

Aalborg University
Department of Computer Science
Selma Lagerlöfs Vej 300
9220 Aalborg
Telephone:(45)96358080
http://www.cs.aau.dk

Title:
BlueCAML
Bluetooth, Collaborative, And Maintainable Lo-
cation system

Theme:
Distributed and Mobile Software

Project time frame:
SW8, 2nd Februrary - 28th May, 2010

Project group:
sw801b

Group members:
Christian Frost
Casper Svenning Jensen
Kasper Søe Luckow

Supervisor:
Bent Thomsen

Abstract:
BlueCAML is an indoor positioning system targeting mobile devices. It provides the users
with a map showing their current position. Bluetooth with the fingerprinting technique
enables in this regard that position estimation can be performed.

Besides developing BlueCAML, a great effort is put in investigating the inherent deficiencies
of the fingerprinting technique and in evaluating Bluetooth as a positioning technology. In
regards to the fingerprinting technique, resolutions are implemented for addressing these.
Most notably, a means is established for accommodating that environmental factors change
over time. This requires maintenance of the collected environmental information, which
can be a time-consuming task. Thus, an additional feature of BlueCAML is its ability to
allow the users to help maintain this information.

A hypothesis is set for accommodating varying people density in the area. This involves
measuring current environmental variation and remedy position estimation accordingly.
However, a model describing this relationship is not set, but a foundation for further
research is established.

Finally, it is concluded that Bluetooth can potentially be used as an indoor positioning
system, since the achievable accuracy of BlueCAML is ten meters with a precision of 81%.

Copies: 6

Total pages: 148

Of this Appendices: 7

Paper finished: 28th of May 2010

The content of this report is freely available, but publication is only permitted with explicit permission from the authors.

Preface

This report is written by three software-engineering students attending the 8th semester at
Aalborg University as a part of their semester project. The project was commenced on the
1st of February 2010, and finished on May 28th 2010.

During the project of BlueCAML, help has been received from a number of people who
the authors would like to thank. First of all, the project’s supervisor Bent Thomsen, who
has been helpful with advice regarding the project and the content of the report. René
Hansen gave advice, based on his experience, on the fingerprinting technique and indoor
positioning in general. Laurynas Šikšnys helped in providing a reusable component for the map
representation. Ulrik Mathias Nyman helped with verification issues. Kim Guldstrand Larsen
helped in seeing different perspectives of BlueCAML. Jørgen Back Andersen and Rasmus
Krigslund helped in understanding how radio signals behave indoors. Finally, Søren Juul and
Morten Bested functioned as test subjects in the usability test.

This report will concentrate on subjects related to computer science. Therefore, it is
assumed that the reader has equivalent knowledge in the field of computer science, as that of
a 8th semester software engineering student.

Two types of source references are used throughout the report. One is a reference placed
after a period which refers to the given section. The other type of reference is placed before
a period which refers to the particular sentence or word. The sources of the references used
throughout this report, can be found in the bibliography at the end of the report.

Aalborg, May 2010
- sw801b

Christian Frost

Casper Svenning Jensen

Kasper Søe Luckow

iii

iv

Contents

1 Introduction 1

1.1 Scenario . 2
1.2 Related Work . 4
1.3 Learning Goals . 6
1.4 Report Overview . 6

2 Development Method 8

2.1 Tailored Scrum . 9

3 Requirements 12

3.1 Functional Requirements . 12
3.2 Non-functional Requirements . 13

I Analysis 16

4 The Bluetooth Technology 17

5 Position Estimation 19

5.1 Positioning Approaches . 19
5.2 Fingerprinting Techniques . 24

6 Positioning Topology 29

6.1 Topologies . 29
6.2 Selection of Topology . 33

7 Environmental Factors Influencing Fingerprinting 34

7.1 RSSI Measurement Method . 34
7.2 Orientation of User . 36
7.3 Radio Map Becoming Obsolete Over Time . 38
7.4 Varying People Density . 39
7.5 Signal Strength Fluctuations over a short Time-Frame 42
7.6 Density Of Fingerprints . 43
7.7 Time Measurements of the Fingerprint Process 44

