this problem.

Efficient timed games and efficient game solving

Strategy synthesis is known to be an inherently computationally expensive
problem. This is confirmed by our case studies: to synthesize a strategy for
even a moderately sized system will take considerable time and memory. What
is even worse is that if there is an abortion of the game solving, the abortion
due to the shortage of memory usually happens only after some thirty minutes
running. This asks us to come up with improved (or reduced) game models or
more efficient game solving algorithms. Since algorithms and tool support for
checking alternating timed simulation between different timed games have been
developed recently [BCDL09], we may wish to construct a cheaper timed game
model that simulates the original (more expensive) one.

Achieving optimality in controller synthesis and testing

In this thesis, the timing aspect of game-theoretic approaches to conformance
testing has been addressed. A follow-up work could be to use the time-optimal
strategy [BCD+08] that Uppaal-Tiga generates for time-optimal conformance
testing. Furthermore, for real-time embedded systems, there are a number of
other quantitative aspects that deserve investigation, e.g., energy consumption,
probabilistic and stochastic behaviors. The cost-optimality problems of priced
timed game automata have been studied along the years. Controller synthesis
for probabilistic processes and for stochastic games have also been reported. We
envisage a common quantitative formal framework that accommodates (several
of) these aspects, and a methodology with which we can synthesize strategies for
problems in this domain and apply the strategies for conformance testing.

Partial observability as abstraction

The relation between fully observable and partially observable timed games
and their test generations are worth further exploration. A partially observable
timed game corresponds to a coarser partitioning of the state space of the system
than that of its fully observable counterpart. It may be viewed as an “abstraction”
of the fully observable timed game. Abstracting too much (i.e., defining too few
observable predicates) might lead to game unsolvability, whereas abstracting too
little (i.e., defining too many observable predicates) might lead to significantly
increased time and memory consumptions. Therefore, systematic methods for
defining a cost-efficient set of observable predicates are very desirable.

Paper A:
Verifying Real-Time Systems
against Scenario-Based
Requirements

Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen, Saulius Pusinskas

Center for Embedded Software Systems (CISS)
Department of Computer Science
Aalborg University, Denmark

Abstract

We propose an approach to automatic verification of real-time systems against
scenario-based requirements. A real-time system is modeled as a network of
timed automata (TA), and a scenario-based requirement is specified as a moni-
tored Live Sequence Chart (LSC). We make timed extensions to a kernel subset
of the LSC language, and define a trace-based semantics. By equivalently trans-
forming an LSC chart into an observer TA and then non-intrusively composing
this observer automaton with the original system model, the problem of verifying
a real-time system against a scenario-based requirement reduces to a CTL real-
time model checking problem. We show how this is accomplished in the context
of the Uppaal model checker.

Keywords: Real-Time Systems, Model Checking, Scenarios, Live Sequence
Charts (LSCs), Timed Automata (TA)

68 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

1 Introduction

A model checker typically needs two inputs: a model that characterizes the state/
transition behaviors of a finite state concurrent system, and a temporal logic
formula that specifies the property of interest. For real-time systems, a widely
used modeling formalism is timed automata (TA) [AD94], and the temporal logics
could be CTL, LTL, etc. While the enhanced versions of TA in popular real-time
model checkers such as Kronos [Yov97] and Uppaal [BDL04] are usually made
relatively expressive, the TCTL [Yov97] or the fragment of CTL [BDL04] logics
thereof appear to be property specification languages of only limited capability,
intuitiveness and convenience:

• Since their atomic propositions are interpreted over the semantic states of
timed automata, these logics do not characterize message communications
directly [Yov97, BDL04];

• There is no means for specifying complex timing constraints (e.g., there is
no time-bounded temporal operator like 3≤3 in Uppaal [BDL04]. While
Kronos can specify E3x≤3, it cannot specify the stricter ones such as
E31≤x≤3 [Yov97]).

These limitations imply that straightforward characterizations of event syn-
chronizations, causal relations, or timed scenarios such as “if process B sends
message m1 to process A, and C sends m2 to D (in any order), then B must
send m3 to C within 1 to 3 time units” as a query in Kronos or Uppaal are
not possible.

Essentially, the query languages of these model checkers describe only intra-
process (or “state/transition-based”) properties, i.e., whether all states (2) or at
least one state (3) along all paths (A) or at least one path (E) of the individual
processes or the product process (i.e., the parallelly composed system model)
satisfy some particular properties. In contrast, the inter -process (or “scenario-
based”) properties describe how the system processes interact, collaborate and
cooperate via message or rendezvous synchronizations.

Live Sequence Chart (LSC) [HM03] is a visual formalism for scenario-based
specification and programming. It extends the classical Message Sequence Chart
(MSC) [IT99] by adding modalities 1. A universal chart can optionally contain a
prechart, which specifies the scenario which, if successfully executed (or matched),
forces the system to satisfy the scenario given in the actual chart body (i.e., the

1The existential and cold (resp. universal and hot) modalities represent the provisional
(resp. mandatory) requirements at global (i.e., whole chart) and local (i.e., message, condition,
location and cut) levels, respectively. For example, an existential (resp. universal) chart spec-
ifies restrictions over at least one satisfying (resp. all possible) system runs; a cold condition
may be violated and thus lead to a pre-mature chart exit, whereas a hot one must be satisfied
and otherwise will indicate an error.

1. Introduction 69

main chart). The LSC language is unambiguous because it has strictly defined
semantics, e.g., the executable (operational) semantics [HM03] and the trace-
based semantics [DH01, KHP+05].

We envisage LSC as a nice complement to the intra-process property spec-
ification languages of (real-time) model checkers in general and of Uppaal in
particular:

• Expressiveness. It has been shown that a kernel subset of LSC can be em-
bedded into CTL∗, provided that event occurrences can be used as atomic
propositions [KHP+05]. Compared with many temporal logics whose atomic
propositions are restricted to be state formulas, LSC has the necessary lan-
guage constructs (e.g., message and conditional synchronization) to describe
process interactions; these together with its liveness nature enable the char-
acterization of a variety of causality and non-trivial scenarios;

• Intuitiveness. As a visual formalism, LSC is more intuitive in capturing
complex user requirements than the CTL fragment of Uppaal which is in
textual form;

• Counterexample display. Compared with conventional counterexamples
that are exhibited only on the system models, LSC provides the possibility
of tracing the counterexamples also back to the requirement specifications.

In this paper we capture a scenario that is to be verified using an LSC chart.
We obtain a behavior-equivalent observer TA from this chart by mapping the
LSC cuts and discrete advancement steps to TA locations and edges, respec-
tively. We let the observer TA spy on the relevant events of the original system
via model instrumentation, semaphore locking and parallel composition. In this
way, the problem of verifying a TA-modeled real-time system against a scenario-
based requirement will be reduced to a CTL real-time model checking problem in
Uppaal.

1.1 Related work

To model check real-time systems against complex properties or scenario-based
requirements, various approaches have been proposed.

One solution is the observer automata (a.k.a. test automata [ABL98]) ap-
proach, i.e., to construct a number of auxiliary automata to capture the complex
properties or scenario-based requirements, and then parallelly compose them with
the original TA models. This approach has been used to model check practically
relevant systems such as the B&O power controller [HLS99] and some timed
safety instrumented systems [Lah08]. Case studies thereof indicate that the ap-
proach is effective. However, the approach also comes with some limitations: (1)
Manual constructions of observer timed automata could be labor-intensive and

70 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

error-prone. This is especially the case when the automata grow large; (2) To
synchronize with the observer timed automata, the original system model may
need to be modified and annotated. During this modification process, some new
errors might be introduced. Newly introduced timing errors are especially difficult
to diagnose; (3) The observer timed automata and the original system usually
engage in “loose” channel synchronizations, thus specifying process interactions
only liberally (i.e., no particular sending and receiving process is specified for
a message). In our verification framework, automatic construction of observers
from LSC charts overcomes all the above problems.

Another line of research is first to capture the scenario-based requirements us-
ing the assume-guarantee style visual formalisms such as Triggered MSC [SC02],
Template MSCs [GMMP04], or the even richer LSC [HM03], and then transform
them into more verifiable formalisms. In particular LSCs can be translated into
timed büchi automata (TBA) [KW01], timed automata [Pus10], temporal logics
[KW01, HK02, BGS05, KHP+05, DTW06, BS07] or sequences of LSC elements
[RAJGJ04], and the verification problem can be converted to a model checking
problem in existing tools [KW01, BGS05], or solved directly [RAJGJ04].

Damm and Klose [DK01] propose to use LSCs to specify scenario-based re-
quirements on Statemate models, and then carry out model checking. This
methodology has been concretized and implemented in [KW01], where an LSC
chart is transformed into a timed büchi automaton, which is further transformed
into a temporal logic formula. In order to specify real-time requirements, timers
[AHP96, IT99] and timing annotations (or delayed intervals) [AHP96] are added
to the LSC charts. To enable the transformation, each location of the LSC chart
is equipped with a discrete (integer) clock. Since timers can only express tim-
ing constraints within a single chart and within a single process, and delayed
intervals can only express the minimal and maximal delays between two consecu-
tive locations, these restrict the expression of timing constraints across processes
and across charts. Our LSC charts use TA-like real-valued clock variables. This
flavor of timing constraints agree well with the original TA system model, and
thus enable smooth translation of timing information into the observer TA, and
seamless embedding of the observer TA into the Uppaal verification framework.

An LSC-to-TA translation is proposed in [Pus10]. This translation is similar
to our translation in the sense that they are both based on the notion of LSC cut
and its advancements. There are a few differences between the two approaches:
(1) The approach of [Pus10] distinguishes between the conditions and updates
on message heads and tails, thus a message that is associated with condition-
s/updates may be mapped to a sequence of TA locations and edges; whereas
in our approach, we suggest a more straightforward mapping; (2) The approach
of [Pus10] maintains multiple copies of the same translated TA to represent the
different incarnations of the chart under the invariant activation mode; whereas
we need only one copy of the translated TA, and the different incarnations are

1. Introduction 71

accommodated by our approach in terms of the pre-matching mechanism (cf.
Section 3.3.5).

LSCs can also be translated into temporal logic formulas [HK02, KHP+05,
BGS05, DTW06, BS07]. For the kernel subset of LSC in [KHP+05], it has been
shown that existential charts can be expressed using the CTL logic, and universal
charts can be expressed using (LTL ∩ CTL) [HK02, KHP+05]. Similar results
are achieved by Damm and colleagues [DTW06]. However, these methods do
not handle explicit time in the charts. Bunker and colleagues [BGS05] apply
LSC in hardware verification, where the system models are given in Verilog and
the user requirements are specified as LSCs, which are equipped with a discrete
clock tick construct to explicitly represent the passage of system time. The LSCs
are translated to LTL formulas and then fed into the verification environment
FormalCheck. In general, verification techniques that are based on LSC-to-
temporal logic translation tend to suffer from scalability problems. Industrial case
studies [Klo03] show that the LTL formulas grow large even for LSCs of moderate
size, and thus formal verification becomes expensive. To overcome this limitation,
Klose and colleagues [KTWW06] investigate efficient model checking of Kripke
structures against LSC requirements. The authors identify two sub-classes of
LSCs that are easier to verify, although they are less powerful than full LTL
model checking. In our method, since our observer automaton is tightly coupled
with the original system, a very simple CTL property A2(lmin ⇒ A3 lmax) can be
extracted from the observer automaton to capture the LSC requirements (here,
lmin and lmax represent the TA locations that correspond to the minimal cut and
the maximal cut of the main chart, respectively). In this way we avoid translating
LSCs to complex temporal logic formulas.

In [RAJGJ04] properties are extracted from LSCs as sequences of LSC ele-
ments, and algorithms have been developed to check whether these sequences are
respected by the FSM computation graph of the TA model that is exported from
Uppaal. However, simultaneous regions (simregions) in LSCs are used only to
model broadcast communications, and conditions cannot be a part of simregions.
Our notion of simregion uses the “[condition][message]/[update]” pattern, thus
enables smooth translation to a TA edge.

1.2 Contributions

The contributions of this paper include: (1) we make timed extensions to a
kernel subset of the LSC language such that it is suitable for capturing scenario-
based requirements of real-time systems, and define a trace-based semantics; (2)
we propose a behavior-equivalent translation of an LSC chart into an observer
timed automaton; (3) we present a method of embedding the translated TA into
Uppaal, thus reduce the problem of verifying real-time systems against LSC
requirements to a CTL real-time model checking problem.

72 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

2 Modeling and specification of real-time sys-

tems

To describe a real-time system which consists of a number of concurrently run-
ning processes, a network of timed automata can be constructed, one for each
process. These automata are parallelly composed using the operator || . Different
automata in the system can synchronize on their common actions [AD94]. The
product automaton has an interleaved execution semantics w.r.t. the internal
actions.

Timed automata in its original form [AD94] is a simple, concise and yet ex-
pressive language. To better support the modeling and automatic verification
of real-time systems, various syntactic sugar and extensions are added to the
TA formalism. Specifically, Uppaal [BDL04] strengthens TA with a number of
features such as boolean and bounded integer variables, variable constraints and
updates, urgent and committed locations 2, handshake and broadcast channel
synchronizations, shared variable communications, etc.

Fig. 1(a)-1(d) give an example of a network of TAs in Uppaal.

m4?

m2?

(a) TA
A

x <= 5

x <= 5

m2!
x >= 3
m1!

(b) TA B

m4!

m3!

m1?

(c) TA C

m3?

m4?

(d) TA D

(e) LSC requirement L

Figure 1: A real-time system model (network of TAs) and its requirement.

Requirements on TA-modeled real-time systems can be specified by using tem-
poral logics such as CTL, LTL or timed variants thereof. Uppaal uses a fragment

2In an urgent location time is frozen and thus cannot elapse. Once an urgent location is
entered, it should be exited with zero time delay. A committed location is a special urgent
location where the outgoing transitions have higher priority to be taken than those from non-
committed ones.

3. From LSC to Uppaal timed automaton 73

of the CTL logic as its property specification language. Atomic propositions take
the form:

ap ::= automaton.location | guard on clocks | guard on variables,

and properties (queries) can be specified by using a number of patterns:

• reachability (E3φ);

• safety (A2φ, E2φ); and

• liveness properties (A3φ, φ ϕ).

In particular the leads-to (responsiveness) property φ ϕ is a shorthand for
A2(φ ⇒ A3ϕ), stating that whenever φ is satisfied, then eventually ϕ will be
satisfied.

Although a lot of properties can be specified by using the above-mentioned
property patterns, many others still cannot. Consider a user requirement on the
TAs in Fig. 1(a)-1(d):

If we observe that process B sends message m1 to process C when clock x is
no less than 3, then afterwards (and before m1 can be observed again) we must
observe that B sends m2 to A when x is no less than 2, and C sends m3 to D
(in any order).

This requirement cannot be specified as a Uppaal CTL formula or a Kronos
TCTL formula. The reason is that the atomic propositions, which are restricted
to be state propositions, do not characterize message passing directly. In other
words, they lack the necessary mechanisms for specifying the process interactions
and scenarios.

However, the above requirement can be easily captured by using LSC (Fig.
1(e)). For instance, the first block of diagrammatic elements {m1, x ≥ 3} means
that: when message m1 in the real-time system model is observed, the value of
clock x should be no less than 3 at this moment; and if this is the case, then
the monitored execution continues, otherwise the prechart is cold-violated and
exited.

3 From LSC to Uppaal timed automaton

3.1 Live Sequence Chart

We consider the following LSC elements: instance line, location, message, clock
variable, condition (clock constraints), assignment (clock resets) and simregion.

An LSC chart can have a role, a type and an activation mode. In this paper
we consider the role of system property specification, i.e., a monitored chart will
just “listen to” the messages and read the clock variables in the original system

74 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

models, but will never emit messages to those models or reset the clocks in those
models. We consider the universal type charts. Furthermore, we consider the
invariant activation mode, i.e., the prechart is being constantly monitored, and
an incarnation will be created whenever a minimal event (i.e., an event that
is minimal in the partial order induced by the chart) is matched, regardless of
whether the main chart has been entered in some earlier incarnations.

Each LSC chart L describes a particular interaction scenario of a set I of
processes (or instances, or agents). Along each instance line Ii ∈ I there are a
finite set of “positions” pos(Ii) = {0, 1, . . . , p maxIi}, which denote the possible
points of communication and computation. We denote all locations of L as L =
{〈Ii, p〉 | Ii∈I ∧ p∈pos(Ii)}.

Let ML be the set of message labels (or “signals”, or “channels” in Uppaal)
of an LSC chart. A message occurrence mo = (〈Ii, p〉, m, 〈Ii′ , p′〉)∈L×ML× L
corresponds to instance Ii, while in its position (p − 1), sending signal m ∈ ML
to instance Ii′ at its position (p′ − 1), and then arriving at positions p and p′,
respectively. We call m the message label, 〈Ii′ , p′〉 and 〈Ii, p〉 the message head
and tail locations, and Ii and Ii′ the source and destination instances, respectively.
The set of all message occurrences in the chart are denoted as MO.

We use Σ to denote the projection of MO onto I × ML × I. In this way,
we get the message alphabet Σ, where each letter is a message which denotes
that a particular signal is sent from one to another objects (instance lines). For
a given message occurrence, we may overload its “message label” to also denote
the corresponding letter in Σ.

In this paper, we make the synchrony hypothesis, i.e., messages are assumed
to be instantaneous (thus we use the terms message and event interchangeably).
Furthermore, this paper does not consider concurrent messages, thus each loca-
tion can be the end point of at most one message occurrence in the chart.

Let the finite sets of real-valued clock variables (ranging over R≥0) of chart
L and of the original system model S be CL and CS , respectively. The set of
readable clock variables in L will be C = CL ∪CS . Since L is a monitored chart,
only clocks in CL can be reset by the chart.

A clock constraint is of the form x ./ n or x− y ./ n where x, y ∈ C, n ∈ Z,
and ./∈{<,≤,=,≥, >}. A condition is a finite conjunction of clock constraints.
The set of conditions are denoted G. A condition g ∈ G has a temperature,
denoted g.temp, which may be either hot or cold in the main chart, and only cold
in the prechart.

A clock reset is of the form x := 0 where x ∈ CL. An assignment a is a finite
set of clock resets. For simplicity it is denoted as a set a of clocks to be reset.
The set of all assignments is denoted A ⊆ 2CL .

When there is a message occurrence mo = (〈Ii, p〉, m, 〈Ii′ , p′〉), the message
anchoring point on Ii or Ii′ could be associated with a condition g and/or an
assignment a. The intuitive meaning of the message synchronization [g]mo/a

3. From LSC to Uppaal timed automaton 75

is that, if when mo occurs, the valuation v of all clock variables satisfies g,
then this synchronization can fire; and immediately after the firing, v will be
updated according to a. The message occurrence, condition and assignment can
be collectively viewed as an atomic step of LSC execution, i.e., they take place at
the same moment in time, hence the notion of simultaneous region (simregion),
which is inspired by [KW01].

Definition 1 (simregion). A simregion s is a set of LSC message occurrence,
condition and assignment, s ⊆ (MO∪G∪A), which satisfy the following require-
ments:

• non-emptiness: ∃e∈(MO ∪G ∪ A) . e∈s;

• uniqueness: ∀m,n ∈ MO . (m ∈ s ∧ n ∈ s) ⇒ m = n; (similarly for
condition and assignment.); and

• non-overlapping: for any two simregions s and s′, we have ∀e ∈ (MO∪G∪
A) . (e ∈ s ∧ e ∈ s′)⇒ s = s′.

We write a simregion as s = {mo, g, a}, where mo, g and a represent the mes-
sage occurrence, condition and assignment, respectively. The set of all simregions
is denoted S ⊆ 2(MO∪G∪A).

A message occurrence spans across two instance lines. A condition spans
across one or more instance lines. In a simregion, the message occurrence, condi-
tion and assignment (if any) have a common anchoring point. If a simregion s has
no message, then s consists of a condition test, or an assignment, or both of them
combined and anchored together. In this case, s is called a non-message simre-
gion. For such a simregion, we adopt the As-Soon-As-Possible (ASAP) semantics
for its firing, i.e., the condition test (if any) will be evaluated immediately after
the previous simregion.

Fig. 1(e) is an example LSC chart, where there are three simregions s1 =
{m1, x ≥ 3}, s2 = {m2, x ≥ 2}, and s3 = {m3}. Note that here we abuse the
message labels as the corresponding message occurrences.

3.2 Trace-based semantics

We define λ : L → S ∪ {nil} as a labeling function. For location l ∈ L, if
λ(l) ∈ S, then there is a simregion anchoring at l; if λ(l) = nil, then l represents
an entry/exit point of the prechart(Pch)/main chart(Mch).

Locations in an LSC chart are partially ordered by the following rules:

• Along each instance line: location l is above l′ ⇒ (l ≤ l′) ∧ ¬(l′ ≤ l); and

• All locations in the same simregion have the same order, ∀s ∈ S,∀l, l′ ∈
L . (λ(l) = s) ∧ (λ(l′) = s)⇒ (l ≤ l′) ∧ (l′ ≤ l).

76 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

The partial order relation 4⊆ L× L is defined as a transitive closure of ≤.

Definition 2 (cut of an LSC chart). A cut of a chart L is a set c ⊆ L of locations
that span across all the instance lines in L which satisfies the properties of:

• Downward-closure. If a location l is included in cut c, so are all of its
predecessor locations: ∀l, l′ ∈ L. (l ∈ c ∧ l′4 l)⇒ l′ ∈ c; and

• Intra-chart coordination integrity. If a top position in the main chart por-
tion of a certain instance line is included in the cut, then the top positions
in the main chart portions of all other instance lines are also included in
the cut.

We define loc : (S ∪ 2L) → 2L to map a simregion s ∈ S to a set loc(s) ∈ 2L

of locations that it anchors, and to map a cut c ∈ 2L to its frontier loc(c) ∈ 2L,
which is a set of locations that constitute the downward border line progressed
so far.

Given a cut c ⊆ L and a simregion s ∈ S, we say s is enabled at cut c (with
respect to the partial order relation), denoted c

s−→, if, ∀ l ∈ c, l′ ∈ loc(s) . ((l4
l′) ∧ ¬(l′ 4 l)) ∧ (@ l′′ ∈ L\(c ∪ loc(s)) . (l 4 l′′ ∧ l′′ 4 l′)). The enabledness of
message occurrences can be defined similarly.

A cut c′ is an s-successor of c, denoted c
s−→ c′, if s is enabled at c (w.r.t. the

partial order), and c′ is achieved by adding the set of locations that s anchors
into c, or formally, (c

s−→) ∧ (c′ = c ∪ loc(s)).
A cut c is minimal (denoted >) if each location in c is a top location of some

instance line; and c is maximal (denoted ⊥) if the bottom locations of all instance
lines are included in c. The frontiers of cuts > and ⊥ do not contain simregion
anchoring points. Rather, each of these minimal or maximal cuts represents a
compulsory synchronization for all involved instance lines. Thus the partial order
relation 4 on L is extended as follows (and finally also extended to its transitive
closure):

• All locations in the same minimal or maximal cut have the same order,
∀c ∈ {Pch.>,Pch.⊥,Mch.>,Mch.⊥} .∀l, l′ ∈ loc(c) . (l 4 l′) ∧ (l′ 4 l).

Specifically, we view the maximal cut of the prechart and the minimal cut of
the main chart as the same cut, i.e., Pch.⊥ = Mch.>.

If cut c has c′ = Mch.⊥ as its s-successor, then we override c′ as Pch.> (if any)
or Mch.> (otherwise), which represents the situation where a universal chart goes
back to its initial state upon the successful completion of a round of monitoring.

For instance in Fig. 1(e), the possible cuts are: {}, {s1}, {s1, s2}, {s1, s3} and
{s1, s2, s3}, where e.g. {s1} is a shorthand for the cut where simregion s1 has
been stepped over. Clearly, cuts {s1, s2} and {s1, s3} are the s2-successor and
s3-successor of cut {s1}, respectively.

3. From LSC to Uppaal timed automaton 77

Definition 3 (configuration). A configuration of an LSC chart L is a tuple (c, v),
where c is a cut, and v maps each clock variable to a non-negative real number,
v : CL → R≥0.

For d ∈ R≥0, notation (v+d) : CL → R≥0 means that the function v is shifted
by d such that ∀x ∈ CL . v(x+ d) = v(x) + d.

A configuration at the minimal cut > with all clocks assigned their initial
values (e.g., 0’s) is called the initial configuration.

An assignment a ∈ A can be viewed as a transformer for function v, thus a(v)
represents the new valuation after the assignment.

A configuration can be viewed as a “semantic state” of an LSC chart. A
universal chart starts from the initial configuration, advances from one to a next
configuration, until hot violation occurs, or until the chart arrives at the maximal
cut and then starts all over again (i.e., to begin a next round execution).

There are three kinds of valid advancement steps between two configurations:

• Synchronization step. Given a chart configuration (c, v) and a simregion
s which consists of an m-labeled message occurrence mo (m ∈ Σ), and
optionally a condition g and/or an assignment a. There is a synchronization
step (c, v)

m−→ (c′, v′) if,

– (normal advancement). c
s−→ c′, v |= g, and v′ = a(v); or

– (cold violation). c′ = Pch.>, v′ = v, and either

- mo is not enabled at cut c in the prechart (w.r.t. the partial order
relation); or

- v 2 g ∧ g.temp = cold;

• Silent step. Given a chart configuration (c, v) and a simregion s which
consists of a condition g and/or an assignment a, there is a silent step
(c, v)

τ−→ (c′, v′) if either

– (normal advancement). c
s−→ c′, v |= g, and v′ = a(v); or

– (cold violation). g.temp = cold, v 6 |=g, c′ = Pch.>, and v′ = v;

• Time delay step. Given a chart configuration (c, v). There is a time delay

step (c, v)
d−→ (c, v + d) where d ∈ R≥0 if: whenever there are message

occurrences that are enabled at cut c (w.r.t. both the partial order relation
and the guard), then after delay d there exists at least one of them that
is still enabled at the same cut, i.e., ∃s ∈ S .∃mo, g ∈ s .∀d′∈ [0, d] . (c

s−→
) ∧ ((v + d′) |= g).

If in the main chart, an m-labeled message violates 4, or (v 2 g, and g.temp =

hot), then the configuration (c, v) is said to be hot-violated, denoted (c, v) ��
m−→.

78 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

Definition 4 (run of an LSC chart). A run of a time-enriched LSC chart is a se-
quence of configurations (c0, v0)·(c1, v1)·. . . that are connected by the advancement

steps, i.e., ∀i ≥ 0 . ∃ui ∈ (Σ ∪ {τ} ∪R≥0) . (ci, vi)
ui−→ (ci+1, vi+1).

The transition relation → as mentioned above each time consumes only a
single letter u ∈ (Σ ∪ {τ} ∪ R≥0). We extend it to →∗ such that it consumes a
(finite or infinite) word w ∈ (Σ ∪ {τ} ∪R≥0)∗ ∪ (Σ ∪ {τ} ∪R≥0)ω.

Let Π be the set of all messages in the original system model, which subsumes
Σ and can in addition include other messages not ever appeared in Σ.

Definition 5 (satisfaction of a prechart/main chart). A timed trace γ ∈ (Π ∪
{τ} ∪R≥0)∗ ∪ (Π ∪ {τ} ∪R≥0)ω satisfies an LSC prechart or main chart C if its
projection γ|(Σ∪{τ}∪R≥0) has a finite prefix µ which is the accepted word of a run
that starts from the initial configuration and ends in a maximal cut configuration
of C, and no prefix of it leads to a hot violation, i.e., γ |= C ⇔ (∃µ ∈ (Σ ∪ {τ} ∪
R≥0)∗, ξ ∈ (Σ ∪ {τ} ∪ R≥0)∗ ∪ (Σ ∪ {τ} ∪ R≥0)ω . ∃v′ ∈ R≥0

C . (γ|(Σ∪{τ}∪R≥0) =

µ · ξ) ∧ ((>, v0)
µ

−→∗ (⊥, v′))) ∧ (@µ′ ∈ (Σ ∪ {τ} ∪R≥0)∗,m ∈ Σ, ξ ∈ (Σ ∪ {τ} ∪

R≥0)∗ ∪ (Σ ∪ {τ} ∪R≥0)ω . (γ|(Σ∪{τ}∪R≥0) = µ′ ·m · ξ) ∧ (>, v0)
µ′

→∗ • ��
m−→).

If a universal chart L has no prechart Pch, then it is treated as being satisfied
by an empty word.

A finite trace γ ∈ (Π ∪ {τ} ∪ R≥0)∗ satisfies chart C exactly, denoted γ C,
iff (γ |= C) ∧ ∃µ∈(Π ∪ {τ} ∪R≥0)∗, v′∈R≥0

C . (γ|(Σ∪{τ}∪R≥0) = µ) ∧ ((>, v0)
µ

→∗
(⊥, v′)).

Now we define the satisfaction relation for a full universal chart:

Definition 6 (satisfaction of a universal LSC chart). A timed trace γ ∈ (Π ∪
{τ} ∪ R≥0)ω satisfies a universal chart L, denoted γ |= L, iff whenever a finite
sub-trace of γ matches the prechart, then the main chart is matched immediately
afterwards. Formally, ∀α, µ ∈ (Π∪{τ}∪R≥0)∗, β ∈ (Π∪{τ}∪R≥0)ω . (α ·µ ·β =
γ) ∧ (µ Pch)⇒ β |= Mch.

A timed language Lang ⊆ (Π ∪ {τ} ∪ R≥0)ω satisfies L, denoted Lang |= L,
iff, ∀γ ∈ Lang . γ |= L. Clearly, Lang characterizes the system behaviors that
respect L.

For a network S of timed automata, we use S |= L to denote that the timed
traces (language) of S satisfy LSC L.

3.3 LSC to TA translation

For each LSC chart L, we construct a Uppaal observer timed automaton OL.
The basic idea is that for each cut of the LSC, we assign a TA location in Uppaal;
for each discrete advancement step (i.e., a simregion) that connects two consecu-
tive cuts, we assign a TA edge. The translation is conducted incrementally based
on the partial order relation 4.

3. From LSC to Uppaal timed automaton 79

3.3.1 Determining the partial order on LSC simregions

By analyzing the graphical layout of the LSC chart, the partial order 4 on the
set L of locations is determined according to the rules given in Section 3.2.

Since an advancement of a cut is caused by stepping over a simregion, the
partial order 4 on L can thus be lifted to 4′ on S ∪ {Pch.>,Mch.>,Mch.⊥} as
follows: ∀s1, s2 ∈ (S ∪ {Pch.>,Mch.>,Mch.⊥}) . (s1 4′ s2 ⇔ ∃l1 ∈ loc(s1), l2 ∈
loc(s2) . l1 4 l2).

For instance in Fig. 1(e), the partial order 4′ among the three simregions s1

(middle), s2 (left) and s3 (right) is: s1 4′ s2 and s1 4′ s3.

3.3.2 Translating LSC cut into TA location

The initial cut of an LSC chart is the minimal cut > of the prechart (if any) or
of the main chart (otherwise). While respecting 4′, the cut advances towards
Mch.⊥ by stepping over simregions. Each time a simregion is stepped over, a
new cut is reached.

If we view all the instances of an LSC chart collectively as a whole system,
then a cut can be viewed as a “location” of the TA of this whole system. For the
minimal cut of the prechart (if any) and the minimal and maximal cuts of the
main chart, we assign the TA locations lpmin, lmin and lmax, respectively. Note
that lmax is a committed location, which will be connected to lpmin (if any) or lmin
via an edge of internal action transition, meaning that a next round of monitoring
will begin immediately. The lpmin, lmin and lmax locations are three mandatory
synchronization points for all the instances in the chart.

Time can elapse while staying in an LSC cut just like in a TA location.
Specifically, a cut that is followed by a non-message simregion corresponds to a
committed TA location. In that cut time is frozen and cannot elapse.

Since there are only finitely many instances and finitely many simregions in
an LSC chart, the number of cuts will also be finitely many.

3.3.3 Translating LSC simregion into TA edge

If s is a message-simregion, then we map the message, condition (if any) and
assignment (if any) of s into one edge of the TA. See Fig. 2(a)-2(b).

x >= 3 &&
(A -> B)
m1?
y := 0

x >= 1
y := 0

(a) A msg.-simregion (b) TA edge (c) A non-msg. simregion (d) TA edge

Figure 2: From LSC simregion to TA edge.

80 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

In an LSC chart, a message m in Σ is sent from one particular instance line
to another one (e.g., from A to B). To preserve this sender/receiver information
in the translated timed automaton, the TA edge will be further guarded by the
predicate (A → B), which is a shorthand for “(src = A) && (dest = B)”. See
Fig. 2(b).

If s is a non-message simregion, then the ASAP semantics is adopted. To
enforce the ASAP semantics, the source location of the translated TA edge will
be marked as a committed location. See Fig. 2(c)-2(d) for an example.

3.3.4 Incremental construction of the TA

The LSC to TA translation is carried out incrementally. Assume that a TA
location l has already been created for the current LSC cut (see Fig. 3(b), location
l, and Fig. 3(a), cut {s1 = {m1, x ≥ 3}}). Following that cut there could be a
number of simregions that can be stepped over. Each of them should correspond
to an outgoing edge from TA location l. Without loss of generality, we assume
that there are two such immediately following simregions, say s2 = {m2, x ≥ 2}
and s3 = {m3} in Fig. 3(a).

If s2 and s3 are both message-simregions (Fig. 3(a)), then the two new TA
edges will be concatenated to location l. Let the two new edges be (l1, l2) and
(l3, l4), respectively. Then l1 and l3 will be superposed on l. See Fig. 3(b).

(a) The simregions

l4l2

l (l1, l3)

C -> D
m3?

x >= 2 &&
(B -> A)
m2?

x >= 3 &&
(B -> C)
m1?

(b) case #1

l4

l2 (l3)

l (l1)

C -> D
m3?

u >= 1

x >= 3 &&
(B -> C)
m1?

(c) case #2

l4l2

l (l1, l3)

u != 0u >= 1

x >= 3 &&
(B -> C)
m1?

(d) case #3

Figure 3: TA edge construction for two subsequent simregions.

If in Fig. 3(a) s2 is replaced by a non-message simregion, then according
to the ASAP semantics, the edge (l1, l2) will be executed immediately, and edge
(l3, l4) will follow, but cannot be the other way around. When concatenating
these two edges to the TA, we mark l1 as a committed location, and superpose
it on l. There is only one possible interleaving where edge (l3, l4) follows (l1, l2).
See Fig. 3(c).

If in Fig. 3(a) s2 and s3 are both non-message simregions, then according
to the ASAP semantics, both (l1, l2) and (l3, l4) will be executed immediately,
therefore the executions will be interleaved. See Fig. 3(d).

3. From LSC to Uppaal timed automaton 81

3.3.5 Implicitly allowed behavior

In addition to the explicitly specified behaviors in the chart, there are also implic-
itly allowed behaviors that are due to unconstrained events and cold violations.

Let Chan be the set of channels of S, and Chan′ ⊆ Chan be the set of channels
of L. Clearly, channels in (Chan\Chan′) are not constrained by chart L. For each
message m whose label belongs to (Chan\Chan′), we add an m?-labeled self-loop
edge to each non-committed location l of the translated TA OL. For readability
they are not shown in Fig. 4.

According to the LSC semantics, cold violations of prechart or main chart are
not failures. Rather, they just bring the chart back to the minimal cut. To model
this, for a cut c and each following simregion s that has a cold condition g, we
add edges from the corresponding TA location l to lpmin (if Pch exists) or lmin
(otherwise) to correspond to the ¬g conditions (of DNF form). Similarly, given
a cut c in the prechart, for each message m that occurs in L but does not follow
c immediately, we also add an m?-labeled edge (l, lpmin). See Fig. 4.

(a) An LSC chart

lmax Err

lpmax (lmin)

lpmin

A -> B
m2?

A -> B
m1?

A -> B
m1?

C -> D
m2?

B -> C
m3?

C -> D
m2?

A -> B
m1?

B -> C
m3?

B -> C
m3?

B -> C
m3?

A -> B
m1?

C -> D
m2?

C -> D
m2?

A -> B
m1?

(b) The translated TA

Figure 4: Translating LSC chart: implicitly allowed behaviors and invariant ac-
tivation mode.

3.3.6 Chart activation mode

According to the LSC semantics, under the invariant activation mode the prechart
is being continuously monitored. Normally we need to maintain multiple incar-
nations of the chart. In this way, a given message sequence will not be incorrectly
rejected by the chart. For instance, given the chart in Fig. 4(a) and given a mes-
sage sequence m1 ·m1 ·m2, although the first incarnation of the chart cold-violates
this sequence (i.e., m1 ·m1 does not match the prechart), the second incarnation
works well with it (i.e., the latter two messages m1 ·m2 match the prechart).

82 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

To enforce the LSC semantics under the invariant activation mode, for each
message occurrence that appears in the chart no later than a certain message
occurrence that has the same label as a minimal event (i.e., an event that is
minimal in the partial order induced by the chart), we add a corresponding self
loop to location lpmin. See Fig. 4(b), the m1- and m2-labeled self loops in location
lpmin. We call this kind of handling as prechart pre-matching.

3.3.7 Undesired behavior

The construction of the observer TA so far considers only the legal (or admissible)
behaviors. When the current configuration (c, v) is in the main chart, if an
observed message m is not enabled at cut c, or the hot condition of the simregion
that immediately follows c evaluates to false under v, then there will be a hot
violation. In this case, we add a dead-end (sink) location Err in the TA, and for
each such violation we add an edge to Err.

3.3.8 Complexity

Let the number of simregions appearing in L be n. In the worst case, the number
of locations in the translated TA OL is 2n + 1. This happens when L consists of
only the prechart or the main chart, and the messages in L are totally unordered.

The number of outgoing edges from a location l of OL depends on: (1) the
number of unconstrained events, ue; (2) the number of the following simregions
in the corresponding cut c of L, fs; (3) the length of the condition (in case the
condition evaluates to false), lc; and (4) the number of messages that cause
violations of the chart, cv. Therefore, the number of outgoing edges from a TA
location is at the level O(ue+ fs+ lc+ cv).

3.4 Equivalence of LSC and TA

Since all the clocks in the original system model S are also visible to the LSC
chart L, we extend the configuration of L from CL to CL ∪ CS .

If in the translated timed automaton OL of chart L we ignore the undesired
and implicitly allowed behaviors, i.e., we ignore the edges that correspond to hot
violations, unconstrained events, cold violations and prechart pre-matching, then
we have:

Lemma 1. If a configuration (c, v) of L corresponds to a semantic state (l, v) of
OL, then: (1) each simregion s that follows (c, v) in L uniquely corresponds to
an outgoing edge (l, l′) in OL, and (2) the target configuration (c′, v′) of s in L
uniquely corresponds to the target semantic state (l′, v′) in OL.

Theorem 1. For any trace tr in OL: tr |= L ⇔ (OL, tr) |= (lmin lmax).

4. Embedding into Uppaal 83

Proofs of the lemmas and theorems can be found in Appendix.
As we can anticipate, the prechart pre-matching mechanism does introduce

undesired extra behaviors and non-determinacy. For instance in Fig. 4(b), tr =
m1 · m2 · m1 · m2 · m3 could be an accepted trace in OL. But since its sub-
sequence tr′ = m1 · m2 · m1 can be rejected, thus tr does not really satisfy L.
It coincides that the particular trace tr in the model OL does not satisfy the
property (lmin lmax).

Theorem 1 indicates that OL has exactly the same set of legal traces as L.

4 Embedding into Uppaal

4.1 Synchronizing with the original system

When composing the observer timed automaton OL with the original system S,
we wish that OL would “observe” S in a timely and non-intrusive manner. A
natural idea is to let the synchronization channels in OL (and accordingly the
relevant channels in S) be broadcast channels to achieve this goal. However, this
is not possible because Uppaal has a restriction that broadcast channels cannot
be guarded by timing constraints. To solve this problem, we propose to use
spying techniques such that the translated observer TA will be notified of each
message synchronization in the original system immediately after it occurs there.
Specifically, for each channel ch ∈ Chan, we make the following modifications:

(1) In S (e.g., Fig. 5(a)-5(b)), for each edge (l1, l2) that is labeled with ch!, we
add a committed location l′1 and a cho!-labeled edge in between edge (l1, l2)
and location l2. Here cho is a dedicated fresh channel which aims to notify
OL of the occurrence of the ch-synchronization in S. The location invariant
(if any) of l2 will be copied on to l′1. Furthermore, we use a global boolean
flag variable (i.e., a binary semaphore) mayFire to further guard the ch-
synchronization. This semaphore is initialized to true at system start. It is
cleared immediately after the ch-synchronization in S is taken, and it is set
again immediately after the cho-synchronization is taken. See Fig. 5(d).

(2) In OL, each synchronization label ch? is renamed to cho?. See Fig. 5(c),
5(e).

If L has non-message simregions, then OL has committed locations. If in a
certain state both OL and some TA in S are in committed locations (e.g., lm+1

in Fig. 6(c), and l2 in Fig. 6(a)), then there will be a racing condition. But
according to the ASAP semantics of L, the (internal action) edge in OL has
higher priority. To this end, for each edge (li, li+1) in OL, if li+1 is a committed
location, then we add “NxtCmt := true” to the assignment of the edge, otherwise
we add “NxtCmt := false”. Here the global boolean flag variable (i.e., a binary

84 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

l2 Inv1

l1

g1
ch!
a1

l4 Inv2

l3

g2
ch?
a2

g3
ch?
a3

(a) emt. edge (b) recv. edge (c) obs. edge

l2 Inv1

l1’ Inv1

l1

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

g3
cho?
a3

(d) mod. emt. edge (e) mod. obs. edge

Figure 5: Edge modifications in the original system S and the observer TA OL.

semaphore) NxtCmt denotes whether the observer TA will be in a committed
location. This semaphore is initialized to false at system start. See Fig. 6(d).
Accordingly, for each ch-labeled edge (li, li+1) in S where ch ∈ Chan and li is a
committed location, we add “NxtCmt == false” to the condition of the edge,
see Fig. 6(b).

Our method of composing the observer timed automaton OL with the original
system model S is similar to that of [FHD+99]. While their method works only
when the target state of a communication action is not a committed location
in the original model, in our method, due to the first locking mechanism (us-
ing mayFire), we have no restrictions on whether a location in S is a normal,
urgent or committed one. Broadcast channels can be handled the same way as
binary synchronization channels in our method. Furthermore, due to the second
locking mechanism (using NxtCmt), we guarantee the enforcement of the ASAP
semantics in OL.

Since our method involves only syntactic scanning and manipulations, the
method is not expensive. For each ch ∈ Chan, we need to introduce a dedicated
fresh channel cho. For each occurrence of the emitting edge ch!, we need to
introduce a fresh committed location in S. Moreover, we need two global boolean
flag variables (mayFire, NxtCmt) as the binary semaphores.

4.2 Verification problem

After the modifications, the original system model S becomes S ′, and the observer
timed automaton OL for chart L becomes O′L. Let the minimal and maximal cuts
of the main chart of L correspond to locations lmin and lmax of O′L, respectively.
Recall that the Uppaal “leads-to” property (φ ϕ) stands for A2(φ⇒ A3ϕ),
where φ, ϕ are state formulas.

5. An example 85

l5

l2 Inv1

l1’ Inv1

l1

g5 && (mayFire == true)
ch2!
a5, mayFire := false

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

l5

l2 Inv1

l1’ Inv1

l1

g5 && (mayFire == true)
&& (NxtCmt == false)
ch2!
a5, mayFire := false

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

(a) emitting edge (b) modified emitting edge

lm+2

lm+1

lm

g4
a4

g3
cho?
a3

lm+2

lm+1

lm

g4
a4, NxtCmt := false

g3
cho?
a3, NxtCmt := true

(c) in obs. TA (d) in modified obs. TA

Figure 6: Edge modifications when there are committed locations in the obs. TA.