8 Test and Verification Methods 46

v

8.1 Testing . 46

8.2 Verification . 50

II Architecture 53

9 Technical Platform 54

9.1 Back-end . 54

9.2 Mobile Device . 55

9.3 Signaltransmitter . 58

10 System Architecture 62

10.1 Architecture . 62

10.2 Back-end Application . 62

10.3 Signaltransmitter Application . 64

10.4 Mobile Application . 64

11 Communication 67

11.1 The Communication Protocol . 67

11.2 Message Format . 68

11.3 Verification of Protocol . 69

III Design 76

12 Back-end Application 77

12.1 Web Services . 77

12.2 Data Design . 77

12.3 Classes . 79

13 Signaltransmitter 81

13.1 Classes . 81

13.2 Upload Fingerprint Activity . 83

14 Mobile Application 85

14.1 Classes . 85

14.2 Activities . 88

vi

IV Implementation 91

15 Back-end Application 92
15.1 Construction of Radio Map . 92

16 Signaltransmitter 94
16.1 Upload Fingerprint . 94

17 Mobile Application 97
17.1 Position Estimation . 97
17.2 Radio Map Maintenance . 102
17.3 PIFC Renderer . 106

18 Testing 107
18.1 Resource Usage . 107
18.2 Power Consumption . 108
18.3 Unit Testing . 109
18.4 Usability Testing . 111
18.5 Accuracy and Precision of Position Estimates 114

V Conclusion 120

19 Conclusion 121

20 Discussion 124

VI Appendices 127

Bibliography 134

vii

1
Introduction

The applicability of outdoor positioning systems, such as the Global Positioning System
(GPS), has given rise to a wide range of applications and products. These include, among
others, navigation devices used in cars, watches tracking the traversed route of a person, and
therefore affect many people around the world. However, GPS cannot be used for indoor po-
sitioning due to its inherent issue with radio waves being incapable of sufficiently penetrating
roofs (Malik, 2009).

Based on the popularity of outdoor positioning systems, indoor positioning systems are
expected to hold great potential as well, and it is therefore an area where effort is put into
exploring possible solutions for such systems. Indoor positioning opens for using the indoor
context of people in terms of their position to provide information accordingly. Systems
build upon this concept are called context-aware and opens for numerous applications such
as providing users with today’s menu if they enter the canteen area (Ducatel et al., 2001).

Previously, research has primarily emphasised on exploring the potential of using Wi-Fi
as the technology for indoor positioning systems (Honkavirta et al., 2009; Bahl and Pad-
manabhan, 2000; Hansen and Thomsen, 2009). The advantage of this is that many public
buildings and institutions today are already equipped with Wi-Fi access points, hence making
the deployment cost low for these. However, given that the positioning system targets mobile
devices, these must as well be equipped with Wi-Fi capabilities. It is assumed that Wi-Fi
support is not yet a standard feature in mobile devices. Instead, Bluetooth has been used for
several years in mobile devices, and is a relatively common feature in the majority of mobile
devices. Also, Bluetooth aiming at being a low-cost, energy-efficient wireless communication
technology enhances the incentive of using this technology. Therefore, it is assumed that an
indoor positioning system using Bluetooth would hold greater potential than systems using
Wi-Fi for indoor positioning. Furthermore, previous research made by the authors (Sw701b,
2009) showed that the hardware needed for a Bluetooth infrastructure is relatively inexpen-
sive, hence keeping the deployment cost of such an infrastructure relatively low. Therefore,
this report presents an indoor positioning system called Bluetooth, Collaborative, And Main-
tainable Location system (BlueCAML), which uses Bluetooth as its positioning technology.

A problem which can be observed with some positioning techniques is a dependency on
information, which changes over time, regarding the environment in which it is used. Thus,

1

CHAPTER 1. INTRODUCTION

one goal of BlueCAML is to develop, not only a positioning system using Bluetooth, but also
mechanisms for enabling the users to maintain this environmental information.

In the following section, the scenario in which BlueCAML is used is described in fur-
ther detail. Furthermore, an overview of related work and learning goals of the project are
described. Finally, an overview of the report structure is provided.

1.1 Scenario

The purpose of this section is to describe the scenario which will form the outline of the devel-
opment of BlueCAML. To formulate and understand the usage and structure of BlueCAML,
the application domain work product is used to describe the work process, and the prob-
lem domain work product describes the objects in BlueCAML (Munk-Madsen et al., 2000).
These help in understanding both the context in which BlueCAML is used and introduce
basic concepts and entities in the system.

Back-end

Mobile device

Signaltransmitter

Figure 1.1: The scenario in which BlueCAML is deployed.

Figure 1.1 shows the scenario in which BlueCAML is used. The scenario consists of a
number of signaltransmitters placed strategically around in the building. Users carrying mo-
bile devices should then be able to determine their position based on a positioning technique
which builds upon some relationship between the mobile devices and signaltransmitters. Fur-
thermore, the mobile device communicates with the back-end to maintain the environmental
information. Both the mobile device and signaltransmitters support Bluetooth.

1.1.1 Application Domain

The following describes how BlueCAML is used in practice.

A user enters the building with BlueCAML pre-installed on her mobile device and the
building information loaded. The user is then provided a floor plan of the building with her
current position which changes as she moves around in the building.