Lemma 2. If OL has no committed location, and all ch ∈ Chan are binary
synchronization channels, then S |= L ⇔ (S ′ ||O′L) |=(lmin lmax).

In a more general form, we have:

Theorem 2. S |= L ⇔ (S ′ ||O′L) |=(lmin lmax).

Theorem 2 indicates that the problem of checking whether a system model
S satisfies an LSC requirement L can be equivalently transformed into a CTL
real-time model checking problem (“φ leads-to ϕ”) in Uppaal.

5 An example

We put things together by using the example in Fig. 1. The original system S
consists of timed automata A, B, C and D, having channels m1, m2, m3 and m4,
and clock variable x. The scenario-based requirement L is given in Fig. 1(e).

After modifying S and the translated observer timed automaton OL, we get
the newly composed network of TAs (S ′ ||O′L), see Fig. 7.

For this newly composed model, we check in Uppaal the property (lmin
lmax), and it turns out to be satisfied. This indicates that S does satisfy the
requirements that are specified in L.

86 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

m4?

m2?
dest := A

(a) TA
A′

x <= 5

x <= 5 m2o!
mayFire := true

m1o!
mayFire := true

mayFire == true
m2!
mayFire := false,
src := B

x >= 3 &&
(mayFire == true)
m1!
mayFire := false,
src := B

(b) TA B′

m4o!
mayFire := true

m3o!
mayFire := true

mayFire == true &&
NxtCmt == false
m4!
mayFire := false

mayFire == true
m3!
mayFire := false,
src := C

m1?
dest := C

(c) TA C ′

m3?
dest := D

m4?

(d) TA D′

lmax

Err

L1 L2

lpmax_lmin

lpmin
NxtCmt := false

x < 2 &&
src == B &&
dest == A
m2o?

x < 2 && src == B
&& dest == A
m2o?

src == B && dest == C
m1o?

!(src == B &&
dest == A)
m2o?

!(src == C &&
dest == D)
m3o?

!(src == C &&
dest == D)
m3o?

!(src == B &&
dest == C)
m1o?

!(src == B &&
dest == A)
m2o?

!(src == B &&
dest == C)
m1o?

!(src == B &&
dest == C)
m1o?

!(src == C &&
dest == D)
m3o?

!(src == B &&
dest == A)
m2o?

!(src == B && dest == C)
m1o?

m3o?

m2o?

src == B &&
dest == A
m2o?

src == B &&
dest == C
m1o?

src == B &&
dest == C
m1o?

src == C && dest == D
m3o?

src == B && dest == C
m1o?

m4o?m4o?

m4o?

m4o?

src == C &&
dest == D
m3o?
NxtCmt := true

x >= 2 && src == B
&& dest == A
m2o?
NxtCmt := truesrc == C &&

dest == D
m3o?x >= 2 && src == B

&& dest == A
m2o?

x >= 3 && src == B
&& dest == C
m1o?

(e) Translated and modified observer TA O′L of the LSC

Figure 7: The newly composed system (S ′ ||O′L) that corresponds to Fig. 1.

If in L the condition of m2 is changed from x ≥ 2 to e.g. x ≥ 4, then the
property will not be satisfied. There will be a counterexample, e.g., when O′L has
to synchronize on the channel m2o in location L2 of Fig. 7(e), but the value of
clock x falls in [3, 4), then it gets stuck there.

6 Conclusions

This paper deals with the verification of real-time systems against scenario-based
requirements by using model transformation and event spying techniques. Since
both the LSC to TA translation and the non-intrusive composing methods are
automatic steps, our approach can be fully automated.

6. Conclusions 87

Figure 8: LSC requirements of the Train-Gate problem in Uppaal.

Based on previous work [Pus10], the translation algorithms in this paper have
been implemented as an LSC-to-TA translator, which together with a newly
developed LSC editor has been integrated into the Uppaal GUI and verification
server [Bal09]. With the LSC editor, one can create LSC templates 3 (Fig. 8),
which contain the LSC elements that are mentioned in this paper. Thanks to the
LSC-to-TA translation and the subsequent non-intrusive composing mechanisms,
one can check whether a network of timed automata satisfy the requirements
that are specified in an LSC chart. Experiments with some examples such as the
Train-Gate problems show the effectiveness of this method and tool.

Future work includes: (1) empirical evaluations for studying the applicability
and scalability of this approach; (2) to support the translations of more chart ele-
ments such as subchart, if-then-else structure, loop, forbidden and ignored event,
co-region, symbolic instances, and other chart modes; (3) to consider multiple
charts for system modeling as well as for property specification; (4) to specify
interaction scenarios for timed game solving and controller synthesis.

3In such an LSC template, the instance lines and the synchronization channels (messages)
can be parameterized. When we make the system declarations, an LSC template can be in-
stantiated to a concrete LSC chart. This is similar to we do with the TA templates in Uppaal.

88 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

Appendix: Proofs or lemmas and theorems

Lemma 1. If a configuration (c, v) of L corresponds to a semantic state (l, v) of
OL, then: (1) each simregion s that follows (c, v) in L uniquely corresponds to
an outgoing edge (l, l′) in OL, and (2) the target configuration (c′, v′) of s in L
uniquely corresponds to the target semantic state (l′, v′) in OL.

Proof. For each simregion s in L that immediately follows (c, v) w.r.t. the partial
order 4′ of L, according to Section 3.3.3, s uniquely corresponds to an outgoing
edge (l, l′) from l in OL. Since the valuation function v is the same in (l, v) as
in (c, v), and the condition in s is straightforwardly copied onto the TA edge
(l, l′), the simregion s can be stepped over if and only if the TA edge (l, l′) can
be taken. Moreover, the assignment (if any) in s is also straightforwardly copied
onto the edge (l, l′). This indicates that the valuation function in the LSC target
configuration will be still the same as in the TA target semantic state. Therefore,
(c′, v′) uniquely corresponds to (l′, v′).

Specifically, if s is a non-message simregion that immediately follows (c, v) in
L, then according to the ASAP semantics, s will be stepped over immediately
from (c, v). Accordingly, the source location l is a committed location, and the
other outgoing edges that correspond to message-simregions will not be appended
to l. All these ensure that the TA edge that corresponds to s is taken immediately
from state (l, v).

Theorem 1: For any trace tr in OL: tr |= L ⇔ (OL, tr) |= (lmin lmax).

Proof. Let the initial cut of L be c0. According to Section 3.3.2, c0 corresponds
to the initial location l0 of OL. Since in the beginning all the clocks in L have
the same initial values as in OL, the initial configuration (c0, v0) of L uniquely
corresponds to the initial semantic state (l0, v0) of OL.

Only the legal behaviors (admissible traces) of OL will be considered. We
consider the following cases:

(1) OL has only explicitly specified behaviors. By Lemma 1, each simregion
that immediately follows (c0, v0) uniquely corresponds to an outgoing edge from
TA location l0, and the target configuration (c′, v′) in L uniquely corresponds to
the target semantic state (l′, v′) in OL. On the other hand, in (c0, v0) of L, there
could be a time delay d if and only if (l0, v0) of OL can have the same time delay
d.

By recursively applying Lemma 1 and the above result, we can conclude that
any timed trace tr in OL is also a timed trace in L.

Since OL has only explicitly specified behaviors, we know that there is no
undesired behavior in OL. If tr |= L, then by definition this particular tr in
OL also satisfies the path formula (lmin lmax), i.e., (OL, tr) |= (lmin lmax).
Therefore, we have tr |= L ⇒ (OL, tr) |= (lmin lmax).

Appendix: Proofs or lemmas and theorems 89

The reverse implication is proved similarly.
(2) OL include behaviors of unconstrained events or cold violations. In this

case, each unconstrained event m at a particular cut c in L uniquely corresponds
to an m?-labeled self-loop edge at a corresponding location l in OL, and each
cold violation uniquely corresponds to an edge leading to lpmin (if any) or lmin
(otherwise). The two-way implications are proved similarly.

(3) OL include behaviors of prechart pre-matching. In this case, the semantics
of tr |= L says whenever tr matches the prechart Pch, the main chart Mch will
be matched afterwards (and must before Pch begins a next matching process).
Considering that in OL, the locations lmin and lmax are two rendezvous points,
thus tr |= L means exactly the satisfaction of (lmin lmax) by tr.

To sum up, we conclude that for any trace tr in OL, we have tr |= L ⇔
(OL, tr) |= (lmin lmax).

Lemma 2. If OL has no committed location, and all ch ∈ Chan are binary
synchronization channels, then S |= L ⇔ (S ′ ||O′L) |=(lmin lmax).

Proof. Let (l̄, v) be a semantic state of the network of TAs of S, where l̄ is a
location vector, and v is the valuation of all clock variables. For each binary

synchronization channel ch ∈ Chan, we have a transition (l̄, v)
ch−→ (l̄′, v′) if in two

different processes of S, there are two edges (li, li+1) and (lj, lj+1) labeled with
ch! and ch?, respectively, such that:

• v |= gi ∧ gj, where gi and gj are guards of the two edges, respectively;

• l̄′ = l̄[li+1/li, lj+1/lj];

• v′ = aj(ai(v)), where ai and aj are the assignments of the two edges, re-
spectively;

• v′ |= Invi+1 ∧ Invj+1, where Invi+1 and Invj+1 are the location invariants of
the target locations of the two edges, respectively; and

• either (li or lj or both are committed locations), or no other location in l̄
is committed.

We need to show that the modifications of the original system model S and
the observer TA OL do not affect their legal (or admissible) behaviors (traces),
i.e., the event notification mechanism and the locking mechanisms neither in-
crease nor decrease the behaviors (traces) in S and OL. To this end, we prove
that each synchronization in S uniquely corresponds to a pair of consecutive syn-
chronizations in (S ′ ||O′L).

⇒):
By S |= L we know that the original system model S satisfies the requirements

90 Paper A: Verifying Real-Time Systems against Scenario-Based . . .

that are specified in the LSC chart L. It follows that the observer TA OL does
not restrict the (legal) behaviors of S.

If at a semantic state (l̄, v) of S there is a synchronization (l̄, v)
ch−→ (l̄′, v′),

where ch ∈ Chan, we let the two coupling edges that carry ch! and ch? be (li, li+1)
and (lj, lj+1), respectively. Clearly, they satisfy all the five requirements as listed
above. According to the rules for modifying S, edges (li, li+1) will correspond to
two edges (li, l

′
i) and (l′i, li+1) in S ′, where l′i is a newly added intermediate com-

mitted location. Also according to the rules, the semaphore mayFire evaluates
to false only when the current control is in a newly added committed location
(see Fig. 5(d)). Now that the control is in li in S ′, the semaphore mayFire
should evaluate to true. This together with the item v |= gi ∧ gj in the above
requirements indicate that the guards for (li, l

′
i) and (lj, lj+1) in S ′ to synchronize

on ch are both satisfied. Besides, items 3-5 in the above requirements also apply
to the ch-synchronization at (li, l

′
i) and (lj, lj+1). Therefore, there exists a tran-

sition (l̄, v)
ch−→ (l̄′′, v′) in S ′ with (li, l

′
i) and (lj, lj+1) as the coupling edges, where

l̄′′ = l̄′[l′i/li, lj+1/lj].

The second edge (l′i, li+1) in S ′ will be immediately coupled with a correspond-
ing edge in O′L. By the assumption S |= L, we know OL does not restrict the
behaviors of S via its own conditions (e.g., via g3 in Fig. 5(e)). This means
that the cho-synchronization between S ′ and O′L will not get stuck there due to
the restrictions of O′L. Since after this synchronization, the clock variables in S ′
remain unchanged, we know that the location invariant Invi+1 on li+1 of S ′ will
still be satisfied. After this synchronization, the two target locations in S ′ will
be li+1 and lj+1, thus coinciding with the corresponding target locations li+1 and
lj+1 in S. Therefore, we can conclude that given a trace tr in S, there exists a
unique trace tr′ in (S ′ ||O′L) such that tr′ and tr correspond.

By the definition of S |= L (see Section 3.2), we know that if a timed trace
µ in S arrives at the minimal cut of the main chart of L, then µ must always be
able to reach the maximal cut of that main chart. By Theorem 1 and Section
3.3, we know that if µ arrives at location lmin of O′L, then µ must always be able
to reach location lmax of O′L.

Since each trace µ in S can be equivalently mapped to a trace µ′ in (S ′ ||O′L),
clearly, if any µ′ arrives at location lmin of O′L, then that µ′ must always be able
to reach location lmax of O′L.

Since lmin and lmax are two locations in (S ′ ||O′L), the above requirement can
thus be formulated as a Uppaal property (S ′ ||O′L) |= (lmin lmax).

⇐):
Similarly, we need to prove that each trace tr′ in (S ′ ||O′L) uniquely corre-

sponds to a trace tr in S such that tr′ and tr are equivalent.

Assume that in (S ′ ||O′L) there is a synchronization (l̄, v)
c−→ (l̄′, v′).

If c ∈ Chan, then after removing “mayFire == true” from the condition

Appendix: Proofs or lemmas and theorems 91

and removing “mayFire := false” from the assignment of the emitting edge (see
Fig. 5(d)), the edge becomes exactly the corresponding edge in S. Note that
the invariant (if any) at the target location of this emitting edge is irrelevant
of the semaphore mayFire. This indicates that the synchronization between the
corresponding edges in S can also fire.

If c ∈ {cho | ch ∈ Chan}, then the source location of the c!-emitting edge in
S ′ must be a newly added committed location. This c! will be synchronized with
a c?-receiving edge in O′L. And it will bring the control in S ′ from the committed
location to the target location, which coincides with the corresponding target
location in S. Due to the use of semaphore mayFire, no other synchronizations
in (S ′ ||O′L) can preempt the execution of this c-synchronization.

The rest of the transitions in (S ′ ||O′L) are just the same as those in S. There-
fore we can conclude that a trace tr′ in (S ′ ||O′L) uniquely corresponds to a trace
tr in S such that tr′ and tr are equivalent. Now that (S ′ ||O′L) |= (lmin lmax),
according to the semantics of LSC chart satisfaction, we have S |= L.

Theorem 2. S |= L ⇔ (S ′ ||O′L) |= (lmin lmax).

Proof. This theorem is a generalization of Lemma 2 by canceling the restrictions.
If ch ∈ Chan is a broadcast channel, the semantics of ch-synchronization is a

little different. Since the modifications of the emitting edges in S do not affect
the receiving edges in S, we can still have a one-to-one mapping between the
traces in S and in (S ′ ||O′L).

If there are committed locations in O′L, then we use the second semaphore
NxtCmt to guarantee the non-interrupted execution at those committed locations
in O′L. Since an edge (l, l′) starting from a committed location l in O′L represents
an internal action (local) transition, it needs no synchronization with S ′. Thus
the edge does not affect the behavior of S ′.

To sum up, there is a one-to-one mapping of the traces in S and (S ′ ||O′L),
even in the presences of broadcast channels in S and committed locations in OL.
Thus we have S |= L ⇔ (S ′ ||O′L) |=(lmin lmax).

Paper B:
Scenario-Based Analysis and
Synthesis of Real-Time Systems
Using Uppaal

Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen, Saulius Pusinskas

Center for Embedded Software Systems (CISS)
Department of Computer Science
Aalborg University, Denmark

Abstract

We propose an approach to scenario-based analysis and synthesis of real-time
embedded systems. The inter-process behaviors of a system are modeled as a set
of driving universal Live Sequence Charts (LSCs), and the scenario-based user
requirement is specified as a separate monitored universal or existential LSC. By
translating the set of LSCs into a behavior-equivalent network of timed automata
(TA), we reduce the problems of model consistency checking and property ver-
ification to CTL real-time model checking problems. Similarly, we reduce the
problem of centralized synthesis for open systems to a timed game solving prob-
lem. We implement a prototype LSC-to-TA translator, which can be linked to
our LSC editor and the existing real-time model checker Uppaal and timed game
solver Uppaal-Tiga. Preliminary experiments on a number of examples and a
case study show the applicability and effectiveness of this approach.

Keywords: Real-Time Systems, Live Sequence Charts (LSCs), Timed Automata
(TA), Consistency Checking, Verification, Synthesis

94 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

1 Introduction

In the early stage of model-based development of real-time embedded systems, it
is desirable to prototype a system in question and its operating environment using
a number of use cases and scenarios. A next round refinement of the system model
and the transition from model to implementation can start only if the scenario-
based model is checked to be consistent (i.e., implementable), and correct with
respect to some specified scenario-based user requirements. Furthermore, from
a correct-by-construction perspective, as a part of the long-known dream for
“automated system design”, we may wish to synthesize executable object systems
from scenario-based descriptions.

Live Sequence Chart (LSC) [HM03] is a scenario-based specification and pro-
gramming language, which can describe systems in an assume-guarantee style. A
universal LSC chart can optionally contain a prechart, which specifies the scenario
which, if successfully executed, forces the system to satisfy the scenario given in
the actual chart body (the main chart). Essentially, LSC extends Message Se-
quence Chart (MSC) [IT99] by adding modalities. The existential and cold (resp.
universal and hot) modalities represent the provisional (resp. mandatory) global
and local requirements, respectively. An existential LSC chart (resp. universal
LSC chart) specifies restrictions over at least one satisfying (resp. all possible)
system runs. A cold condition may be violated, whereas a hot one must be sat-
isfied. The rich language facilities and the unambiguous semantics make LSC
a nice visual formalism for early-stage characterization of distributed, real-time
and embedded systems.

Scenario-based approaches that use LSCs enjoy the advantages of piecewise
incremental construction of system models, i.e., new pieces of scenarios can be
added into the models during the development process. However, scenario-based
analysis such as model consistency checking and property verification (i.e., to
check whether an LSC-modeled system satisfies a scenario-based requirement)
are difficult due to the need to consider both the explicitly as well as implic-
itly specified behaviors in each scenario, and the interplays among the different
scenarios. Scenario-based synthesis is difficult because all possible scenario inter-
actions have to be considered 1. The problems become even more complicated for
real-time systems, as time-enriched LSCs may contain subtle timing errors that
are difficult to diagnose.

Powerful verification techniques and tools are utilized to assist scenario-based
analysis and synthesis for LSCs, e.g. in smart play-out [HKMP02, HKP04,
CHK08], satisfiability checking [SD05a, CHK08], consistency checking [SD05a]
and synthesis [HK02, HKP05, SD05b, BS07, KPP09].

1It has been shown that for an untimed subset of the LSC language, consistency checking
and the subsequent synthesis is at least EXPTIME-complete, and model checking a given system
implementation (e.g. in I/O automata) against an LSC specification is complete for co-NP (for
centralized implementation of a closed system) or PSPACE (otherwise) [Bon05].

1. Introduction 95

Some of these efforts address the problems mainly from a theoretical view-
point [HK02, BS07]. Some of them handle property verification with only ex-
istential charts [SD05a, CHK08]. A number of them have no real-time support
[HK02, HKMP02, SD05a, SD05b, BS07]. While synthesis for LSC-modeled real-
time systems is supported in [HKP05], it is incomplete in the sense that some
systems are announced not synthesizable while they actually are. The reason is
that the smart play-out mechanism [HKMP02, HKP04] that [HKP05] relies on
implements only a local consistency checking where the Play-Engine looks only
one super-step ahead in the LSC state space. A recent work [KPP09] tackles
this by employing controller synthesis techniques to achieve complete consistency
checking and subsequent complete synthesis. However as an extension to smart
play-out, this method, like the earlier work [HKP05], is limited to discrete time
and a restricted form of timing constraints 2.

In this paper we equip a kernel subset of the LSC language with timed au-
tomaton (TA)[AD94] -like real-valued clock variables and clock constraints. We
use a set of driving universal LSC charts (collectively called an LSC system)
to model the inter-process interaction behaviors of the system in question, and
use a monitored universal/existential chart to specify the user requirement. We
translate the LSC system into a behavior-equivalent network of interacting timed
automata, which can properly mimic the important LSC features such as message
sending and intra/inter-chart coordinations. The problems of consistency check-
ing and property verification can be reduced to CTL real-time model checking
problems in Uppaal [BDL04]. Furthermore, by viewing the interaction between
the controllable system processes (Sys) of an LSC system and their “hostile”
(uncontrollable) environment processes (Env) as playing a (safety) game with
the aim of constantly avoiding hot violations, we can reduce the problem of
scenario-based synthesis for open systems (i.e., Sys) to a game solving problem.
The timed game solver Uppaal-Tiga [BCD+07] can be employed to check the
solvability, and if yes, to generate a strategy for Sys. Compared with existing
work, our approach of scenario-based analysis and synthesis features:

• TA-like real-valued clock variables and clock constraints (compared with
[HKP04, HKP05, CHK08, KPP09]);

• Complete consistency checking and synthesis (compared with [HK02, HKP05]);

• Property verification with the properties being specified as universal charts
(compared with [SD05a, CHK08]); and

• Automated, tool-supported approach (compared with [HK02, BS07]).

2In the original definition and the Play-Engine implementation of time-enriched LSC [HM03],
the special Clock object has a property Time which is an integer variable, and a method Tick
which each time increases Time by 1. Timing constraints take the form of only “Time op (time
variable + delay expression)”, where op is an relational operator.

96 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

The benefits of building the scenario-based analysis and synthesis methods
on top of the well-developed real-time model checking and timed game solving
engines are twofold: (1) for system analysts and designers who are interested in
early-stage validations and automated system designs using live sequence charts,
now they can carry out scenario-based analysis and synthesis of timed systems
without having to develop and implement the underlying algorithms; (2) for the
users of conventional model checkers that work on state/transition-based models
and temporal logical properties, now they can horizontally scale up to scenario-
based models and scenario-based user requirements.

1.1 Related Work

In addition to being used as a requirement specification language [DK01, KW01,
KTWW06], LSC can also be used as a modeling language [HK00, HK02, HKMP02,
HKP04, Bon05, SD05a, SD05b, HKP05, CHK08, KPP09]. In the latter case,
problems of scenario-based analysis such as model consistency checking and prop-
erty verification, and of scenario-based synthesis arise. This paper will mainly
consider the latter usage of LSC charts.

Analysis of scenario-based behaviors can be carried out inside the Play-engine
[HM03] according to the operational semantics of LSC [HK00, HK02, HKMP02,
HKP04, HKP05, CHK08, KPP09], or achieved by first transforming LSCs into
other formalisms such as CSP [SD05a, SD05b] and timed büchi automata (TBA)
[KW01], and then calling for other mature techniques and tools to accomplish
the tasks. In this paper we will follow the latter approach to take advantage of
the TA formalism [AD94], the real-time model checker Uppaal [BDL04] and the
timed game solver Uppaal-Tiga [BCD+07]. Similar in spirit to the approaches
of [HKMP02, SD05a], during the translation we will create one process for each
instance line of the charts, and thus avoid the explicit construction of the global
transition system.

A set of LSC charts are consistent if and only if these charts are not internally
contradictory, i.e., they can be satisfied by a certain state-based object system
[HK00, HK02]. Consistency checking of LSC systems is a prerequisite step to-
wards synthesis [HKP05, Bon05, SD05a, SD05b, KPP09], i.e., to construct one
such satisfying state-based object system. In this paper, we consider both the
consistency checking and the synthesis problems, and will reduce them to the
model checking and game solving problems, respectively.

Current work on verification of scenario-based requirement either has state/
transition-based object systems as the subject, e.g., Statemate model imple-
mentations [DK01, KW01] and Kripke structures [KTWW06], or has an LSC
system as the subject. In the latter case, existing work mainly concerns satis-
fiability checking [SD05a, CHK08], i.e., to check whether the requirement that
is expressed as an existential chart can be satisfied by the LSC system. In this
paper we will also check whether a requirement specified as a universal chart can

2. Live Sequence Charts 97

always be respected by the LSC system.

1.2 Organization

Section 2 presents our timed extensions to a subset of the LSC language and de-
fines a trace-based semantics. Section 3 describes how we translate LSCs into a
network of timed automata, shows how complex the outcome of the translation is,
and shows the behavior-equivalence of the translation. The scenario-based anal-
ysis and synthesis problems are formulated as model checking and game solving
problems in Section 4. The prototype tool implementation and preliminary ex-
periments are reported in Section 5. We conclude in Section 6. The detailed
translation rules, the complexity analysis of the translation outcomes, and the
proofs of lemmas and theorems in Sections 3.4 and 4 are provided in the appen-
dices.

2 Live Sequence Charts

In this paper, LSC in its simplest form is a message-only untimed chart, i.e., there
are only language elements of instance lines, locations, messages and precharts/
main charts.

We make the synchrony hypothesis, i.e., system events consume no real time
and time may elapse only between events. In this way message synchronizations
will be instantaneous, i.e., the sending and reception of a message are assumed
to happen at the same moment in time. Therefore the terms of (message sending
or receiving) event and message will be used interchangeably.

A chart has a role, either for system modeling (i.e., as a driving chart), or
for system property specification (i.e., as a monitored chart). Driving charts can
only be universal charts, whereas a monitored chart can be either a universal or
an existential chart. In this paper we use a set of universal charts to model the
behaviors of the system in question, and use a separate universal or existential
chart to specify the system property.

A universal LSC chart has an activation mode, i.e., how often a chart should
be activated. In this paper, we consider the invariant mode, i.e., the prechart is
being constantly monitored, regardless of whether any incarnation of the chart
has entered its main chart portion.

2.1 Syntax and semantics for a single universal chart

A universal LSC chart has a main chart (Mch) and optionally a prechart (Pch). If
it has no prechart, then it can be simply treated as having a satisfying prechart.
In this paper we assume that a universal chart has a prechart.

We start with message-only untimed charts, see Fig. 1 for the examples.

98 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

(a) chart 1 (b) chart 2

Figure 1: Two consistent untimed charts.

Given a universal chart L, let I = inst(L) be the set of instance lines (i.e.,
processes) in L. Along each instance line Ii ∈ I there are a finite set of “po-
sitions” pos(L, Ii) = {0, 1, 2, . . . , p maxL,Ii} ⊂ N≥0. See Fig. 1(a), black filled
circles. Specifically, along each instance line Ii there are four “standard” positions
StdPos(L, Ii) = {Pch top,Pch bot,Mch top,Mch bot} ⊂ pos(L, Ii), denoting the
entry/exit points of the prechart/main chart, respectively, such that:

• 0 = Pch top < Pch bot < Mch top < Mch bot = p maxL,Ii ; and

• Pch bot + 1 = Mch top.

A chart location is a position on a certain instance line of the chart. The set
of all locations of chart L are denoted as:

loc(L) = {〈Ii, p〉 | Ii ∈ inst(L), p∈pos(L, Ii)}.

The set of all message-anchoring locations of L are denoted as:

locM(L) = {〈Ii, p〉 | Ii ∈ inst(L), p∈pos(L, Ii)\StdPos(L, Ii)}.

Furthermore, we define function psn : loc(L)→
⋃
Ii∈inst(L) pos(L, Ii) to project a

location to its position on its instance line.
Let ML(L) be the set of message labels (or “signals”, or “channels” in Up-

paal) of chart L. A message occurrence mo = (〈Ii, p〉, m, 〈Ii′ , p′〉) ∈ locM(L)
×ML(L)× locM(L) corresponds to instance Ii, while in its position (p−1), send-
ing signal m ∈ ML(L) to instance Ii′ at its position (p′ − 1), and then arriving
at positions p and p′, respectively. We call lab(mo) = m the message label,
head(mo) = 〈Ii′ , p′〉 and tail(mo) = 〈Ii, p〉 the message head and tail locations,
and src(mo) = Ii and dest(mo) = Ii′ the source and destination instances, respec-
tively. We use loc(mo) = {head(mo), tail(mo)} to denote the message anchoring
locations. The set of all message occurrences in chart L are denoted as:

MO(L) ⊆ {(〈Ii, p〉,m, 〈Ii′ , p′〉) ∈ locM(L)×ML(L)× locM(L) | i 6= i′,

p ≤ StdPos(L, Ii).Pch bot ⇔ p′ ≤ StdPos(L, Ii′).Pch bot}.

We omit the parameter L in MO(L) (and thus abbreviating it as MO) when it
is clear from the context. Furthermore, we use Σ = MA(L) to denote the projec-
tion of MO(L) onto inst(L)×ML(L)× inst(L). In this way, we get the message

2. Live Sequence Charts 99

alphabet Σ, where each letter is a message which denotes that a particular signal
is sent from one to another objects (instance lines). For a given message oc-
currence, we may overload its “message label” to also denote the corresponding
letter in Σ.

This paper does not consider concurrent messages, thus each location can be
the end point of at most one message occurrence in the chart.

Now we continue to define our timed extensions to the above kernel subset of
the LSC language. In our time-enriched LSC charts, there are further elements
of (clock) variables, conditions (clock constraints), assignments (clock resets) and
simregion (i.e., “simultaneous region”). Fig. 2 gives two example time-enriched
LSC charts.

(a) chart 1 (b) chart 2

Figure 2: Two consistent time-enriched charts.

Assume that in chart L there are a finite set X of real-valued clock variables
that range over R≥0. A clock valuation is a function v : X → R≥0 that maps
each clock variable to a non-negative real number, also denoted v ∈ R≥0

X .
A clock constraint is of the form x ./ n or x− y ./ n where x, y ∈ X, n ∈ Z,

and ./ ∈{<,≤,=,≥, >}. Let B(X) be the set of finite conjunctions over these
constraints. The set of conditions (or guards) in the chart are denoted G ⊆ B(X).
A condition g ∈ G has a temperature, denoted g.temp, which may be either hot
or cold in the main chart, and only cold in the prechart.

A clock reset is of the form x := 0 where x ∈ X. An assignment (or update)
a is the union of a finite set of clock resets. For simplicity we use a to denote
the set of clocks to be reset. The set of all assignments in the chart is denoted
A ⊆ 2X . We can also view a ∈ A as a transformer on the functions of clock
valuations, and as such the new valuation of v after assignment a is denoted as
v′ = a(v).

In our time-enriched LSCs, each message occurrence mo can be optionally
associated with a condition g and/or an assignment a. The intuitive meaning of
message synchronization [g]mo/a from location 〈Ii, p〉 to 〈Ii′ , p′〉 is that, if when
mo occurs, the clock valuation v satisfies g, then this synchronization can fire;
and immediately after the firing, v will be updated according to a. A message
occurrence and the corresponding condition and/or assignment attached thereto

100 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

can be collectively viewed as an atomic step of LSC execution, i.e., they take
place at the same moment in time, hence they constitute a simregion. We denote
the set of all simregions as SR. For simplicity, we do not consider stand-alone
conditions or assignments, i.e., we assume that any condition and assignment is
associated with a certain message.

In an LSC chart L, every location is either associated with a simregion, or it
is an entry/exit point of the prechart/main chart. We define a labeling function
λ : loc(L)→ SR ∪{nil} to map a location of the former type to its corresponding
simregion, and a location of the latter type to nil.

Locations in a chart L are partially ordered by the following rules:

• Along each instance line Ii: location l is above l′ ⇒ (l ≤ l′)∧¬(l′ ≤ l); and

• All locations in the same simregion have the same order, ∀s ∈ SR,∀l, l′ ∈
loc(L) . (λ(l) = s) ∧ (λ(l′) = s)⇒ (l ≤ l′) ∧ (l′ ≤ l).

The partial order relation 4⊆ loc(L)×loc(L) is defined as a transitive closure
of ≤.

Definition 1 (cut of an LSC chart). A cut of a chart L is a set c ⊆ loc(L) of
locations that span across all the instance lines in L which satisfies the properties
of:

• Downward-closure. If a location l is included in cut c, so are all of its
predecessor locations: ∀l, l′ ∈ loc(L). (l ∈ c ∧ l′4 l)⇒ l′ ∈ c; and

• Intra-chart coordination integrity. If a Mch top position of a certain in-
stance line is included in the cut, then the Mch top positions of all other
instance lines are also included in the cut: ∃l∈ loc(L), Ii ∈ inst(L) . ((
StdPos(L, Ii).Mch top ≤ psn(l)) ∧ (psn(l) ≤ StdPos(L, Ii).Mch top) ∧ (l ∈
c)⇒ ∀l′∈ loc(L), Ii′ ∈ inst(L) . ((StdPos(L, Ii′).Mch top≤psn(l′))∧ (psn(l′)
≤StdPos(L, Ii′).Mch top)⇒ l′∈c)).

For a cut c, we use loc(c) to denote its frontier, i.e., the set of locations
that constitute the downward borderline progressed so far. The location where c
“cuts” instance line Ik ∈ I is denoted loc(c)〈k〉.

Given a cut c ⊆ loc(L) and a simregion s ∈ SR, we say s is enabled at
cut c (with respect to the partial order relation), denoted c

s−→, if, ∀ l ∈ c, l′ ∈
loc(s) . ((l 4 l′) ∧ ¬(l′ 4 l)) ∧ (@ l′′ ∈ loc(L)\(c ∪ loc(s)) . (l 4 l′′ ∧ l′′ 4 l′)). The
enabledness of message occurrences can be defined similarly.

A cut c′ is an s-successor of cut c, denoted c
s−→ c′, if s is enabled at c (w.r.t.

the partial order), and c′ is achieved by adding the set of locations that s anchors
into c, or formally, (c

s−→) ∧ (c′ = c ∪ loc(s)).
A cut c is minimal, denoted>, if it “cuts” each instance line at its top location;

and c is maximal, denoted ⊥, if if it “cuts” each instance line at its bottom

2. Live Sequence Charts 101

location. The minimal and maximal cuts of the prechart and main chart are
denoted Pch.>, Pch.⊥, Mch.> and Mch.⊥, respectively. The frontiers of minimal
and maximal cuts do not contain simregion anchoring points. Rather the cuts
Pch.⊥ and Mch.⊥ each represent a requirement for compulsory synchronization
for all the instance lines in the chart. Thus the partial order relation 4 on loc(L)
is extended as follows (and finally also extended to its transitive closure):

• All locations in the frontier of the same minimal or maximal cut have the
same order, ∀c ∈ {Pch.>, Pch.⊥,Mch.>,Mch.⊥} , ∀l, l′∈ loc(c) . (l 4 l′) ∧
(l′4 l).

Definition 2 (configuration). A configuration of an LSC chart is a tuple (c, v),
where c is a cut and v is a clock valuation.

For d ∈ R≥0, notation (v+d) : X → R≥0 means that the function v is shifted
by d such that ∀x ∈ X . (v(x+ d) = v(x) + d).

A configuration at the minimal cut > with all clocks assigned their initial
values (e.g., 0’s) is called the initial configuration.

A configuration can be viewed as a “semantic state” of a time-enriched LSC
chart. A universal chart starts from the initial configuration, advances from one
to a next configuration, until a hot violation 3 occurs, or until the chart arrives
at the maximal cut configuration and then starts all over again (i.e., to begin a
next round execution).

There could be three kinds of advancement steps between two configurations
(c, v) and (c′, v′) of a time-enriched LSC chart:

• Message synchronization step. Given a simregion s which consists of an
m-labeled message occurrence mo (m ∈ Σ), and optionally a condition g
and/or an assignment a, there is a message synchronization step (c, v)

m−→
(c′, v′) if,

– (normal advancement). c
s−→ c′, v |=g, and v′ = a(v); or

– (cold violation). c′ = Pch.>, v′ = v, and either

- mo is not enabled at cut c in the prechart (w.r.t. the partial order
relation); or

- (v 2 g) ∧ (g.temp = cold);

• Silent step. There is a silent step (c, v)
τ−→ (c′, v′) if either

3A hot violation means that some mandatory requirements are not satisfied. In this paper,
it refers to the situations that in the main chart the event partial order is violated or a hot
condition evaluates to false. In comparison, a cold violation means that some provisional
requirements are not satisfied (therefore it is not a big deal). In this paper, it refers to the
situations where the event partial order is violated in the prechart, or a cold condition evaluates
to false.

102 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

– (c = Pch.⊥, c′ = Mch.>, v′ = v); or

– (c = Mch.⊥, c′ = Pch.>, v′ = v); or

– c′ is reached because an instance line moves to its bottom location
in Pch or Mch autonomously (this happens when the instance line
will not interact with other instance lines before it reaches its bottom
location in Mch or Pch). Formally, there exists an instance Ik such
that v′ = v and either

- loc(c′)〈k〉 = (loc(Pch.⊥))〈k〉, psn(loc(c′)〈k〉) = psn(loc(c)〈k〉) + 1,
and loc(c′)〈i〉 = loc(c)〈i〉 for all i 6= k; or

- loc(c′)〈k〉 = (loc(Mch.⊥))〈k〉, psn(loc(c′)〈k〉) = psn(loc(c)〈k〉) + 1,
and loc(c′)〈i〉 = loc(c)〈i〉 for all i 6= k;

• Time delay step. There is a time delay step (c, v)
d−→ (c′, v′) where d ∈ R≥0

if: c′ = c, v′ = v + d, and whenever there are message occurrences that are
enabled at cut c (w.r.t. both the partial order relation and the guard), then
after delay d there exists at least one of them that is still enabled at the
same cut, i.e., ∃s ∈ SR .∃mo, g ∈ s .∀d′∈ [0, d] . (c

s−→) ∧ (v + d′) |= g.

Similarly, if in the main chart, an m-labeled message violates 4, or (v 2
g ∧ g.temp = hot), then the configuration (c, v) is said to be hot-violated, denoted

(c, v) ��
m−→.

Definition 3 (run of an LSC chart). A run of a time-enriched universal LSC
chart is a sequence of configurations (c0, v0) · (c1, v1) · . . . that are connected by the

advancement steps, i.e., ∀i≥0 .∃ui ∈ (Σ∪{τ}∪R≥0) . (ci, vi)
ui−→ (ci+1, vi+1).

The transition relation → as mentioned above each time consumes only a
single letter u ∈ (Σ ∪ {τ} ∪ R≥0). We extend it to →∗ such that it consumes a
(finite or infinite) word w ∈ (Σ ∪ {τ} ∪R≥0)∗ ∪ (Σ ∪ {τ} ∪R≥0)ω.

Let Π correspond to the set of all possible messages that occur in a state/
transition-based system model (i.e., a network of timed automata), or be the set
of all messages in an object interaction-based system model (i.e., a set of driving
universal LSC charts). In the latter case, the message alphabet for the LSC
system model LS = {Li | 1 ≤ i ≤ n} is Π =

⋃n
i=1 Σi =

⋃n
i=1 MA(Li).

Definition 4 (satisfaction of a prechart/main chart). A timed trace γ ∈ (Π ∪
{τ}∪R≥0)∗ ∪ (Π∪{τ}∪R≥0)ω satisfies an LSC prechart or main chart C, denoted
γ |= C, if its projection γ|(Σ∪{τ}∪R≥0) has a prefix µ which is the accepted word of a
run that successfully exercises C, and no prefix of it ever leads to a hot violation.
Formally, (∃µ ∈ (Σ∪ {τ} ∪R≥0)∗, ξ ∈ (Σ∪ {τ} ∪R≥0)∗∪(Σ∪ {τ} ∪R≥0)ω .∃v′∈
R≥0

X . (γ|(Σ∪{τ}∪R≥0) = µ · ξ)∧ (>, v0)
µ

→∗ (⊥, v′)) ∧ (@µ′ ∈ (Σ∪ {τ} ∪R≥0)∗, ξ ∈

(Σ∪{τ}∪R≥0)∗∪(Σ∪{τ}∪R≥0)ω .∀m∈Σ . ((γ|(Σ∪{τ}∪R≥0) = µ′ ·m·ξ) ∧ (>, v0)
µ′

→∗

• ��
m−→)).

2. Live Sequence Charts 103

A finite trace γ ∈ (Π ∪ {τ} ∪ R≥0)∗ satisfies chart C exactly, denoted γ C,
iff (γ |= C) ∧ ∃µ∈(Π ∪ {τ} ∪R≥0)∗, v′∈R≥0

X . (γ|(Σ∪{τ}∪R≥0) = µ) ∧ ((>, v0)
µ

→∗
(⊥, v′)).

Now we define the satisfaction relation for a full universal chart (under the
invariant activation mode):

Definition 5 (satisfaction of a universal LSC chart). A timed trace γ ∈ (Π ∪
{τ}∪R≥0)ω satisfies (passes) a universal chart L, denoted γ |= L, iff whenever a
finite sub-trace matches the prechart, then the main chart is matched immediately
afterwards. Formally, ∀α, µ ∈ (Π∪{τ}∪R≥0)∗, β ∈ (Π∪{τ}∪R≥0)ω . (α ·µ ·β =
γ) ∧ (µ Pch)⇒ (β |= Mch).

A timed language Lang ⊆ (Π ∪ {τ} ∪R≥0)ω satisfies L, denoted Lang |= L,
iff ∀γ ∈ Lang . γ |= L. Clearly, Lang characterizes the system behaviors that
respect L.

When L is used as a monitored chart, then for a network S of timed automata,
we use S |= L to denote that the timed traces (language) of S satisfy LSC L.

2.2 Semantics for a set of universal charts

For an LSC system LS which consists of a set of driving universal charts L1,L2, . . . ,
Ln, we denote c̄ = (c1, c2, . . . , cn) as a cut vector, and v as a valuation of all of the
clock variables in LS. Each member cut of c̄ is denoted as ci = (c̄)i, 1 ≤ i ≤ n.
We call (c̄, v) a global configuration of LS.

Let (c̄, v) be a global configuration of an LSC system LS. Assume that there
are message occurrences mo1, . . . ,mok (1 ≤ k ≤ n, each in a different chart)
that are simultaneously enabled at ((c̄)i, v), 1 ≤ i ≤ k, and that these message
occurrences are the same message, i.e., they have exactly the same message label
and the same source and destination instances, i.e., ∃m ∈ Π, Lj ∈ LS .∃Ia, Ib ∈
inst(Lj) .∀1 ≤ i ≤ k . (lab(moi) = m) ∧ (src(moi) = Ia) ∧ (dest(moi) = Ib). In
this case, these identically labeled message occurrences are said to be enabled at
global configuration (c̄, v) w.r.t. their respective partial order relations.

Given a global configuration (c̄, v) of LS and a message m ∈ Π, there is a
message synchronization step (c̄, v)

m−→ (c̄′, v′) in LS if:

• A maximal set of m-labeled message occurrences are enabled at (c̄, v), and
there is no chart Li whose local configuration ((c̄)i, v) will be hot-violated
by an m-labeled message. In this case, for all charts Lj which each has an

m-labeled message occurrence enabled at (c̄, v), the
m−→ message synchro-

nization steps will occur simultaneously; and

there is a silent step (c̄, v)
τ−→ (c̄′, v) in LS if:

• There is a chart Li such that ((c̄)i, v)
τ−→ ((c̄′)i, v). In this case, for all j 6= i,

we have c̄′j = c̄j; and

104 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

there is a time delay step (c̄, v)
d−→ (c̄, v + d) in LS if:

• For all 1 ≤ i ≤ n, we have ((c̄)i, v)
d−→ ((c̄)i, v + d).

In the first case above, the global condition for all m-labeled message occur-
rences is the conjunction of all individual conditions, and the global assignment
is the union of all individual assignments.

Similarly, we can define runs and →∗ for a set of time-enriched LSC charts.

Definition 6 (satisfaction of an LSC system). A timed trace γ ∈ (Π∪{τ}∪R≥0)ω

satisfies (passes) an LSC system LS iff, γ corresponds to an infinite run of LS,
and it satisfies each chart Li in LS separately.

3 LSC to TA translation

3.1 Motivation

Similar to Paper A, in this paper our scenario-based analysis and synthesis meth-
ods rely on a translation of the LSC charts to timed automata. However, unlike
in Paper A where each monitored chart specifies a user requirement individually,
in this paper a set of driving charts are supposed to characterize the inter-object
behaviors of the system collectively. When the system consists of a large number
of driving charts, then the cut-based LSC-to-TA translation will encounter the
state explosion problem: the number of possible global cuts (i.e., the number of
possible system states) will increase rapidly, and explicit encoding and storing
these information need a lot of space. Furthermore, the outcome of the transla-
tion as a single huge timed automaton will be difficult to visualize, to debug and
to diagnose.

To overcome the above problems, in this paper we propose a different method
for translating LSC charts to timed automata. For each driving LSC chart L
in the system model, we view the instance lines in L as a set of parallelly run-
ning processes that communicate with one another and collaborate to achieve a
common goal as specified by chart L. Since Uppaal also operates on a network
of parallelly composed processes (TAs) that communicate with each other, this
motivates us to translate each instance line of L to a timed automaton. In this
way we avoid the explicit construction of a global automaton. This idea in spirits
resembles the approaches of [HKMP02, SD05a]. Thanks to the Uppaal features
of broadcast channels, boolean and integer variables and committed locations in
timed automata, we are able to appropriately translate the LSC features such
as message sending, intra/inter-chart coordinations and cold/hot violations to
timed automata. Compared with the “one-TA-per-chart” approach that can be
viewed as a kind of centralized translation (Paper A, Section 3.3), the “one-TA-
per-instance line” approach of this section can be viewed as a kind of distributed
translation.

3. LSC to TA translation 105

3.2 Mapping LSC instance to Uppaal timed automaton

Basic structure mapping

Each instance line Ii in chart Lu of the LSC system LS is mapped into a timed
automaton Au,i, where each position on Ii corresponds to a TA location in Au,i,
and each discrete advancement step (i.e., a message synchronization step or a
silent step) on Ii corresponds to a TA edge in Au,i. The sending (resp. receiving)
of an m-labeled message on Ii corresponds to an m! (resp. m?)-labeled TA edge
in Au,i.

Handling intra/inter-chart coordinations

In the prechart (resp. main chart) of an LSC chart, once all the participat-
ing instance lines have progressed to their Pch bot (resp. Mch bot) positions,
then the prechart (resp. main chart) is successfully matched. In this case, the
prechart (resp. main chart) will be exited immediately, and the main chart (resp.
prechart) will be entered immediately afterwards. To synchronize all the partici-
pating instance lines for such a prechart/main chart (resp. main chart/prechart)
transfer, for each LSC chart L, we create a dedicated (auxiliary) coordinator
automaton CoordL. This automaton will communicate with the timed automata
for the instance lines by using auxiliary binary synchronization channels such
that it can bookkeep how many instance lines are done with their prechart (resp.
main chart) portions. Once the coordinator automaton realizes that the prechart
(resp. main chart) has been successfully matched, it will immediately launch a
broadcast synchronization with the timed automata for all the relevant instance
lines.

In scenario-based modeling, the same message may well appear in two or
more charts. To be more specific, it is possible that an m-labeled message from
instance line A to instance line B has its occurrences in LSC charts L1,L2, . . . ,Ln.
If these messages are all enabled and one of them is chosen to be fired, then all
the others must also be fired simultaneously. Clearly, this requires an inter-chart
coordination. To achieve this, we use broadcast synchronization channels rather
than binary synchronization channels for these messages. In the translated timed
automata, if there is an m!-labeled edge from one to another TA locations, then
we add an m?-labeled edge between these two TA locations to “accompany” the
m!-labeled edge.

Handling cold and hot violations

Once a cold violation occurs, we let the timed automaton that corresponds to
the message sending instance line report to the coordinator automaton in charge,
which in turn immediately synchronizes all the timed automata that correspond

106 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

to the relevant instance lines in the chart for a reset (i.e., to go back to their
initial TA locations).

In the translated network of timed automata NTA, we maintain a global flag
boolean variable hotviolated, which indicates whether a hot violation has occurred
in the LSC system. This variable is initialized to false, and it will be set to true

whenever a hot violation occurs.

Dealing with time

To mimic the behaviors of a clock constraint and clock reset in an LSC chart, we
use a linked sequence of TA edges, whose atomicity is ensured by the Uppaal
feature of committed location 4. Upper bound constraints in the conditions can
be extracted and used as TA location invariants to ensure that the constrained
messages are sent out within the specified time frames; lower bound and clock
difference constraints can be extracted and tested immediately after the message
synchronizations.

Translating environment processes

The processes (instance lines) in an LSC system can be partitioned into two
sets: the environment processes (Env) and the system processes (Sys). From the
system’s perspective, the messages sent from Env to Sys processes are uncontrol-
lable, whereas other message sendings are controllable. To model this edge con-
trollability for the purpose of timed game solving, we mark the message-sending
edges in the translated timed automata of the Env processes as uncontrollable
edges (in dashed lines), and other edges as controllable edges (in solid lines). In
this way, we obtain the timed game automata [MPS95] models.

Translating monitored chart

In comparison with a driving universal chart, the translation of a monitored chart
to timed automata is different in the point that a monitored chart only “listens
to” the messages in the LSC system and never emits messages by itself. When
translating such a chart into a network of timed automata, if at position s of
instance line Ik there is a sending of an m-labeled message, then we add an
m?-labeled TA edge from ls−1 to ls, and not an m!-labeled one.

The translation rules, the detailed explanations and the translation examples
can be found in Appendix B.

4A committed location is an urgent location whose outgoing transitions have higher priority
to be taken than those from non-committed ones.

3. LSC to TA translation 107

3.3 Complexity of translated timed automata

Let LS be a set of LSC charts L1,L2, . . . ,Ln, and let NTALS be the translated
network of timed automata. Let inst(Li), ML(Li), MA(Li) and MO(Li) denote
the set of instance lines, the set of message labels (i.e., “signals”), the message
alphabet and the set of message occurrences of chart Li, respectively.

Table 1 summarizes the complexity of the outcomes of the translation in
different settings, namely, a single LSC chart or an LSC system; untimed LSC
chart or time-enriched LSC chart.

How we obtain these analysis results can be found in Appendix C.

Table 1: The complexity of the outcomes of LSC-to-TA translation

number of A single chart L
untimed chart time-enriched chart

TAs |inst(L)|+ 1 |inst(L)|+ |MA(L)|+ 1
channels |ML(L)|+ 2 · |inst(L)|+ 4 |ML(L)|+ 2 · |inst(L)|+ 4 + 3 · |MA(L)|
auxiliary variables 2 · |MA(L)|+ 2 4 · |MA(L)|+ 2 · |MO(L)|+ 2

number of A set of driving charts L1,L2, . . . ,Ln
untimed charts time-enriched charts

TAs
∑n
i=1(|inst(Li)|+ 1)

∑n
i=1(|inst(Li)|+ 1) + |

⋃n
i=1 MA(Li)|

channels |
⋃n
i=1 ML(Li)|+∑n
i=1(2 · |inst(Li)|+ 4)

|
⋃n
i=1 ML(Li)|+

∑n
i=1(2 · |inst(Li)|+

4) + 3 · |
⋃n
i=1 MA(Li)|

auxiliary variables 2 · |
⋃n
i=1 MA(Li)|+ 2n 4·|

⋃n
i=1 MA(Li)|+2·

∑n
i=1 |MO(Li)|+

2n

3.4 Behavior equivalence of LSC and translated TAs

Theorem 1. Let LS be a set of time-enriched LSC charts whose message alphabet
is Π, and let NTALS be the translated network of timed automata which have a
set Act of normal and auxiliary channels. Then ∀γ1 ∈ (Π ∪ {τ} ∪R≥0)ω . ((γ1 |=
LS) ⇒ ∃γ2 ∈ (Act ∪ {τ} ∪ R≥0)ω . (γ2 |= NTALS) ∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))),
and ∀γ2 ∈ (Act∪{τ}∪R≥0)ω . ((γ2 |= NTALS)⇒ ∃!γ1 ∈ (Π∪{τ}∪R≥0)ω . (γ1 |=
LS) ∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))).

Theorem 1 indicates that each accepted timed trace γ1 in LS uniquely corre-
sponds to a cluster of accepted timed traces in NTALS . All these traces project
to exactly the same trace on the message alphabet and time delays (Π∪R≥0) as
γ1 does.

The lemmas for theorems in Sections 3.4 and 4, and the proofs of them can
be found in Appendix D.

108 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

4 Analysis and synthesis problems

4.1 Consistency checking

An LSC system is inconsistent if and only if the system model has internal
contradictions [HK02], i.e., there does not exist an infinite message sequence such
that it satisfies all driving universal LSC charts. Alternatively, an LSC system is
inconsistent iff, along all possible paths there will eventually be a hot violation of
the main chart of a certain LSC chart (i.e., the flag boolean variable hotviolated,
which has been initialized to false, will eventually be set true in the translated
network of timed automata).

Uppaal uses a fragment of the CTL logic as its query language. Formulas
could take the forms E3φ, E2φ, A3φ, A2φ, φ1 φ2, where φ, φ1 and φ2 are
state formulas. In particular φ1 φ2 (“φ1 leads-to φ2”) is a shorthand for
A2(φ1 ⇒ A3φ2), which characterizes the assume-guarantee style liveness (or
responsiveness).

Theorem 2. LS = {L1,L2, . . . ,Ln} are inconsistent ⇔ NTALS |=
true (hotviolated == true).

Theorem 2 indicates that in order to check the inconsistency of a set of driving
LSC charts, we can instead check whether it is true that the translated network
of timed automata will eventually have its boolean flag variable hotviolated set
to true.

For example, by model checking the corresponding translated network of
timed automata, we find out that the two driving universal LSC charts in Fig. 1
are consistent, whereas the two charts in Fig. 3 are inconsistent.

(a) chart 1 (b) chart 2

Figure 3: Two universal charts which are inconsistent.

4.2 Property verification

Property verification asks whether a system that is modeled as a set of driving
universal LSC charts LS satisfies the requirement that is specified as a separate
monitored universal or existential chart L′. Here L′ will be translated into a

4. Analysis and synthesis problems 109

network of “observer” timed automata NTAL′ , i.e., they only “listen to” the mes-
sages in the network of timed automata NTALS for LS, and never emit messages
by themselves.

Theorem 3. Let LS be an LSC system, and L′ be a monitored universal chart.
LS |= L′ ⇔ (NTALS ||NTAL′) |=(CoordL′ .Mch top CoordL′ .Mch bot).

In the above theorem, CoordL′ .Mch top and CoordL′ .Mch bot say that the
coordinator timed automaton CoordL′ for chart L′ is in its locations Mch top and
Mch bot, respectively.

Theorem 3 indicates that in order to check whether a system LS satisfies
the requirement in a universal chart L′, we only need to check whether the par-
alelly composed translated network of timed automata satisfy the aforementioned
responsiveness property.

For example, after model checking the corresponding translated network of
timed automata, we find out that the (single chart) LSC system in Fig. 4(a)
satisfies the requirement that is specified in Fig. 4(b).

(a) chart 1 (b) chart 2

Figure 4: Chart 1 (model) satisfies chart 2 (property).

Theorem 4. Let LS be an LSC system, and L′ be a monitored existential chart.
LS |= L′ ⇔ (NTALS ||NTAL′) |=(E3 CoordL′ .Mch bot).

Theorem 4 indicates that in order to check whether a system LS satisfies the
requirement in an existential chart L′, we only need to check whether LS have a
trace that can be observed by L′ as a satisfying run.

4.3 Centralized synthesis for open systems

A timed automaton with its edges partitioned into controllable and uncontrollable
ones is called a timed game automaton (TGA) [MPS95]. A network of parallelly
composed timed game automata for Env and Sys can be viewed as a timed game
structure: as a player, the timed game automata for Sys (noted NTASys) master
the set Ac of controllable edges; as the opponent, the timed game automata for
Env (noted NTAEnv) master the set Au of uncontrollable edges. Given a winning
objective, NTASys will take moves in order to win the game (i.e., to bring the

110 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

system into a winning state, or to prevent the system from entering a losing
state), whereas NTAEnv may spoil the game.

Let S be the state space of NTAEnv ||NTASys, and ε /∈ (Ac ∪Au ∪ {τ}) be an
empty action which means “do nothing at this moment in time”. A state-based
(or memoryless) strategy for NTASys is a (partial) function

ρ : S → (Ac ∪ {ε}),

which constantly guides the timed automata in NTASys to take appropriate con-
trollable actions, or just delay (and wait for the semantic state to be changed by
an uncontrollable action of NTAEnv, or by the elapse of time).

Uppaal-Tiga [BCD+07] is a timed game solver. Its inputs include a set
of timed game automata, and a winning objective that is formulated as an ex-
tended ACTL (the universal fragment of CTL) formula. For example, property
“control: A2 ϕ” asks whether there exists a strategy ρ for NTASys such that if
NTASys is supervised (or “restricted”, “guided”) by ρ, then the system NTALS
is guaranteed to always (i.e. invariantly) satisfy ϕ. If the property is satisfied,
then Uppaal-Tiga will be able to synthesize a winning strategy for NTASys.

Synthesis for Sys is possible only if the entire system LS can be guaranteed
not to be hot-violated no matter how the Env processes behave. By means of
trace-wise behavior equivalence, this boils down to finding a winning strategy ρ
for NTASys. Since the strategy (if ever exists) will oversee all Sys processes rather
than being distributed to supervise each individual Sys process, it is a kind of
centralized synthesis. It is clear that NTALS as supervised by ρ constitute one
such desired executable (state/transition-based) object system.

Theorem 5. An executable object system for Sys can be synthesized ⇔ NTALS |=
(control: A2 (hotviolated == false)).

Theorem 5 indicates that the problem of centralized synthesis for open systems
can be reduced to a timed game solving problem in Uppaal-Tiga.

5 Experiments

Fig. 5 shows our scenario-based analysis and synthesis framework. Among those
inputs (the shaded elements), the Env/Sys partitioning directives specify which
processes in the charts of LS belong to Env and which belong to Sys, respectively.

We build a GUI-based LSC editor, with which we can construct either uni-
versal or existential charts. A prototype command line LSC-to-TA translator has
been implemented, which is capable of batch translation of monitored and driving
charts. The translator-generated timed automata and CTL formulas comply with
the Uppaal timed automaton, Uppaal-Tiga timed game automaton and their
query language syntaxes, and can thus be fed into Uppaal and Uppaal-Tiga
directly.

6. Conclusions 111

Env/Sys
partitioning
directives

monitored
LSC chart

driving
LSC charts

(scenario-based
requirement
specification)

(scenario-based
system model)

LSC-to-TA
translation

network of TA

LSC-to-TA
translation

network of TA

consistency
checking
(Uppaal)

CTL
property

CTL
property

property
verification
(Uppaal)

control
synthesis

(Uppaal-TIGA)

("listening"
 only)

network of
TA for Sys

LSC-to-TA
translation

network of
TA for Env

Figure 5: Scenario-based analysis and synthesis framework.

Preliminary translation experiments have been conducted on an Intelligent
Mouse (# of charts, instance lines, message labels, message occurrences, clocks:
4, 3, 3, 12, 2), a refrigeration (4, 3, 3, 14, 1) and an ATM Machine (12, 3, 6, 21,
0) examples, and a DHCP (Dynamic Host Configuration Protocol) (34, 3, 17, 44,
0) case studies. Some comparative experiments reveal that the translation has
negligible time overheads and memory consumptions than the subsequent model
checking and game solving of the translated network of timed automata. This
is reasonable, because the complexity of scenario-based analysis and synthesis
mainly lies in the LSC models themselves. As a syntactical level manipulation,
the translation only introduces some auxiliary channels and bookkeeping variables
(not clock variables) to implement the LSC semantics.

6 Conclusions

We present timed extensions to a kernel subset of the LSC language and define
a trace-based semantics. We show how to transform LSC charts into a network
of behavior-equivalent timed automata. The LSC consistency checking, prop-
erty verification and synthesis problems can be reduced to CTL real-time model
checking and timed game solving problems. We implement a prototype LSC-
to-TA translator. When linked with our LSC editor and the existing real-time
model checker Uppaal and timed game solver Uppaal-Tiga, they constitute a
tool chain for automated, scenario-based analysis and synthesis of real-time sys-
tems. Preliminary experiments on a number of examples show that it is a viable

112 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

approach.
Scenario-based approaches enjoy the advantages of incremental construction

of models, i.e., new pieces of scenarios can be added into existing ones during
the development process. In order to keep the driving LSC charts and their
complexity within human readable and manageable levels, a single LSC chart
needs not to be very large and complex. Rather the complexity of scenario-based
models mainly lies in the interplays of a large number of relatively simple charts.
Our “one-TA-per-instance line” translation is in accordance with this philosophy.
Instead of constructing a complex global state machine that handles all possible
activities explicitly, we leave the intricate semantics of LSC chart progress and
intra/inter-chart coordinations mostly up to Uppaal.

As future work, we may consider the translation of more LSC constructs into
timed automata, such as co-region, symbolic instance, control structures, etc.
Other chart activation modes also need to be dealt with. The implementation of
a full-fledged translator and the application of the tool chain to industrial case
studies are desirable. Furthermore, scenario-based synthesis for systems with
imperfect information (e.g., some uncontrollable actions are not observable) is
also worth investigation.

Appendix A: Timed automata in Uppaal 113

Appendix A: Timed automata in Uppaal

We use the following notations: C is a set of real-valued clocks, and B(C) is the
set of conjunctions over simple conditions of the form x ./ c or x− y ./ c, where
x, y ∈ C, c ∈ N, and ./∈{<,≤,=,≥, >}.

Definition 7 (timed automaton, TA [BDL04]). A timed automaton is a tuple
(L, l0, C, Act, E, Inv), where L is a set of locations, l0 ∈ L is the initial location, C
is a set of clocks, Act is the alphabet of actions, E ⊆ L×(Act∪{τ})×B(C)×2C×L
is a set of edges between locations, each of which has an action, a guard and a
set of clocks to be reset, and Inv : L→ B(C) assigns invariants to locations.

Uppaal has defined a number of extensions to the standard notations of
timed automata. Specifically, an urgent location is such a TA location that freezes
time, i.e., time is not allowed to elapse when a process is in an urgent location. A
committed location is a special kind of urgent location whose outgoing transitions
always have higher priority to be fired than those from non-committed locations.

Uppaal uses a mixture of handshake communication and broadcast commu-
nication. The CBS (Calculus of Broadcasting Systems [Pra95])-style broadcast
channels allow 1-to-many synchronization. If the emitting edge is enabled, then
it can always fire. If the emitting edge is fired, then all enabled receiving edges
(might be 0 edge) will synchronize.

In Uppaal an urgent channel means that if it is possible to trigger a synchro-
nization over that channel, then it cannot delay in the source state.

Furthermore, Uppaal also supports bounded-range integer and boolean data
variables, which can be used in the guards, assignment and location invariants.

A clock valuation is a function u : C → R≥0 from the set of clocks to the non-
negative real numbers. Let R≥0

C be the set of all clock valuations. Let u0(x) = 0
for all x ∈ C. We will abuse the notation by considering guards and invariants
as sets of clock valuations, writing u ∈ Inv(l) to mean that valuation u satisfies
Inv(l).

Definition 8 (semantics of TA [BDL04]). Let (L, l0, C, Act, E, Inv) be a timed
automaton. The semantics is defined as a labeled transition system 〈S, s0,→〉,
where S ⊆ L × R≥0

C is the set of states, s0 = (l0, u0) the initial state, and
→⊆ S × (Act ∪ {τ} ∪R≥0)× S the transition relation such that:

• (l, u)
d−→ (l, u+ d) if ∀d′ : 0 ≤ d′ ≤ d . u+ d′ ∈ Inv(l); and

• (l, u)
a−→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E such that u ∈ g, u′ =

[r → 0]u, and u′ ∈ Inv(l′),

where for d ∈ R≥0, u + d maps each clock x in C to the value u(x) + d, and
[r → 0]u denotes the clock valuation which maps each clock in r to 0 and agrees
with u over C\r.

114 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

Definition 9 (run of TA). A run of a TA (L, l0, C, Act, E, Inv) is a sequence
of states s0 · s1 · . . . that are connected by the transitions, i.e., ∀i ≥ 0 .∃ui ∈
(Act ∪ {τ} ∪R≥0) . si

ui−→ si+1.

The transition relation → as mentioned above each time consumes only a
single letter u ∈ (Act ∪ {τ} ∪R≥0). We extend it to →∗ such that it consumes a
(finite or infinite) word w ∈ (Act ∪ {τ} ∪R≥0)∗ ∪ (Act ∪ {τ} ∪R≥0)ω. A word w
that corresponds to a run of the TA is called a timed trace of the TA.

A number of timed automata can be parallelly composed into a network of
timed automata over a common set of clocks and actions, Ai = (Li, l0,i, C, Act, Ei,
Invi), 1 ≤ i ≤ n. A location vector l̄ = (l1, . . . , ln) is a vector of locations of the
member TA. We compose the invariant functions into a common function over
location vectors Inv(l̄) =

∧
i Invi(li). We write l̄[l′i/li] to denote the vector where

the i-th element li of l̄ is replaced by l′i.

Definition 10 (semantics of a network of TAs [BDL04]). Let Ai = (Li, l0,i, C,
Act, Ei, Invi) be a network of timed automata, 1 ≤ i ≤ n. Let l̄0 = (l0,1, . . . , l0,n)
be the initial location vector. The semantics is defined as a transition system
〈S, s0,→〉, where S = (L1×. . .×Ln)×R≥0

C is the set of global states, s0 = (l̄0, u0)
the initial global state, and →⊆ S× (Act∪{τ}∪R≥0)×S the transition relation
defined by:

• (l̄, u)
d−→ (l̄, u+ d) if ∀d′ : 0 ≤ d′ ≤ d . u+ d′ ∈ Inv(l̄);

• (l̄, u)
τ−→ (l̄[l′i/li], u

′) if there exists li
τ,g,r−−→ l′i such that u ∈ g, u′ = [r→ 0]u

and u′ ∈ Inv(l̄[l′i/li]);

• (l̄, u)
a−→ (l̄[l′i/li, l

′
j/lj], u

′) if a is a binary channel and there exist li
c!,gi,ri−−−→ l′i

and lj
c?,gj ,rj−−−−→ l′j such that u ∈ (gi ∧ gj), u′ = [ri ∪ rj → 0]u and u′ ∈

Inv(l̄[l′i/li, l
′
j/lj]); and

• (l̄, u)
a−→ (l̄[l′i/li, l

′
j/lj, l

′
k/lk, . . .], u

′) if a is a broadcast channel and there

exist an li
c!,gi,ri−−−→ l′i and a maximal set {j, k, . . .}: lj

c?,gj ,rj−−−−→ l′j, lk
c?,gk,rk−−−−→ l′k,

. . ., such that u ∈ (gi ∧ gj ∧ gk ∧ . . .), u′ = [ri ∪ rj ∪ rk ∪ . . . → 0]u and
u′ ∈ Inv(l̄[l′i/li, l

′
j/lj, l

′
k/lk, . . .]).

Runs and traces of a network of TAs are defined similarly as those for a single
TA.

Appendix B: Rules for LSC-to-TA translation 115

Appendix B: Rules for LSC-to-TA translation

B1. Translating message-only charts

As mentioned in Section 2.1, along each instance line Ii in chart L, there are a
set pos(L, Ii) of positions, among which there are a set StdPos(L, Ii) ⊂ pos(L, Ii)
of four “standard” positions. For example in instance line A of Fig. 1(a),
there are 7 positions (black filled circles), where the four standard ones are
Pch top (0),Pch bot (3), Mch top (4) and Mch bot (6).

Given Ii ∈ inst(L), p ∈ StdPos(L, Ii), we use L.Ii.p to denote the position ID
of standard position p on instance line Ii of chart L. For example in Fig. 1(a),
we have L.A.Pch bot = 3.

Fig. 6 shows the translated network of timed automata for the chart L1 of
Fig. 1(a).

(1) Basic mapping rules

Let LS be an LSC system, Lu be a chart in LS, and Ii be an instance line in
Lu. We map each such Ii to a timed automaton Au, i using the following rules:

R1 Each position k on Ii of Lu corresponds to a TA location lk in Au, i, 0≤k≤
p maxLu, Ii . See Fig. 6(a), locations l0 - l6.

R2 If at position k on Ii of Lu there is a sending of an m-labeled message to
instance Ij, then there will be assigned an m!-labeled TA edge from location
lk−1 to lk in Au, i. See Fig. 6(a), straight line edges (l0, l1), (l1, l2), (l4, l5).

R3 If at position k on Ii of Lu there is a reception of an m-labeled message from
instance Ij, then there will be assigned an m?-labeled TA edge from location
lk−1 to lk in Au, i. See Fig. 6(b), straight line edges (l0, l1), (l1, l2), (l4, l5).

We abuse the notations Pch top,Pch bot, Mch top and Mch bot to also denote
the TA locations that correspond to these LSC positions. For any position k other
than the aforementioned four, it corresponds to a TA location lk, meaning that
upon sending/receiving the message that anchors at position k, we now arrive at
lk. Furthermore, position 0 (i.e., Pch top) corresponds to the initial TA location
l0 (i.e., Pch top).

When R2 is applied, the TA edge can be associated with an assignment
“m src := Ii, m dest := Ij”, wherem src andm dest are fresh auxiliary (bounded
integer) variables, meaning that an m-labeled message is sent from instance Ii
to Ij in chart Lu. In R2 and R3, the destination location lk will have invariant
“(m src == Ii) ∧ (m dest == Ij)” and “(m src == Ij) ∧ (m dest == Ii)”,
respectively. See Fig. 6(a), locations l1, l2, l5, and Fig. 6(b), l1, l2, l5.

(2) Handling intra-chart coordinations

116 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

l5 m2src == A &&
m2dest == B

l2 m4src == A &&
m4dest == B

l1
m1src == A &&
m1dest == B &&
prematch_1 == false

l3 (pch_bot)

l6 (mch_bot)

l4 (mch_top)

l0 (pch_top)

m1!
m1src := A, m1dest := B,
prematch_1 := true

reset_1?

m2? m2!
m2src := A, m2dest := B

m4? m4!
m4src := A, m4dest := B

reset_1?

pch_over_1A!

mch_over_1A!

m1?

activate_1?

over_1?

m1!
m1src := A, m1dest := B

(a) TA for instance A

m1src == A && m1dest == B
 && prematch_1 == true

Err2
m4src == A &&
m4dest == B

Err1
m1src == A &&
m1dest == B

Rst2

m2src == A &&
m2dest == B

Rst1

m1src == A &&
m1dest == B

l2 m4src == A &&
m4dest == B

l6 (mch_bot)

l3 (pch_bot)

l1
m1src == A &&
m1dest == B &&
prematch_1 == false

l5 m2src == A &&
m2dest == B

l4 (mch_top)

l0 (pch_top)

prematch_1 := falsem1?

reset_1?

reset_1?

m4?
hotviolated := true

m1?
hotviolated := true

pch_vio_1!pch_vio_1!

m2?

m1?

m4?

pch_over_1B!

mch_over_1B!

m2?

activate_1?

over_1?

m1?

(b) TA for instance B

Rst

l2 (mch_top)

l3 (mch_bot)

l1 (pch_bot)

l0 (pch_top)

reset_1!
dInst_1 := 0

pch_vio_1?

dInst_1 + 1 == nInst_1
mch_over_1A?

dInst_1 + 1 < nInst_1
mch_over_1B?
dInst_1 += 1

dInst_1 + 1 < nInst_1
mch_over_1A?
dInst_1 += 1

dInst_1 + 1 < nInst_1
pch_over_1B?
dInst_1 += 1

dInst_1 + 1 < nInst_1
pch_over_1A?
dInst_1 += 1

dInst_1 + 1 == nInst_1
pch_over_1A?

dInst_1 + 1 == nInst_1
pch_over_1B?

dInst_1 + 1 == nInst_1
mch_over_1B?

over_1!
dInst_1 := 0

activate_1!
dInst_1 := 0

(c) The coordinator TA

Figure 6: Translated TAs for the untimed chart L1 of Fig. 1(a)

Appendix B: Rules for LSC-to-TA translation 117

In an LSC chart, if an instance line (process) in its prechart portion has no
more interactions with the other instance lines (e.g., it has successfully sent/re-
ceived the last message, or it has no interactions with other instance lines at all),
then it will immediately progress to the bottom position Pch bot of its prechart
portion, to be ready for a next mandatory synchronization that involves all the
instance lines in that chart.

R4 At position k on the prechart portion of Ii of Lu, if k = Lu.Ii.Pch bot− 1,
then we mark lk as a committed location in Au, i, and we add a pch overu, i!-
labeled edge from lk to lk+1 in Au, i. See Fig. 6(a), location l2.

The auxiliary channel pch overu, i (meaning “prechart portion is over”) is used
to notify the coordinator automaton Coordu (explained below) of the completion
of instance line Ii with its prechart portion in chart Lu.

When all the instance lines in chart Lu progress to their respective Pch bot
positions, the prechart is now successfully matched. Once this happens, all these
instance lines must immediately synchronize and progress to their respective
Mch top positions, meaning that the main chart is now activated. To model
this kind of intra-chart coordination at the prechart/main chart interface, for
each chart Lu, we create a dedicated (auxiliary) coordinator automaton Coordu.
This automaton will communicate with the automata that correspond to the in-
stance lines of Lu by using auxiliary binary channels such that it can bookkeep
how many instance lines are done with their prechart portions. Once the co-
ordinator automaton realizes that the prechart has been successfully matched,
it will immediately launch a broadcast synchronization with the automata that
correspond to the instance lines.

Fig. 6(c) gives an example of the coordinator timed automaton for chart L1

of Fig. 1(a), where pch over1, A and pch over1, B are binary channels, activate1 is
a broadcast channel (meaning that the main chart is to be activated), nInst1 is a
constant that denotes the number of instance lines that participate in chart L1,
and dInst1 is an integer variable that denotes the number of instance lines that
are done with their prechart (or main chart) portions of L1.

The coordinator TA synchronizes with the timed automata that correspond
to the instance lines in the prechart/main chart according to the following rule:

R5 At position k of Ii of Lu, if k = Lu.Ii.Pch bot, then there will be assigned
an activateu?-labeled TA edge from lk to lk+1 in Au, i. See Fig. 6(a), l3, and
Fig. 6(b), l3.

Similarly, intra-chart coordination upon main chart completion will corre-
spond to the channels mch overu, i and overu (meaning that the main chart has
been successfully matched).

(3) Handling inter-chart coordinations

118 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

In scenario-based modeling, the same message may well appear in two or
more charts. For example given an LSC system LS, in chart L1 there is an m-
labeled message occurrence mo1 from instance I1 to I2, and in chart L2 there is
an m-labeled message occurrence mo2, also from I1 to I2. If at a certain global
configuration (c̄, v) these message occurrences (in the above example mo1 and
mo2) are all enabled, then their firings should be synchronized, i.e., either all of
them are chosen to be fired, or none of them is chosen. This is considered a kind
of inter-chart coordination.

In the translated network of timed automata, this can be accomplished by
using a broadcast synchronization. Recall that in a broadcast synchronization,
there is only one sender. Therefore, when translating the message occurrences (in
the above example mo1 and mo2) to edges in their respective timed automata,
only one of the LSC positions that are associated with the message tails (i.e.,
sending locations) in LS can correspond to the TA location that has the sole
outgoing message-emitting TA edge in the translated TAs, and all others will
correspond to TA locations that have outgoing message-receiving TA edges. Since
all message-sending instance lines in the relevant charts should have the equal
possibility to initiate the message synchronization, we consider a universal and
symmetric solution: for each m!-labeled edge from one to another TA locations,
we add an m?-labeled edge between these two TA locations to “accompany”
the m!-labeled edge. In other words, we let all translated TA locations that
correspond to the message-sending locations (in the above example two locations
in the translated TAs A1, 1 and A2, 1) have the equal chance to act also as the
broadcast synchronization initiator.

R6 If at position k on Ii of Lu there is a sending of an m-labeled message, then
there will be added an m?-labeled TA edge from lk−1 to lk in Au, i. In the
translated TAs, m will be changed from a binary to a broadcast channel.
See Fig. 6(a), polyline edges (l0, l1), (l1, l2), (l4, l5).

(4) Handling cold and hot violations

Along an instance line of an LSC chart, if an arriving message is not enabled
at the current cut in the prechart, then there will be a cold violation. In this case,
all participating instance lines in this chart should be reset (i.e., brought back to
their initial positions) immediately. In our translation, this is implemented by
letting the timed automaton that corresponds to the message receiving instance
line “report” the cold violation to the coordinator automaton in charge, which in
turn immediately initiates a broadcast synchronization to ask the timed automata
that correspond to all other instance lines of the chart to do a reset.

R7 Assume that at position k on the prechart portion of instance line Ii of
chart Lu, there is a reception of an m-labeled message from instance Ij. If
k ≥ Lu.Ii.Pch top +2, then for all m′-labeled message in Lu such that m′ 6=

Appendix B: Rules for LSC-to-TA translation 119

m (note that m,m′ ∈ Π), there will be added first an m′?-labeled outgoing
TA edge from lk−1, then a fresh intermediate committed TA location with
invariant m′ src == src(m′) ∧m′ dest == dest(m′), and then a pch viou!-
labeled TA edge that leads to l0 in Au, i. See Fig. 6(b), TA location Rst1,
and TA edges (l1, Rst1), (Rst1, l0).

In the above rule, the auxiliary binary channel pch viou (meaning “prechart
violation” of chart Lu) is used to notify the coordinator TA Coordu of the cold
violation. The resetu!-labeled broadcast edge will be added in Coordu. See Fig.
6(c), TA edges (l0, Rst), (Rst, l0). In the prechart of Lu, for all positions s on
all instance lines It such that Lu.It.Pch top + 1 ≤ s ≤ Lu.It.Pch bot, we add a
resetu?-labeled edge from ls to l0 in Au, t. See Fig. 6(a), TA edges (l1, l0), (l3, l0).

If a message violates the partial order in the main chart, then it is a hot
violation. Once this happens, the corresponding TA will immediately go to a
deadend error location (Err).

R8 If at position k on the main chart portion of instance line Ii of chart Lu,
there is a reception of an m-labeled message from instance Ij, then for
all m′-labeled message in Lu such that m′ 6= m, there will be added to
location lk−1 an m′?-labeled outgoing TA edge, which arrives at a deadend
error location. See Fig. 6(b), locations Err1, Err2 and edges (l4, Err1),
(l4, Err2).

(5) Prechart pre-matching

According to the semantics for invariant mode LSC chart, minimal events
in the prechart are constantly being matched for. For example in Fig. 1(a),
m1·m1·m4·m2 is a matching sequence for the second incarnation of chart L1 under
the invariant mode.

R9 If at position 1 on the prechart portion of instance line Ii of chart Lu,
there is a sending of an m-labeled message to instance line Ij at its position
1, then there will be added to location l0 of Au, i an m!-labeled self loop
edge with assignment “m src := Ii,m dest := Ij, prematchu := true”. If
location l0 in Au, i has an invariant, then it will be enhanced with a further
constraint “prematchu == false”. See Fig. 6(a), location l0.

Similarly, if there is a reception of an m-labeled message from Ij, then we add
to l0 an m?-labeled edge, followed by an intermediate committed location which
has invariant “(m src == Ij) ∧ (m dest == Ii) ∧ (prematchu == true)”, and
then an internal transition edge with assignment “prematchu := false” leading
back to l0. See Fig. 6(b).

The flag boolean variable prematchu is initialized to false. Once it is set true,
it means that chart Lu is currently undergoing a process of prechart pre-matching.

120 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

For simplicity, the semantics of prechart pre-matching has not been considered
in Section 2.1. A remedy to this is to add one more bullet to the “silent step”
case, stating that an m-consuming advancement step will just remain at the top
cut >.

B2. Dealing with time

For time-enriched LSCs, there are further constructs (i.e., clock constraints and
clock resets) to be considered during the translation. To mimic the behaviors of
each clock constraint and clock reset in an LSC chart, we use a linked sequence
of edges in the corresponding time automaton. The atomicity of executing this
sequence is ensured by the Uppaal feature of committed location.

(1) Translation of guards (clock constraints)

If an instance line has an m-labeled message sending that is guarded by a
clock constraint, then a natural idea is to put this constraint on the m!-labeled
edge of the translated TA. While this is feasible in the “one-TA-per-chart” trans-
lation method, it does not work in the “one-TA-per-instance line” method of this
section. The reason is that we need to use broadcast channel m to handle the
inter-chart coordination (see Section 6); however, due to the restriction of Up-
paal, broadcast channels cannot carry clock constraints [BDL04]. To overcome
this problem, in the translated TA, the upper bound constraint (if any) such as
x ≤ 5 will be tested prior to the message sending, and the lower bound and/or
clock difference constraints (if any) such as x ≥ 3 and x − y ≤ 2 will be tested
immediately after the message sending.

R10 If at position k on the main chart portion of instance line Ii of chart Lu
there is a sending of an m-labeled message which is guarded by a clock
constraint (see Fig. 7(a)), then in Au, i there will be first an intermediate
committed location for upper bound constraint test. If true, then the next
will be a normal location lk with the upper bound constraint as the location
invariant, which will in turn be immediately followed by a message sending
edge. Finally, there will be another intermediate committed location for
lower bound or clock difference constraint test. See Fig. 7(b).

For the receiving position of the guarded message, the translation is similar,
see Fig. 7(c).

(2) Translation of assignments (clock resets)

In a time-enriched LSC chart, an assignment (i.e., clock resets) should take
place immediately after the synchronization of the message occurrence that it
is attached to. But in the translated TA, it cannot be put on the very edge
that corresponds to the message sending/receiving, because clock resets should

Appendix B: Rules for LSC-to-TA translation 121

(a) a guarded message

m3src == B &&
m3dest == C

y <= 10

x >= 3

m3? m3!
m3src := B, m3dest := C

y <= 10

x < 3
hotviolated := true

y > 10
hotviolated := true

(b) TA for the sending in-
stance line

m3src == B &&
m3dest == C

y <= 10

x >= 3

m3?

y <= 10

x < 3
hotviolated := true

y > 10
hotviolated := true

(c) TA for the receiv-
ing instance line

Figure 7: Translating a guarded message to TA fragments

not occur before the lower bound or clock difference constraint test which is
supposed to happen immediately after the message synchronization. Neither can
we append the TA edge that carries the assignment to the destination locations of
the lower bound or clock difference constraint test, because if several identically-
labeled message occurrences are simultaneously enabled in their respective charts
where those charts have different guards and/or assignments for those message
occurrences (see Fig. 2, the m3-labeled message occurrences), then there could
be racing conditions (e.g., the assignment x := 0 that is attached to m3 in Fig.
2(a) should happen before the lower bound test x ≥ 3 in Fig. 2(b); however, we
are unable to guarantee this).

To model the clock resets properly, for each message m ∈ Π in an LSC
system, we use a dedicated process (TA) Am to coordinate the clock resets of
the corresponding message occurrences that are engaged in the same broadcast
synchronization on m. When the broadcast synchronization happens, we use an
integer variable m count to bookkeep how many instance lines have participated
in this broadcast synchronization. Whenever one of these instance lines is done
with its lower bound constraint test (if any), it will immediately notify Am of its
completion using a binary channel m Rpt (“reporting” to Am), and after that
it will wait for a synchronization on the broadcast channel m Rst (“resetting
clocks” command from Am), along with which it can carry out its clock resets. In
Am, an integer variable m done is increased by 1 each time when Am is notified
by an instance line (via m Rpt?). Once m done rises up to m count, Am will
immediately initiate the broadcast synchronization (via m Rst!).

R11 If at position k on instance line Ii of chart Lu there is a reception of an
m-labeled message which has clock resets (see Fig. 8(a), instance line on
the right), then there will be first an m Rpt!-labeled outgoing edge from

122 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

location lk in Au, i, then a normal location, and then an m Rst?-labeled
outgoing TA edge that carries the clock resets. See Fig. 8(b).

(a) a message
with clock reset

m2src == A &&
m2dest == B

m2_Rst?
y := 0

m2_Rpt!

(b) TA for the
receiver

m2_done < m2_count
m2_Rpt?

m2_done += 1

m2_done ==
 m2_count
m2_Rst!
m2_count := 0,
m2_done := 0

m2_Rpt?
m2_done += 1

(c) the dedicated TA
Am2

Figure 8: Translating a message with clock reset to TAs

The dedicated TA Am just waits for all the relevant instance lines to be done
with their lower bound constraint tests, and then synchronizes them for clock
resets. See Fig. 8(c).

(3) Just-in-Time message upper bound constraint test

When time-enriched LSC charts have upper-bound clock constraints, there
are conditional tests before message sending/receiving in the translated timed au-
tomata. Given an m-labeled message occurrence in a chart, a potential problem
is that in the translated timed automata for the sending and receiving instance
lines, the TA locations that correspond to the sending and the receiving posi-
tions of this message may not be ready for this message synchronization at the
same time (see Fig. 2(b), the m1-labeled message occurrence). In the symbolic
exploration of the state space of the translated network of timed automata, prob-
lems will arise if the upper bound of some message sending/receiving is tested
when actually it should not. For example in Fig. 2, assume that a message
sequence m1 · m2 has been observed, and both charts have just entered their
main charts, respectively. Note that a next m1 is not enabled at the current
cut (w.r.t. 4). But its guard will incorrectly add further constraint “x ≤ 2”
to “(x ≤ 5) ∧ (x ≥ 3 ∧ y ≤ 10)”. Consequently, according to our translation
method mentioned earlier in this section, all possible paths will end up with hot
violations.

To avoid this kind of premature tests of upper bound constraints for message
occurrences, we associate each message occurrence mo in each chart Lu with two
flag boolean variables mo u maySnd and mo u mayRcv, denoting whether this
message may be sent or received in chart Lu, respectively. The upper bound
constraint of mo can be tested only if both flag variables evaluate to true.

Appendix C: Complexity of the outcomes of translation 123

R12 If at position k on instance line Ii of chart Lu there is a sending of message
occurrence mo which has a clock constraint (see Fig. 7(a)), then there
will be a preceding edge carrying the predicate “mo u mayRcv == true”.
Once this message synchronization is fired, mo u maySnd will be cleared.

For the receiving instance line of message occurrence mo, the corresponding
predicate will be “mo u maySnd == true”.

Ifmo is a minimal event in the prechart (resp. main chart), thenmo u maySnd
and mo u mayRcv will have initial values true (resp. will be set to true by the
activateu synchronization). If mo is not a minimal event, then the flag variables
will be set to true by its predecessor event.

Given a message mo, if the predecessor positions of the head/tail positions of
mo are also the head/tail (or tail/head) positions of another message occurrence,
or mo is a minimal event, then mo u maySnd and mo u mayRcv will be both
true prior to the constraint tests. Otherwise, their truth values may differ, e.g.
in Fig. 9(a), message occurrence m1 for the current cut (the solid free line). In
this case, the translated TA A2, A will go to location Wait to “sleep”, and will
then be woken up by a dedicated message mo1 Rcv that is sent by the TA A2, B.
See Fig. 9(b).

(a) an LSC frag-
ment

Wait

Mch_top

x <= 2

m1_Rcv?

m1_c2_mayRcv
 == false

m1_c2_mayRcv
 == true

x <= 2 x > 2
hotviolated
 := true

(b) a fragment of the TA for
instance line A

Figure 9: An LSC fragment in Fig. 2(b) and the corresponding TA fragment for
its instance line A

Appendix C: Complexity of the outcomes of trans-

lation

For a time-enriched LSC system, we analyze the complexity of the translated
network of timed automata as follows:

124 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

Let the set LS of time-enriched charts L1,L2, . . . ,Ln have messages m1,m2,
. . . ,mk, message occurrences mo1,mo2, . . . ,mos, and instance lines Ii,1, Ii,2, . . . ,
Ii,ini , where 1 ≤ i ≤ n, ini = #(inst(Li)) = |inst(Li)|.

According to Section 6 (“Handling intra-chart coordinations”) and Section 6
(“Translation of assignments”), the translated network of timed automata will be
NTALS = {Ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ #(inst(Li))} ∪ {Coordi | 1 ≤ i ≤ n} ∪ {Ami |
1 ≤ i ≤ k}. Therefore, the number of timed automata is

∑n
i=1(|inst(Li)|) + n +

|
⋃n
i=1 MA(Li)|. See Table 1, lower part right column.

According to rule R2, each message label corresponds to a channel in NTALS .
According to R4, R5 and R7, there will be a set of auxiliary channels Aux1 =
{pch overu, i, mch overu, i | 1 ≤ u ≤ n, 1 ≤ i ≤ #(inst(Lu))} ∪ {activateu, overu,
pch viou, resetu | 1 ≤ u ≤ n} that will be used in NTALS . According to Section 6
(“Translation of assignments”), in the worst case, there will be a set of auxiliary
channels Aux2 = {mi Rpt,mi Rst, mi Rcv | 1 ≤ i ≤ k} for translating clock
resets. Therefore, in the worst case, the number of channels in NTALS will be
|
⋃n
i=1 ML(Li)| +

∑n
i=1(2 · |inst(Li)| + 4) + 3 · |

⋃n
i=1 MA(Li)|.

According to Section 6 (“Basic mapping rules”), there will be a set of auxiliary
variables {mi src, mi dest | 1 ≤ i ≤ k}. According to rules R4, R8 and R9, there
will be a set of auxiliary variables {prematchu, dInstu | 1 ≤ u ≤ n}. According
to Section 6 (“Translation of assignments”), there will be auxiliary variables
{mi count, mi done | 1 ≤ i ≤ k}. Furthermore, according to R12, there will
be auxiliary variables {moi maySnd, moi mayRcv | 1 ≤ i ≤ s}. Therefore, the
total number of auxiliary variables in NTALS will be (2 · |

⋃n
i=1 MA(Li)|) + 2n+

1 + (2 · |
⋃n
i=1 MA(Li)|) + (2 ·

∑n
i=1 |MO(Li)|).

The complexities for the other three settings can be analyzed similarly.

Appendix D: Proof of Lemmas and Theorems

Let L be an untimed LSC chart whose instance lines I1, I2, . . . , In correspond to
timed automata A1, A2, . . . , An, respectively, then the translated network of TAs
will be NTAL = {Ai | 1 ≤ i ≤ n} ∪ {Coord}. According to rules R4, R5 and R7,
there will be a set of auxiliary channels Aux = {pch overi,mch overi | 1 ≤ i ≤
n} ∪ {activate, over, pch vio, reset} that will be used in NTAL. Let the message
alphabet of L be Σ, then the alphabet of observable actions in NTAL will be
Act = (Σ ∪ Aux).

Lemma 1. Let L be an untimed LSC chart whose message alphabet is Σ, and
let NTAL be the translated network of timed automata which have a set Act of
observable actions. Then ∀γ1 ∈ (Σ∪{τ})ω. ((γ1 |= L)⇒ ∃γ2 ∈ (Act∪{τ})ω.(γ2 |=

Appendix D: Proof of Lemmas and Theorems 125

NTAL) ∧ (γ2|Σ = γ1|Σ)), and ∀γ2 ∈ (Act ∪ {τ})ω. ((γ2 |= NTAL) ⇒ ∃!γ1 ∈
(Σ ∪ {τ})ω.(γ1 |= L) ∧ (γ2|Σ = γ1|Σ)).

Proof. We can prove the above two implications by proving that each cut of chart
L uniquely corresponds to a location vector in the network of timed automata
NTAL, and each advancement step in L uniquely corresponds to either a message
synchronization transition (ranging on Σ ∪ Aux) or a sequence of concatenated
message synchronization and internal action transitions in NTAL, such that they
consume exactly the same letter from Σ if they are both projected to Σ. Note that
we restrict the LSC advancement steps to represent only legal (i.e. admissible)
behaviors.

Let the instance lines in chart L be I1, I2, . . . , In. They will be translated into
timed automata A1, A2, . . . , An, respectively. Together with the auxiliary timed
automaton Coord they constitute NTAL.

The initial cut c0 of chart L corresponds to the LSC initial position vector
(01, 02, . . . , 0n), where ij means that instance Ij ∈ inst(L) is currently in its
position i ∈ pos(L, Ij). In the translated network of timed automata NTAL,
automaton Coord is initially in its location l0coord. By rule R1, each 0i in position
vector (01, 02, . . . , 0n) corresponds to a TA location l0i (denoting location 0 in
timed automaton Ai). Therefore, cut c0 uniquely corresponds to the NTAL initial
location vector l̄0 = (l01, l

0
2, . . . , l

0
n, l

0
coord).

We show how the advancement steps from the LSC initial position vector
correspond to the transitions in the network of timed automata. At LSC position
vector (01, 02, . . . , 0n), there are two kinds of possible advancement steps:

• If there is an m-labeled message occurrence mo from position 1i of instance
Ii to position 1j of instance Ij (i.e., mo is a minimal event), then:

On one hand, by rules R2 and R3, there will be an m!-labeled TA edge from
location l0i to l1i in Ai, and an m?-labeled TA edge from location l0j to l1j
in Aj. According to the LSC semantics, there is a message synchroniza-
tion advancement step on m in L from (01, . . . , 0i, . . . , 0j, . . . , 0n) to
(01, . . . , 1i, . . . , 1j, . . . , 0n). Accordingly, in NTAL there exists exactly
a corresponding binary synchronization on channel m between Ai and
Aj, and the location vector of NTAL will change from (l01, . . . , l

0
i , . . . , l

0
j ,

. . . , l0n, l
0
coord) to (l01, . . . , l

1
i , . . . , l

1
j , . . . , l

0
n, l

0
coord).

On the other hand, according to the semantics of the invariant mode
universal chart, the message as a minimal event can be constantly
matched for with L staying in the initial cut. By rule R9, in NTAL
there will be first a binary synchronization on channelm, i.e., (l01, . . . , l

0
i ,

. . . , l0j , . . . , l
0
n, l

0
coord)

m−→ (l01, . . . , l
0
i , . . . , l

PM
j , . . . , l0n, l

0
coord), and then an

immediately following internal action transition that leads back to
the initial location vector, i.e., (l01, . . . , l

0
i , . . . , l

PM
j , . . . , l0n, l

0
coord)

τ−→

126 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

(l01, . . . , l
0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord). Here lPMj is an auxiliary TA location

that is specially used for prechart pre-matching. In this sub-case of
pre-matching, the m-synchronization advancement step in L uniquely
corresponds to a sequence of the tightly concatenated

m−→ and
τ−→ tran-

sitions.

Since a dedicated flag boolean variable prematch has been used to strengthen
the TA transition guards, assignments and the location invariants, it
follows that at NTAL location vector (l01, . . . , l

0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord),

there are only the two above-mentioned possible interleaved executions
between the two m!-labeled outgoing edges from l0i in Ii and the two
m?-labeled outgoing edges from l0j in Ij.

• If instance Ii has no interactions with other instance lines in the prechart,
then there is an immediate silent advancement step from (01, . . . , 0i, . . . , 0n)
to (01, . . . , 1i, . . . , 0n). By rule R4, l0i will be a committed location in NTAL,
and there will be a pch overi!-labeled edge from l0i to l1i . Furthermore, in
automaton Coord there will be a coupling pch overi?-labeled edge either

– from l0coord to l1coord, corresponding to the case where Ii is the very last
instance to complete the prechart; or

– from l0coord to l0coord, corresponding to the case where Ii is not yet the
last instance to complete the prechart.

In the two cases, the location vector of NTAL will be changed from (l01, . . . , l
0
i ,

. . . , l0n, l
0
coord) to (l01, . . . , l

1
i , . . . , l

0
n, l

1
coord), and from (l01, . . . , l

0
i , . . . , l

0
n, l

0
coord)

to (l01, . . . , l
1
i , . . . , l

0
n, l

0
coord), respectively. However, in both cases, there will

be exactly one binary synchronization transition on pch overi in NTAL.

The above two kinds of possible advancement steps indicate that there is an ini-
tial correspondence between the position vector of L and the location vector of
NTAL

5. Since an untimed chart is a message-only chart, a cut vector is itself an
LSC configuration, and a location vector is itself a semantic state of the trans-
lated network of timed automata 6. Therefore, there is an initial “cut-to-location
vector”, and “advancement step-to-(sequence of) transition” correspondence be-
tween L and NTAL.

The above correspondence can be generalized by using induction. Assume
that at a cut c that corresponds to a position vector (p11, . . . , pii, . . . , pjj, . . . , pnn)
in the prechart of L, there is an m-labeled message occurrence sent from position

5More precisely the sub-location vector of NTAL that is projected to A1||A2|| . . . ||An. Note
that the edges in Coord correspond only to auxiliary messages rather than the observable
messages in Σ or the internal (τ) action.

6Note that in the LSC chart, the message sender/receiver and other relevant information are
not defined as a part of the chart configuration. Accordingly, the auxiliary and bookkeeping
variable information are excluded from the semantic states of the translated timed automata.

Appendix D: Proof of Lemmas and Theorems 127

(pi + 1)i of instance Ii to position (pj + 1)j of instance Ij. If for cut c, there
uniquely exists a corresponding location vector l̄ in NTAL, then similar to the case
of the initial cut, we can prove that the message synchronization advancement
step on m in L uniquely corresponds to a binary synchronization transition in
NTAL; and after this message synchronization advancement step, the new cut
c′ uniquely corresponds to the destination location vector l̄′ in NTAL. Proof by
induction ensures that any normal (i.e., other than the prechart pre-matching
ones) message synchronization advancement step in the prechart of L uniquely
corresponds to a message synchronization transition in NTAL.

In case that (p11, . . . , pii, . . . , pjj, . . . , pnn) is a position vector in the main
chart of L, the unique correspondence relation can be proved similarly.

Now we prove the unique correspondence for the case that involves the intra-
chart coordination (e.g., the prechart to main chart transition). Assume that in
the prechart of L, a cut c corresponds to position vector (p11, . . . , pii, . . . , pnn),
where pi + 1 = L.Ii.Pch bot. If (p11, . . . , pii, . . . , pnn) uniquely corresponds to a
location vector (lp11 , . . . , l

pi
i , . . . , l

pn
n , l

0
coord), then by rule R4, the internal advance-

ment step (p11, . . . , pii, . . . , pnn)
τ−→ (p11, . . . , (pi+ 1)i, . . . , pnn) in L corresponds

to either

• transition (lp11 , . . . , l
pi
i , . . . , l

pn
n , l

0
coord)

pch overi−−−−−→ (lp11 , . . . , l
pi+1
i , . . . , lpnn , l

1
coord)

in NTAL, in which case Ii is the very last instance to complete the prechart;
or

• transition (lp11 , . . . , l
pi
i , . . . , l

pn
n , l

0
coord)

pch overi−−−−−→ (lp11 , . . . , l
pi+1
i , . . . , lpnn , l

0
coord)

in NTAL, in which case Ii is not yet the last instance to complete the
prechart.

The above-mentioned first case will be followed by an intra-chart coordination,
i.e., there will be an immediately following silent advancement step in L, i.e., all
instance lines will move from their Pch bot positions to their Mch top positions at
the same time. By rule R5, the binary synchronization transition will be imme-
diately followed by a broadcast synchronization transition (lp11 , . . . , l

pi+1
i , . . . , lpnn ,

l1coord)
activate−−−−→ (lp1+1

1 , . . . , lpi+2
i , . . . , lpn+1

n , l2coord), where p1 + 1 = L.I1.Mch top, . . . ,
pi + 2 = L.Ii.Mch top, . . . , pn + 1 = L.In.Mch top. Therefore in this case, there
is a correspondence between the behaviors of L and NTAL.

In case that (p11, . . . , pii, . . . , pnn) is a position vector in the main chart of L,
the unique correspondence for the case that concerns main chart completion can
be proved similarly.

Now we prove the unique correspondence for the case that involves cold vi-
olations. Since an untimed chart has no conditions, a cold violation is caused
only by the violation of the partial order in the prechart. In this case, all the
instance lines in the prechart of L will be brought from where they are back to
their initial positions. Recall that psn : loc(L) →

⋃
Ii∈inst(L) pos(L, Ii) projects

a location to its position on its instance line. Formally, let us assume that L is

128 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

in the cut c which corresponds to the position vector (p11, . . . , pii, . . . , pjj, . . . ,
pnn) such that pkk < L.Ik.Pch bot, 1 ≤ k ≤ n. For any message label m ∈ Σ, if
@mo ∈ MO(L).(lab(mo) = m) ∧ (∃Ii, Ij ∈ inst(L).((src(mo) = Ii) ∧ (dest(mo) =
Ij) ∧ (psn(tail(mo)) = pi + 1) ∧ (psn(head(mo)) = pj + 1))), then at cut c,
the partial order will be cold-violated by any m-labeled message from Ii to Ij.
For such an m-labeled message occurrence mo, by rule R7, the cold violation
step (p11, . . . , pii, . . . , pjj, . . . , pnn)

m−→ (01, . . . , 0i, . . . , 0j, . . . , 0n) in L uniquely
corresponds to a sequence of three concatenated synchronizations in NTAL:
(lp11 , . . . , l

pi
i , . . . , l

pj
j , . . . , l

pn
n , l

0
coord)

m−→
(lp11 , . . . , l

pi+1
i , . . . , lRstj , . . . , lpnn , l

0
coord)

pch vio−−−−→
(lp11 , . . . , l

pi+1
i , . . . , l0j , . . . , l

pn
n , l

Rst
coord)

reset−−→
(l01, . . . , l

0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord).

Note that according to rule R8, a hot violation in the main chart of L will end
up with a semantic state that has a deadend location in a certain TA of NTAL.
This transition will not be considered as a part of an accepted trace of NTAL.

In conclusion, each possible advancement step in L uniquely corresponds to a
sequence of concatenated message synchronization and internal action transitions
in NTAL. They consume exactly the same message label in Σ. Therefore, each
accepted trace in L uniquely corresponds to an accepted trace in NTAL modulo
the message alphabet Σ.

Let LS be a set of untimed LSC charts L1,L2, . . . ,Ln. Each chart Li contains
the instance lines Ii,1, Ii,2, . . . , Ii,ini , where 1 ≤ i ≤ n, and ini = #(inst(Li))
denotes the number of instance lines in Li. The entire translated network of TAs
will be NTALS = {Ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ #(inst(Li))} ∪ {Coordi | 1 ≤ i ≤ n}.
The message alphabet of LS will be the union of all the message alphabets for
the individual charts, i.e., Π =

⋃n
i=1 Σi. The alphabet of observable actions will

be Act = (Π ∪ Aux).

Lemma 2. Let LS be a set of untimed LSC charts whose message alphabet is
Π, and let NTALS be the translated network of timed automata which have a set
Act = Π∪Aux of normal and auxiliary channels. Then ∀γ1 ∈ (Π∪{τ})ω. ((γ1 |=
LS) ⇒ ∃γ2 ∈ (Act ∪ {τ})ω.(γ2 |= NTALS) ∧ (γ2|Π = γ1|Π)), and ∀γ2 ∈ (Act ∪
{τ})ω. ((γ2 |= NTALS)⇒ ∃!γ1 ∈ (Π ∪ {τ})ω.(γ1 |= LS) ∧ (γ2|Π = γ1|Π)).

Proof. In this case, in order to prove the above two implications, we need to
prove that each cut vector of LS uniquely corresponds to a location vector in
NTALS , and each advancement step in LS uniquely corresponds to an equiva-
lence class of sequences of concatenated (broadcast) synchronization and internal
action transitions in NTALS . Although elements in the equivalence class have
different intermediate location vectors, they have the same initial and final lo-
cation vectors. They consume exactly the same message in Π. Note that an
advancement step in LS always represents a legal behavior.

Appendix D: Proof of Lemmas and Theorems 129

By Lemma 1, for each untimed chart Li in LS, each cut in Li uniquely cor-
responds to a location vector in the corresponding network of timed automata
NTALi , and each advancement step in Li uniquely corresponds to either a sin-
gle message synchronization transition, or a sequence of concatenated message
synchronization and internal action transitions in NTALi .

The only semantic difference between the advancement steps of a single un-
timed chart and of a set of untimed charts is that in the latter case there exist
inter-chart coordinations, i.e., across-chart broadcast synchronization on message
occurrences of the same message is possible. This implies that:

(1) At a cut vector of LS, if in more than one chart there are enabled message
occurrences of the same message, then either all of them are chosen to be
fired simultaneously, or none of them is chosen to be fired;

(2) Due to the nature of broadcast synchronization in the translated network
of TAs, while a message at a cut vector of LS could correspond to a legal
message synchronization advancement step in a certain chart, meanwhile
it could also lead another chart to be reset by cold-violating the prechart
of that chart (case 2.1), or lead another chart to a deadlocked situation by
hot-violating the main chart of that chart (case 2.2).

In case (1), given a set LS of untimed LSC charts L1,L2, . . . ,Ln, we let ini =
#(inst(Li)), 1 ≤ i ≤ n. We assume that the current cut vector c̄ of LS uniquely
corresponds to the position vector (p1,1, p1,2, . . . , p1,in1 , p2,1, p2,2, . . . , p2,in2 , . . . , pn,1,
pn,2, . . . , pn,inn), where pi,j ∈ pos(Li, Ij) denotes the current position on instance
Ij of chart Li. Without loss of generality, we assume that two m-labeled message
occurrences mo1 and mo2 are enabled at cut vector c̄ in two charts Li and Lj,
respectively. Specifically, let (pi,a + 1) and (pi,b + 1) be the sending and receiving
positions of mo1 in Li, where 1 ≤ a, b ≤ ini, and let (pj,c + 1) and (pj,d + 1) be
the sending and receiving positions of mo2 in Lj, where 1 ≤ c, d ≤ vj. According
to the trace-based semantics for a set of charts, these two message synchroniza-
tion advancement steps in Li and Lj will occur simultaneously. By rules R2 and

R3, there will be an m!-labeled edge from location l
pi,a
i,a to l

pi,a+1
i,a in Ai,a, and an

m?-labeled edge from location l
pi,b
i,b to l

pi,b+1

i,b in Ai,b, and similarly for chart Lj.
By rule R6, there will be added an extra m?-labeled edge from location l

pi,a
i,a to

l
pi,a+1
i,a in Ai,a, and similarly in chart Lj. Consequently, there will be a broad-

cast synchronization on m among Ai,a, Ai,b, Aj,c, Aj,d, initiated either by Ai,a,
or by Aj,c. In either case, after this broadcast synchronization on m in NTALS ,

the locations of Ai,a, Ai,b, Aj,c and Aj,d will progress to l
pi,a+1
i,a , l

pi,b+1

i,b , l
pj,c+1
j,c and

l
pj,d+1

j,d , respectively. Therefore, the message synchronization advancement step
on m in LS corresponds to two possible interleaved executions among Ai,a, Ai,b,
Aj,c and Aj,d. Since both interleavings consume the same message label m, they

130 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

correspond to the same portion of the accepted trace in NTALS . These two in-
terleaved executions constitute an equivalence class with respect to the message
synchronization advancement step on m.

In case (2.1), assume that the current cut vector c̄ of LS corresponds to posi-
tion vector (p1,1, p1,2, . . . , p1,in1 , p2,1, p2,2, . . . , p2,in2 , . . . , pn,1, pn,2, . . . , pn,inn). With-
out loss of generality, we assume that an m-labeled message occurrence mo is
currently enabled in Li, but not in Lj, and that c̄ “cuts” Lj in the prechart
of Lj. According to the semantics for a set of LSC charts, when message m is
encountered, there will be a normal advancement step in Li, and a cold viola-
tion advancement step in Lj. By Lemma 1, such a cold violation advancement
step uniquely corresponds to a sequence of synchronizations in the relevant timed
automata. Therefore, the system-wide synchronization on m will also uniquely
correspond to a system-wide sequence of synchronizations in NTALS .

In case (2.2), assume that the current cut vector c̄ of LS corresponds to posi-
tion vector (p1,1, p1,2, . . . , p1,in1 , p2,1, p2,2, . . . , p2,in2 , . . . , pn,1, pn,2, . . . , pn,inn). With-
out loss of generality, we assume that an m-labeled message occurrence mo is
currently enabled in Li, but not in Lj, and that c̄ “cuts” Lj in the main chart
of Lj. According to the semantics for a set of LSC charts, when message m is
encountered, there will be a normal message synchronization advancement step
in Li, and a hot violation in Lj. Specifically, let pi,a and pi,b be the sending and
receiving positions of mo in Li, where 1 ≤ a, b ≤ ini. We let the sub-position
vector in Lj be cj = (pj,1, pj,2, . . . , pj,inj). Obviously, mo is not enabled at sub-
cut cj. Since Lj is hot-violated by mo, there must exist a position, say pj,x,
1 ≤ x ≤ inj, such that there is an m?-labeled edge from pj,x to a sink error
location Err in Aj,x. Furthermore, there could possibly exist another position,
say pj,y, 1 ≤ y ≤ inj, such that there is an m!-labeled edge from position pj,y to
(pj,y + 1) in Aj,y. This means that there could be one or two possible initiating
TAs of the broadcast synchronization. Whichever case could it be, the same la-
bel (m) will be consumed, and the same next semantic state of NTALS will be
reached. This semantic state will have a deadend location Err, which indicates
that the system will be deadlocked. Therefore, the TA transition step leading to
this semantic state will not be considered as a part of the accepted trace. In this
case, m will not be allowed to occur at cut vector c̄. This demonstrates how the
different charts constrain the behaviors of each others. In summary, in case (2.2),
a to-be-hot violating message in LS uniquely corresponds to a to-be-deadlocked
TA transition in NTALS .

Based on the above discussions, we conclude that there exists a unique cor-
respondence between the observable traces of a set of untimed LSC charts and
their corresponding network of timed automata.

Let L be a time-enriched chart whose instance lines I1, I2, . . . , In correspond
to timed automata A1, A2, . . . , An, respectively. Let the message alphabet of L be
{m1,m2, . . . ,mk}. According to Section 6 (“Translation of assignments”), there

Appendix D: Proof of Lemmas and Theorems 131

will be an auxiliary timed automaton Ami for each mi, 1 ≤ i ≤ k. Consequently,
the translated network of TAs will be NTAL = {Ai | 1 ≤ i ≤ n}∪{Coord}∪{Ami |
1 ≤ i ≤ k}.

According to rules R4, R5 and R7, there will be auxiliary channels Aux =
{pch overi, mch overi | 1 ≤ i ≤ n} ∪ {activate, over, pch vio, reset} used in
NTAL. According to rule R11, there will be auxiliary channels Aux′ = {mi Rpt,
mi Rst,mi Rcv | 1 ≤ i ≤ k} used in NTAL. Let the message alphabet of L be Σ,
then the alphabet of observable actions in NTAL will be Act = Σ ∪Aux ∪Aux′.

Lemma 3. Let L be a time-enriched LSC chart whose message alphabet is Σ, and
let NTAL be the translated network of timed automata which have a set Act = Σ∪
Aux∪Aux′ of normal and auxiliary channels. Then ∀γ1 ∈ (Σ∪{τ}∪R≥0)ω. ((γ1 |=
L) ⇒ ∃γ2 ∈ (Act ∪ {τ} ∪ R≥0)ω.(γ2 |= NTAL) ∧ (γ2|(Σ∪R≥0) = γ1|(Σ∪R≥0))), and
∀γ2 ∈ (Act ∪ {τ} ∪ R≥0)ω. ((γ2 |= NTAL) ⇒ ∃!γ1 ∈ (Σ ∪ {τ} ∪ R≥0)ω.(γ1 |=
L) ∧ (γ2|(Σ∪R≥0) = γ1|(Σ∪R≥0))).

Proof. In order to prove the above two implications, we need to show that each
configuration of chart L uniquely corresponds to a certain semantic state of
NTAL, and each advancement step in L uniquely corresponds to a sequence of
concatenated message synchronization transitions, and/or internal action tran-
sitions, and/or time delay transitions in NTAL such that they either consume
exactly the same letter from Σ, or undergo exactly the same period of time delay.

By Lemma 1, each cut of an untimed chart L uniquely corresponds to a
semantic state in NTAL, and each advancement step in L uniquely corresponds
to either a message synchronization transition, or a sequence of concatenated
message synchronization and internal action transitions in NTAL. For a time-
enriched LSC chart, we keep this skeleton correspondence, i.e., we map position
pii of instance line Ii to location lpii of the timed automaton Ai. Note that along
an instance line of the time-enriched chart, two adjacent LSC positions typically
do not correspond to two adjacent locations in the corresponding translated TA.
Between location lpii and lpi+1

i , where 0 ≤ pi ≤ (p maxL,Ii−1), according to rules
R10, R11 and R12, we will add some intermediate auxiliary TA locations, and
add some TA edges to connect them.

Now we prove that a message synchronization advancement step on m in L
uniquely corresponds to a sequence of transitions in NTAL that consumes m ex-
actly. Assume that at a configuration c which corresponds to position vector
(p11, . . . , pii, . . . , pjj, . . . , pnn) in the prechart of L and clock valuation v, there
is an m-labeled message occurrence mo with condition (clock constraints) g and
assignment (clock resets) a sent from position (pi + 1)i of instance Ii to posi-
tion (pj + 1)j of instance Ij. Assume that position pii corresponds to location
lpii in Ai, and position (pi + 1)i corresponds to location lpi+1

i in Ai, then there
will be 5 intermediate locations between lpii and lpi+1

i in Ai, which we denote as
lpi,1i , lpi,2i , lpi,3i , lpi,4i and lpi,5i . Here

132 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

• between lpii and lpi,1i , there is a TA edge with the guard “m mayRcv ==
true”;

• between lpi,1i and lpi,2i , there is a TA edge which tests the upper bound
constraints;

• between lpi,2i and lpi,3i , there is an m!-labeled TA edge;

• between lpi,3i and lpi,4i , there is a TA edge which tests the lower bound and/or
clock difference constraints;

• between lpi,4i and lpi,5i , there is an m Rpt!-labeled TA edge;

• between lpi,5i and lpi+1
i , there is an m Rst!-labeled TA edge.

Similarly, there will be 5 intermediate locations and edges that connect them in
Aj. Specifically, if there are positions on other instance line that are waiting
for the completion of this message synchronization according to the partial order
relation, then there will be one more intermediate location lpi,6i , and an m Rcv!-
labeled edge connecting lpi,6i to lpi+1

i . According to rule R12, the position sub-
vector (pii, pjj) corresponds to the TA location sub-vector (lpii , l

pj
j), where both

locations are committed locations. After these two transitions from (lpii , l
pj
j), the

new location sub-vector (lpi,1i , lpj,1j) will be reached, which are also committed
locations. Since a legal advancement step in L will not violates the upper bound
of the clock constraints, the upper bound constraint will evaluate to true and
thus the next location sub-vector will be (lpi,2i , lpj,2j). From (lpi,2i , lpj,2j) there will

be the message synchronization on m leading to (lpi,3i , lpj,3j), which are again
committed locations. After comparing the lower bound of clock constraints, the
location sub-vector (lpi,4i , lpj,4j) will be reached. Now instance lines Ii and Ij will
immediately report to the automaton Am, telling it that the instances are done
with testing the guarding flag boolean variables, testing the upper bound, message
synchronization, and testing the lower bound or clock difference. Once both
instance lines have notified Am of their completions, Am will immediately initiate
an m Rst-labeled broadcast synchronization which brings Ai from lpi,5i to lpi+1

i ,
and brings Aj from lpj,5j to lpj+1

j . Specifically, if there is an lpi,6i in Ai, then

the m Rst?-labeled edge will be from lpi,5i to lpi,6i in Ai, and there will be an
m Rcv!-labeled edge from lpi,6i to lpi+1

i . This latter edge can occur autonomously
without synchronizing with a message-receiving TA, because m Rcv is declared
as a broadcast channel. In summary, the message synchronization step on m in
L will uniquely correspond to such a sequence of transitions in NTAL.

For a silent advancement step in L, it is the same as in the untimed case. In
other words, the corresponding proof for Lemma 1 also applies here.

For a time delay advancement step in L, since the upper bounds and lower
bounds of clock constraints are properly translated to tests that are prior to and

Appendix D: Proof of Lemmas and Theorems 133

after the message synchronization in NTAL, a time delay of a period of d ∈ R≥0

is allowed in NTAL if and only if the same period d of time delay is allowed in L.
In all the three possible cases of an advancement step in L, there will be a

uniquely corresponding sequence of transitions in NTAL such that this sequence
consumes exactly the same message, or amount of time delay as that step in
L.

Let LS be a set of time-enriched LSC charts L1,L2, . . . ,Ln. Each chart
Li contains the instance lines Ii,1, Ii,2, . . . , Ii,ini , where ini = #(inst(Li)). Let
the message alphabet Π of LS be Π =

⋃n
i=1 Σi = {m1,m2, . . . ,mk}. Then

the translated network of TAs will be NTALS = {Ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤
#(inst(Li))} ∪ {Coordi | 1 ≤ i ≤ n} ∪ {Ami | 1 ≤ i ≤ k}. Similarly to Lemma 3,
we let Act = Π ∪ Aux ∪ Aux′.

Theorem 1. Let LS be a set of time-enriched LSC charts whose message alpha-
bet is Π, and let NTALS be the translated network of timed automata which have
a set Act of normal and auxiliary channels. Then ∀γ1 ∈ (Π∪{τ}∪R≥0)ω. ((γ1 |=
LS) ⇒ ∃γ2 ∈ (Act ∪ {τ} ∪ R≥0)ω.(γ2 |= NTALS) ∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))),
and ∀γ2 ∈ (Act∪ {τ} ∪R≥0)ω. ((γ2 |= NTALS)⇒ ∃!γ1 ∈ (Π∪ {τ} ∪R≥0)ω.(γ1 |=
LS) ∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))).

Proof. We need to prove that each cut vector of LS uniquely corresponds to a
location vector in NTALS , and each message synchronization advancement step
in LS uniquely corresponds to a sequence of concatenated message synchroniza-
tion transitions, and internal action transitions in NTALS . These transitions are
connected by committed locations in NTALS . Because any committed location
appears as a junction location only when it will be immediately followed (only)
by a condition test, these concatenated transitions can be viewed as an atomic
step. Although for the sake of inter-chart coordination, the outgoing transitions
from locations of different TAs may be executed in an interleaved manner, the
order of the consumed words in (Π ∪ {τ})∗ remains the same. In other words,
an accepted timed trace γ ∈ (Π∪ {τ} ∪R≥0)ω may correspond to an equivalence
class of timed traces in (Act∪{τ}∪R≥0)∗. They consume exactly the same timed
trace in (Π∪R≥0)∗. Proof details concerning the translations of inter-chart mes-
sage coordinations and message occurrences that are associated with conditions
and/or assignments are similar to that for Lemmas 2 and 3, respectively.

Let LS be an LSC system which consists of a set of (untimed or timed) driving
universal charts L1,L2, . . . ,Ln. We translate LS to a network of timed automata
NTALS . Let L′ be a separate monitored universal chart (the “property chart”),
which will be translated to another network of timed automata NTAL′ . As ex-
plained earlier, the TA locations CoordL′ .Mch top and CoordL′ .Mch bot denote
that the main chart of L′ has just been activated and has just been successfully

134 Paper B: Scenario-Based Analysis and Synthesis of Real-Time . . .

matched, respectively. We have:

Theorem 3. LS |= L′ ⇔ (NTALS ||NTAL′) |= CoordL′ .Mch top CoordL′ .Mch bot.

Proof. By Theorem 1, each accepted trace in LS uniquely corresponds to a cluster
of accepted traces in NTALS which consume exactly the same string from (Π ∪
R≥0)ω. And similarly for L′ and NTAL′ .

The TA location CoordL′ .Mch top represents the situation where the property
chart L′ is activated, and CoordL′ .Mch bot the situation where L′ is satisfied (i.e.,
successfully matched).

Since L′ is a property chart, its corresponding network of timed automata
NTAL′ will never interfere with (or “drive”) the network of timed automata
NTALS . This means that after parallelly composing the TAs in NTAL′ with
the TAs in NTALS , the behaviors in NTALS will not be further constrained.
Since both CoordL′ .Mch top and CoordL′ .Mch bot are locations in the product
automaton of (NTALS ||NTAL′), the right hand side formula of this theorem
captures exactly the assume-guarantee style responsiveness property of the LSC
requirement, which is exactly what we require of LS |= L′.

An LSC system LS satisfies a monitored existential chart L′ iff one of the
traces in LS is included in the traces of L′.

Theorem 4. LS |= L′ ⇔ (NTALS ||NTAL′) |= E3 CoordL′ .Mch bot.

Proof. This theorem can be proved similarly to Theorem 3, except that an exis-
tential chart has no prechart.

Paper C:
A Game-Theoretic Approach to
Real-Time System Testing

Alexandre David, Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen

Center for Embedded Software Systems (CISS)
Department of Computer Science
Aalborg University, Denmark

Abstract

We present a game-theoretic approach to the testing of real-time embedded sys-
tems whose models may have output uncertainty and timing uncertainty of out-
puts. By modeling a system in question using timed game automata (TGA) and
specifying the test purpose as an ACTL formula, we employ a recently developed
timed game solver Uppaal-Tiga to synthesize winning strategies, and then use
these strategies to conduct black-box conformance testing of the system. The
testing process is proved to be sound and complete with respect to the given test
purpose. Case study and preliminary experimental results indicate that this is a
viable approach to real-time embedded system testing.

Keywords: Real-Time Systems, Timed Game Automata (TGA), Test Purposes,
Strategies, Conformance Testing

136 Paper C: A Game-Theoretic Approach to Real-Time System Testing

1 Introduction

Model-based conformance testing of real-time systems has attracted increasing
research interests in recent years. A large proportion of these efforts employ timed
automata (TA) [AD94] or its variants to model the systems in question. Among
them some make the assumptions that the system TA model is output-urgent
and has isolated outputs [SVD01, HLN+03]. “Output-urgent” means that if the
system can ever produce an output, it should produce the output immediately
(i.e., with zero time delay). “Isolated output” means that at any moment in
time if the system can produce an output, at that moment it should not be able
to accept any input or produce any other output. These two assumptions on
TA contribute to the testability (or controllability 1) [SVD01] of timed automata.
However, in many cases they appear to be unnecessarily strong.

In this paper we aim to cancel these two assumptions and present a test
method for uncontrollable real-time systems, i.e., systems with timing uncertainty
of outputs and output uncertainty. By “timing uncertainty of outputs” we mean
that the system under test (SUT) can produce an output during a certain time
interval rather than only at a certain time point. By “output uncertainty” (or
“uncontrollable outputs”) we mean that it is the SUT rather than the tester that
determines whether an output will be produced, and if yes, which of the several
possible outputs will be produced. The benefits of allowing timing uncertainty
of outputs and output uncertainty in the system models include:

• It allows the implementors some freedom;

• It enables the testers to concern only with the high-level requirements rather
than the implementation details; and

• It usually leads to more succinct and natural models.

A system Sys with output uncertainty and timing uncertainty of outputs may
be modeled as a timed game automaton (TGA) [MPS95], which is a variant of
TA with its actions partitioned into controllable ones (modeling input stimuli
from the tester to Sys) and uncontrollable ones (modeling output responses from
Sys to the tester). The output uncertainty lies in the fact that from a certain
TGA location, there could be both outgoing input action edges and (multiple)
outgoing output action edges. The timing uncertainty of outputs comes with the
clock invariants at those locations — they accommodate periods of rather than
only zero delays of outputs.

1A timed automaton is said to be controllable [SVD01] if it is possible for an environment
(tester) to drive the timed automaton through all of its transitions by offering appropriate test
inputs. Controllability requires a timed automaton to be deterministic (i.e., the same source
location and action will lead to the same target location), output-urgent, and have isolated
outputs.

2. Test setup 137

The interactions between Sys and the tester can be viewed as a game activity,
where the tester is a game player and Sys is the game opponent. A play of
the timed game between Sys and the tester is a run of the TGA towards a
given test purpose (or winning objective), say, “location SUT.Bright can always
be eventually reached” (Fig. 2(a)). A previously developed timed game solver
Uppaal-Tiga [BCD+07] can check whether a specified ACTL 2 winning objective
can be satisfied by a TGA, and if so, it can synthesize a winning strategy. Since
a winning strategy provides step-by-step guidance to the tester towards the TGA
states that satisfy the test purpose, it can be viewed as a test case. This opens
up the possibility of game-based testing of uncontrollable timed systems.

1.1 Related work

Recent years have seen much work on model-based black-box conformance testing
of real-time systems based on the timed automata or timed transition system
models [ENDKE98, HNTC99, CO00, NS01a, SVD01, HLN+03, KJM03, LMN04,
BB04, KT04]. For the sake of testability, some of them assume that the timed
automata are controllable [SVD01, HLN+03]. This in turn requires that the timed
automata are output-urgent and have isolated outputs. In this paper, both of
these two requirements are cancelled.

Testing as a game problem for untimed systems has been proposed by Alur
and colleagues [ACY95], and elaborated in [Yan04]. Dense-time control problem
based on timed game automaton has been defined and solved by Maler and col-
leagues [MPS95], and later improved in [AMPS98, TA99, AT02]. More recently,
based on [LS98] a truly on-the-fly algorithm that combines forward symbolic ex-
plorations and backward propagations of winning/losing information for more
efficient timed game solving has been proposed and implemented in [CDF+05].
A further optimized re-implementation of the algorithm gives rise to the tool
Uppaal-Tiga [BCD+07, BCD+08], which can synthesize winning strategies for
given TGA models and given ACTL properties. The dramatic performance im-
provement over the first prototype [CDF+05] makes it possible for controller
synthesis for non-trivial timed systems.

2 Test setup

2.1 The timed control problem

In a timed control problem, the control program (or “controller”) actively offers
inputs to and passively observes outputs from the system under control (the
“plant”) at appropriate time (or time periods). The inputs are controlled by
the controller (Fig. 1, solid lines), and the outputs are controlled only by the

2ACTL is the universal fragment of the CTL logic where the path quantifier can only be A.

138 Paper C: A Game-Theoretic Approach to Real-Time System Testing

plant itself (Fig. 1, dashed lines). For a given control objective we can possibly
synthesize a control strategy (or winning game strategy), guided by which the
control program ensures that the control objective will be enforced no matter
how the plant behaves.

Control ProgramPlant

input

output

Strategy

Figure 1: The timed control problem.

From a model-based testing point of view, the plant could be viewed as a
system in question, and the controller could be viewed as the tester. In this way,
a winning strategy for winning objective ϕ could be viewed as a test case for test
purpose ϕ.

2.2 Timed I/O Game Automaton

Let X be a finite set of real-valued clocks, and C(X) be the set of constraints
generated by the grammar:

ϕ ::= x ./ k | x− y ./ k | ϕ1 ∧ ϕ2,

where k ∈ N≥0, x, y ∈ X and ./∈ {<,≤,=,≥, >}.

Definition 1 (timed automaton, TA [AD94]). A timed automaton is a tuple
S = (L, l0, Act,X,E, Inv), where

• L is a finite set of locations;

• l0 ∈ L is the initial location;

• Act is a finite set of actions;

• X is a finite set of real-valued clocks;

• E ⊆ L× C(X)× Act× 2X × L is a finite set of transitions; and

• Inv : L→ C(X) associates invariants to locations.

To characterize the uncontrollability of some actions, we adopt the notion of
timed game automaton.

2. Test setup 139

Definition 2 (timed game automaton, TGA [MPS95]). A timed game automa-
ton is a timed automaton with its set Act of actions partitioned into controllable
actions (Actc) and uncontrollable actions (Actu).

In this paper we further refine the above definition by assuming that all output
actions Actout are uncontrollable and all input actions Actin are controllable.

Definition 3 (timed I/O game automaton, TIOGA). A timed I/O game au-
tomaton is a timed game automaton with its set of actions Act partitioned into
input actions Actin and output actions Actout such that Actin = Actc and Actout =
Actu.

In a plant TIOGA, the controllable actions model the inputs from the con-
troller (or the tester from a testing perspective) to the plant, and the uncontrol-
lable actions model the outputs from the plant to the controller. A run of the
system involves a sequence of controller-chosen input stimuli and plant-produced
output reactions. Therefore, it can be viewed as a timed I/O game where the
controller acts as a player and the plant acts as the opponent. Since sometimes
the opponent may choose not to produce any output by just staying quiescent,
the game run is not necessarily an alternating sequence of inputs and outputs.

This paper uses the simple Smart Lamp problem [HLN+03] as an illustrating
example. Fig. 2(a) is a TIOGA of the smart Lamp (the “plant”) where solid lines
represent transitions of controllable actions, and dashed lines represent transitions
of uncontrollable actions 3. Fig. 2(b) is the TIOGA of the user of the Lamp
(the “controller”). There are three brightness levels for the Lamp: Off, Dim

and Bright. The Lamp is initially in location Off. The user interacts with the
Lamp by touching a touch-sensitive pad. The Lamp changes its brightness levels
according to the timings between the touches. For example, if the Lamp has been
in location Off for a long time (“x ≥ Tidle” in Fig. 2(a)), then it is supposed to
re-activate upon a touch? and go to location L5, and then either

• to produce output bright ! and go directly to location Bright within 2 time
units; or

• to produce output dim! and go to location Dim within 2 time units; or even

• not to produce any output, and just remain in L5 during that period.

The user does not know whether or which output will be produced. This is the
so-called output uncertainty (or uncontrollable outputs). If an output is ever
produced, the user cannot anticipate the exact time of the output. This is the
so-called timing uncertainty of outputs.

3More precisely, only edges that correspond to plant-controlled message-sending events e!
are drawn in dashed lines. All other edges are in solid lines. The reason is that controllability
makes sense for message-sending events, but not for message-receiving events.

140 Paper C: A Game-Theoretic Approach to Real-Time System Testing

touch? bright!

dim!

dim!

off! touch?

touch?touch?

touch?

dim!
touch?

touch?

touch?

touch?

bright!off! touch? touch?

dim!
touch?Off Dim Bright

Tp<=2

Tp<=2Tp<=2

Tp<=2

L2 L3

L6

L5

L1 L4x=0,
Tp=0

x<Tidle

x=0,
Tp=0

x>=Tsw x<Tsw

x=0,
Tp=0

x=0,
Tp=0

x=0,
Tp=0

x=0,
Tp=0

Tp<=2x>=Tidle

x>=Tidle

x<Tidle

Tidle = 20
Tsw = 4

Tp<=2

(a) the smart Lamp (SUT)

dim?

bright?

touch!

off? touch!

Init

Work

z=0

z=0

Treact = 1

z>=Treact

(b) the user

Clock variables:
x: the timing between touches;
Tp: the timing of pausing;
z: the timing between two successive touches;

Model parameters (constants):
Tidle: idling time;
Tsw: switching time;
Treact: reactive time (minimal delay between two succes-

sive touches).

Figure 2: TIOGAs for the smart lamp example.

We use timed I/O transition system (TIOTS) as the underlying semantic
model of TIOGA.

Definition 4 (timed I/O transition system, TIOTS). A timed I/O transition
system is a tuple (S, s0, Actin, Actout,→), where

• S is a set of states;

• s0 ∈ S is the initial state;

• Actin and Actout are sets of input and output actions, respectively; and

• →∈ S × (Actin ∪ Actout ∪ R≥0) × S is a transition relation satisfying the
following sanity constraints:

– time determinism: (s
d−→ s′) ∧ (s

d−→ s′′)⇒ (s′ = s′′);

– time additivity: (s
d1−→ s′) ∧ (s′

d2−→ s′′)⇒ (s
d1+d2−−−→ s′′),

2. Test setup 141

where R≥0 is the set of non-negative real numbers, s, s′, s′′ ∈ S, and d, d1, d2 ∈
R≥0.

Let s ∈ S and α ∈ (Act ∪R≥0). We write s
α−→ if ∃s′∈S . s α−→ s′. Here α can

be extended to strings of observable actions and time delays in the usual manner.
We define the following characteristics of TIOTS:

• A TIOTS has isolated output if ∀s ∈ S .∀α ∈ Actout .∀β ∈ Act . (((s
α−→

) ∧ (s
β−→))⇒ (α = β)); and

• A TIOTS is output-urgent if ∀s ∈ S .∀α ∈ Actout . ((s
α−→)⇒ ∀d ∈ R>0 . (s�

�d−→)).

Definition 5 (semantics of TIOGA). The semantics of a TIOGA (L, l0, Act,
X,E, Inv) is defined as a TIOTS (S, s0, Actin, Actout,→), where

• S ⊆ L×RX is the set of semantic states of location and clock vector;

• s0 = (l0, 0) ∈ S is the initial state;

• Actin and Actout are sets of input and output actions, which partition Act;
and

• →⊆ S × (Actin ∪ Actout ∪ R≥0) × S satisfies the sanity constraints and
consists of the following types of transitions:

– time transition: (l, u)
d−→ (l, u+ d) if ∀d′ ∈ [0, d] . ((u+ d′) |= Inv(l));

– action transition: (l, u)
a−→ (l′, u′) if ∃e = (l, a, g, r, l′) ∈ E . ((u |=

g) ∧ (u′ = [r → 0]u) ∧ (u′ |= Inv(l′))).

A run of the TIOGA is characterized by a timed trace. An observable timed
trace σ ∈ (Act ∪R≥0)∗ is of the form σ = d1a1d2a2 . . . akdk+1. We define the set
of observable timed traces of state s as:

TTr(s) = {σ ∈ (Act ∪R≥0)∗ | s σ−→}.

For a state s and a timed trace σ, (s After σ) is the set of states that can be
reached after σ:

s After σ = {s′ | s σ−→ s′}.
The set of (immediately) observable outputs or delays at state s is defined as:

Out(s) = {a ∈ (Actout ∪R≥0) | s a−→}.

The definitions of After and Out can both be extended to sets of states as
usual.

A run of a TIOGA S = (L, l0, Act,X,E, Inv) is a timed trace (i.e., a sequence
of alternating time and action transitions) in its TIOTS (S, s0, Actin, Actout,→).

142 Paper C: A Game-Theoretic Approach to Real-Time System Testing

We use Runs(s,S) to denote the set of all runs of S that start from state s ∈ S.
If σ is a finite run, we use last(σ) to denote the last state of σ.

In this paper, we only impose the following restrictions on the model of the
plant:

• determinism; and

• strong input-enabledness.

In particular we do NOT require the plant model to be output-urgent (thus
allowing timing uncertainty of outputs) or to have isolated outputs (thus allowing
output uncertainty). Such a TIOGA is called an uncontrollable TIOGA. Likewise,
its corresponding TIOTS is called an uncontrollable TIOTS.

Moreover, we can define the parallel composition of several TIOTS’s in the
usual manner.

2.3 Timed I/O conformance relation

To decide whether the behaviors of the implementation under test (IMP) con-
form to that of the system specification (SPEC), we use the timed input-output
conformance (tioco) relation.

Definition 6 (timed input-output conformance relation, tioco [KT04]). Let i, s ∈
S be two states of a TIOTS. The timed input-output conformance relation tioco
between i and s is defined as:

i tioco s iff ∀σ ∈ TTr(s).(Out(i After σ) ⊆ Out(s After σ)).

Assume that the behavior of the IMP can be modeled by a TIOTS I. Assume
that the initial state of I is i0, and the initial semantic state of the specification
TIOGA S is s0. If i0 tioco s0, we say that I is a correct implementation of S,
denoted I tioco TIOTS(S).

Let S be input-enabled, and let i and s be two of its semantic states. The
relation tioco can also be characterized in terms of timed trace inclusion:

i tioco s iff TTr(i) ⊆ TTr(s).

We can also use the environment-relativized timed input-output conformance
relation rtioco [LMN04].

3. Testing with winning strategies 143

2.4 Test purpose

This paper aims to conduct targeted rather than comprehensive testing of whether
an IMP conforms to a SPEC. This means that we should have in mind a test
purpose. In this paper, we use a “control:”-prefixed ACTL formula to spec-
ify a test purpose for a control problem (or game problem). For example,
“control: A3 SUT.Bright” says that we can always manage to reach the goal
location SUT.Bright by choosing to offer appropriate inputs or to delay at appro-
priate moments in time, no matter how the IMP behaves.

2.5 Test hypotheses

For the purpose of proving the soundness and completeness properties of our test
method, we assume that the system implementation IMP can be modeled by a
TIOTS and that it has the same sets of input actions Actin and output actions
Actout as the SPEC. Furthermore, the IMP is assumed to be deterministic and
controllable, i.e., it is output-urgent and has isolated outputs. This is reasonable
since IMP is usually more deterministic than SPEC.

3 Testing with winning strategies

3.1 The testing framework

Fig. 3 is the framework of testing with winning strategies. The inputs to
Uppaal-Tiga are the TIOGA models of the plant and the controller, and the test
purpose which is specified as an ACTL formula. The output from Uppaal-Tiga
is a winning strategy. Given the SPEC models, the black-box implementation
IMP, with the winning strategy we can do conformance testing and issue a verdict
of pass or fail.

winning strategy
(next move
guidance)

SPEC
(TIOGA)

test purpose
(ACTL formula)

IMP

strategy
generation

(by
Uppaal-

Tiga)

test
execution

test
verdict

Figure 3: Testing with winning strategies.

144 Paper C: A Game-Theoretic Approach to Real-Time System Testing

3.2 Generating winning strategy

The key idea of our test method is to use a winning strategy as a test case. A
reachability control problem is that given a TIOGA S = (L, l0, Act,X,E, Inv)
and a set of goal states K ⊆ L×RX of its corresponding TIOTS, we should find
a winning strategy f such that S supervised by f can reach some states in K.
The given test purpose ϕ gives rise to K, and they are used to synthesize f .

We view the reachability control problem (S, K) as a game problem. A (finite
or infinite) run of S σ = s0

α0−→ s1
α1−→ . . .

αn−→ sn+1 is winning if ∃k ≥ 0 . (sk ∈
K). The set of all winning runs in S that start from state s is denoted by
WinRuns(s,S, K). Winning runs in the underlying TIOTS are defined similarly.

A strategy f is a function that during the course of the timed game constantly
gives information as to what the player should do in order to win the game
[MPS95]. At a given state of the run, the player can be guided either to do a
particular controllable action (i.e., to offer an input to the plant), or to do nothing
at this moment in time and just wait (denoted by “λ”).

Definition 7 (state-based strategy). Let S = (L, l0, Act,X,E, Inv) be a TIOGA,
and let (S, s0, Actin, Actout,→) be the TIOTS of S. A state-based strategy over
S is a partial function:

f : S → (Actc ∪ {λ}).

Definition 8 (supervised run). Let S = (L, l0, Act,X,E, Inv) be a TIOGA, and
f be a state-based strategy over S. Let s be a state in the TIOTS of S. The
f -supervised runs of S from s is a subset SupRuns(s, f) ⊆ Runs(s,S) defined
inductively as:

• s ∈ SupRuns(s, f);

• σ′ = (σ
e−→ s′) ∈ SupRuns(s, f) if, σ ∈ SupRuns(s, f), σ′ ∈ Runs(s,S)

and one of the following three conditions holds:

– e ∈ Actu;

– e ∈ Actc and e = f(last(σ));

– e ∈ R≥0 and ∀e′ ∈ [0, e) .∃s′′∈ S . ((last(σ)
e′−→ s′′) ∧ (f(s′′) = λ));

• σ ∈ SupRuns(s, f) if σ is an infinite run whose finite prefixes are all included
in SupRuns(s, f).

For a reachability game withK ⊆ L×RX , a maximal run σ is either an infinite
run, or a finite run such that either last(σ) ∈ K, or (last(σ) /∈ K) ∧ ((last(σ)

α−→
)⇒ (α = 0)). We denote the set of all maximal runs from state s as MaxRuns(s).

Let σ = s0
α0−→ s1

α1−→ . . .
αn−→ sn+1 be a run of TIOGA S, and K be a set of

goal states. Let index(si) = i be the index of state si. If σ is a maximal run,
then σ is losing if ∀0 ≤ k ≤ min{index(last(σ)), ∞} . (sk /∈ K).

3. Testing with winning strategies 145

Definition 9 (winning strategy). Let S = (L, l0, Act,X,E, Inv) be a TIOGA, and
f be a state-based strategy over S towards winning states K. Let s be a state in the
TIOTS of S. We say f is winning from state s if MaxRuns(s)∩ SupRuns(s, f) ⊆
WinRuns(s,S, K). If f is winning from s0, then f is a winning strategy for
S.

A strategy being winning means that if the controller acts strictly according
to what the strategy suggests, then the test purpose will be enforced, no matter
how the plant behaves.

Fig. 4 shows a state-based winning strategy for the user of the smart lamp
example towards the test purpose “control: A3 SUT.Bright”. It is automatically
generated by Uppaal-Tiga.

(SUT.L5, ENV.Work)

(SUT.Off, ENV.Init)

(SUT.Dim, ENV.Work)

(SUT.L3, ENV.Work)

while (SUT.x<=2 && SUT.x==SUT.Tp && ENV.z -

SUT.x<-1) || (SUT.x<=1 && SUT.x==SUT.Tp &&

SUT.Tp==ENV.z && ENV.z==SUT.x):

wait

while (SUT.x<1 && SUT.x==ENV.z) || (SUT.x-ENV.z<=2

&& ENV.z<1 && ENV.z-SUT.x<=-1):

wait

while (SUT.x<=2 && SUT.x==SUT.Tp && ENV.z-SUT.x <

-1) || (SUT.x<=1 && SUT.x==SUT.Tp && SUT.Tp==ENV.z

&& ENV.z==SUT.x):

wait

while (SUT.x<20):

wait

when (1<SUT.x && 1<=ENV.z && SUT.x<=2 && SUT.x==SUT.Tp):

touch?

when (1<SUT.x && 1<=ENV.z && SUT.x<=2 && SUT.x==SUT.Tp):

touch?

when (20<=SUT.x):

x >= Tidle, touch?, x := 0, Tp := 0

when (1<=ENV.z && SUT.x<4):

x < Tsw, touch?, x := 0, Tp := 0

Figure 4: An example winning strategy for the smart lamp user (Fig. 2(b)).

Note that there may exist more than one winning strategy for the same
TIOGA model and test purpose. We use Strategy(S, ϕ) to denote the set of
all winning strategies for TIOGA S and test purpose ϕ.

3.3 Test execution

Definition 10 (test execution). Let SPECS be the set of system specifications, F
be the set of winning strategies, and IMPS be the set of system implementations.

146 Paper C: A Game-Theoretic Approach to Real-Time System Testing

A test execution is defined as a function:

T : SPECS× F × IMPS→ {pass, fail}.

The basic idea of test execution towards reachability test purposes is to in-
crementally build a test run by constantly consulting the winning strategy and
the SPEC model (see Algorithm 3.1). If an occurred output is not allowed by
the specification model according to tioco, then we report fail, otherwise after
reaching a goal state we report pass.

Since the winning strategy guarantees that a certain goal state must be
reached, this indicates that the while-loop of Algorithm 3.1 must terminate.

Algorithm 3.1 TestExec R(S, I, K, f)

Input: TIOGA specification S, system implementation I, set K of goal states,
and state-based winning strategy f ;
Output: test verdict pass or fail, and test run σ;
Algorithm:

1: σ := 〈〉; /* the test run is initially an empty trace */
2: while (σ /∈ WinRuns(s0,S, K)) do /* s0 is the initial state */
3: case f(last(σ)) of
4: “input i”:
5: send i to I;
6: σ := σ ·i;
7: “delay d”:
8: if output o occurs at d′ ≤ d then
9: σ := σ ·d′;

10: if o /∈ Out(s0 After σ) then
11: return(“fail”); /* non-conforming behavior */
12: else
13: σ := σ ·o;
14: else
15: σ := σ ·d;
16: esac
17: endwhile
18: return(“pass”). /* good state reached */

Let S be a TIOGA specification, I be a TIOTS implementation, K be the
set of goal states, and f be a winning strategy. We use JTestExec R(S, I, K, f)K
to denote the set of all (passing and failing) test runs under this configuration.

3. Testing with winning strategies 147

3.4 Soundness and completeness

In conformance testing, the soundness property says that if there exists a failing
test run, then the implementation indeed does not comply with the specification.

Lemma 1. Let S = (L, l0, Act,X,E, Inv) be a TIOGA specification with Act =
Actin∪Actout, TIOTS(S) be its corresponding TIOTS, I = (Z, z0, Actin, Actout,→)
be a TIOTS implementation, and ϕ be a reachability test purpose for S. Then
(I tioco TIOTS(S))⇒ ∀f ∈ Strategy(S, ϕ) .∀σ ∈ SupRuns(z0, f) . (σ is winning).

Proof. (sketch). Let TIOTS(S) = (S, s0, Actin, Actout,→). By (I tioco TIOTS(S))
we know that z0 tioco s0. It follows that TTr(z0) ⊆ TTr(s0). Let f be an arbitrary
winning strategy for ϕ, and let σ be an arbitrary f -supervised run starting from
z0. It is obvious that σ is also an f -supervised run starting from s0. Because
s0 is the initial semantic state of S and f is a winning strategy, according to
Algorithm 3.1, σ is a winning run.

Theorem 1 (soundness). Let S = (L, l0, Act,X,E, Inv) be a TIOGA specifi-
cation with Act = Actin ∪ Actout, TIOTS(S) be its corresponding TIOTS, I
= (I, i0, Actin, Actout,→) be a TIOTS implementation, and ϕ be a reachability
test purpose. Then ∃f ∈ Strategy(S, ϕ) .∃σ ∈ SupRuns(z0, f) . (σ is failing) ⇒
(I ���tioco TIOTS(S)).

Proof. This theorem is the negation of Lemma 1.

The completeness property says that if an implementation does not comply
with a specification, then there must exist a failing test run. In this paper, we are
conducting targeted testing with a test purpose. Therefore, given a test purpose
ϕ that is satisfied by the specification, if the implementation does not conform
to the specification w.r.t. ϕ, we will always be able to find a certain failing run.
Hence the following theorem of (partial) completeness.

Theorem 2 (partial completeness). Let S = (L, l0, Act,X,E, Inv) be a TIOGA
specification with Act = Actin ∪ Actout, I = (I, i0, Actin, Actout,→) be a TIOTS
implementation, ϕ be a test purpose such that S |= ϕ, f be a strategy from
Strategy(S, ϕ), and Sf and If be the strategy-constrained behaviors of S and I, re-
spectively. Then ∀f1 ∈ Strategy(S, ϕ) . ((If1 ���tioco Sf1) ⇒ ∃f2 ∈ Strategy(S, ϕ) .
∃σ∈ JTestExec R(S, I, K, f2)K . (σ is failing)).

Proof. (sketch). By If1 ���tioco Sf1 we know that z0 ���tioco s0. By Definition 6,
there exists a run σ ∈ (Actin ∪ Actout ∪ R≥0)∗ such that σ ∈ TTr(z0)\TTr(s0).
We generate a winning strategy f for ϕ. Now we define a winning strategy f ′

for I and ϕ such that f ′ has all the guidance as in f . In addition, we let f ′

have an extra supervised maximal run starting from z0 such that it is exactly σ.
Obviously, σ fails S.

148 Paper C: A Game-Theoretic Approach to Real-Time System Testing

3.5 Testing towards safety test purposes

The development so far (in Section 3) considers only reachability test purposes
and reachability games. Given a safety test purpose (control objective) ϕ, we
can induce a set K of “bad” states. Once a state in K is encountered during
test execution, the run is declared to be losing. Similar to WinRuns(s,S, K), we
define the set of all losing runs in S that start from state s as LoseRuns(s,S, K).

A winning strategy for a safety control problem will guide the controller to
always avoid any of the bad states. For reactive real-time systems, it is no
surprise that such guidance will lead to infinite executions due to the possible
looping structures in the winning strategies.

Procedure 3.2 shows how to validate 4 an implementation against its specifi-
cation model according to a winning strategy that is generated for a safety test
purpose. The major differences from Algorithm 3.1 are shown in boldface font.

Procedure 3.2 TestExec S(S, I, K, f)

Input: TIOGA specification S, system implementation I, set K of “bad” states,
and state-based winning strategy f ;
Output: test verdict fail (if ever), and test run σ;
Procedure:

1: σ := 〈〉; /* the test run is initially an empty trace */
2: while (σ /∈ LoseRuns(s0,S, K)) do /*s0: the init state*/
3: case f(last(σ)) of
4: “input i”:
5: send i to I;
6: σ := σ ·i;
7: “delay d”:
8: if output o occurs at d′ ≤ d then
9: σ := σ ·d′;

10: if o /∈ Out(s0 After σ) then
11: return(“fail”); /* non-conforming behavior */
12: else
13: σ := σ ·o;
14: else
15: σ := σ ·d;
16: esac
17: endwhile
18: return(“fail”). /* bad state encountered */

4Testing by definition is a finite experiment. Since a winning strategy for a safety game may
lead to infinite execution, this validation activity in a strict sense is not testing. This validation
also distinguishes itself from passive testing (a.k.a. run-time verification), because it “actively”
offers input stimuli to the implementation based on the guidance of the strategy.

4. Case study 149

Similar to Section 3.4, we can prove the soundness and the (partial) complete-
ness properties of testing towards safety test purposes.

4 Case study

We consider a simple leader election protocol (LEP) [Lam05b] (more details in
the Appendix), which is essentially a distributed consensus algorithm with timing
constraints. The idea is to elect the protocol node with the lowest network address
as the “leader” by using message passing.

We model the problem as two parts: one TIOGA for the plant (or “SUT”)
which consists of an arbitrary node; and two TIOGAs for the controller which
consists of a buffer with certain capacity and the simulated chaotic environment
that consists of all the other nodes. The plant TIOGA has uncontrollable actions
in the sense that in the plant node a timeout ! event can be produced at any
point of a time frame after the node has been waiting for a certain period of time
without receiving any “useful” messages.

We defined the following test purposes:

• TP1: control: A3 (SUT.betterInfo == 1) && SUT.forward;

• TP2: control: A3 forall(i : BufferId)(inUse[i] == 1); and

• TP3: control: A3 forall(i : BufferId)(inUse[i] == 1) && SUT.idle,

where, e.g., test purpose TP1 intuitively means that given an arbitrary protocol
node nodei, if we have full control over the other nodes and the buffer, then we
can always manage to let nodei reach a state where it is ready to forward “useful”
messages, no matter how nodei behaves (timeouts).

All the above three test purposes are checked to be true using Uppaal-Tiga.
We carried out the strategy generation experiments on an application server
with dual-core 2.4GHz CPU, 4096MB RAM, and Suse Linux Enterprise Desktop.
Table 1 presents the performance results for these test purposes with different
protocol parameter settings, where / means “out of memory”. The time and
memory columns represent the time overheads and the memory consumptions,
respectively. Each sub-column corresponds to one parameter configuration, where
n means that there are n nodes in the protocol, and there is a message buffer of
size n, and the maximum distance between any two nodes is limited to (n− 1).

As can be seen from Table 1, winning strategy generation for the LEP protocol
with up to 7 nodes takes less than 8 minutes, and the memory consumption is
not well beyond out expectation considering the complexity of the problem.

150 Paper C: A Game-Theoretic Approach to Real-Time System Testing

Table 1: Strategy generation for LEP protocol.
Time (s) Memory (MB)

n=3 4 5 6 7 8 n=3 4 5 6 7 8
TP1 0.03 0.14 0.7 3.1 11.1 33.5 0.1 4 9 28 85 242
TP2 0.81 2.13 8.4 67.1 452.0 / 11.2 33 88 462 2977 /
TP3 0.89 2.79 25.9 73.2 453.8 / 11.9 40 289 578 3015 /

5 Conclusions

We examine the problem of black-box conformance testing of uncontrollable real-
time systems using a game-theoretic approach. We model the systems in question
using timed I/O game automata and specify the test purposes with ACTL formu-
las. With the help of a recently developed timed game solver, we can do testing
based on winning strategies. Experimental results of a leader election protocol
indicate that this approach is viable and computationally feasible. This opens
up a new possibility for testing TA-modeled timed systems that have output un-
certainty and timing uncertainty of outputs, which are previously thought of as
somewhat under-specified.

Future work includes: (1) to generalize state-based strategy to history-based
strategy; (2) to build a fully automated strategy-based testing environment,
where an important issue is efficient strategy representation; (3) to evaluate
strategy-based test effectiveness in terms of e.g. fault detecting capability; (4) if
there does not exist a winning strategy, we hope to make a small “retreat” by
doing cooperative testing; (5) strategy-based testing with partial observability.

Appendix: The leader election protocol model 151

Appendix: The leader election protocol model

We carried out case studies on a leader election protocol (LEP) [Lam05b, Lam05a].
As a small yet complex problem, it is illustrative of many aspects of complex
software systems such as: concurrency, real-time (node timeouts and message
transmission delays), non-determinism (timing uncertainties of node timeouts
and message deliveries), communications (handshake synchronization and shared
variable communication), and lossy media (loss of messages in transmission due
to limited capacity media).

Protocol description

The leader election problem is abstracted from a class of consensus algorithms
that are used in distributed environments such as mobile ad-hoc networks. The
original version of LEP tries to construct a spanning tree for a network of nodes
which are connected by some edges (direct network links), and after that the
leader node maintains its leadership by periodically sending out the “I am leader”
messages that are forwarded to all nodes in the network [Per85]. In this paper
we study a simple version of it: for a network of nodes with fixed topology (i.e.,
without node failing or link breaking), how to achieve consensus on “which node
should be elected as the leader” [Lam05b, Lam05a].

In the LEP protocol each node has an address (a natural number). The goal
of the protocol is to identify the node with the lowest address in the network,
and elect that node as the “leader”. In order for the protocol to be correct, the
electee should be with a unanimous approval, i.e., all connected nodes should
have elected the same leader. According to the protocol, each node maintains
information about which node it believes to be the leader and the number of hops
(network links) from itself to the (believed) leader. Such information of node i is
thus denoted by a pair ni = (leader, hops).

The protocol transmits messages in the form m = (source, destination, leader,
hops) among the nodes, where

• source is the address of the message-sending node;

• destination is the address of the message-receiving node;

• leader is the address of the node which the message-sending node believes
to be the leader; and

• hops is the number of hops between the message-sending node and the
(believed) leader.

Whenever a node i receives a message m, it compares m.leader and m.hops
with the local information ni that it is currently holding. If m.leader < ni.leader
or (m.leader = ni.leader and m.hops < ni.hops−1), then ni is updated according

152 Paper C: A Game-Theoretic Approach to Real-Time System Testing

to m. Otherwise m is simply discarded by node i. Once ni is updated, node i
immediately sends a message (i, j, ni.leader, ni.hops) to each of its neighbor nodes
j, except for the source node of message m that triggers this update.

In the protocol the message transmissions are not instantaneous. Rather there
is an upper time bound MSG DELAY on the delivery of a message. The timing
aspect also implies that messages might be reordered during transmissions.

The protocol has a timeout mechanism. Let Timeout be an integer vari-
able. If for more than Timeout time units a node has not yet received any
“good” messages (i.e., messages which contain “better” information than what
that node already holds, or alternatively, messages which will not be discarded)
since the last reception of a “good” message, then a timeout will happen within
TIMEOUT DELAY time units (i.e. TIMEOUT DELAY represents a reaction de-
lay). Similarly, a timeout will happen within TIMEOUT DELAY time units if no
“good” message is received after Timeout time units since the last timeout. This
means that there is actually a time frame [Timeout,Timeout+TIMEOUT DELAY],
during which a timeout should happen. Initially, Timeout is assigned a con-
stant value INIT TIMEOUT. Upon receiving “good” messages, Timeout is set to
(INIT TIMEOUT+TIMEOUT DELAY+ni.hops∗MSG DELAY), which ensures the
algorithm to achieve stability [Lam05b]. Once a timeout happens in a node, the
node will immediately elect itself as the new leader and send an update message
to each of its neighbors.

In this case study, we let INIT TIMEOUT be 10 time units, TIMEOUT DELAY
be 5 time units, and M DELAY be 3 time units.

System models

Fig. 5 shows the TIOGA model of one protocol node, and Fig. 6 shows the
simulated environment for this chosen node, which consists of the other nodes
(Fig. 6(a) 5) and the message buffer (Fig. 6(b)). In Fig. 5, the output timeout!
is uncontrollable (in dashed line). Furthermore, there is timing uncertainty of
outputs in the TIOGA, because timeout! can occur at any point of time as
specified by the transition guard. Therefore, the node TIOGA is uncontrollable.

The global declaration of the LEP system is shown in Listing 1, and the local
declaration of the chosen Node is shown in Listing 2.

5In this sub-figure, iutId is declared as a parameter of the “ChaoticEnv” TA template, i.e.,
“const NodeId iutId”. When the “ChaoticEnv” template is instantiated, iutId will take the
value of the Id of the chosen Node (i.e., the node of Fig. 5).

Appendix: The leader election protocol model 153

rMsg := envMsg

timeout!

believedLeader := rMsg.leader,
leaderDistance := rMsg.distance + 1,
betterInfo := 1

forwardInfo()idleClock := 0,
Timeout := INIT_Timeout + leaderDistance*M_Delay

deliverMsg?

gotMsg

idle

forward

betterMsg

believedLeader := myId,
leaderDistance := 0,
idleClock := 0,
Timeout := INIT_Timeout ((rMsg.leader < believedLeader) ||

 (rMsg.leader == believedLeader &&
 rMsg.distance + 1 < leaderDistance))
&& (rMsg.distance + 1 <= MaxDistance)

idleClock > Timeout

((rMsg.leader > believedLeader) ||
 (rMsg.leader == believedLeader &&
 rMsg.distance + 1 >= leaderDistance))
|| (rMsg.distance + 1 > MaxDistance)

rMsg := nullMsg,
betterInfo := 0

idleClock <= Timeout + Timeout_Delay

Figure 5: The TIOGA for a chosen protocol Node.

updateMsg?

timeout?

envMsg.src := senderId,
envMsg.dest := iutId,
envMsg.leader := leader,
envMsg.distance := dist

deliverMsg!

idle

upd

envMsg := nullMsg senderId != iutId

senderId: NodeId,
dist: Distance,
leader: NodeId

(a) the ChaoticEnv component

envMsg := buffer[i],
buffer[i] := nullMsg,
inUse[i] := 0

updateMsg!

forall (i: BufferId) (
(inUse[i] imply msgTransClock[i] <= M_Delay))

inUse[i] && msgTransClock[i] >=2

i: BufferId

(b) the Buffer component

Figure 6: The models of the simulated environment.

154 Paper C: A Game-Theoretic Approach to Real-Time System Testing

Listing 1: Uppaal global declarations for the LEP protocol.�
const int MaxNodeId = 3; // so the number of nodes is (MaxNodeId+1)
const int MaxBufferId = 3; // so the number of slots is (MaxBufferId+1)
const int MaxDistance = 3;

typedef int [0, MaxNodeId] NodeId;
typedef int [0, MaxBufferId] BufferId ;
typedef int [0, MaxDistance] Distance;

const int INIT Timeout = 10;
const int Timeout Delay = 5;
const int M Delay = 3;
int Timeout = INIT Timeout;

typedef struct {
NodeId src;
NodeId dest;
NodeId leader;
Distance distance ;
} Message;

const Message nullMsg = {0,0,0,0};
Message envMsg; // Message from Environment

Message buffer[MaxBufferId+1];
bool inUse[MaxBufferId+1];

clock msgTransClock[MaxBufferId+1]; // time that a msg. has been in transmission

chan deliverMsg; // ChaoticEnv −− >Node
chan updateMsg; // Buffer −− >ChaoticEnv
chan timeout; // Node −− >ChaoticEnv�

Appendix: The leader election protocol model 155

Listing 2: Uppaal local declarations for the chosen protocol Node.�
NodeId believedLeader = myId; // ‘‘ const NodeId myId’’ is the parameter of the

// ‘‘ Node’’ TA template
Distance leaderDistance = 0;
bool betterInfo = 0;
Message rMsg = nullMsg; // The received message
clock idleClock ; // How long since last reception of a ‘‘ good’’ massage, or

// since a last ‘‘ timeout’’

void forwardInfo (){
int forwardee = 0;
int slot = 0; // find an available message slot in the buffer
for (forwardee = 0; forwardee <= MaxNodeId; forwardee++) {

if ((forwardee != myId) && (!(betterInfo && forwardee == rMsg.src))) {
// do not send to itself ; and do not forward to the original sender

for (slot = 0; slot <= MaxBufferId && inUse[slot]; slot++) {
// do nothing;
}
if (slot <= MaxBufferId) { // slot is the available position in the buffer

buffer [slot]. src = myId;
buffer [slot]. dest = forwardee;
buffer [slot]. leader = believedLeader;
buffer [slot]. distance = leaderDistance;
inUse[slot] = 1;
msgTransClock[slot] = 0; // now a message begins its transmission
}
else {

// no available slot in the buffer ! simply drop the message !
}
}
} // end ‘‘ for ’’
}�

Paper D:
Cooperative Testing of Timed
Systems

Alexandre David, Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen

Center for Embedded Software Systems (CISS)
Department of Computer Science
Aalborg University, Denmark

Abstract

This paper deals with targeted testing of real-time embedded systems. The test-
ing activity is viewed as a game between the tester and the system under test
(SUT) towards a given test purpose (winning objective). The SUT is modeled
using timed game automata (TGA) and the test purpose is specified as an ACTL
formula. We employ a timed game solver Uppaal-Tiga to check if the timed
game is solvable, and if yes, to generate a winning strategy and use it for black-
box conformance testing of the SUT.

Specifically, we show that in case the game solving yields a negative result,
we can still possibly test the SUT against the test purpose. In this case, we use
Uppaal-Tiga to generate a cooperative winning strategy. The testing process
will continue as long as the SUT reacts to the tester stimuli in a cooperative
manner. In this way we can hopefully arrive at a certain state in the “surely
winning” zone of the game state space, from which cooperation from SUT is
no longer needed. We present an operational framework of cooperative winning
strategy generation, test case derivation and test execution. The test method is
proved to be sound and complete. Preliminary experimental results indicate that
this approach is applicable to non-trivial timed systems.

Keywords: Real-Time Systems, Timed Game Automata (TGA), Test Purposes,
Cooperative Winning Strategies, Cooperative Testing

158 Paper D: Cooperative Testing of Timed Systems

1 Introduction

In the field of model-based testing of real-time systems [CL95, ENDKE98, HNTC99,
SVD01, KJM03, HLN+03, LMN04, BB04, KT04, NR05], a considerable propor-
tion of efforts [ENDKE98, HNTC99, SVD01, KJM03, HLN+03, LMN04, BB04,
KT04] employ timed automata (TA) [AD94] or timed transition systems (TTS)
to model the systems in question. Among them some make the assumptions that
the system TA model is output-urgent and has isolated outputs [SVD01, HLN+03].
“Output-urgent” means that if the system can produce an output, the output
should be produced immediately. “Isolated output” means that anytime when
the system can produce an output, it cannot accept inputs or produce a differ-
ent output at that time. These two assumptions together with the determinism
assumption contribute to the testability [SVD01] of timed automata by ensuring
that given a timed input sequence fragment there is no more than one possible
output emitted at a precise point in time. To put differently, they make it pos-
sible for an environment (tester) to “drive” a timed automaton through all of its
possible transitions.

However, in many cases the assumptions of “output urgent” and “isolated out-
puts”are unnecessarily strong. For example in the simple Smart Lamp problem
[HLN+03], in order to satisfy the requirements of output-urgency and isolated
outputs (see Fig. 1(b)), it must be ensured that every output response of the
Lamp is carefully designed (pre-programmed) and is thus perfectly predictable.
Constructing this kind of TA models is too expensive in the sense that we should
have one TA node exclusively for producing each output, and we should have
strict timing (i.e., no tolerance) of each output.

In this paper we aim to cancel the assumptions of isolated outputs and output-
urgency, and present a test method for uncontrollable timed system models, i.e.,
system models with output uncertainty and timing uncertainty of outputs. By
“output uncertainty” (or uncontrollable outputs) we mean that during the course
of system under test (SUT)/tester interactions, it is the SUT rather than the
tester that determines whether an output will be produced, and if yes, which of
the several possible outputs will be produced. By “timing uncertainty of outputs”
we mean that the SUT can produce an output during a certain time interval
rather than only at a fixed time point, or in other words, the exact timing of
outputs is unpredictable by the tester. The benefits of permitting uncontrollable
behavior in the system models include that: (1) it allows the implementors some
freedom; (2) it provides the tester with high-level or abstract requirements; and
(3) it usually leads to more natural and more succinct models.

Systems with output uncertainty and timing uncertainty of outputs can be
modeled as timed game automata (TGAs) [MPS95], which is a variant of TA with
their actions partitioned into controllable and uncontrollable ones. For example,
Fig. 2(a) is a TGA of the Lamp, where solid lines carry controllable actions
(input stimuli from user to lamp) and dashed lines uncontrollable actions (output

1. Introduction 159

dim?

bright?

touch!

off? touch!

Init

Work

z=0

z=0

Treact = 1

z>=Treact

(a) The user.

bright!

touch?

touch?off! touch?

touch? bright!

dim!

off! touch?

x:=0
dim!touch?

Bright

L6

DimOff

Tidle=20
Tsw=4

L2 L3

L5

L1 L4

x:=0

x>=Tsw

x<Tidle

x<Tsw

x<Tidle

x:=0

x:=0

x:=0

x:=0

x>=Tidle

x>=Tidle

(b) “Controllable” TA of the Lamp.

Figure 1: A smart lamp example.

responses from lamp to user).

In a timed control problem, a control program (or “controller”, e.g., Fig. 1(a))
actively offers inputs to and passively observes outputs from a system under
control (or “plant”, e.g., Fig. 2(a)). A run of the system involves a sequence
of controller-chosen input stimuli and plant-chosen output reactions aiming to
satisfy a given control objective (e.g., “location Bright can always be eventually
reached”). Therefore it can be viewed as a timed game where the controller acts
as a player, and the plant acts as the opponent (adversary). For a given control
objective we can possibly synthesize a winning strategy, guided by which the
control program ensures that the control objective will be enforced, no matter
how the plant behaves.

The problem of dense-time controller synthesis has been solved using back-
ward fix-point computation [MPS95]. As an improvement, a truly on-the-fly algo-
rithm [CDF+05] is proposed. This algorithm has been implemented in the timed
game solver Uppaal-Tiga [BCD+07], which checks whether a user-specified win-
ning objective (test purpose) can be enforced on a TGA, and if so, it efficiently
synthesizes a winning strategy for that winning objective. Specifically, in this
paper we address the problem that in case an affirmative winning objective is
checked to be unenforceable on some system models (e.g., control: A3 Bright

160 Paper D: Cooperative Testing of Timed Systems

touch? bright!

dim!

dim!

off! touch?

touch?touch?

touch?

dim!
touch?

touch?

touch?

touch?

bright!off! touch? touch?

dim!
touch?Off Dim Bright

Tp<=2

Tp<=2Tp<=2

Tp<=2

L2 L3

L6

L5

L1 L4x=0,
Tp=0

x<Tidle

x=0,
Tp=0

x>=Tsw x<Tsw

x=0,
Tp=0

x=0,
Tp=0

x=0,
Tp=0

x=0,
Tp=0

Tp<=2x>=Tidle

x>=Tidle

x<Tidle

Tidle = 20
Tsw = 4

Tp<=2

(a) A normal smart lamp.

touch?

off!

dim!

dim!

off!
touch?

touch?touch?

touch?

dim!
touch?

touch?

touch?

touch?

bright!off!
touch?

touch?

touch?Off Dim
Bright

Tp<=2

Tp<=2Tp<=2

Tp<=2

L2 L3

L6

L5

L1 L4x=0,Tp=0

x<Tidle

x=0,Tp=0

x>=Tsw
x<Tsw

x=0,Tp=0

x=0,Tp=0

x=0,Tp=0

x=0,Tp=0

Tp<=2

x>=Tidle

x>=Tidle

x<Tidle

Tidle=20
Tsw=4

Tp<=2

(b) A “problematic” smart lamp.

Figure 2: TIOGAs of the Lamp.

2. Test setup 161

on Fig. 2(b)), we can make a “retreat” by relaxing the winning objective such
that in order to win the game, the controller needs some cooperation from the
plant, say, “location Bright can always be eventually reached as long as the lamp
reacts to our moves in some desired manner”. We use Uppaal-Tiga to check
whether the winning objective can be enforced in this relaxed sense, and if yes, to
synthesize a cooperative winning strategy. Since a (cooperative) strategy provides
step-by-step guidance to the controller towards the given winning objective, it
can be viewed as a test and thus used for conformance testing [DLLN08b].

From a game point of view, testing of untimed systems has been discussed in
[ACY95, Yan04, BGNV05], but to our knowledge no similar work for timed sys-
tems has been reported. Although strategy synthesis is inherently more expensive
than some other approaches to timed testing, the idea and method proposed in
this paper opens up the possibility of testing uncontrollable TA-modeled timed
systems, especially when the user-specified test purpose happens not to be en-
forceable on the system model.

2 Test setup

In this paper we aim to test whether a black-box system implementation IMP
complies with its specification model SPEC with respect to some given test pur-
pose. As illustrated in Fig. 3, there are three steps in our testing framework:
game strategy generation, test case generation and test execution.

winning
strategy

(next move
guidance)

SPEC
(TIOGA)

test purpose
(ACTL formula) IMP

strategy
generation

(by
Uppaal-

Tiga)

test
execution

test
verdict

test
generation

test case
(TA)

Figure 3: The framework of strategy-based testing.

2.1 Timed I/O Game Automaton

Let X be a finite set of real-valued clocks, and C(X) be the set of constraints
generated by grammar

ϕ ::= x ./ k | x− y ./ k | ϕ ∧ ϕ,

where k ∈ N≥0, x, y∈X, and ./∈ {<,≤,=,≥, >}.
A timed automaton (TA) [AD94] is a tuple S = (L, l0, Act,X,E, Inv) where:

162 Paper D: Cooperative Testing of Timed Systems

• L is a finite set of locations;

• l0 ∈ L is the initial location;

• Act is a finite set of actions;

• X is a finite set of real-valued clocks;

• E ⊆ L× C(X)× Act× 2X × L is a finite set of edges; and

• Inv : L→ C(X) associates invariants to locations.

In a timed game automaton (TGA) [MPS95], the actions Act are partitioned
into controllable ones and uncontrollable ones, i.e., Act = Actc∪Actu and Actc∩
Actu = ∅.

If we make a further assumption that all output actions (Actout) are uncon-
trollable and all input actions (Actin) are controllable, i.e., Actu = Actout and
Actc = Actin, then we have a timed I/O game automaton (TIOGA).

This paper uses the simple Smart Lamp problem [HLN+03] as an example.
Fig. 1(a) is a TA of the user (the “controller”). Fig. 2(b) is a “problematic”
TIOGA of the smart Lamp (the “plant”), where controllable actions (in solid
lines) model the inputs from the controller to the plant, and uncontrollable actions
(in dashed lines) model the outputs from the plant to the controller. The user
interacts with the Lamp by touching a touch-sensitive pad. In Fig. 2(b), there
are three brightness levels for the Lamp: Off, Dim and Bright. The Lamp is
initially in location Off. There are uncontrollable behavior in L2, L3, L4, L5 and
L6.

The semantics of a TIOGA S = (L, l0, Act,X,E, Inv) is defined as a timed
I/O transition system (TIOTS) (S, s0, Actin, Actout,→), where:

• S ⊆ L×RX is the set of semantic states of location and clock vectors;

• s0 = (l0, 0) is the initial state;

• Actin and Actout are the sets of input and output actions, respectively; and

• →⊆ S × (Actin ∪Actout ∪R≥0)× S satisfies the sanity constraints of time
determinism and time additivity.

Let s ∈ S and α ∈ (Act∪R≥0). If ∃s′ ∈ S . s α−→ s′, we write s
α−→. Here α can

be extended to strings of actions and time delays.
A timed trace σ ∈ (Act ∪ R≥0)∗ is of the form σ = d1a1d2a2 . . . akdk+1. We

define the set of timed traces of state s as:

TTr(s) = {σ ∈ (Act ∪R≥0)∗ | s σ−→}.

2. Test setup 163

For a state s and a timed trace σ, we define the set of states that can be
reached after σ as:

s After σ = {s′ | s σ−→ s′}.

If the above set is a singleton, then we denote it as a single target state s′.

The set of (immediately) observable outputs or delays at state s is defined as:

Out(s) = {a ∈ (Actout ∪R≥0) | s a−→}.

The definitions of After and Out can be extended to sets of states as usual.

A run of a TIOGA S is a timed trace in its TIOTS. We use Runs(s,S) to
denote the set of all runs of S that start from s ∈ S. Specifically, we denote
Runs(s0,S) as Runs(S). If σ is a finite run, then last(σ) denotes the last semantic
state of σ.

In this paper we only impose the “determinism” and “strong input-enabledness”
restrictions on the TIOGA model of the plant. In particular we do not require the
plant model to be output-urgent (thus allowing timing uncertainty of outputs),
or have isolated outputs (thus allowing output uncertainty). Such a TIOGA
is called an uncontrollable TIOGA, and its corresponding TIOTS is called an
uncontrollable TIOTS.

The parallel compositions of several TIOGAs or several TIOTS’s can be de-
fined in the usual manner.

2.2 Timed Conformance Relation

Definition 1 (timed input-output conformance relation, tioco [KT04]). Let i, s ∈
S be two states of a TIOTS. The timed input-output conformance relation tioco
between i and s is defined as:

i tioco s iff ∀σ∈TTr(s).(Out(i After σ) ⊆ Out(s After σ)).

As test hypothesis we assume that the behavior of the IMP can be modeled
by a TIOTS I, which has the same sets of input actions Actin and output actions
Actout as the specification TIOGA S. Let the initial state of I be i0, and the initial
semantic state of S be s0. If i0 tioco s0, we say that I is a correct implementation
of the specification, denoted I tioco TIOTS(S). Furthermore, I is assumed to be
deterministic and controllable.

We can also use other timed versions [KJM03, LMN04, NR05] of the ioco
conformance relation [Tre99].

164 Paper D: Cooperative Testing of Timed Systems

2.3 Test Purpose

We aim to conduct targeted rather than comprehensive testing of whether an
IMP conforms to a SPEC, thus we use a test purpose [JJ05]. In this paper, we
use ACTL formulas to specify test purposes. For example, “control: A3 Bright”
means that we can guarantee that the Lamp can reach the goal location Bright

by choosing to offer appropriate inputs or just to delay at appropriate moments
in time, no matter how the Lamp behaves in response.

To indicate that we would consider the timed game in the relaxed sense, we
write “E3 control: A3 Bright”. This property means that we can guarantee
that the Bright location can always be reached eventually, as long as the Lamp
is willing to cooperate with us (the controller) by producing outputs in some
desired manner.

3 Cooperative winning strategy

A reachability control problem is that given a TIOGA S and a set K of goal
states in its corresponding TIOTS, we should find a game strategy f such that
S supervised by f can reach some states in K. If a state in K is reached, then
the play of the game is said to be winning.

A strategy f is a function that during the course of a timed game constantly
gives information as to what the player (the “controller”) should do in order to
win the game against the opponent (the “plant”). At a given state of the run, the
player can be guided either to offer a particular input and bring it to a particular
state, or to do nothing at this moment in time and just wait (denoted “λ”).

When a winning objective (test purpose) ϕ is checked to be enforceable, then
there must exist a winning strategy for ϕ. A strategy being winning means that
if the controller acts strictly according to what the strategy suggests, then the
winning objective can be enforced, no matter how the plant behaves.

When a winning objective ϕ is checked to be unenforceable, then there does
not exist a (surely) winning strategy. For example in the TIOGAs of Fig. 1(a)
and Fig. 2(b), there is no winning strategy for “control: A3 Bright”. An obvious
counterexample is that in location L5 (Fig. 2(b)) we might be constantly brought
back to Off. For this negative case, we can make a “retreat” by assuming that
the opponent is not too “hostile”. The basic idea is that in order to reach the
goal states, we hope that the opponent will to some extent react in favor of us.

The principle of playing games with a cooperative winning strategy is illus-
trated in Fig. 4. The state space of a timed game is partitioned into three
areas:

• the (surely) winning zone (i..e, “safe” zone);

• the possibly winning zone; and

3. Cooperative winning strategy 165

• the losing zone (i.e., “no-hope” zone).

The relaxed-sense test purpose in Section 2.3 asks that if the opponent is willing
to cooperate, can we possibly reach a certain state in the “safe” zone, from which
the goal location Bright is always eventually (i.e. surely) reachable?

winning

possibly winning

no-hope

control: A<> j
E<>

goal
init

Figure 4: Playing games with cooperative winning strategies.

Definition 2 (cooperative strategy). Let S = (L, l0, Act,X,E, Inv) be a TIOGA,
(S, s0, Actin, Actout,→) be its TIOTS, where → = (→in ∪→out ∪→d). A coop-
erative strategy f over S is defined as a partial function:

f : S → {coop}×(→in ∪ →out ∪ {λ}) ∪ {winning}×(→in ∪ {λ}).

We use a projection function fstg to indicate which stage (“coop”(erative) or
“winning”) f is currently in, and use fmov to denote the suggested or desired
move of f . For transition t ∈ (→\→d), let act(t) be the action and tgt(t) be
the target state. In the cooperative stage, if a strategy-desired output occurs
as expected, then the game opponent is said to be cooperating, otherwise the
strategy is violated.

Definition 3 (supervised run). Let S = (L, l0, Act,X,E, Inv) be a TIOGA, and
f be a cooperative strategy over S. Let s be a state in the TIOTS of S. The
f -supervised runs of S from s is a subset SupRuns(s, f) ⊆ Runs(s,S) defined as:

• s ∈ SupRuns(s, f);

• σ′ = (σ
e−→ s′) ∈ SupRuns(s, f) if, σ ∈ SupRuns(s, f), σ′ ∈ Runs(s,S) and

one of the following three conditions holds:

– e ∈ Actu and either

· fstg(last(σ)) = winning; or

166 Paper D: Cooperative Testing of Timed Systems

· fstg(last(σ)) = coop and e = act(fmov(last(σ)));

– e ∈ Actc and e = act(fmov(last(σ)));

– e ∈ R≥0 and ∀e′ ∈ [0, e) .∃s′′ ∈ S . ((last(σ)
e′−→ s′′) ∧ (fmov(s

′′) = λ));

• σ ∈ SupRuns(s, f) if σ is an infinite run whose finite prefixes are all included
in SupRuns(s, f).

Given a TIOGA S = (L, l0, Act,X,E, Inv) and a set of goal states K ⊆ L×RX

of its corresponding TIOTS, let (S, K) be a reachability game. A maximal run σ
is either an infinite run, or a finite run such that either last(σ) ∈ K, or (last(σ) /∈
K) ∧ ((last(σ)

α−→) ⇒ (α = 0)). A (finite or infinite) run σ = s0
α0−→ s1

α1−→
. . . sn

αn−→ . . . is winning if ∃k ≥ 0 . (sk ∈ K). A run σ is losing if σ is maximal
and ∀0 ≤ k ≤ min{index(last(σ)),∞} . (sk /∈ K). The set of all maximal runs
that start from state s is denoted by MaxRuns(s), and the set of all winning runs
that start from state s is denoted by WinRuns(s,S, K).

Definition 4 (cooperative winning strategy). Let S = (L, l0, Act,X,E, Inv) be
a TIOGA, f be a cooperative strategy over S, and s be a state in the TIOTS
of S. We say that f is cooperatively winning from state s if MaxRuns(s) ∩
SupRuns(s, f) ⊆ WinRuns(s,S, K). If f is cooperatively winning from s0, then f
is said to be a cooperative winning strategy.

For the TIOGA in Fig. 2(b) and the relaxed-sense test purpose “E3 control: A3

Bright”, Uppaal-Tiga automatically generates a cooperative winning strategy
(Fig. 5) where the strategy-desired outputs are shown in dashed lines.

Usually there exists more than one cooperative winning strategy for the same
TIOGA S and relaxed-sense test purpose ϕ. We use Strategy(S, ϕ) to denote the
set of all such cooperative winning strategies.

4 Test case generation

A test case for an uncontrollable reactive system cannot be just a sequentially
preset I/O sequence. Rather it should be adaptive.

Furthermore, we hope to use cooperative winning strategies as test cases to
drive the test executions and to issue test verdicts. To this end, we define a test
case as a tree-like TIOTS, and we derive this TIOTS from the TIOGA model
S and the strategy f . For better legibility, in the sequel we would present this
TIOTS in the form of a timed automata and call it a timed automaton 1.

Given a TA location l, we use outgoing(l) to denote the set of output actions
that originate from l. Given a state s in the TIOTS of a TA, we use location(s)
to denote the corresponding location of s in the TA.

1Note that the derived test case is not really a timed automaton because there could exist
non-reset clock assignments and non-integer constants in clock constraints.

4. Test case generation 167

(SUT.L5, ENV.Work)

(SUT.Off, ENV.Init)

(SUT.Dim, ENV.Work)

(SUT.L3, ENV.Work)

when (SUT.x<SUT.Tp && SUT.x==ENV.z && SUT.Tp<=2) ||

(SUT.x==ENV.z && SUT.Tp<=2 && SUT.Tp<SUT.x) ||

(SUT.x<SUT.Tp && SUT.Tp<=2 && ENV.z-SUT.x<=-1) ||

(SUT.x-ENV.z<=2 && SUT.Tp<=2 && SUT.Tp<SUT.x &&

ENV.z-SUT.x<=-1):

bright?

while (SUT.x<20):

wait

when (SUT.x<4 && SUT.x ==

ENV.z && SUT.Tp<=2):

dim?

while (SUT.x<=2 && SUT.x==

SUT.Tp && SUT.Tp==ENV.z

&& ENV.z==SUT.x) || (SUT.x

 <=2 && SUT.x==SUT.Tp &&

ENV.z-SUT.x<=-1):

wait

when (20<=SUT.x):

x >= Tidle, touch?, x := 0,

 Tp := 0

when (1<=ENV.z && SUT.x<4):

x < Tsw, touch?, x := 0, Tp := 0

(SUT.Bright, ENV.Work)

(SUT.Off, ENV.Work)

when (SUT.x-ENV.z<=2 && SUT.Tp

 <= 2 && ENV.z-SUT.x<=-1):

off?

when (20<=SUT.x && 1<=ENV.z):

x >= Tidle, touch?, x := 0, Tp := 0

while (SUT.x<20 && SUT.x==

ENV.z) || (SUT.x<20 && SUT.x

 - ENV.z<=2 && ENV.z-SUT.x

 <= -1):

wait

(SUT.L2, ENV.Work)

when (4<=SUT.x && 1<=ENV.z):

x >= Tsw, touch?, x := 0, Tp := 0
while (SUT.x<1 && SUT.x==

ENV.z) || (SUT.x-ENV.z<=2

&& ENV.z<1 && ENV.z

- SUT.x<=-1):

wait

when (SUT.x==ENV.z &&

SUT.Tp<=2) || (SUT.x-ENV.z

 <= 2 && SUT.Tp<=2

&& ENV.z-SUT.x<=-1):

off?

Figure 5: An example cooperative winning strategy.

Definition 5 (test case). A test case is a timed automaton T = (Lt, l0t, Act,
Xt, Et, Invt), where:

• Lt is a set of locations which include terminal nodes that are marked as
pass, fail or inconc;

• l0t ∈ Lt is the initial location;

• Act = Actin ∪ Actout;

• Xt is a set of clocks;

• Invt associates invariants to locations; and

• Et is the transition relation such that:

– T is deterministic;

– T has bounded behavior, i.e., ∀σ = σ1σ2σ3 . . . ∈ Runs(T) . (#({i | σi ∈
Actin ∪ Actout}) <∞ ∧ ∃n > 0 . ((Σi σi) < n, σi ∈ R≥0)); and

168 Paper D: Cooperative Testing of Timed Systems

– ∀lt ∈ (Lt \ {pass, fail, inconc}) .∀α ∈ Actout . (α ∈ outgoing(lt)).

The basic idea of test case generation is to keep looking up the generated
cooperative winning strategy and the SPEC model to decide when to make what
move against the IMP in (forthcoming) test execution, and which decision (pass,
fail, inconc, or to continue on by recursively building the test tree) to make upon
every possibly observed output from IMP.

Let s be a semantic state of S, and s0 the initial state. We use w =
width(fmov(s)) to denote the width of the strategy-suggested observing (integer
time delay) window. Let x ∈ Xt be a unique clock variable for recording the
timing constraints in f and for building invariants and transitions in the test
case TA. We use another unique clock variable h ∈ Xt to record the time when
a strategy-desired output happens. A location lt of the test case TA is called a
conditional branching location if at this location the branching is based on the
just-recorded occurrence time h of an output action. Thus lt is the destination
location of the transition of an observed output. Algorithm 4.1 sketches out the
main idea of test case derivation.

A key point of our test generation algorithm is about the semantics of forced
actions. We adopt the following semantics: if the upper bound of a location
invariant of the TIOGA is hit, then we check whether there is any outgoing edge
with enabled input action leading to other location, or some self-looping edge
with enabled input action and clock resets. If there are no such edges, then we
check whether there is some outgoing edge with output action leading to other
location, or some self-looping edge with output action and clock resets. If there
is also no such edge and the strategy still suggests “delay” when hitting the
invariant, then we report fail.

Because the (relaxed-sense) test purpose is checked to be satisfiable, the syn-
thesized (cooperative) winning strategy is of finite length and it guides us towards
the goal states, Algorithm 4.1 will always terminate. The complexity of this re-
cursive algorithm largely depends on the sizes of the strategy and the set Act.

5 Test execution

Definition 6 (test execution). Let TIOTS(T) = (T, t0, Actin, Actout,→t) be the
TIOTS of test case T , and assume that the IMP may be modeled as another
TIOTS I = (I, i0, Actin, Actout,→i). The execution of I with T is modeled by
the synchronous parallel execution TIOTS(T) || I which is defined by the rules:

t
g1, α−−→tt′, i

g2, α−−→ii
′

t||i
g1∧g2, α−−−−→t′||i′

α∈Actin, t
α−→tt′, i

α−→ii
′

t||i
α−→t′||i′

α∈Actout, t
d−→tt′, i

d−→ii
′

t||i
d−→t′||i′

d∈R≥0

where t, t′∈ T , i, i′∈ I, and g1, g2∈ C(X).

5. Test execution 169

Algorithm 4.1 TestCase(S, f)

Input: TIOGA specification S, cooperative winning strategy f ;
Output: a test case TA T ;
Main:

1: w := 0;x := 0;h := 0; add node(s0); //initialization
2: BuildTestCase(s0).

Procedure BuildTestCase(s): //s: a state in S and node in T
1: if s does not correspond to a conditional branching location then
2: w := width(fmov(s));
3: add invariant “x ≤ w” for node s in T ;
4: foreach o ∈ Actout do
5: if o ∈ outgoing(location(s)) then
6: if the destination state of this transition is a goal state then

7: add edge(“s
o!−→ pass”); //add a node pass and an edge in T

8: elseif (fstg(s) = coop) ∧ (o 6= act(fmov(s))) then

9: add edge(“s
o!−→ inconc”);

10: else // go recursively with a conditional branching location

11: add edge(“s
o!, h:=x, x:=0−−−−−−−−→ s′”);

12: s′ := (s After h) After o;
13: BuildTestCase(s′);
14: else
15: add edge(“s

o!−→ fail”);
16: endfor
17: case fmov(s) of
18: “λ”:
19: if ((s After w) hits location(s)) ∧ (fmov(s After w) = λ) then
20: add edge(“s

x=w−−→ fail”); // acc. to semantics of forced actions
21: else
22: add edge(“s

x=w, x:=0−−−−−−→ s′”);
23: s′ := s After w;
24: BuildTestCase(s′);
25: “to offer input i”:
26: s′ := tgt(fmov(s After w));

27: add edge(“s
x=w, i?−−−−→ s′”);

28: BuildTestCase(s′);
29: “to observe output o”:
30: if (fstg(s) = coop) ∧ ({fmov(s)}∧ →out 6= ∅) ∧ (no output occurs) then

31: add edge(“s
x=w−−→ inconc”);

32: esac
33: else // s corresponds to a conditional branching location
34: add invariant “x = 0” for s; // an “urgent” location in T
35: branching according to f and the value of h;
36: recursive calls of BuildTestCase().

End Procedure

170 Paper D: Cooperative Testing of Timed Systems

A test run is a run of the product TIOTS(T) || I that leads to a state whose left
sub-state corresponds to a terminal node of T . Formally, σ ∈ Runs(TIOTS(T) || I)
is a test run if, ∃i′∈I, t′∈T . ((t0||i0

σ−→ t′||i′)∩ (location(t′) ∈ {pass, fail, inconc})).
In the pass case, we say that I passes test run σ. In the fail case, we say that
I fails σ. The inconc case indicates neither passing nor failing. It simply means
that we do not get cooperation and are thus not assured of being able to reach
the goal states.

Given I and T , if there is a failing test run of TIOTS(T) || I, then I fails T .
If every test run of TIOTS(T) || I is not failing, we say I passes T .

6 Soundness and completeness

The soundness property of the test method says that if there exists a failing test
run, then the system implementation indeed does not comply with the system
specification. The (partial) completeness property of the test method says that
if the system implementation does not comply with the system specification with
respect to the specified relaxed-sense test purpose, then we can always find a
failing test run.

Let S = (L, l0, Act,X,E, Inv) be a TIOGA specification with Act = Actin ∪
Actout, TIOTS(S) be its corresponding TIOTS, I = (I, i0, Actin, Actout, →i) be a
TIOTS implementation, ϕ = E3 control: A3φ be a relaxed-sense test purpose
such that ϕ can be enforced on S, and Sf and If be the strategy f -constrained
behaviors of S and I, respectively, then we have:

Theorem 1 (soundness). ∀f ∈ Strategy(S, ϕ) . ((I fails TestCase(S, f)) ⇒
I ���tioco TIOTS(S)).

Proof. (sketch.) Let T = TestCase(S, f) and TIOTS(T) = (T, t0, Actin, Actout,
→t). By (I fails T) we know that ∃σ ∈ Runs(TIOTS(T) || I) .∃i′ ∈ I . ∃t′ ∈
T . (t0||i0

σ−→ t′||i′)∩(location(t′) = fail). From Algorithm 4.1 we know that there
are two cases of finishing with a fail verdict. The first case is that we observe an
invalid output w.r.t. S (the first fail verdict in Alg. 4.1). According to Definition
6 and Definition 1, we conclude that I ���tioco TIOTS(S). The second case is when
we are hitting the location invariant (the λ-case in Alg. 4.1). According to the
forced semantics of controllable and uncontrollable actions in this circumstance,
there should be a forced output. But unfortunately we have not observed it. Thus
the conformance relation has been violated. Therefore I ���tioco TIOTS(S).

Theorem 2 ((partial) completeness). ∀f1 ∈ Strategy(S, ϕ) . ((If1 ���tioco Sf1) ⇒
∃f2 ∈ Strategy(S, ϕ) . (I fails TestCase(S, f2))).

Proof. (sketch.) By (If1 ���tioco Sf1) we know that there exists a timed trace
σ such that σ ∈ TTr(If1)\TTr(Sf1) according to Definition 1. For simplicity,
we suppose σ ends with the first violation w.r.t. Sf1 . According to Algorithm

7. Case study 171

4.1 we know that this has two possible consequences. The first case is that
σ has an output action which is disallowed in TIOTS(S). The second case is
that σ has an observed quiescence when hitting a location invariant, but it is
disallowed in TIOTS(S). Therefore we can build another timed trace σ′ such
that σ′ has exactly the same prefix as σ, but σ′ ends without a violation w.r.t.
TIOTS(S). Therefore, we can generate some cooperative winning strategy f2

from S and ϕ, and build a test case from S and f2 such that σ′ is not a failing
run but σ is a failing run. According to Definition 6, we can conclude that
∃f2∈Strategy(S, ϕ) . (I fails TestCase(S, f2)).

7 Case study

We consider a simple leader election protocol (LEP) problem [Lam05b], where
we have one TIOGA for an arbitrarily chosen protocol node (the “plant”), and
two TIOGAs for simulating all other protocol nodes and simulating a buffer with
certain capacity that is used for accepting, holding and forwarding messages (the
“controller”). The plant has uncontrollable actions in the sense that a timeout!
event might occur after waiting for a certain period of time without receiving
“useful” messages, and an ignore! event might occur due to loss of messages. We
defined the following test purposes (winning objectives):

• TP1: E3 control: A3 exists(i : BufferId)(inUse[i] == 1);

• TP2: E3 control: A3 (SUT.bufferInfo == 1) && SUT.forward; and

• TP3: E3 control: A3 forall(i : BufferId)(inUse[i] == 1).

The original (stronger) versions of all of these test purposes (e.g.,
control: A3 exists(i : BufferId)(inUse[i] == 1)) are checked to be unenforce-
able using Uppaal-Tiga. After they are relaxed (i.e., being prefixed with E3,
as shown above), they are all proved to be enforceable.

We carried out the strategy generation experiments on an application server.
Table 1 presents the performance results of CPU time overheads and memory
consumptions, where / means “out of memory”. Each sub-column corresponds
to one parameter configuration, where n means that there are n nodes in the
protocol, and there is a message buffer of size n, and the maximum distance
between any two nodes is limited to (n − 1). The table indicates that for some
test purposes, cooperative winning strategy generation for the LEP protocol with
up to 7 nodes takes less than 10 minutes. Memory consumption appears to be
more of a problem. Furthermore, it seems that both time overhead and memory
consumption are very sensitive to the test purposes. In summary, considering
that strategy generation is the most computation intensive (and also the most
inherently complex) step in our test framework, our testing method seems not to
be only of theoretical value.

172 Paper D: Cooperative Testing of Timed Systems

Table 1: Cooperative winning strategy generation for LEP with lossy channels.

Time (s) Memory (MB)
n=3 4 5 6 7 8 n=3 4 5 6 7 8

TP1 0.04 0.17 0.81 3.21 10.57 30.65 0.1 4.2 7.9 18.9 48.6 119.5
TP2 0.11 1.32 11.74 85.14 558.67 / 4.3 13.0 80.3 517.0 2959 /
TP3 3.22 75.56 / / / / 24.3 493.5 / / / /
Experiment platform: Sun Fire X4100 server, 2×2.4GHz CPU (Dual Core AMD
Opteron 275), 4096MB RAM, Suse Linux Enterprise Desktop 10 - 64bit.

8 Conclusions

We examine black-box conformance testing based on uncontrollable timed system
models using a cooperative game-based approach. We model the systems with
timed I/O game automata and specify the test purposes as ACTL formulas. We
generate cooperative winning strategies, derive test cases and execute them on
the implementation. The test method is proved to be sound and complete w.r.t.
the test purposes. Preliminary experimental results indicate that it is a viable
approach. Compared with previous work [DLLN08b], the method in this paper
will enable us to conduct a broader type of model-based conformance testing.

Sections 3 - 7 explain and demonstrate our cooperative approach mainly using
reachability test purposes and reachability games. The underlying principles
and the methodologies also apply to safety test purposes and safety games. In
that case, the “surely winning” portion of a cooperative winning strategy for a
safety game may also induce infinite executions. Accordingly, the test execution
procedure might run forever without issuing a pass verdict.

Future work includes: (1) more case studies for performance evaluation, test
effectiveness analysis and test method scalability improvement; (2) to generalize
state-based strategy to history-based strategy; (3) to implement the test case
generation and execution algorithms to build a fully automated strategy-based
testing environment; (4) strategy-based testing with partial observability.

Paper E:
Timed Testing under Partial
Observability

Alexandre David, Kim Guldstrand Larsen, Shuhao Li, Brian Nielsen

Center for Embedded Software Systems (CISS)
Department of Computer Science
Aalborg University, Denmark

Abstract

This paper studies the problem of model-based conformance testing of partially
observable timed systems. We model the system under test (SUT) using timed
game automaton (TGA) that has internal actions, output uncertainty and tim-
ing uncertainty of outputs. We define the partial observability of SUT using a
set of observable predicates over the TGA semantic state space, and specify the
test purposes as ACTL logic formulas. A partially observable timed game solver
Uppaal-Tiga is used to generate winning strategies, which are then used as test
cases. We propose a conformance testing framework for this particular setting,
define a partial observation-based conformance relation, present the test execu-
tion algorithms, and prove the soundness and completeness of this test method.
Experiments on some non-trivial examples show that this method yields encour-
aging results.

Keywords: Real-Time Systems, Timed Game Automata (TGA), Observable
Predicates, Test Purposes, Observation-Based Stuttering-Invariant (OBSI) Strate-
gies, Observation-Based Conformance

174 Paper E: Timed Testing under Partial Observability

1 Introduction

Timed automaton (TA) [AD94] has been widely used to model safety-/mission-
/economic- critical real-time systems. A considerable proportion of existing ef-
forts on real-time system testing [ENDKE98, SVD01, KJM03, HLN+03, NS03,
LMN04, BB04, KT04] are based on the TA model or its variants. To enable
conformance testing, these methods build their implementation relations (a.k.a.
conformance relations) on top of e.g. trace equivalence [ENDKE98, SVD01] or
the ioco conformance relations [KJM03, HLN+03, LMN04, BB04, KT04]. To
steer the testing towards certain test purposes or test coverage criteria, some of
these methods need (to be enhanced with) the assumption of full observability
(a.k.a. perfect information), i.e., at any time, the tester knows precisely what
state or configuration 1 the system under test (SUT) is in, or she can uniquely
infer one such state or configuration by observing an externally observable timed
input/output action sequence on the well-defined tester/SUT interface. The full
observability assumption paves way to accurately drive, monitor the test exe-
cutions and issue test verdicts. However, in practice this assumption is hardly
realistic. On one hand, if the SUT consists of several interacting components, the
tester might not be able to observe the internally coupling inputs/outputs or the
internal state changes that are caused by those internal actions. On the other
hand, if the tester has only limited-precision sensors to measure the SUT, she
might not tell which exact state the SUT is in, or she might not precisely observe
a timed input/output sequence. Environment noises and external interferences
could also affect the observations.

In this paper we consider the problem of testing timed systems that are only
partially observable (or, with imperfect information). One way to characterize
partial observability is to assume that only a proper subset of those outputs from
the SUT to the tester can be observed, and/or only a proper subset of the system
clocks can be read by the tester [BDMP03]. In another way, partial observability
is characterized in terms of a finite number of possible observations to be made on
the SUT states (configurations) [CDL+07]. This paper follows the latter approach
which has mature algorithms and tool support.

We use the Smart Lamp problem [HLN+03] as an illustrating example. Fig.
1(a) and 1(b) show the system specification (SPEC) models of the Lamp and its
user, respectively. The user interacts with the Lamp by touching a touch-sensitive
pad. In Fig. 1(a), there are four brightness levels (in ascending order) for the
Lamp: Off, Dim1, Dim2 and Bright. The Lamp model is initially in location Off.
If the pad is touched at an appropriate time (x ≥ 2), the Lamp will go to location
L1 where within 2 time units it will non-deterministically go to Bright or go to
Dim1. At location Dim1, a touch? input at appropriate time can bring the TA to

1A configuration is a “snapshot” of the system state. For example, for a Uppaal TA, a
configuration consists of the information of the current residing location and the current values
of all clock and data variables.

1. Introduction 175

Dim2. The Lamp can automatically go to Dim2 at any time. If clock x rises up
to 3 while the Lamp is in Dim1, then it can automatically go Off. In Fig. 1(a),
the edges that are not labeled by touch? are internal transitions, which need no
synchronization with the user TA.

x=0
touch?

touch?
x=0

x=0

x=0

x=0

touch?

touch?Dim1 BrightOff

x<=2

Dim2

L1

L2

x=0

x>=2

x>=1

x>=3 x>=2

x>=1

x<=2

x<2

(a) Lamp (SUT)

touch!

y=0

Control

(b) user (tester)

Figure 1: A smart lamp example.

The dashed lines in Fig. 1(a) denote transitions that are controlled by the
Lamp only. Note that in Dim1, Dim2, L1 and L2:

(1) The internal transitions can autonomously occur when the conditions (if
any) are satisfied, and their occurrences cannot be observed by the user;

(2) The Lamp itself decides whether or not to make an output or an internal
transition, and if yes, which output or internal transition to make; and

(3) The Lamp itself decides when to make an output or internal transition.

These three characteristics are called internal actions, uncontrollable actions and
timing uncertainty of uncontrollable actions, respectively. A TA with these char-
acteristics is a liberal specification model that can be refined into a family of
similar but different implementations. If the tester offers an input stimulus, dif-
ferent implementations might produce different responses.

In [DLLN08b] we view testing of a TA-modeled timed system as playing a
timed game under full observability, where the tester acts as a game player and
the SUT acts as the game opponent. The test purposes are given in reachability
or safety ACTL formulas. For example, “control: A3 Bright” means that the
tester can manage to guarantee that the Bright location can always be eventu-
ally reached, no matter how the SUT (i.e., the Lamp) behaves. We check the
enforceability of the test purposes (winning objectives) using an existing time
game solver Uppaal-Tiga [CDF+05, BCD+07]. If the outcome is positive, the
tool can synthesize a state-based winning strategy for the tester, which ensures
enforcing the winning objectives by providing step-by-step guidance to the tester,

176 Paper E: Timed Testing under Partial Observability

e.g., “if the SUT is in states 〈Dim1, 1 ≤ x < 3〉, the tester should offer a touch?
to the SUT; if in states 〈Dim1, x < 1〉, the tester should just wait (stay quiet)
there”. In this way the tester will certainly win the game (by finally arriving at a
“good” state, or by constantly avoiding the “bad” states). In an off-line testing
manner, the generated strategies can be used as test cases to test a family of
similar but different implementations.

If the SUT is only partially observable, say, in this Smart Lamp example the
tester can observe 2:

(1) whether or not the SUT is “off” (i.e., in Off); and

(2) whether or not the SUT is “dim” (i.e., in Dim1 or Dim2, but not exactly in
which one); and

(3) whether or not the SUT is “bright” (i.e., in Bright),

then the methods in [CDF+05] [DLLN08b] are no longer applicable. On one hand,
synthesis of state-based strategies is based on the full observability assumption.
On the other hand, the tester can not use (execute) a pre-computed strategy
under partial observability. Consider that the tester feeds the SUT with a timed
input preamble 2 · touch? · 2 at the initial state of Fig. 1(a). She may get the
observation “dim” signaling that either location Dim1 or location Dim2 has been
reached. But since she does not know the exact location, she has no idea which
next move to take according to the strategy.

Now our problem is that under partial observability, given a test purpose,
is it possible to synthesize an observation-based winning strategy for the tester
to ensure that the Bright location is always reachable, no matter how the Lamp
behaves? And if so, how can we use this strategy to test whether a concrete
implementation IMP also respects the test purpose?

1.1 Related work

Model-based testing could be comprehensive testing [ENDKE98, SVD01, HLN+03,
NS03, LMN04, BB04, KT04] or targeted testing [KJM03, HLN+03]. We follow
the latter approach, i.e., we use test purposes to direct the testing towards some
particular functional properties.

Many existing methods on real-time testing use timed automata to model the
systems in question. For the sake of testability [SVD01], the timed automata are
restricted to be predictable, i.e., they should be deterministic (or determinizable),

2In practice, the observable predicates of (1)-(3) can be implemented by probing/instrument-
ing the SUT with some Light sensors or software-defined location reporters; the assumption in
predicate (2) is reasonable if the difference between these two brightness levels is too small to
be discerned by the Light sensors.

1. Introduction 177

output-urgent and have isolated outputs 3 [SVD01, HLN+03]. This predictability
leads to full observability, and thus favors well-steered state space exploration.
But from a model-based development point of view, these TA models are too
detailed and too restricted to be suitable for early-stage modeling. In contrast,
a liberal TA model will allow the implementor more freedom, will enable the
tester to capture the high-level design requirements rather than the less important
implementation details, and a liberal TA model is usually more natural and more
succinct than a detailed one.

By canceling the restrictions of isolated outputs and output-urgency, we ob-
tain a kind of liberal TA model called timed game automaton (TGA) [MPS95].
The set of transitions of a TGA are partitioned into subsets of tester-controllable
ones (drawn in solid lines) and tester-uncontrollable ones (in dashed lines), see
Fig. 1(a). Given a network of TGAs and a test purpose in the form of reachabil-
ity or safety property, there are efficient algorithm [CDF+05] and tool [BCD+07]
to solve the timed game.

Game-theoretic approaches to untimed system testing have been discussed
in [ACY95, Yan04, BGNV05]. In the timed case, winning strategies for a given
test purpose have been used as tests for off-line black-box conformance testing
[DLLN08b]. Specifically, if the test purpose is not satisfied by the SPEC model,
we can still possibly synthesize cooperative winning strategies and use them to
test the SUT against the test purpose as long as the SUT reacts to our test inputs
in a desired manner [DLLN08a].

The methods in [DLLN08b, DLLN08a] require the full observability assump-
tion. If we wish to abstract from component interactions inside the SUT model
and wish to allow measurement inaccuracy, then we have to handle partial ob-
servability. More recently, it has been shown that by fixing the resources of
the controller (i.e. a maximum number of clocks and a maximum allowed con-
stant in guards), the timed control problems based on these TGAs are decid-
able [BDMP03], and it is possible to algorithmically synthesize observation-based
stuttering-invariant strategies for the tester [CDL+07]. This motivates us to in-
vestigate the possibility of using such strategies as tests for timed systems under
partial observability.

3Given a TA (L, l0, Act,X,E, Inv) where L is the location set, l0 ∈ L the initial location,
Act = (ActI ∪ ActO) the set of input and output actions, and X,E, Inv the set of clocks,
edges and invariants, respectively. Let (S, s0, Act,→) be its underlying timed labeled transition
system. We say that the TA is deterministic if ∀s ∈ S . ∀α ∈ Act . ((s α−→ s′) ∧ (s α−→ s′′) ⇒
(s′ = s′′)). The TA is output-urgent if ∀s ∈ S . ∀α ∈ ActO . ((s

α−→) ⇒ ∀d ∈ R>0 . (s ��
d−→)). The

TA has isolated outputs if ∀s ∈ S . ∀α ∈ ActO .∀β ∈ Act . (((s
α−→) ∧ (s

β−→))⇒ (α = β)).

178 Paper E: Timed Testing under Partial Observability

1.2 Contributions

The main contributions of this paper include: (1) we apply game strategies to the
context of model-based testing and propose a framework of conformance testing of
timed systems based on partial observations; (2) we define an observation-based
conformance relation between the SPEC and the IMP, propose test execution
algorithms based on this relation, and prove their soundness and completeness;
(3) we conduct preliminary case studies of test generation using a prototype tool
and report the experimental results.

2 Timed control under partial observability

2.1 Partially observable time game

Given two TGAs that model a controller program (the “controller”, or “Player
1”) and the system under control (the “plant”, or “Player 2”), and given a control
objective which is formulated as e.g. a reachability or safety property, a timed
control problem consists in finding a winning strategy for the controller such that
the control objective will be enforced, no matter how the plant behaves.

For the time control problem to be decidable [BDMP03, CDL+07], we assume
that all clock values in the TGA are bounded by a natural number, say M ∈ N≥0.

Let X be a finite set of non-negative real-valued variables called clocks, then
C(X,M) is the set of constraints generated by the grammar

ϕ ::= x ./ k | x− y ./ k | ϕ1 ∧ ϕ2,

where k ≤ M ∈ N≥0, x, y ∈ X, and ./∈ {<,≤,=,≥, >}; and B(X,M) is a subset
of C(X,M) defined by

ϕ ::= true | k1 ≤ x < k2 | ϕ1 ∧ ϕ2,

where k1 < k2 ≤ M ∈ N≥0, and x ∈ X.

Definition 1 (timed game automaton, TGA [MPS95]). A timed game automa-
ton is a tuple A = (L, l0, Actc, Actu, X,E, Inv) where

• L is a finite set of locations;

• l0 ∈ L is the initial location;

• Actc and Actu are disjoint finite sets of Player 1-controllable (input) ac-
tions and Player 2-controllable (output or internal) actions, respectively.
Specifically, internal action τ ∈ Actu;

• X is a finite set of real-valued clocks;

2. Timed control under partial observability 179

• E is a finite set of edges partitioned into Player 1-controllable ones belonging
to L× B(X,M)× Actc × 2X × L, and Player 2-controllable ones belonging
to L×C(X,M)×Actu× 2X ×L. Specifically, (l, g, τ, r, l′) ∈ L×C(X,M)×
Actu × 2X × L is an internal transition; and

• Inv : L→ B(X,M) associates invariants to locations.

For a network of interacting TGAs, we define their parallel composition in
the usual manner.

The behavior of a TGA can be described using a timed labeled transition
system (TLTS).

Definition 2 (2-player timed labeled transition system, 2-player TLTS). A 2-
player timed labeled transition system is a tuple (S, s0, Actc, Actu,→), where

• S is an (infinite) set of semantic states;

• s0 ∈ S the initial state;

• Actc and Actu the Player 1-controllable and Player 2-controllable actions,
respectively; and

• →⊆S×(Actc ∪ Actu ∪ R>0)×S is the transition relation.

Given an M-bounded timed automaton, a valuation v of the clock variables
is a mapping from X to an interval [0,M] of real numbers, i.e., v : X → [0,M].
The set of all such valuations is denoted [X → [0,M]] or [0,M]X . For r ⊆ X,
we denote by [r → 0]v the new valuation which is obtained from v by assigning
0 to any x ∈ r. Let d ∈ R≥0, v be an M-valuation, then v + d is a valuation
(v + d)(x) = v(x) + d, if for all x ∈ X, v(x) + d ≤ M. For g ∈ C(X,M) and
v ∈ [0,M]X , we write v |= g if v satisfies g.

Let A = (L, l0, Actc, Actu, X,E, Inv) be a TGA. let K ⊆ L and ϕ ∈ B(X,M).
We call (K,ϕ) an observable predicate. We use a finite set of observable predicates
P ⊆ 2L × B(X,M) to observe a TGA. For instance, in Fig. 1(a) we can have P
= {({Off}, true), ({Dim1, Dim2}, true), ({Bright}, true), (L, 0 ≤ y < 1)} 4.

An observable predicate (K,ϕ) is true at a TGA semantic state s = 〈l, v〉 iff
(l ∈ K and v |= ϕ). A state observation (or observation for short) oP, s of the
TGA with a set P of predicates at state s is a valuation of all the predicates in
P at s:

oP, s : P → {true, false}.

For instance, in Fig. 1(a) at semantic state 〈Dim2, (x = 2, y = 4)〉 we have the
observation oP, s such that

4The constraint 0≤y<1 means that the tester can test whether value of clock y falls within
[0, 1), but she cannot/need not read the exact value of y. In practice, this predicate can be
implemented as a countdown timer whose timeout can be externally observed by the tester.

180 Paper E: Timed Testing under Partial Observability

oP, s(({Off}, true)) = false,
oP, s(({Dim1, Dim2}, true)) = true,
oP, s(({Bright}, true)) = false, and
oP, s((L, 0 ≤ y < 1)) = false.

Let OP be the set of all possible observations with P , then by definition we have
|OP | ≤ 2|P | . Each element in OP corresponds to a set of TGA states that have
the same truth value for each of the observable predicates, hence an equivalence
class. Thus OP defines a partition of the TGA state space.

For TGA A and a set P of observable predicates, we define a function γP :
OP → 2L×[0,M]X to map each observation o to its class of equivalent TGA states:

γP (o) =
{
〈l, v〉 |

∧
{(K,ϕ) | o(K,ϕ)=true}

(〈l, v〉 � (K,ϕ)) ∧

∧
{(K,ϕ) | o(K,ϕ)=false}

(〈l, v〉 2 (K,ϕ))
}
.

We define a function ξP to make observation of a TGA state:

ξP : (L× [0,M]X)→ OP .

Clearly, for 〈l, v〉 ∈ S, if 〈l, v〉 ∈ γP (o), then we have ξP (〈l, v〉) = o.
A TGA which is associated with a set of observable predicates is called a

partially observable TGA (PO-TGA), whose semantics is defined as a 2-player
TLTS.

Definition 3 (PO-TGA semantics). The semantics of a TGA A = (L, l0, Actc,
Actu, X,E, Inv) that is associated with a set P of observable predicates is a 2-
player TLTS SA = (S, s0, Actc, Actu,→) where:

• S = {〈l, v〉 | (l ∈ L) ∧ (v ∈ (R≥0 ∩ [0,M])X) ∧ (v |= Inv(l))}, and s0 =
〈l0, 0̄〉 ∈ S;

• the transition relation → is composed of

– discrete transitions: 〈l, v〉 a−→ 〈l′, v′〉 if, for 〈l, v〉, 〈l′, v′〉 ∈ S, and a ∈
(Actc ∪Actu), there exists e = (l, a, g, r, l′) ∈ E . ((v |= g) ∧ (v′ = [r →
0]v) ∧ (v′ |= Inv(l′))); and

– time transitions: 〈l, v〉 d−→ 〈l, v + d〉 if, for 〈l, v〉 ∈ S, d ∈ R>0, and ξP
over A and P , ∀d′ ∈ [0, d] . (u+d′ |= Inv(l)) and ∀d′′ ∈ [0, d) . ξP (〈l, v+
d′′〉) = ξP (〈l, v〉).

Definition 3 requires that during the period of a time transition the current
observation remains unchanged. Therefore, a new observation occurs only as a
consequence of a discrete transition, or at the rightmost point of a time delay.

Let s ∈ S, we define the set of possible actions or delays at s as enable(s) =
{σ ∈ (Actc ∪ Actu ∪ R>0) | ∃s′ ∈ S . ((s, σ, s′)∈→)}.

2. Timed control under partial observability 181

2.2 OBSI winning strategy

We consider competing rather than strictly turn-based two-player games between
a plant and its controller (the tester).Thus if a controller move and a plant move
are enabled at the same time, the former one could always be preempted by the
latter one.

An observation-based stuttering-invariant (OBSI) strategy guides the con-
troller to play the game in sessions (macro steps), during each of which the
observation remains unchanged. A macro step consists of a number of consec-
utive micro steps, each of which is caused either by a controller move, or by a
plant move:

• During each session of the controller/plant interaction, the controller sticks
to either a controllable input a1 ∈ Actc or delay, until a new observation
occurs:

– If the controller sticks to a1, then the plant can choose either to delay
(only if a1 is not enabled) or to do an arbitrary uncontrollable action
a2 ∈ Actu;

– If the controller sticks to delay, then the plant can choose either to
delay or to do an arbitrary uncontrollable action a2 ∈ Actu;

• Once a new observation occurs, a next session of controller/plant interaction
begins.

By “stick to” an input action, we mean that the controller can arbitrarily
repeat that move (and only that move) as long as it is enabled. By “stick to”
delay, we mean that the controller keeps on delaying (and can only delay).

Definition 4 (play). Let 〈li, vi〉 be a TGA state, ci ∈ (Actc ∪ {delay}) be a
controller-chosen (or controller-desired) move, and σi ∈ (Actc ∪ Actu ∪ R>0)
be the actually occurred transition, i = 0, 1, . . . , n. A play is a sequence ρ =
〈l0, v0〉c0σ0〈l1, v1〉c1σ1 . . . 〈ln, vn〉cnσn . . ., such that for all i ≥ 0, 〈li, vi〉

σi−→ 〈li+1, vi+1〉
and

• either (σi = ci ∈ Actc, or σi ∈ Actu), or (σi ∈ R>0 if ∀0 ≤ t < σi . ci /∈
enable(〈li, vi + t〉)) 5;

• if σi and σi+1 are both in R>0, then ξP (〈li, vi〉) 6= ξP (〈li+1, vi+1〉).

5If ci is delay, because by definition for any state 〈l, v〉 we have delay /∈ enable(〈l, v〉), then
σi ∈ R>0 can be any time period that does not incur new observation; if ci ∈ Actc, then it
means that time period σi ∈ R>0 can elapse only when during this period ci is not enabled. In
other words, if the controller prefers delay, or her preferred input is not enabled, then the plant
can delay.

182 Paper E: Timed Testing under Partial Observability

If a play ρ is a finite sequence, then it is called a prefix. The set of all prefixes
of a TGA is denoted as Pref.

A strategy for a TGA is a function λ : Pref → (Actc ∪ {delay}). Thus it is a
trace-based (history-based) strategy.

If a player plays the game always according to what a strategy λ suggests her
to do, the resulting prefix is called a λ-supervised prefix.

Under a set P of observable predicates, an observation history is a function
ObsP : Pref → O∗P , which maps a prefix ρ ∈ Pref to the chronological sequence
ObsP (ρ) of non-stuttering observations along ρ.

Let λ be a strategy for the controller. Along any prefix, if the fact that the
observation does not change at the next state implies the fact that λ does not
suggest a new move at that state, then λ is called an observation-based stuttering-
invariant (OBSI) strategy.

Given a reachability property ϕ = control: A3 ψ which asks “whether ψ can
be guaranteed to be satisfied eventually, no matter how the plant behaves”, an
OBSI strategy λ for the controller is winning w.r.t. ϕ if there exists a λ-supervised
prefix which has a trailing observation that satisfies ψ.

Given a network of bounded TGA models of the controller and the plant, a
set of observable predicates, and a winning objective in terms of e.g. a reach-
ability or safety property, we check whether the property can be enforced on
the models using knowledge-based subset construction and on-the-fly partially
observable reachability (OTFPOR) computation [CDL+07], which is based on a
mixture of forward search and backward propagation timed game solving algo-
rithm [CDF+05]. If the outcome is positive, a winning strategy for the controller
will be extracted from the explored paths.

2.3 An example strategy

For a reachability property ϕ, a winning OBSI strategy can be represented as
a directed acyclic graph which has an initial node corresponding to the initial
state, and a number of leaf nodes corresponding to the states that satisfy ϕ.

For the Smart Lamp example in Fig. 1(a) and 1(b) and the reachability
property “control: A3 Bright”, Fig. 2 shows a winning OBSI strategy λR that
is generated by our partially observable timed game solver. Each node in Fig. 2
corresponds to an observation history, and each of its outgoing edges correspond
to a macro step. The symbolic state and observation for each strategy node are
given in Table 1, where for simplicity instead of listing a complete observation for
each node in the “Observations” column, we list only those observable predicates
that evaluate to true under that observation.

In Fig. 1(a), if we consider the following prefix ρ:

〈Off, (x = 0, y = 0)〉 ·delay ·1 · 〈Off, (x = 1, y = 1)〉 ·resety ·resety· 〈Off, (x = 1, y = 0)〉 ·delay ·1 ·
〈Off, (x = 2, y = 1)〉 · touch · touch· 〈L1, (x = 0, y = 1)〉 ·delay ·0 · 〈Dim1, (x = 0, y = 1)〉 · touch ·1·

2. Timed control under partial observability 183

2 3 4 5
touch! delay touch!

obs: { Off,
 0=<y<1}

states: <Off,
 (0=<x<1, y=x)>

6 7

obs: { } obs: { }obs: {Dim1Dim2} obs: {Bright}

delay delay

8

obs: {Bright}delay

0 1

obs: { Off }

obs: { Off,
 0=<y<1}

obs: { Off }

delay

reset_y

Figure 2: Winning strategy λR for reachability property control: A3 Bright.

Table 1: The states and observations in strategy λR (Fig. 2).
Node TA symbolic states Observations
0 {〈Off, (0 ≤ x < 1, y − x = 0)〉} {Off, 0 ≤ y < 1}
1 {〈Off, (x = 1, y − x = 0)〉} {Off}
2 {〈Off, (1 ≤ x < 2, y − x = −1)〉} {Off, 0 ≤ y < 1}
3 {〈Off, (x = 2, y − x = −1)〉} {Off}
4 {〈L1, (0 ≤ x ≤ 2, y − x = 1)〉} {}
5 {〈Dim1, (0 ≤ x < 3, y − x = 1)〉, {Dim1Dim2}

〈Dim2, (0 ≤ x < 3, 2 ≤ y − x < 4)〉}
6 {〈L2, (0 ≤ x ≤ 2, 2 ≤ y − x < 5)〉} { }
7 {〈Bright, (0 ≤ x ≤ 2, 2 ≤ y − x < 5)〉} {Bright}
8 {〈Bright, (0 ≤ x ≤ 2, y − x = 1)〉} {Bright}
Observable predicates: Off: ({Off}, true), 0 ≤ y < 1: (L, 0 ≤ y < 1),
Dim1Dim2: ({Dim1,Dim2}, true), Bright: ({Bright}, true).

〈Dim1, (x = 1, y = 2)〉 · touch · touch · 〈Dim2, (x = 0, y = 2)〉 · touch · 1· 〈Dim2, (x = 1, y =
3)〉 · touch · touch · 〈L2, (x = 0, y = 3)〉,
then the observation history of ρ is:
{Off, 0 ≤ y < 1} · {Off} · {Off, 0 ≤ y < 1} · {Off} · {} · {Dim1Dim2} · {}.

The above history corresponds to the trace 0-1-2-3-4-5-6 in Fig. 2. To illus-
trate the idea of OBSI strategies, let us consider the macro step from node #5 to
node #6 in Fig. 2. This macro step has been instantiated from a concrete state
〈Dim1, (x = 0, y − x = 1)〉 in Fig. 3. The macro step consists of 4 micro steps,
during all of which the controller is advised to offer a touch!. Unfortunately, in
states 〈Dim1, (x = 0, y − x = 1)〉 (“5a”) and 〈Dim2, (x = 0, y − x = 2)〉 (“5c”)
the touch transitions are not enabled. Thus the controller fails to carry out her
move and instead the uncontrollable plant moves (here the 1 time unit delays)
actually take place.

Note that there may exist non-deterministic transitions in a strategy, i.e., for
a given observation history and for the same controller move, there might exist
more than one possible next observation. For instance, in Fig. 2, if the user
sticks to the delay move at node #4, then there may be a new observation of
either that in node #5 or that in node #8. This non-determinism is due to the
reaction uncertainties in the TGA models. Considering this non-determinism,

184 Paper E: Timed Testing under Partial Observability

5a 5b
1 touch!

state: <Dim1,
 (x=0, y-x=1)>

5c 5d

obs: {Dim1Dim2}

1

5 6

obs: {Dim1Dim2} obs: {Dim1Dim2}

obs: {Dim1Dim2} obs: {}

6

obs: {}

touch!

touch!

obs: {Dim1Dim2}

state: <Dim1,
 (x=0, y-x=1)>

state: <Dim1,
 (x=1, y-x=1)>

state: <Dim2,
 (x=0, y-x=2)>

state: <Dim2,
 (x=1, y-x=2)>

state: <L2,
 (x=0, y-x=2)>

 zoom in

Figure 3: Macro step vs. micro step in strategy λR.

we represent a strategy λ using a directed graph (N,E) where N is the set of
nodes, and E = N × (Actc ∪ {delay}) × N is the set of edges. An initial node
n0 corresponds to the initial state of the TGA. Each edge e = (n,mov, n′) ∈
E denotes that if at node n the user sticks to mov, then there will be a new
observation at node n′.

3 Timed conformance testing

3.1 Test setup

If a winning OBSI strategy for the controller can be synthesized, then it implies
that the user-specified property (winning objective) is satisfied by the parallel
composition of the plant model and the strategy-constrained controller model.
Now our problem is how to test whether the property (referred to as a test
purpose in this context) is also satisfied by the various implementations IMP of
the plant model.

In this paper we propose to use winning OBSI strategies as test cases on the
plant implementations. In case a positive test verdict comes out, the IMP is said
to satisfy the test purpose; otherwise, it does not satisfy it. Fig. 4 shows our
testing framework where on-the-fly partially observable reachability (OTFPOR)
computation was discussed earlier, and test execution will be discussed in this
section. In Fig. 4, the dashed arrow means that the tester will use the observable
predicates to “observe” the IMP, such that she can make a test verdict based on
the current observation, or consult the strategy for a next guidance by using the
current observation.

According to the conformance testing framework [BAL+90], for each testing
method, a suitable implementation relation needs to be adopted. Existing timed
conformance relations, e.g., those built on top of trace equivalence [ENDKE98,
SVD01] or on top of observable behavior inclusion (e.g., iocoDTA [KJM03], tioco
[HLN+03, KT04], tiocoM [BB04], rtioco [LMN04]), are not directly based on the

3. Timed conformance testing 185

OTFPOR
computationSPEC

(TGA)

test purpose
(CTL)

IMP

OBSI
strategy

test
execution

test
verdict

observable
predicates

Figure 4: The testing framework.

partial observations that are made on the IMP. In this paper, we view the IMP as
a “grey-box” in the sense that some of the IMP internals are “vaguely” observable
by the tester (controller). We define a notion of conformance in terms of partial
observations. Fig. 5 is a schematic view of observation-based conformance testing
of partially observable timed systems.

obs_pr
1

IMP obs_pr
2

...to offer in
put

(new observation)

(guidance)

obs_pr
n

to reset clock

to delay

making observation

tester

OBSI
strategy

clocks

Figure 5: Observation-based conformance testing.

In Fig. 5, each observable predicate obs pri can be thought of as a “probe”
into the IMP to detect whether the values of system variables and clocks are
within some particular intervals, or a “location sensor” to report whether some
particular locations have been reached. These could be realistic assumptions,
because we are usually only able to make limited-precision measurements, and
we usually have some guarding sensors which just monitor whether some valve
values are reached or not, and do not care about the exact values at all. In order
to keep track of the timing information of the system precisely enough such that
the clock constraints in transition guards can be somehow satisfied, the tester
might need some “private” clocks that she can read and reset, e.g. clock y in
Fig. 1(b). The tester has three choices: to stick to a controllable input action,
to reset the clocks, or to keep on delaying.

Given a deterministic TA that has no internal actions, we can prove that any
externally observable timed I/O sequence uniquely corresponds to a history of TA

186 Paper E: Timed Testing under Partial Observability

state changes under full observability. The relaxation from full observability of
the TA internals (i.e., current location and clock values) to partial observability
of them enables us to cope with a variety of applications that are previously based
on stricter assumptions. To some extent this also helps to realize the potential
of design for testability by allowing us to test a family of different IMPs of the
same SPEC.

In Fig. 5, the tester assumes the role of the user (controller) in the timed game,
and IMP assumes the role of the plant. In the beginning of every tester/IMP
interaction session, the tester consults the OBSI strategy using the observation
history obtained so far, and in return gets an instruction on what move she is
supposed to make during this session: either to stick to a particular controllable
input action, or to stick to delay. By “stick to” we mean that the tester can
arbitrarily repeat the same move (if it is a controllable action then it should be
enabled) during the session until a new observation occurs, no matter how the
IMP reacts. A new observation signifies the start of a next session of tester/IMP
interactions. In Fig. 4, the tester makes test verdicts based on the IMP observa-
tions, the OBSI strategy and a conformance relation between the SPEC and the
IMP.

3.2 Observation-based conformance

To decide whether the IMP is a correct implementation of the SPEC model, in
this paper we define a partial observation-based conformance relation poco.

Similar to the definition of the input-output conformance relation ioco [Tre99],
the idea of poco is that after the tester plays an arbitrary number of sessions with
the IMP using the moves that are suggested by the strategy and enabled in the
SPEC model, each possible next new observation that the IMP could exhibit
should be allowed by the SPEC.

Let ρ = 〈l0, v0〉c0σ0〈l1, v1〉c1σ1 . . . 〈ln, vn〉 be a prefix, P be a set of observable
predicates, and let µ ∈ (Actc ∪ {delay}) be the move that the controller sticks to
during one interaction session. We define the set of possible new prefixes where
a new observation has just occurred as

ρ AfterP µ = {〈l0, v0〉c0σ0〈l1, v1〉c1σ1 . . . 〈ln, vn〉cnσn〈ln+1, vn+1〉cn+1σn+1

. . . 〈lm, vm〉},

where for all n ≤ i ≤ m− 1, we have ci = µ, 〈li, vi〉
σi−→ 〈li+1, vi+1〉, ξP (〈li, vi〉) =

ξP (〈ln, vn〉), ξP (〈lm, vm〉) 6= ξP (〈lm−1, vm−1〉), and the c’s and σ’s satisfy the con-
straints in Definition 4.

In the above definition, µ can be extended from a single move to a string of
moves in (Actc ∪ {delay})∗. Specifically, when µ is ε (i.e., an empty string), we
define ρ AfterP ε = {ρ}.

For instance, in the example of Fig. 1(a), we have:

3. Timed conformance testing 187

〈Off, x = 0, y = 0〉 AfterP delay = {
〈Off, x = 0, y = 0〉 · delay · 1 · 〈Off, x = 1, y = 1〉,
〈Off, x = 0, y = 0〉 · delay · 0.5 · 〈Off, x = 0.5, y = 0.5〉 · delay · 0.5 · 〈Off, x = 1, y = 1〉,
. . . }.

The definition of observation history in Section 2.2 can be extended from
a single prefix to a set of prefixes, i.e., ObsP : 2Pref → 2O

∗
P . Let pref set =

{ρ1, ρ2, . . . , ρn}, we have

ObsP (pref set) =
⋃

ρi∈pref set

ObsP (ρi).

For instance, let the initial state in Fig. 1(a) be s0, then we have

ObsP (s0 AfterP delay) = {{Off, 0 ≤ y < 1} · {Off}}; and

ObsP (s0 AfterP delay resety delay touch! delay) = {
{Off, 0 ≤ y < 1} · {Off} · {Off, 0 ≤ y < 1} · {Off} · {} · {Bright},
{Off, 0 ≤ y < 1} · {Off} · {Off, 0 ≤ y < 1} · {Off} · {} · {Dim1Dim2} }.

Definition 5 (Partial Observation-based COnformance relation, poco). Let ρ, η
be two prefixes of the timed game execution, and P be a set of observable predi-
cates. The partial observation-based conformance relation pocoP between ρ and
η is defined as:

ρ pocoP η iff

∀µ ∈ (Actc ∪ {delay})∗ . (ObsP (ρ AfterP µ) ⊆ ObsP (η AfterP µ)).

Let the TLTS of the SPEC model be S whose initial state is s0 (note that s0

is also a prefix); and assume that the behavior of the implementation IMP can
be modeled by a TLTS I, who can accept the same set of input actions and has
the same set of observable predicates as S; and assume that the initial state of
I is i0. If i0 pocoP s0, then we say I is a correct implementation of S, denoted
I pocoP S.

While traditional conformance relations (such as tioco [HLN+03, KT04], tiocoM
[BB04], rtioco [LMN04]) are based on sequences of I/O events, our poco is based
on sequences of system state observations. While the former relations accom-
modate partial observability in terms of internal events only, poco in addition
considers the inaccuracies of measurements. Consequently, even if there is no
internal action in the system, our poco conformance relation could still be used.

188 Paper E: Timed Testing under Partial Observability

3.3 Test execution algorithms

To execute a winning OBSI strategy as a test case on an IMP, the tester should
stick to a specific move as suggested by the strategy. If the observation of the
IMP does not change after a micro step, then the tester can offer the same input
action to the IMP (if this input action is enabled in the SPEC) again, or delay
again. Once the IMP observation changes, the tester checks whether this new
observation is allowed by the SPEC model. If allowed, then a next session of
tester/IMP interaction will start; otherwise, an error has been revealed. When
computing the OBSI strategy, those sets of allowed next observations are included
in the strategy, thus during test execution it is not necessary to consult the SPEC
model.

Let obsv(IMP) be an instantaneous observation (or a “snapshot”) of the IMP,
λ = (N,E) be a winning OBSI strategy for a reachability test purpose, and
n0 ∈ N be the initial strategy node. Let n ∈ N , we define

• the observation at strategy node n as obs(λ, n);

• the strategy-suggested move at node n as move(λ, n) = mov ∈ (Actc ∪
{delay}) such that ∃n′∈N . (n,mov, n′)∈E; and

• the set of strategy-allowed next observations following node n as
suc obs(λ, n) = {obs(λ, n′) | ∃mov ∈ (Actc ∪ {delay}) . (n,mov, n′) ∈ E}.

Furthermore, we define the following variables:

• node: to track the current position in a strategy;

• imp obs and imp obs′: to hold recent observations of the IMP; and

• mov: to record the strategy-suggested move.

If imp obs satisfies the reachability test purpose, then we say imp obs is a
winning observation. For instance, the observations {Bright} and {Bright, 0 ≤
y < 1} are both winning w.r.t. control: A3 Bright. Algorithm 3.1 describes the
test execution towards a reachability test purpose ϕ. The algorithm takes the
IMP and a winning OBSI strategy λ for ϕ as inputs.

Having said that a winning OBSI strategy for a reachability test purpose is a
directed acyclic graph that ends with a number of observations that satisfy the
test purpose. Clearly, the strategy provides only finite length guidance for the
tester. This ensures that the while loop in Algorithm 3.1 eventually terminates.

In the repeat loop (Main procedure, lines 4-8), there are seemingly zenoness
problems and racing problems between the tester and the SUT, i.e., sticking to
an input action or clock resets without leading to a new observation might block
the time, and sticking to delay might require the tester to make infinite frequent
observations of the SUT. These, however, can both be avoided. In the former

3. Timed conformance testing 189

Algorithm 3.1 TestExec Reachability(λ, IMP)
Input: winning OBSI strategy λ, system implementation IMP;
Output: test verdict pass or fail;
Initialization:
1: node := n0;
2: imp obs := obsv(IMP);
3: if imp obs 6= obs(λ,node) then
4: return(“fail”);

Main:
1: while (imp obs is not winning) do
2: imp obs′ := imp obs;
3: mov := move(λ,node);
4: repeat
5: if mov ∈ Actc then
6: offer mov to IMP;
7: imp obs := obsv(IMP);
8: until imp obs 6= imp obs′;
9: if imp obs /∈ suc obs(λ,node) then

10: return(“fail‘”);
11: else
12: node := n ∈ N such that obs(λ, n) = imp obs and (node,mov, n) ∈ E; // the

second node takes the old value
13: endwhile
14: return(“pass”).

case, the generated strategy ensures that there will be no self-loop with any
symbolic state; and in the latter case, we can implement the delaying by using
the sleep and wake-up mechanisms.

The time complexity of Algorithm 3.1 depends on the length of the strategy,
the shape of the strategy (i.e., the sizes of the sets suc obs), and the lengths
of the tester/IMP interaction sessions (i.e., how soon will there be a change of
IMP observation after the provision of a test stimulus). Let p be the strategy
length, m = max{#(suc obs(λ, i)) | 0 ≤ i ≤ p− 1} be the maximal size of those
observation sets suc obs(λ, i). Recall that the clocks in the TGA models are
bounded by a maximal constant M, this means that the cumulative delay time
between any two adjacent observations in the SPEC TLTS could also be bounded
by a constant, say w = k ·M. Then the worst-case time complexity of Algorithm
3.1 is O(p · (w +m)).

3.4 Soundness and completeness

An ideal test suite or test case should be both sound and complete (or “exhaus-
tive”). A winning OBSI strategy executed as a test case is sound if there is no

190 Paper E: Timed Testing under Partial Observability

false positive (i.e, a detected error is indeed an error according to the conformance
relation), and it is complete w.r.t. the given test purpose ϕ if there is no false
negative (i.e., if there are non-conforming behaviors in IMP that are related to
ϕ, then there must exist some particular test cases to detect these behaviors).

Let the TLTS of the SPEC TGA be S whose initial state is s0, and assume that
the behaviors of the implementation IMP can be modeled by a TLTS I which can
accept the same set of input actions and has the same set of observable predicates
as S. We let the initial state of I be i0.

Theorem 1 (soundness). If there is a fail verdict in test execution, then I���poco S.

Let ϕ be a reachability test purpose that is satisfied by the SPEC model. Let
Sϕ and Iϕ be the behaviors of S and I that are constrained by ϕ, i.e., the TLTS’s
that are obtained by removing those ϕ-violating runs from S and I, respectively.

Theorem 2 ((partial) completeness). If Iϕ ���poco Sϕ, then there exists a winning
OBSI strategy (test case) λ for ϕ such that a fail verdict will occur when executing
λ with the IMP.

The proofs can be found in Appendix A.

4 Experimental results

An in-house developed prototype timed game solver for partially observable sys-
tems has been implemented in [CDL+07]. It accepts a network of TGAs, a set of
observable predicates and an ACTL test purpose as inputs. If the game is solv-
able, it can generate a winning OBSI strategy. More recently, the functionalities
of the prototype tool has been incorporated (re-implemented and improved) into
Uppaal-Tiga.

This section reports on some strategy (test case) generation experiments using
the prototype tool and Uppaal-Tiga.

4.1 An extended smart lamp controller

In the example of Fig. 1(a) and 1(b), the Lamp has only four brightness levels:
Off, Dim1, Dim2 and Bright. Now we consider a finer granularity of the brightness
levels, say, level 0 is Off, level MaxLevel is Bright, and there are (MaxLevel − 1)
stairs of Dim between Off and Bright. Furthermore, we add clock variables tp
and z to the system for finer grained modeling of the timing constraints. Then
we obtained the extended TGA models for the smart lamp (Fig. 6(a)) and the
user (Fig. 6(b)).

Compared with Fig. 1(a) and 1(b), the extended version has larger state
space. There are 4 clocks (x, tp, z and y) in the extended system, and an integer
data variable level ∈ [0,MaxLevel] is used to represent the current brightness level.

4. Experimental results 191

touch?

touch?

touch?

touch?

touch?

bright!

touch?

dim!

dim!

touch?

level=1x=0,
Tp=0

x=0, Tp=0level = 0

touch?

dim!

touch?

touch?

dim!

touch?

x=0,
Tp=0

off!

touch?

bright!

dim!

touch?

dim!
touch?

touch?
touch?off!

Tp<=2Tp<=2

Tp<=2

Tp<=2

Off

Tp<=2

Tp<=2

Tp<=2

Tp<=2

Tidle=5
Tsw=3

L6

L2

L3

L7

Dim

L4

Bright

L1

L8

L5

level=MaxLevel

level=1

level=MaxLevel

level=level−1

x=0, Tp=0

x=0, Tp=0

level=level−1 x=0,
Tp=0

x=0,
Tp=0

x=0,
Tp=0

level=0 (x>=Tsw) &&
(level>1)

(x>=Tsw) &&
(level==1)

(x<Tsw) && (level
==MaxLevel−1)

x<Tidle level=level+1

level=level−1

(x<Tsw) && (level
<MaxLevel−1)

x<Tidle

x>=Tidle

x>=Tidle

(a) The lamp

dim?

bright?
touch!

off?
touch!

Init

Treact=1

Work

z=0

z=0

z>=Treact

y=0

(b) The user

Figure 6: A smart lamp system with multiple brightness levels.

Our definition of observable predicates in Section 2.1 can actually be extended
with a further dimension of data variable constraints, e.g., 3 ≤ var ≤ 6. This
extended feature has been implemented in the prototype tool. This enables us
to better describe the observations.

In this example, the set of observable predicates is P = {
({Off}, true),
({Bright}, true),
({L1, L6, L7, L8}, true),
({L2, L3, L4, L5}, true),
({Dim}, level = MaxLevel/2),
({Dim}, MaxLevel/2 + 1 ≤ level ≤ MaxLevel− 1),

192 Paper E: Timed Testing under Partial Observability

({Dim}, 1 ≤ level ≤ MaxLevel/2− 1),
(L, 0 ≤ y < M) }
where M is the upper bound for clock y.

The test purposes can be formulated as reachability properties (TPR) as fol-
lows:
TPR control: A3 (Dim && (level = MaxLevel/2)).

Here, TPR asks whether we can guarantee that “Medium Dim” can be ob-
served eventually, no matter how the Lamp behaves.

Table 2 presents the experimental results of test case generation for TPR.
They include the time overheads, memory consumptions and strategy sizes (how
many nodes inside the strategy). The leftmost column specifies which test pur-
pose and what MaxLevel values (10, 20, or 30) we are using. Time granularity for
the clock-related observable predicate, say y ∈ [0, 1), is also considered. In Table
2, “/” means running out of memory.

Table 2: Test case generation for extended smart lamp controller.

y∈ [0, 100) [0, 10) [0, 2) [0, 1) [0, 0.5) [0, 0.1) [0, 0.01)
〈time (s), memory (KB), strategy size (# of nodes) 〉

TPR 10 0.67 0.66 0.87 1.26 1.44 1.38 1.39
3828 3988 3924 4096 6220 6268 6272

84 84 138 199 219 220 220
20 2.30 3.55 3.80 8.26 14.30 18.98 18.86

6380 7192 7456 11964 15600 17308 17404
334 468 504 952 1500 1645 1645

30 5.53 9.29 7.83 20.67 55.25 140.29 137.19
7824 11468 11520 15556 30068 46992 46736
709 996 840 1723 3514 5310 5270

Experiment platform: 2×2.00GHz CPU, 1024MB RAM; Ubuntu 8.04, Ruby
1.8.6, Ruby-BDD Binding 0.2, Uppaal DBM Library 2.0.6, prototype partially
observable timed game solver.

The results in Table 2 indicate that winning OBSI strategy generation for
non-trivial TGA models are feasible in terms of both time overhead and memory
consumption on an ordinary PC. We also find out that, in general, a coarser
time granularity might lead to uncontrollability of the problem, whereas a finer
granularity demands more resources to generate the test cases.

4.2 A leader election protocol

We also carried out experiments on test case generation for a leader election
protocol (LEP) [Lam05b] for mobile ad hoc networks. The TGA models of this
protocol have n nodes, and n buffer cells which model the capacity of the com-
munication channels. Each of the nodes and buffers needs one clock. Moreover,
there are a global clock for counting the desired election time and a clock specif-
ically for resetting. So there are altogether (2n + 2) clocks. In addition, there

5. Conclusions and future work 193

are a number of global/local data variables to store and compare the message
information. We defined a collection of observable predicates.

The fully observable (TIOGA) and partially observable (PO-TIOGA) models
of the LEP protocol and some test purposes are given in Appendix B.

We investigate how test generations based on TIOGA and PO-TIOGA mod-
els scale with different system sizes, how they perform under different levels of
controllability, and how test generation based on PO-TIOGA models performs
under different levels of observability. See Appendix C.

We also make comparison of these two approaches. For the same test pur-
pose, Table 3 shows the results for (4 nodes, 4 buffers) and (5 nodes, 5 buffers),
respectively. More details can be found in Appendix C.

Table 3: Full vs. partial observation-based test case generation.

full observation partial observation
time memory strategy time memory strategy
(s) (MB) (# of nodes) (s) (MB) (# of nodes)

(4, 4) 25.15 179.0 72300 18.33 168 56
(5, 5) (out of memory) 137.34 761 81
Experiment platform: Sun Fire X4100, 2×2.4GHz CPU, 4096MB RAM;
Suse Linux Enterprise Desktop 10 (64bit), Uppaal-Tiga 0.13.

A remarkable finding is that the partial observation-based approach generates
much smaller (shorter) test cases. This is in accordance with the rationale of our
approach, because it in general makes a much coarser partitioning of the model
state space than the full observation-based approach.

5 Conclusions and future work

We discuss the problem of model-based conformance testing of partially observ-
able timed systems. The systems are modeled as a network of time game au-
tomata; the partial observability is characterized by using a set of predicates on
the system states; and the test purposes are formulated as ACTL formulas that
specify reachability properties. We use a previously-developed partially observ-
able timed game solver to generate winning OBSI strategies for the test purposes,
which in this paper are used as test cases for real-time conformance testing. We
present a test framework, define a conformance relation poco, develop test exe-
cution algorithms, and prove the soundness and completeness properties. Exper-
iments on test generations for some non-trivial examples show that this method
yields encouraging results.

This method has some necessary ingredients to be used in software product
line engineering. By modeling the variabilities of the product lines using the
reaction uncertainties of our TGA models, we can generate test cases for testing

194 Paper E: Timed Testing under Partial Observability

a family of similar but different software products against their (common) high-
level requirements.

Compared with full observation-based conformance testing, the approach in
this paper requires weaker assumptions and seems to generate smaller (shorter)
test cases. These suggest that partial observation-based monitoring and testing
has better prospects of being practically useful and being industrially adopted.

Future work includes: (1) More and larger case studies on test generation.
This might involve improving the game solver towards better performance (espe-
cially memory-wise performance), better scalability and further optimized strate-
gies; (2) To provide guidelines for creating a sufficient/correct/consistent set of
observable predicates; (3) Testing (or validating) towards safety test purposes,
whose corresponding OBSI strategies may provide infinite guidance to the tester.

Appendix A: Proofs in Section 3.4 195

Appendix A: Proofs in Section 3.4

To prove the theorems, we need some definitions and (re-)formalization of some
already-mentioned concepts.

For simplicity, we assume that a set P of observable predicates have been
fixed. Therefore, we do not put P as the subscript of After, Out, Obs, etc., if it
clear from the context.

Given (a prefix of) a play ρ, we define ρ(n) to be the prefix up to 〈ln, vn〉, and
define last(ρ(n)) = 〈ln, vn〉.

A state of a prefix where the observation changes is called a choice point
[CDL+07]. The set of all choice points on prefix ρ is denoted ChoicePoint(ρ) =
{0} ∪ {i | γ−1(〈li, vi〉) 6= γ−1(〈li−1, vi−1〉), i ≥ 1}. We define max(ChoicePoint(ρ))
to be the trailing choice point.

An observation history is a function Obs : Pref→ O∗, which maps a prefix ρ
to the chronological sequence Obs(ρ) of observations on the choice points of ρ.

Let λ be a strategy for the controller. For all ρ1, ρ2 ∈ Pref, if
Obs(ρ1(max(ChoicePoint(ρ1)))) = Obs(ρ2(max(ChoicePoint(ρ2))))⇒ λ(ρ1) = λ(ρ2),
then λ is said to be an OBSI strategy. In other words, if the observation does not
change at the next state, then the strategy does not suggest a new move at that
state.

Definition 5 decides conformance by checking the inclusion of sets of observa-
tion histories, which contain all the observation information from the very begin-
ning. To facilitate run-time conformance checking, we can refine the definition of
the poco relation using the inclusion of the sets of the “latest” observations that
are obtained by sticking to an arbitrary string of moves:

ρ poco η iff ∀µ ∈ (Actc ∪ {delay})∗ . {γ−1(last(ρ′(max(ChoicePoint(ρ′))))) | ρ′ ∈
(ρ After µ)} ⊆ {γ−1(last(η′(max(ChoicePoint(η′))))) | η′ ∈ (η After µ)}.

Given a system specification S and a test purpose (winning objective) ϕ, we
use Strategy(S, ϕ) to denote the set of all winning OBSI strategies.

Let the TLTS of the SPEC TGA be S, whose initial state is s0, and assume
that the behavior of the implementation IMP can be modeled by a TLTS I,
which can accept the same set of input actions and has the same set of observ-
able predicates as S. We let the initial state of I be i0.

Theorem 1 (soundness). If there is a fail verdict in test execution, then I���poco S.

Proof. (sketch.) If the test purpose ϕ is a reachability property, then there are
two possibilities for a fail verdict in Algorithm 3.1. The first case is that the
initial observation oi0 of the IMP is different from the first observation os0 in the
strategy, which is also the initial observation of the SPEC model. Since oi0 6= os0 ,
we get {oi0} * {os0}, thus Obs(i0 After ε) * Obs(s0 After ε). The second case is

196 Paper E: Timed Testing under Partial Observability

that after the tester sticks to a number of moves µ ∈ (Actc∪{delay})∗, a new ob-
servation o of the IMP occurs but it is disallowed by the strategy, i.e., ∃µ ∈ (Actc∪
{delay})∗ .∃ρ ∈ (i0 After µ) .∀η ∈ (s0 After µ) . (γ−1(last(ρ(max(ChoicePoint(ρ)))))
6= γ−1(last(η(max(ChoicePoint(η)))))). By (the refined) Definition 5, i0 ���poco s0.
In both cases, we conclude that the IMP does not comply with the SPEC.

Let ϕ be a reachability test purpose that is satisfied by the SPEC model. Let
Sϕ and Iϕ be the behaviors of S and I that are constrained by ϕ, i.e., the TLTS’s
that are obtained by removing those ϕ-violating runs from S and I, respectively.

Theorem 2 ((partial) completeness). If Iϕ ���poco Sϕ, then there exists a winning
OBSI strategy (test case) λ for ϕ such that a fail verdict will occur when executing
λ with the IMP.

Proof. (sketch.) By Iϕ ���poco Sϕ, we know that ∀λ ∈ Strategy(S, ϕ) .∃µ ∈ (Actc ∪
{delay})∗ . {γ−1(last(ρ(max(ChoicePoint(ρ))))) | ρ ∈ (i0 After µ)} *
{γ−1(last(η(max(ChoicePoint(η))))) | η ∈ (s0 After µ)∩ Supλ(s0,S)}. This means
that among those prefixes obtained after applying a string µ of moves on the IMP,
there is a sub-class of (infinitely many) prefixes whose last stuttering observations
are disallowed by the constrained SPEC model. Pick an arbitrary one from them,
say ρ. According to Algorithm 3.1, ρ will end up with a fail verdict.

Appendix B: Fully and partially observable mod-

els of the leader election protocol

We will build fully observable and partially observable models of the leader elec-
tion protocol (LEP) [Lam05b, Lam05a].

The problem descriptions of the LEP protocol can be found in the Appendix
of Paper C, where fully observable models for LEP have already been constructed.
In this paper we make an alternative modeling of the problem. Both the nodes
and the buffers will be explicitly modeled.

System overview

The LEP protocol entities include a number of protocol nodes. A node may send
out a message, which might be further forwarded to its neighboring nodes. A
data link between two neighboring nodes is modeled as a buffer, which accepts an
incoming message and ensures that it will be properly delivered to the destination
node within the deadline. To model the different actual transmission delays and
thus the possible re-orderings of the messages, we model the media as a “bag”
rather than a queue (or a stack) of buffer cells. Since the media is of limited
capacity, we assume that the number of buffers is bounded by a constant B. In

Appendix B: Fully and partially observable models of the leader . . . 197

other words, at any time there could be no more than B messages simultaneously
in transmission.

Based on the above design decisions, nodes and buffers are identified as the
protocol entities, whereas messages are viewed as datagrams that are transmitted
among them.

Fig. 7(a) is an example of an LEP system that consists of 3 nodes (linearly
connected) and 3 buffers. If there is a dashed line connecting two nodes, then it
means that there is a network link between them. A solid line between a node
and a buffer means that the buffer can accept a message from and can deliver
a message to the node. Fig. 7(b) is a possible scenario of leader election where
node#0 is finally elected as the leader.

n0

b0

n1

b1

n2

b2

(a) system structure (b) a possible scenario of leader election

Figure 7: A leader election protocol.

Fully observable (TIOGA) model

In Uppaal we use two templates: Node for those protocol nodes and Buffer for
those messages in transmission. These two templates can both be instantiated
to represent the concrete protocol entities.

Since each node has a timeout mechanism, it should have a clock, say idleClock,
which denotes how long this node has been waiting for a “good” message. Since
each message has a maximal transmission delay, each buffer should also have
a clock, say msgTransClock, which denotes how long this message has been in
transmission. For verification purpose we need an auxiliary clock globalClock,
which is never reset, to record how much time has elapsed since the beginning.

198 Paper E: Timed Testing under Partial Observability

If a node is controllable (i.e., belonging to the tester part), then all the output
transitions are in solid lines, otherwise they are in dashed lines.

For example, the Uppaal global declarations of an LEP system with 3 nodes
(linearly connected) and 3 buffers are shown in Listing 1.

Listing 1: Uppaal global declarations for the LEP system.�
const int MaxNodeId = 2; // the number of nodes is (MaxNodeId+1)
const int MaxBufferId = 2; // the number of buffers is (MaxBufferId+1)
const int MaxDistance = MaxNodeId;

typedef int [0, MaxNodeId] NodeId;
typedef int [0, MaxBufferId] BufferId ; // the ”capacity ” of media
typedef int [0, MaxDistance] Distance; // the hops between two nodes.

// timing parameters
const int INIT TIMEOUT = 10;
const int TIMEOUT DELAY = 5;
const int MSG DELAY = 3;

typedef struct {
NodeId src;
NodeId dest;
NodeId leader;
Distance distance ;
} Message;

const Message nullMsg = {0, 0, 0, 0};
Message envMsg;

meta bool inUse[MaxBufferId+1]; // whether a buffer is occupied.
BufferId nextBuffer ; // to store a message into this buffer .

chan deliverMsg; // Buffer −− >Node
chan sendMsg; // Node −− >Buffer

clock globalClock ; // for verification purpose

// network topology (here linear)
meta bool topology[MaxNodeId + 1][MaxNodeId + 1] = { {1, 1, 0},

{1, 1, 1},
{0, 1, 1} };�

The Uppaal template of a node is Node(const NodeId myId), where the
parameter myId can be instantiated to 0, 1, 2, The Uppaal local declarations

Appendix B: Fully and partially observable models of the leader . . . 199

for a node are shown in Listing 2.

Listing 2: Uppaal local declarations for a node.�
NodeId believedLeader = myId; //Initially , each node sets himself as the leader .
Distance distToBlvLeader = 0;

int [0, INIT TIMEOUT + TIMEOUT DELAY +
MaxDistance∗MSG DELAY] Timeout = INIT TIMEOUT;

Message rMsg = nullMsg; //The received message

//How long since last reception of a ”good” massage, or since last ”timeout”
clock idleClock ;

bool betterInfo = false ;
bool lossOfMsg = false;

int [0, MaxNodeId + 1] forwardee = 0; // to iterate over all the nodes
int [0, MaxBufferId + 1] slot = 0; // to find an available buffer�

As can be seen from Listing 2, each node maintains its own clock idleClock
which records how much time has elapsed since the last timeout of this node, or
since the last reception of a “good” message by this node.

Fig. 8 and Fig. 9 are the TIOGAs of a controllable and an uncontrollable
Node template, respectively.

The Uppaal template of a buffer is Buffer(const BufferId myId), where the
parameter myId can be instantiated to 0, 1, 2, The Uppaal local declara-
tions for a buffer are shown in Listing 3.

Listing 3: Uppaal local declarations for a buffer.�
Message bufferMsg = nullMsg;

// to record the time that a message has been in transmission
clock msgTransClock;�

Fig. 10(a) and Fig. 10(b) are the TIOGAs of a controllable and an uncontrol-
lable Buffer template, respectively, where message transmission is bounded by a
delay of MSG DELAY time units.

Since the number of buffers is fixed, if a node wants to send a message to
its neighbors but finds out that currently there is no available buffer, then the
message will be discarded (i.e., get lost).

Note that in TIOGA models there is no internal action. In order not to
clutter up the figures, we omit a toDeliver? action at each location of Node,
and omit each of the following actions at each location of Buffer: timeout?,

200 Paper E: Timed Testing under Partial Observability

sendMsg!

finished!

notFinished!

nextReceiverFound!

noAvailableBuffer!

nextBufferOccupied!

cleanUp!

forwardee = 0

idleClock = 0,
Timeout = INIT_TIMEOUT + TIMEOUT_DELAY
 + distToBlvLeader*MSG_DELAY

notNextReceiver!

nextBufferFound!

believedLeader = rMsg.leader,
distToBlvLeader = rMsg.distance + 1,
betterInfo = true

rMsg = envMsg,
envMsg = nullMsg

believedLeader = myId,
distToBlvLeader = 0,
idleClock = 0,
Timeout = INIT_TIMEOUT

timeout!

beginForward!

betterMsg!

perpareForward!

worseMsg!

deliverMsg?

waitMsg

gotMsg

forward

(topology[myId][forwardee] == 0) ||
(forwardee == myId) ||
((betterInfo == true) &&
 (forwardee == rMsg.src))

idleClock <= Timeout + TIMEOUT_DELAY

(slot <= MaxBufferId) &&
(inUse[slot] == false)

forwardee <= MaxNodeId

findReceiver

startSend

betterMsg

cleanUp

findBuffer

finishOrNot

rMsg = nullMsg,
betterInfo = false

nextBuffer = slot

forwardee = forwardee + 1

envMsg.dest == myId (rMsg.leader > believedLeader) ||
((rMsg.leader == believedLeader) &&
 (rMsg.distance + 1 >= distToBlvLeader))

slot = 0

envMsg.src = myId,
envMsg.dest = forwardee,
envMsg.leader = believedLeader,
envMsg.distance = distToBlvLeader,
inUse[nextBuffer] = true,
forwardee = forwardee + 1

slot = slot + 1

lossOfMsg = true

forwardee > MaxNodeId

(topology[myId][forwardee] == 1) &&
(forwardee != myId) &&
!((betterInfo == true) &&
 (forwardee == rMsg.src))

idleClock >= Timeout (rMsg.leader < believedLeader) ||
((rMsg.leader == believedLeader) &&
 (rMsg.distance + 1 < distToBlvLeader))

(slot <= MaxBufferId) &&
(inUse[slot] == true)

slot > MaxBufferId

Figure 8: TIOGA of a controllable node

worseMsg?, betterMsg?, prepareForward?, beginForward?, finished?, notFinished?,
notNextReceiver?, nextReceiverFound?, nextBufferOcupied?, nextBufferFound?,
noAvailableBuffer? and cleanUp?.

Partially observable (PO-TIOGA) model

The PO-TIOGA model is the TIOGA model that are relaxed with internal tran-
sitions and associated with a set of observable predicates that are declared on
the model state space, e.g.,

• whether an SUT node is in some particular sets of possible locations; and/or

• whether the value of some clock falls in some particular intervals; and/or

• whether the value of some data variable falls in some particular intervals.

In addition to the clocks for each node and buffer and the globalClock, we may
need yet another clock to control the timing in the OBSI strategy. For instance,
we can have the following set P1 of observable predicates, where y is the newly
introduced auxiliary clock for PO-TIOGA:

Appendix B: Fully and partially observable models of the leader . . . 201

sendMsg!

finished!

notFinished!

nextReceiverFound!

noAvailableBuffer!

nextBufferOccupied!

cleanUp!

forwardee = 0

idleClock = 0,
Timeout = INIT_TIMEOUT + TIMEOUT_DELAY
 + distToBlvLeader*MSG_DELAY

notNextReceiver!

nextBufferFound!

believedLeader = rMsg.leader,
distToBlvLeader = rMsg.distance + 1,
betterInfo = true

rMsg = envMsg,
envMsg = nullMsg

believedLeader = myId,
distToBlvLeader = 0,
idleClock = 0,
Timeout = INIT_TIMEOUT

timeout!

beginForward!

betterMsg!

perpareForward!

worseMsg!

deliverMsg?

waitMsg

gotMsg

forward

(topology[myId][forwardee] == 0) ||
(forwardee == myId) ||
((betterInfo == true) &&
 (forwardee == rMsg.src))

idleClock <= Timeout + TIMEOUT_DELAY

(slot <= MaxBufferId) &&
(inUse[slot] == false)

forwardee <= MaxNodeId

findReceiver

startSend

betterMsg

cleanUp

findBuffer

finishOrNot

rMsg = nullMsg,
betterInfo = false

nextBuffer = slot

forwardee = forwardee + 1

envMsg.dest == myId (rMsg.leader > believedLeader) ||
((rMsg.leader == believedLeader) &&
 (rMsg.distance + 1 >= distToBlvLeader))

slot = 0

envMsg.src = myId,
envMsg.dest = forwardee,
envMsg.leader = believedLeader,
envMsg.distance = distToBlvLeader,
inUse[nextBuffer] = true,
forwardee = forwardee + 1

slot = slot + 1

lossOfMsg = true

forwardee > MaxNodeId

(topology[myId][forwardee] == 1) &&
(forwardee != myId) &&
!((betterInfo == true) &&
 (forwardee == rMsg.src))

idleClock >= Timeout (rMsg.leader < believedLeader) ||
((rMsg.leader == believedLeader) &&
 (rMsg.distance + 1 < distToBlvLeader))

(slot <= MaxBufferId) &&
(inUse[slot] == true)

slot > MaxBufferId

Figure 9: TIOGA of an uncontrollable node

P1 = {Node0.waitMsg,Node0.finishOrNot,Node0.findReceiver,Node0.startSend,
Node1.waitMsg,Node1.betterMsg,Node1.finishOrNot,Node1.findReceiver,
Node1.startSend, (y >= 0) && (y < 1), (globalClock < INIT TIMEOUT +
TIMEOUT DELAY + MaxDistance ∗MSG DELAY + 1) &&
(Node0.believedLeader == 0) && (Node1.believedLeader == 0) &&
(Node2.believedLeader == 0)},

where MaxDistance is the maximal number of hops from one node to another
node in the network.

In the TIOGA modeling of the LEP system, the nodes and the buffer ac-
tually communicate only through the channels sendMsg (from node to buffer)
and deliverMsg (from buffer to node). Since internal transitions are allowed in
PO-TIOGA models, we replace all transitions except for those of deliverMsg and
sendMsg with the corresponding internal transitions both in Node and in Buffer.

After associated with a set of observable predicates, we get the PO-TIOGA
model of the LEP system.

202 Paper E: Timed Testing under Partial Observability

deliverMsg!

sendMsg?

envMsg = bufferMsg
toDeliver!

delivering

idle occupied

bufferMsg = nullMsg,
inUse[myId] = 0

nextBuffer == myId

bufferMsg = envMsg,
msgTransClock = 0

msgTransClock <=
 MSG_DELAY

(a) controllable buffer

deliverMsg!

sendMsg?

envMsg = bufferMsg
toDeliver!

delivering

idle occupied

bufferMsg = nullMsg,
inUse[myId] = 0

nextBuffer == myId

bufferMsg = envMsg,
msgTransClock = 0

msgTransClock <=
 MSG_DELAY

(b) uncontrollable buffer

Figure 10: TIOGAs of a buffer.

Test purpose specification

We can define test purposes as reachability or safety properties. We are most
interested in the property “leader can always be elected within a period of time”.
Suppose we have 3 nodes. For TIOGA, this property can be formulated as:

TP1 = control: A3 (globalClock <= INIT TIMEOUT + TIMEOUT DELAY + MaxDistance ∗
MSG DELAY) && (Node0.believedLeader == 0) && (Node1.believedLeader == 0)
&& (Node2.believedLeader == 0).

The functional and timing properties that we could be interested in the LEP
protocol include:

• Prop1 (“leader always eventually elected”): The system is supposed to even-
tually arrive at a state where the believed leader of each node is the lowest
numbered one, despite all possible uncontrollable behaviors;

• Prop2 (“leader always elected within a period of time”): It is always the
case that the correct leader is known at each node i after (INIT TIMEOUT
+ TIMEOUT DELAY + MaxDistance * MSG DELAY) time units, where
MaxDistance is the maximal number of hops (direct links) from node i to
the leader node;

• Prop3 (“messages never lost”): There are always sufficiently many buffers
for use, and therefore messages will not be dropped;

• Prop4 (“always eventually loss of message”): It is always possible that some
node in the future will drop messages because of the unavailability of empty
buffers; and

• Prop5 (“buffers always eventually used out”): All buffers will eventually be
occupied.

For PO-TIOGA it is a little bit different: the globalClock cannot have a strict
upper bound in the predicate:

Appendix C: Quantitative evaluation of test generation with the . . . 203

TP2 = control: A3 (globalClock < INIT TIMEOUT + TIMEOUT DELAY + MaxDistance ∗
MSG DELAY + 1) && (Node0.believedLeader == 0) && (Node1.believedLeader
== 0) && (Node2.believedLeader == 0).

Appendix C: Quantitative evaluation of test gen-

eration with the leader election protocol

The performance of test generation is jointly determined by many factors, such
as the topology and layout of the network, the timing parameters, the means of
communication (handshaking or shared variables), system size (the numbers of
nodes and buffers), the degree of controllability and the degree of observability.
This section examines how the latter three factors influence the performance.

Scalability

For the TIOGA model and the test purpose TP1 in Appendix B, we consider
linear network topology, i.e., nodes 0, 1, . . . , n are linearly connected. The timing
parameters INIT TIMEOUT, TIMEOUT DELAY and MSG DELAY are chosen to
be 10, 5 and 3, respectively. The SUT consists of only one node (i.e., the largest
numbered node). Since it is a TIOGA model, it is fully observable. Tables 4
reports the performance results of test generation for different system sizes. In
the table / means “out of memory”.

Table 4: Test generation from TIOGA models for different system sizes.

#bufs 3 nodes (linear) 4 nodes (linear) 5 nodes (linear)
size time(s) mem(KB) size time(s) mem(KB) size time(s) mem(KB)

2 897 0.09 120 9155 2.63 23420 98134 135.75 506508
3 1739 0.16 5140 33873 7.90 62072 179095 380.39 1847460
4 2383 0.23 5860 72300 25.15 183252 / / /
5 2383 0.25 6088 94435 49.07 337132 / / /

Experiment platform: Sun Fire X4100, 2x2.4GHz CPU, 4096MB RAM; Suse Linux
Enterprise Desktop 10 (64bit); Uppaal-Tiga 0.13.

As can be seen from Table 4, the models with more nodes and buffers are more
resource-demanding. This is reasonable because each node and buffer should be
associated with a clock and a number of data variables.

For the PO-TIOGA model and the test purpose TP2 in Appendix B, we use
the same system configuration as for TIOGA. But this time the PO-TIOGA
model is only partially observable. Table 5 reports the experimental results of
test generation for different system sizes.

204 Paper E: Timed Testing under Partial Observability

Table 5: Test generation from PO-TIOGA models for different system sizes.

#bufs 3 nodes (linear) 4 nodes (linear) 5 nodes (linear)
size time(s) mem(KB) size time(s) mem(KB) size time(s) mem(KB)

2 67 0.99 27400 56 25.43 112976 81 85.41 416872
3 67 1.11 33924 56 20.56 138328 81 98.83 522872
4 67 1.28 41632 56 18.33 172224 81 113.73 646512
5 67 1.50 49944 56 19.41 203180 81 137.34 779124

Experiment platform: Sun Fire X4100, 2x2.4GHz CPU, 4096MB RAM; Suse Linux
Enterprise Desktop 10 (64bit); Uppaal-Tiga 0.13.

As can be seen from Table 5, when the number of nodes increases, time
overhead and memory consumption increases rapidly, but strategy size does not
increase accordingly. This is because that strategy size mainly depends on the
number of observable predicates and their Cartesian space, rather than on the
TIOGA state space, therefore it is not so sensitive to the number of clocks in the
system.

It seems abnormal that the test cases for 3-nodes are larger than for 4 nodes.
The reason is that in our experiments, it is a branching strategy for the 3 nodes
case, whereas a linear strategy for the 4 nodes case.

With the increase of the number of buffers, the time overhead and memory
consumption do not increase rapidly. This is because that in this LEP case study,
most of the observable predicates are about the nodes and there is no predicate
about the buffers.

Degree of controllability

By degree of controllability we mean how many components in the LEP system
are controllable by the tester, or how many LEP components constitute the tester
(ENV) part. This concerns the tester/SUT partitioning of the LEP system. We
consider the following partitioning schemes:

• scheme (a): only one node as the SUT, and all other nodes and all buffers
at the tester side. See Fig. 11(a). In the subsection of “Scalability”, we
have the results for this scheme;

• scheme (b): one node and all buffers as the SUT, and all other nodes at
the tester side. See Fig. 11(b); and

• scheme (c): two nodes and all buffers as the SUT, and all other nodes at
the tester side. See Fig. 11(c).

Clearly, in scheme (a) the SUT is most controllable, and in scheme (c) it is
least controllable.

Appendix C: Quantitative evaluation of test generation with the . . . 205

(a) 1 node as the SUT (b) 1 node + all buffers (c) 2 nodes + all buffers

Figure 11: The partitioning of nodes and buffers into SUT and its environment
(ENV).

Table 6 presents the results of test generation for TIOGA models with the
different schemes of SUT/ENV partitioning. The protocol nodes are linearly
connected and the timing parameters are 10, 5 and 3.

Table 6: Test generation from TIOGA models for different degrees of controlla-
bility.

controll- 3 nodes+3 bufs(linear) 4 nodes+4 bufs(linear) 5 nodes+5 bufs(linear)
ability size time(s) mem(KB) size time(s) mem(KB) size time(s) mem(KB)

(a) 1739 0.16 5140 72300 25.15 183252 / / /
(b) 2102 0.30 6640 439269 703.08 3464788 / / /
(c) 3350 7.64 64084 / / / / / /

Experiment platform: Sun Fire X4100, 2x2.4GHz CPU, 4096MB RAM; Suse Linux
Enterprise Desktop 10 (64bit); Uppaal-Tiga 0.13.

As can be seen from Tables 6, the more uncontrollable the SUT is, the more
resource-demanding the test generation is. Controllability is a crucial factor that
affects the performance of test generation.

Similarly, Table 7 presents the results for PO-TIOGA models. As can be
seen from Table 7, when SUT’s degree of uncontrollability increases, the time
overhead and the memory consumption increase rapidly. However, the strategy
size has no such tendency. This is because the number of observable predicates
is not increasing accordingly.

Table 7: Test generation from PO-TIOGA models for different degrees of con-
trollability.

controll- 3 nodes+3 bufs(linear) 4 nodes+4 bufs(linear) 5 nodes+5 bufs(linear)
ability size time(s) mem(KB) size time(s) mem(KB) size time(s) mem(KB)

(a) 67 1.11 33924 56 18.33 172224 81 137.34 779124
(b) 31 4.96 95060 51 216.28 805864 / / /
(c) / / / / / / / / /

Experiment platform: Sun Fire X4100, 2x2.4GHz CPU, 4096MB RAM; Suse Linux
Enterprise Desktop 10 (64bit); Uppaal-Tiga 0.13.

206 Paper E: Timed Testing under Partial Observability

Degree of observability

By degree of observability we mean how many Points of Observation we can have
on the SUT. This concerns the level of detailedness that observations can be
made on the LEP system.

Let us consider an LEP system with 3 nodes and 3 buffers, where Node2 and
all buffers constitute the SUT (i.e., scheme (b) in Fig. 11(b)). We define different
degrees of observability:

• P-: (using none of the predicates in P1)

• P1: (i.e., the P1 in Appendix B)

• P2: (P1 + Node0.betterMsg)

• P3: (P2 + Node2.waitMsg)

• P4: (P3 + Node2.betterMsg + Node2.finishOrNot + Node2.findReceiver +
Node2.startSend)

• P5: (P4 + Buffer0.occupied + Buffer1.occupied + Buffer2.occupied)

It is obvious that the LEP system is most observable with P5 and least ob-
servable with P-. Table 8 presents the results for these different degrees of ob-
servability.

Table 8: Test generation from PO-TIOGA models for different degrees of observ-
ability.

observability 3 nodes + 3 buffers (linear)
size time(s) mem(KB)

P- (game not solvable)
P1 31 4.26 86892
P2 31 4.96 94892
P3 34 12.04 107248
P4 44 20.15 127164
P5 155 48.28 220560

Experiment platform: Sun Fire X4100, 2x2.4GHz
CPU, 4096MB RAM; Suse Linux Enterprise
Desktop 10 (64bit); Uppaal-Tiga 0.13.

As can be seen from Table 8, with the increase of the degree of observability,
test generation has an increasing demand for resources.

From Table 8 we also learn that: if too few predicates are defined (like the case
of P-), then the game may be not solvable. If too many predicates are defined
(like the case of P5, where the strategy branches several times), then the test
generation may be too resource-demanding and the strategy may be a little bit
too large. Therefore, it is important to define a sufficiently but not excessively
large set of predicates.

Appendix C: Quantitative evaluation of test generation with the . . . 207

Full vs. partial observability

The full observability of TIOGA can be viewed as an extreme case of the partial
observability of PO-TIOGA by assuming that we have a most detailed set of
observable predicates, i.e., we have:

• a predicate (in Ci.lj) for each TA location lj of each LEP component Ci;

• a predicate x ∈ [k, k + 1) for each possible value k of each clock x; and

• a predicate v == m for each possible integer/boolean value m of each data
variable v.

We consider the LEP system with nodes linearly connected, with only one
node as the SUT and with timing parameters of 10, 5 and 3. We carried out
comparative studies of test generation based on TIOGA and PO-TIOGA models.
Table 9 presents the results.

Table 9: Test generation from TIOGA vs. from PO-TIOGA models.

model 3 nodes+3 bufs(linear) 4 nodes+4 bufs(linear) 5 nodes+5 bufs(linear)
size time(s) mem(KB) size time(s) mem(KB) size time(s) mem(KB)

TIOGA 1739 0.16 5140 72300 25.15 183252 / / /
PO-TIOGA 67 1.11 33924 56 18.33 172224 81 137.34 779124
Experiment platform: Sun Fire X4100, 2x2.4GHz CPU, 4096MB RAM; Suse Linux
Enterprise Desktop 10 (64bit); Uppaal-Tiga 0.13.

As can be seen from Table 9, with the increase of the numbers of nodes
and buffers, PO-TIOGA-based test generation scales better than TIOGA-based
method. Furthermore, PO-TIOGA-based method generates much smaller test
cases. The reason is that these two methods use different game solving algorithms,
and the former one generates strategies based on much smaller state space.

Bibliography

[AAG+07] Yasmina Abdeddäım, Eugene Asarin, Matthieu Gallien, Félix In-
grand, Charles Lesire, and Mihaela Sighireanu. Planning robust
temporal plans: A comparison between cbtp and tga approaches.
In Proc. 17th International Conference on Automated Planning and
Scheduling (ICAPS’07), pages 2–9, 2007.

[AB99] Paul Ammann and Paul E. Black. A specification-based coverage
metric to evaluate test sets. In Proc. 4th IEEE International Sym-
posium on High-Assurance Systems Engineering (HASE’99), pages
239–248, 1999.

[ABL98] Luca Aceto, Augusto Burgueño, and Kim Guldstrand Larsen.
Model checking via reachability testing for timed automata. In
Proc. 4th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS’98), pages 263–
280, 1998.

[ABM98] Paul Ammann, Paul E. Black, and William Majurski. Using
model checking to generate tests from specifications. In Proc. 2nd
IEEE International Conference on Formal Engineering Methods
(ICFEM’98), pages 46–54, 1998.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-
checking in dense real-time. Inf. Comput., 104(1):2–34, 1993.

[ACY95] Rajeev Alur, Costas Courcoubetis, and Mihalis Yannakakis. Dis-
tinguishing tests for nondeterministic and probabilistic machines.
In Proc. 27th Annual ACM Symposium on Theory of Computing
(STOC’95), pages 363–372, 1995.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[AFH94] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. A determiniz-
able class of timed automata. In Proc. 6th International Conference
on Computer Aided Verification (CAV’94), pages 1–13, 1994.

210 Bibliography

[AH97] Rajeev Alur and Thomas A. Henzinger. Real-time system = dis-
crete system + clock variables. Software Tools for Technology
Transfer (STTT), 1(1-2):86–109, 1997.

[AHP96] Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An ana-
lyzer for message sequence charts. Software - Concepts and Tools,
17(2):70–77, 1996.

[Alu99] Rajeev Alur. Timed automata. In Proc. 11th International Confer-
ence on Computer Aided Verification (CAV’99), pages 8–22, 1999.

[AM04] Rajeev Alur and P. Madhusudan. Decision problems for timed
automata: A survey. In Bernardo and Corradini [BC04], pages
1–24.

[AMB+04] Alain Abran, James W. Moore, Pierre Bourque, Robert Dupuis,
and Leonard L. Tripp. Guide to the Software Engineering Body of
Knowledge (SWEBOK). IEEE Press, Piscataway, NJ, USA, 2004.

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Con-
troller synthesis for timed automata. In Proc. 5th IFAC Conference
on System Structure and Control (SSC’98), pages 469–474. Else-
vier Science, July 1998.

[AR04] George S. Avrunin and Gregg Rothermel, editors. Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2004, Boston, Massachusetts, USA, July 11-
14, 2004. ACM, 2004.

[AT02] Karine Altisen and Stavros Tripakis. Tools for controller synthesis
of timed systems. In Proc. 2nd Workshop on Real-Time Tools
(RT-TOOLS’02), july 2002.

[Aut] Automotix. Lincoln continental problems - safety recalls
and defects. http://www.automotix.net/autorepair/recalls/

lincoln-continental/, accessed August 2009.

[BAL+90] Ed Brinksma, Rudie Alderden, Rom Langerak, Jeroen van de Lage-
maat, and Jan Tretmans. A formal approach to conformance test-
ing. In Proc. 2nd Int. Workshop on Protocol Test Systems, pages
349–363, 1990.

[Bal09] Sandie Balaguer. Extending uppaal with scenario-oriennted verifi-
cation. Master’s thesis, École Centrale de Nantes, Nantes, France,
September 2009.

Bibliography 211

[BB04] Laura Brandán Briones and Ed Brinksma. A test generation frame-
work for quiescent real-time systems. In Grabowski and Nielsen
[GN05], pages 64–78.

[BB05] Henrik C. Bohnenkamp and Axel Belinfante. Timed testing with
torx. In Fitzgerald et al. [FHT05], pages 173–188.

[BC04] Marco Bernardo and Flavio Corradini, editors. Formal Methods for
the Design of Real-Time Systems, International School on Formal
Methods for the Design of Computer, Communication and Soft-
ware Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18,
2004, Revised Lectures, volume 3185 of Lecture Notes in Computer
Science. Springer, 2004.

[BCD+07] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel
Fleury, Kim Guldstrand Larsen, and Didier Lime. Uppaal-Tiga:
Time for playing games! In Proc. 19th International Conference
on Computer Aided Verification (CAV’07), pages 121–125, 2007.

[BCD+08] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel
Fleury, Kim Guldstrand Larsen, and Didier Lime. Uppaal-Tiga
User Manual. Aalborg University, Aalborg, Denmark, 0.12 edition,
August 2008.

[BCDL09] Peter Bulychev, Thomas Chatain, Alexandre David, and
Kim Guldstrand Larsen. Efficient on-the-fly algorithm for checking
alternating timed simulation. In Proc. 7th International Confer-
ence on Formal Modeling and Analysis of Timed Systems (FOR-
MATS’09), pages 73–87, 2009.

[BDL04] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen.
A tutorial on uppaal. In Bernardo and Corradini [BC04], pages
200–236.

[BDMP03] Patricia Bouyer, Deepak D’Souza, P. Madhusudan, and Antoine
Petit. Timed control with partial observability. In Proc. 15th In-
ternational Conference on Computer Aided Verification (CAV’03),
pages 180–192, 2003.

[BGNV05] Andreas Blass, Yuri Gurevich, Lev Nachmanson, and Margus
Veanes. Play to test. In Grieskamp and Weise [GW06], pages
32–46.

[BGS05] Annette Bunker, Ganesh Gopalakrishnan, and Konrad Slind. Live
sequence charts applied to hardware requirements specification

212 Bibliography

and verification. Software Tools for Technology Transfer (STTT),
7(4):341–350, 2005.

[BGT04] Ed Brinksma, Wolfgang Grieskamp, and Jan Tretmans. Summary
- perspectives of model-based testing. In Dagstuhl Seminar Proc.
on Perspectives of Model-Based Testing, 2004.

[BHJP04] Johan Blom, Anders Hessel, Bengt Jonsson, and Paul Pettersson.
Specifying and generating test cases using observer automata. In
Grabowski and Nielsen [GN05], pages 125–139.

[BJK+05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin
Leucker, and Alexander Pretschner, editors. Model-Based Testing
of Reactive Systems, Advanced Lectures [The volume is the out-
come of a research seminar that was held in Schloss Dagstuhl in
January 2004], volume 3472 of Lecture Notes in Computer Science.
Springer, 2005.

[Bon05] Yves Bontemps. Relating Inter-Agent and Intra-Agent Specifica-
tions - The Case of Live Sequence Charts. PhD thesis, University
of Namur, Namur, Belgium, 2005.

[BS07] Yves Bontemps and Pierre-Yves Schobbens. The computational
complexity of scenario-based agent verification and design. J. Ap-
plied Logic, 5(2):252–276, 2007.

[BSL04] Yves Bontemps, Pierre-Yves Schobbens, and Christof Löding. Syn-
thesis of open reactive systems from scenario-based specifications.
Fundam. Inform., 62(2):139–169, 2004.

[BT00] Ed Brinksma and Jan Tretmans. Testing transition systems: An
annotated bibliography. In Proc. 4th Summer School on Modeling
and Verification of Parallel Processes (MOVEP’00), pages 187–
195, 2000.

[CDF+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guld-
strand Larsen, and Didier Lime. Efficient on-the-fly algorithms for
the analysis of timed games. In Proc. 16th International Confer-
ence on Concurrency Theory (CONCUR’05), pages 66–80, 2005.

[CDHR06] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and
Jean-François Raskin. Algorithms for omega-regular games with
imperfect information. In Proc. 20th International Workshop on
Computer Science Logic (CSL’06), pages 287–302, 2006.

Bibliography 213

[CDL+07] Franck Cassez, Alexandre David, Kim Guldstrand Larsen, Didier
Lime, and Jean-François Raskin. Timed control with observation
based and stuttering invariant strategies. In Proc. 5th International
Symposium on Automated Technology for Verification and Analysis
(ATVA’07), pages 192–206, 2007.

[CDL09] Thomas Chatain, Alexandre David, and Kim Gulstrand Larsen.
Playing games with timed games. In Proc. 3rd IFAC Conference
on Analysis and Design of Hybrid Systems (ADHS’09), 2009.

[Cer92] Karlis Cerans. Decidability of bisimulation equivalences for par-
allel timer processes. In Proc. Fourth International Workshop on
Computer Aided Verification (CAV’92), pages 302–315, 1992.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[CHK08] Pierre Combes, David Harel, and Hillel Kugler. Modeling and
verification of a telecommunication application using live sequence
charts and the play-engine tool. Software and System Modeling,
7(2):157–175, 2008.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state
machines. IEEE Trans. Software Eng., 4(3):178–187, 1978.

[CJL+09] Franck Cassez, Jan Jakob Jessen, Kim Guldstrand Larsen, Jean-
François Raskin, and Pierre-Alain Reynier. Automatic synthesis of
robust and optimal controllers - an industrial case study. In Proc.
12th International Conference on Hybrid Systems: Computation
and Control (HSCC’09), pages 90–104, 2009.

[CKL98] Richard Castanet, Ousmane Koné, and Patrice Laurençot. On
the fly test generation for real time protocols. In Proc. Interna-
tional Conference On Computer Communications and Networks
(ICCCN’98), pages 378–387, 1998.

[CL95] Duncan Clarke and Insup Lee. Testing real-time constraints in a
process algebraic setting. In Proc. 17th International Conference
on Software Engineering (ICSE’95), pages 51–60, 1995.

[CO00] Rachel Cardell-Oliver. Conformance tests for real-time sys-
tems with timed automata specifications. Formal Asp. Comput.,
12(5):350–371, 2000.

[CSE96] John R. Callahan, Francis Schneide, and Steve M. Easterbrook.
Specification-based testing using model checking. In Proc. 2nd
Workshop on the SPIN Verification System (SPIN’96), 1996.

214 Bibliography

[DEF+96] L. Doldi, V. Encontre, J. Fernandez, T. Jéron, S.L. Bricquir,
N. Texier, and M. Phalippou. Testing of communicating systems,
chapter Assessment of automatic generation methods of confor-
mance test suites in an industrial context, pages 347–361. Chap-
man & Hall, 1996.

[DGG09] Elfriede Dustin, Thom Garrett, and Bernie Gauf. Implementing
Automated Software Testing: How to Save Time and Lower Costs
While Raising Quality. Addison-Wesley Professional, 2009.

[DH99] Werner Damm and David Harel. Lscs: Breathing life into mes-
sage sequence charts. In Proc. IFIP WG 6.1 International Confer-
ence on Formal Methods for Open Object-Based Distributed Sys-
tems (FMOODS’99), 1999.

[DH01] Werner Damm and David Harel. Lscs: Breathing life into message
sequence charts. Formal Methods in System Design, 19(1):45–80,
2001.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state
concurrent systems. In Proc. International Workshop on Auto-
matic Verification Methods for Finite State Systems, pages 197–
212, 1989.

[DK01] Werner Damm and Jochen Klose. Verification of a radio-based sig-
naling system using the statemate verification environment. Formal
Methods in System Design, 19(2):121–141, 2001.

[DLL+10] Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Ny-
man, and Andrzej Wasowski. Timed i/o automata: A complete
specification theory for real-time systems. In Proc. 13th Interna-
tional Conference on Hybrid Systems: Computation and Control
(HSCC’10), 2010.

[DLLN08a] Alexandre David, Kim Guldstrand Larsen, Shuhao Li, and Brian
Nielsen. Cooperative testing of timed systems. In Proc. 4th Work-
shop on Model-Based Testing (MBT’08), 2008. ENTCS, 220(1):79-
92.

[DLLN08b] Alexandre David, Kim Guldstrand Larsen, Shuhao Li, and Brian
Nielsen. A game-theoretic approach to real-time system testing. In
Proc. 11th Conference on Design, Automation and Test in Europe
(DATE’08), pages 486–491, 2008.

[DTW06] Werner Damm, Tobe Toben, and Bernd Westphal. On the ex-
pressive power of live sequence charts. In Program Analysis and

Bibliography 215

Compilation, Theory and Practice, Essays Dedicated to Reinhard
Wilhelm on the Occasion of His 60th Birthday, pages 225–246,
2006.

[dVT00] René G. de Vries and Jan Tretmans. On-the-fly conformance test-
ing using spin. Software Tools for Technology Transfer (STTT),
2(4):382–393, 2000.

[DWDMR08] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-
François Raskin. Robust safety of timed automata. Formal Meth-
ods in System Design, 33(1-3):45–84, 2008.

[EFM97] André Engels, Loe M. G. Feijs, and Sjouke Mauw. Test generation
for intelligent networks using model checking. In Proc. 3rd Inter-
national Workshop on Tools and Algorithms for Construction and
Analysis of Systems (TACAS’97), pages 384–398, 1997.

[ENDKE98] Abdeslam En-Nouaary, Rachida Dssouli, Ferhat Khendek, and
A. Elqortobi. Timed test cases generation based on state char-
acterization technique. In Proc. 19th IEEE Real-Time Systems
Symposium (RTSS’98), pages 220–229, 1998.

[FHD+99] Thomas Firley, Michaela Huhn, Karsten Diethers, Thomas Gehrke,
and Ursula Goltz. Timed sequence diagrams and tool-based anal-
ysis - a case study. In Proc. 2nd International Conference on the
Unified Modeling Language (UML’99), pages 645–660, 1999.

[FHT05] John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors. FM
2005: Formal Methods, International Symposium of Formal Meth-
ods Europe, Newcastle, UK, July 18-22, 2005, Proceedings, volume
3582 of Lecture Notes in Computer Science. Springer, 2005.

[GH99] Angelo Gargantini and Constance L. Heitmeyer. Using model
checking to generate tests from requirements specifications. In
Proc. 7th European Software Engineering Conference, Held Jointly
with the 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/SIGSOFT FSE’99), pages 146–162,
1999.

[GH02] Jens Grabowski and Dieter Hogrefe. Sdl- and msc-based specifica-
tion and automated test case generation for inap. Telecommunica-
tion Systems, 20(3-4):265–290, 2002.

[GHJ97] Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. Ro-
bust timed automata. In Proc. International Workshop on Hybrid
and Real-Time Systems (HART’97), pages 331–345, 1997.

216 Bibliography

[GMMP04] Blaise Genest, Marius Minea, Anca Muscholl, and Doron Peled.
Specifying and verifying partial order properties using template
mscs. In Proc. 7th International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS’04),
pages 195–210, 2004.

[GN05] Jens Grabowski and Brian Nielsen, editors. Formal Approaches to
Software Testing, 4th International Workshop, FATES 2004, Linz,
Austria, September 21, 2004, Revised Selected Papers, volume 3395
of Lecture Notes in Computer Science. Springer, 2005.

[GRR03] Angelo Gargantini, Elvinia Riccobene, and Salvatore Rinzivillo.
Using spin to generate testsfrom asm specifications. In Proc. 10th
International Workshop on Abstract State Machines (ASM’03),
pages 263–277, 2003.

[GW06] Wolfgang Grieskamp and Carsten Weise, editors. Formal Ap-
proaches to Software Testing, 5th International Workshop, FATES
2005, Edinburgh, UK, July 11, 2005, Revised Selected Papers, vol-
ume 3997 of Lecture Notes in Computer Science. Springer, 2006.

[Har87] David Harel. Statecharts: A visual formulation for complex sys-
tems. Sci. Comput. Program., 8(3):231–274, 1987.

[HCL+03] Hyoung Seok Hong, Sung Deok Cha, Insup Lee, Oleg Sokolsky,
and Hasan Ural. Data flow testing as model checking. In Proc.
25th International Conference on Software Engineering (ICSE’03),
pages 232–243, 2003.

[Hes07] Anders Hessel. Model-Based Test Case Generation for Real-Time
Systems. PhD thesis, Uppsala University, Uppsala, Sweden, 2007.

[HK00] David Harel and Hillel Kugler. Synthesizing state-based object
systems from lsc specifications. In Proc. 5th International Confer-
ence on Implementation and Application of Automata (CIAA’00),
pages 1–33, 2000.

[HK02] David Harel and Hillel Kugler. Synthesizing state-based object sys-
tems from lsc specifications. Int. J. Found. Comput. Sci., 13(1):5–
51, 2002.

[HKMP02] David Harel, Hillel Kugler, Rami Marelly, and Amir Pnueli. Smart
play-out of behavioral requirements. In Proc. 4th International
Conference on Formal Methods in Computer-Aided Design (FM-
CAD’02), pages 378–398, 2002.

Bibliography 217

[HKP04] David Harel, Hillel Kugler, and Amir Pnueli. Smart play-out ex-
tended: Time and forbidden elements. In Proc. 4th International
Conference on Quality Software (QSIC’04), pages 2–10, 2004.

[HKP05] David Harel, Hillel Kugler, and Amir Pnueli. Synthesis revisited:
Generating statechart models from scenario-based requirements.
In Proc. Formal Methods in Software and Systems Modeling, pages
309–324, 2005.

[HLN+03] Anders Hessel, Kim Guldstrand Larsen, Brian Nielsen, Paul Pet-
tersson, and Arne Skou. Time-optimal real-time test case genera-
tion using uppaal. In Petrenko and Ulrich [PU04], pages 114–130.

[HLS99] Klaus Havelund, Kim Guldstrand Larsen, and Arne Skou. Formal
verification of a power controller using the real-time model checker
uppaal. In Proc. 5th International AMAST Workshop on For-
mal Methods for Real-Time and Probabilistic Systems (ARTS’99),
pages 277–298, 1999.

[HLSU02] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural.
A temporal logic based theory of test coverage and generation.
In Proc. 8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’02), pages 327–
341, 2002.

[HM02] David Harel and Rami Marelly. Playing with time: On the spec-
ification and execution of time-enriched lscs. In Proc. 10th In-
ternational Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS’02), pages
193–202, 2002.

[HM03] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSC’s and the Play-Engine. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2003.

[HM08] David Harel and Shahar Maoz. Assert and negate revisited: Modal
semantics for uml sequence diagrams. Software and System Mod-
eling, 7(2):237–252, 2008.

[HN04] A. Hartman and K. Nagin. The agedis tools for model based test-
ing. In Avrunin and Rothermel [AR04], pages 129–132.

[HNTC99] Teruo Higashino, Akio Nakata, Kenichi Taniguchi, and Ana R.
Cavalli. Generating test cases for a timed i/o automaton model.
In Proc. IFIP TC6 12th International Workshop on Testing Com-
municating Systems (IWTCS’99), pages 197–214, 1999.

218 Bibliography

[HP06] Anders Hessel and Paul Pettersson. Model-based testing of a
wap gateway: An industrial case-study. In Proc. 11th Interna-
tional Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS’06) and 5th International Workshop on Parallel and
Distributed Methods in verifiCation (PDMC’06), pages 116–131,
2006.

[HS06] Thomas A. Henzinger and Joseph Sifakis. The embedded systems
design challenge. In Proc. 14th International Symposium on Formal
Methods (FM’06), pages 1–15, 2006.

[HT03] David Harel and P.S. Thiagarajan. UML for real: design of em-
bedded real-time systems, chapter Message Sequence Charts, pages
77–105. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[IT96] ITU-T. Message sequence charts (msc), itu-t recommendation
z.120, 1996.

[IT99] ITU-T. Message sequence charts – msc-2000, itu-t recommendation
z.120, 1999.

[JJ05] Claude Jard and Thierry Jéron. Tgv: theory, principles and algo-
rithms. Software Tools for Technology Transfer (STTT), 7(4):297–
315, 2005.

[JRLD07] Jan Jakob Jessen, Jacob Illum Rasmussen, Kim Guldstrand
Larsen, and Alexandre David. Guided controller synthesis for
climate controller using uppaal tiga. In Proc. 5th International
Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’07), pages 227–240, 2007.

[Kel76] Robert M. Keller. Formal verification of parallel programs. Com-
mun. ACM, 19(7):371–384, 1976.

[Kho02] Ahmed Khoumsi. A method for testing the conformance of
real time systems. In Proc. 7th International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’02), pages 331–354, 2002.

[KHP+05] Hillel Kugler, David Harel, Amir Pnueli, Yuan Lu, and Yves Bon-
temps. Temporal logic for scenario-based specifications. In Proc.
11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05), pages 445–
460, 2005.

Bibliography 219

[KJM03] Ahmed Khoumsi, Thierry Jéron, and Hervé Marchand. Test cases
generation for nondeterministic real-time systems. In Petrenko and
Ulrich [PU04], pages 131–146.

[Klo03] Jochen Klose. Live Sequence Charts: A Graphical Formalism for
the Specification of Communication Behavior. PhD thesis, Carl
von Ossietzky Universität Oldenburg, 2003.

[KPP09] Hillel Kugler, Cory Plock, and Amir Pnueli. Controller synthe-
sis from lsc requirements. In Proc. 12th International Conference
on Fundamental Approaches to Software Engineering (FASE’09),
pages 79–93, 2009.

[KS09] Hillel Kugler and Itai Segall. Compositional synthesis of reactive
systems from live sequence chart specifications. In Proc. 15th Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’09), pages 77–91, 2009.

[KSH07] Hillel Kugler, Michael J. Stern, and E. Jane Albert Hubbard. Test-
ing scenario-based models. In Proc. 10th International Conference
on Fundamental Approaches to Software Engineering (FASE’07),
pages 306–320, 2007.

[KT04] Moez Krichen and Stavros Tripakis. Black-box conformance testing
for real-time systems. In Proc. 11th International SPIN Workshop
on Model Checking Software (SPIN’04), pages 109–126, 2004.

[KT06] Moez Krichen and Stavros Tripakis. Interesting properties of the
real-time conformance relation. In Proc. 3rd International Col-
loquium on Theoretical Aspects of Computing (ICTAC’06), pages
317–331, 2006.

[KT09] Moez Krichen and Stavros Tripakis. Conformance testing for real-
time systems. Formal Methods in System Design, 34(3):238–304,
2009.

[KTWW06] Jochen Klose, Tobe Toben, Bernd Westphal, and Hartmut Wittke.
Check it out: On the efficient formal verification of live sequence
charts. In Proc. 18th International Conference on Computer Aided
Verification (CAV’06), pages 219–233, 2006.

[KV97] Orna Kupferman and Moshe Y. Vardi. Synthesis with incomplete
information. In Proc. 2nd International Conference on Temporal
Logic (ICTL’97), pages 91–106, Manchester, July 1997.

220 Bibliography

[KW01] Jochen Klose and Hartmut Wittke. An automata based interpreta-
tion of live sequence charts. In Proc. 7th International Conference
on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’01), pages 512–527, 2001.

[Lah08] Jussi Lahtinen. Model checking timed safety instrumented systems.
Master’s thesis, Helsinki University of Technology, Espoo, Finland,
June 2008. Research Report TKK-ICS-R3.

[Lam05a] Leslie Lamport. Real-time is really simple. TechReport MSR-TR-
2005-30, Microsoft Research, March 2005.

[Lam05b] Leslie Lamport. Real-time model checking is really simple. In
Proc. 13th IFIP WG 10.5 Advanced Research Working Con-
ference on Correct Hardware Design and Verification Methods
(CHARME’05), pages 162–175, 2005.

[Lio96] Jacques-Louis Lions. Ariane 5 flight 501 failure: Report of the
inquiry board. Paris, 1996.

[LK01] Marc Lettrari and Jochen Klose. Scenario-based monitoring and
testing of real-time uml models. In Proc. 4th International Confer-
ence on the Unified Modeling Language (UML’01), pages 317–328,
2001.

[LMM02] Martin Leucker, P. Madhusudan, and Supratik Mukhopadhyay.
Dynamic message sequence charts. In Proc. 22nd Conference on
Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS’02), pages 253–264, 2002.

[LMN04] Kim Guldstrand Larsen, Marius Mikucionis, and Brian Nielsen.
Online testing of real-time systems using uppaal. In Grabowski
and Nielsen [GN05], pages 79–94.

[LMNS05] Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen, and
Arne Skou. Testing real-time embedded software using uppaal-
tron: an industrial case study. In Proc. 5th ACM International
Conference On Embedded Software (EMSOFT’05), pages 299–306,
2005.

[LPWY99] Kim Guldstrand Larsen, Justin Pearson, Carsten Weise, and Wang
Yi. Clock difference diagrams. Nord. J. Comput., 6(3):271–298,
1999.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Uppaal
in a nutshell. Software Tools for Technology Transfer (STTT),
1(1-2):134–152, 1997.

Bibliography 221

[LRRA98] Peter Liggesmeyer, Martin Rothfelder, Michael Rettelbach, and
Thomas Ackermann. Qualitätssicherung software-basierter tech-
nischer systeme - problembereiche und lösungsansätze. Informatik
Spektrum, 21(5):249–258, 1998.

[LS98] Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms
for minimal fixed points (extended abstract). In Proc. 25th Inter-
national Colloquium on Automata, Languages and Programming
(ICALP’98), pages 53–66, 1998.

[LY97] Kim Guldstrand Larsen and Wang Yi. Time-abstracted bisim-
ulation: Implicit specifications and decidability. Inf. Comput.,
134(2):75–101, 1997.

[MLN04] Marius Mikucionis, Kim Guldstrand Larsen, and Brian Nielsen.
T-uppaal: Online model-based testing of real-time systems. In
Proc. 19nd IEEE/ACM International Conference on Automated
Software Engineering (ASE’04), pages 396–397, 2004.

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of
discrete controllers for timed systems (an extended abstract). In
Proc. 12th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’95), pages 229–242, 1995.

[NAS99] NASA. Report of the mars climate orbiter mishap, 1999.

[NAS00] NASA. The jpl special review board report of the loss of the mars
polar lander and deep space 2 missions, 2000.

[Ng93] Meng-Siew Ng. Reasoning with timing constraints in message se-
quence charts. Master thesis, University of Stirling, Scotland, U.K.,
August 1993.

[NR05] Manuel Núñez and Ismael Rodŕıguez. Conformance testing rela-
tions for timed systems. In Grieskamp and Weise [GW06], pages
103–117.

[NS01a] Brian Nielsen and Arne Skou. Automated test generation from
timed automata. In Proc. 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’01), pages 343–357, 2001.

[NS01b] Brian Nielsen and Arne Skou. Test generation for time critical
systems: Tool and case study. In Proc. 13th Euromicro Conference
on Real-Time Systems (ECRTS’01), pages 155–162, 2001.

222 Bibliography

[NS03] Brian Nielsen and Arne Skou. Automated test generation from
timed automata. Software Tools for Technology Transfer (STTT),
5(1):59–77, 2003.

[NVS+04] Lev Nachmanson, Margus Veanes, Wolfram Schulte, Nikolai Till-
mann, and Wolfgang Grieskamp. Optimal strategies for testing
nondeterministic systems. In Avrunin and Rothermel [AR04],
pages 55–64.

[Org05] Object Management Organization. Uml 2.0 superstructure speci-
fication. http://www.omg.org/spec/UML/2.0, 2005.

[Per85] Radia Perlman. An algorithm for distributed computation of a
spanningtree in an extended lan. SIGCOMM Comput. Commun.
Rev., 15(4):44–53, 1985.

[Pra95] K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput.
Program., 25(2-3):285–327, 1995.

[PU04] Alexandre Petrenko and Andreas Ulrich, editors. Formal Ap-
proaches to Software Testing, Third International Workshop on
Formal Approaches to Testing of Software, FATES 2003, Mon-
treal, Quebec, Canada, October 6th, 2003, volume 2931 of Lecture
Notes in Computer Science. Springer, 2004.

[Pus10] Saulius Pusinskas. Capturing and Testing Behavioral Requirements
by Means of Live Sequence Charts. PhD thesis, Aalborg University,
Aalborg, Denmark, 2010.

[RAJGJ04] J.G Rye-Andersen, M.W. Jensen, R. Goettler, and M. Jakobsen.
Peel: Property extraction engine for lscs. Master’s thesis, Aalborg
University, Aalborg, Denmark, 2004.

[RH01] Sanjai Rayadurgam and Mats Per Erik Heimdahl. Coverage based
test-case generation using model checkers. In Proc. 8th IEEE Inter-
national Conference on Engineering of Computer-Based Systems
(ECBS’01), pages 83–, 2001.

[RW87] P. J. Ramadge and W. M. Wonham. Supervisory control of a class
of discrete event processes. SIAM J. Control Optim., 25(1):206–
230, 1987.

[SC02] Bikram Sengupta and Rance Cleaveland. Triggered message se-
quence charts. In Proc. 10th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering (SIGSOFT FSE’02), pages 167–
176, 2002.

Bibliography 223

[SD05a] Jun Sun and Jin Song Dong. Model checking live sequence charts.
In Proc. 10th International Conference on Engineering of Complex
Computer Systems (ICECCS’05), pages 529–538, 2005.

[SD05b] Jun Sun and Jin Song Dong. Synthesis of distributed processes
from scenario-based specifications. In Fitzgerald et al. [FHT05],
pages 415–431.

[ST08] Julien Schmaltz and Jan Tretmans. On conformance testing for
timed systems. In Proc. 6th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’08), pages
250–264, 2008.

[STMW04] Ingo Schinz, Tobe Toben, Christian Mrugalla, and Bernd West-
phal. The rhapsody uml verification environment. In Proc. 2nd In-
ternational Conference on Software Engineering and Formal Meth-
ods (SEFM’04), pages 174–183, 2004.

[SVD01] Jan Springintveld, Frits W. Vaandrager, and Pedro R. D’Argenio.
Testing timed automata. Theor. Comput. Sci., 254(1-2):225–257,
2001.

[TA99] Stavros Tripakis and Karine Altisen. On-the-fly controller synthe-
sis for discrete and dense-time systems. In Proc. World Congress
on Formal Methods in the Development of Computing Systems
(FM’99), pages 233–252, 1999.

[TB03] Jan Tretmans and Ed Brinksma. Torx: Automated model-based
testing. In Proc. 1st European Conference on Model-Driven Soft-
ware Engineering (ECMDSE’03), pages 31–43, 2003.

[Tre96a] Jan Tretmans. Test generation with inputs, outputs, and qui-
escence. In Proc. 2nd International Workshop on Tools and Al-
gorithms for Construction and Analysis of Systems (TACAS’96),
pages 127–146, 1996.

[Tre96b] Jan Tretmans. Test generation with inputs, outputs and repetitive
quiescence. Software - Concepts and Tools, 17(3):103–120, 1996.

[Tre99] Jan Tretmans. Testing concurrent systems: A formal approach.
In Proc. 10th International Conference on Concurrency Theory
(CONCUR’99), pages 46–65, 1999.

[Tre08] Jan Tretmans. Model based testing with labelled transition sys-
tems. In Robert M. Hierons, Jonathan P. Bowen, and Mark Har-
man, editors, Formal Methods and Testing, volume 4949 of Lecture
Notes in Computer Science, pages 1–38. Springer, 2008.

224 Bibliography

[UL06] Mark Utting and Bruno Legeard. Practical Model-Based Testing:
A Tools Approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2006.

[VCST05] Margus Veanes, Colin Campbell, Wolfram Schulte, and Nikolai
Tillmann. Online testing with model programs. In Proc. 10th Euro-
pean Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/SIGSOFT FSE’05), pages 273–282, 2005.

[vL00] Axel van Lamsweerde. Formal specification: a roadmap. In
Proc. 22nd International Conference on on Software Engineering
(ICSE’00), Future of Software Engineering Track, pages 147–159,
2000.

[VRC06] Margus Veanes, Pritam Roy, and Colin Campbell. Online testing
with reinforcement learning. In Proc. 1st Combined International
Workshops on Formal Approaches to Software Testing and Run-
time Verification (FATES/RV’06), pages 240–253, 2006.

[VRKE07] Jüri Vain, Kullo Raiend, Andres Kull, and Juhan P. Ernits. Syn-
thesis of test purpose directed reactive planning tester for non-
deterministic systems. In Proc. 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE’07), pages
363–372, 2007.

[WQSD07] Hai H. Wang, Shengchao Qin, Jun Sun, and Jin Song Dong. Re-
alizing live sequence charts in systemverilog. In Proc. First Joint
IEEE/IFIP Symposium on Theoretical Aspects of Software Engi-
neering (TASE’07), pages 379–388, 2007.

[WRYC04] Tao Wang, Abhik Roychoudhury, Roland H. C. Yap, and S. C.
Choudhary. Symbolic execution of behavioral requirements. In
Proc. 6th International on Practical Aspects of Declarative Lan-
guages (PADL’04), pages 178–192, 2004.

[Yan04] Mihalis Yannakakis. Testing, optimizaton, and games. In Proc.
31st International Colloquium on Automata, Languages and Pro-
gramming (ICALP’04), pages 28–45, 2004.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems.
Software Tools for Technology Transfer (STTT), 1(1-2):123–133,
1997.