2

1.1. SCENARIO

While moving around, the user may observe that inconsistencies are present on the map
with respect to her actual position. In this case, the user is provided the option of correcting,
and thus help maintaining the accuracy of BlueCAML. This option includes specifying which
part of the map needs to be corrected and the user is afterwards given instructions on how to
carry out this maintenance procedure.

Furthermore, the user is capable of requesting updated building information from the
back-end which contains the corrections provided by the user herself and other users.

1.1.2 Problem Domain

BlueCAML consists of a variety of general components. The purpose of this section is to
describe these, how they are interconnected, and what their purpose serve. In Figure 1.2, the
components and their relationships are shown in a UML class diagram.

Back-end

Location Engine

Signaltransmitter

Mobile Application

Building Information

11

1

*

1

1

*

*

1

*

1

*

Location Engine

processes one

Building information

instance at a time

Interacts in order to determine

the mobile application position

Maintenance Engine

1 1

1

1

Figure 1.2: The problem domain represented as a UML class diagram.

The system comprises three major parts: the mobile application, the back-end and the
signaltransmitters. The mobile application is further divided into the location engine and
maintenance engine. These components, and the building information shared between multi-
ple components are described below.

Mobile Application The mobile application is responsible for showing the map and current
position to the user. It is related to one or more signaltransmitters in order to estimate
its position and further consists of a Location Engine and a Maintenance Engine.

Location Engine The location engine is responsible for conducting the actual position esti-
mation procedure of the user.

3

CHAPTER 1. INTRODUCTION

Maintenance Engine The maintenance engine is responsible for letting the user upload cor-
rected environmental information to the back-end.

Back-end The back-end is responsible for storing the environmental information about the
buildings and provides a means for users of the system to upload corrections to the
building information.

Signaltransmitter The signaltransmitters are Bluetooth enabled devices which are an essen-
tial part of the positioning system. In general they provide a means of estimating the
position. How these are used depends on the chosen positioning method described in
Chapter 5.

Building Information The building information consists of information needed by the location
engine in order to estimate positions. The actual type of building information is likewise
dependent on the chosen positioning method.

1.2 Related Work

Examining existing research related to ones project is a good idea since it opens for the
possibility of drawing inspiration or to reuse components.

To the authors knowledge, no systems are similar to BlueCAML, but some incorporates
ideas which BlueCAML builds upon. Systems from which inspiration can be drawn are:
RADAR (Bahl and Padmanabhan, 2000), Weighted Graphs (Hansen and Thomsen, 2009),
BLIP (BLIP, 2010), and Easy Clocking (Sw701b, 2009) that all are described below.

1.2.1 RADAR

The RADAR (Bahl and Padmanabhan, 2000) project introduced the concept of positioning
with an existing Wi-Fi infrastructure. The observations and methods used in this research
have been extensively cited and build upon in further research in the field. It describes
methods such as fingerprinting and propagation models to track a Wi-Fi enabled laptop in
an office environment. Many of the observations and techniques it describes constitute the
basis for positioning in BlueCAML combined with new techniques in accordance to advances
in the field since the release of the paper on the RADAR project.

The RADAR project achieved an accuracy of 2.94 meters with a precision of 50% using
fingerprinting and the Nearest Neighbour searching strategy, which are described in Chapter 5.
Additionally, an accuracy of 4.3 meters with 50% precision using measured Received Signal
Strength Indicator (RSSI) values and propagation models was achieved. They also researched
the impact of user orientation which decreased the accuracy to 4.90 meters for 50% precision
using fingerprinting.

4

1.2. RELATED WORK

1.2.2 WLAN Positioning with Weighted Graphs

The research project conducted by Hansen and Thomsen (2009), proposes an interesting
approach for indoor positioning using the existing Wi-Fi infrastructure of buildings and mobile
devices. As with RADAR, this research project applies a fingerprinting approach but takes
into account where and how fast the user can physically move.

The system is capable of estimating a position with an accuracy three meters with 90%
precision.

This approach is further described in detail in Chapter 5.

1.2.3 BLIP

A BLIP System is a mobile marketing platform that enables companies to define campaigns
for the end-users having a Bluetooth enabled device. A campaign could for instance be
advertisements that relates to nearby shops. The system consists of BlipNodes, each of which
constitutes a specific area of interest. These are essentially Bluetooth access points that enable
one-to-one communication with the target audience. The BlipNodes detect presence based on
proximity, that is, they register Bluetooth enabled devices that are within reach. Registered
data about nearby Bluetooth devices is forwarded to a central server. The BlipNodes can
either be wired or wirelessly connected to the central server through the Internet. This opens
for a single server controlling multiple BLIP Systems.(BLIP, 2010)

The BLIP System gives inspiration in a variety of ways for BlueCAML. Initially, the idea
of centralising configuration of the system to a central server could be adopted profitably
such that configuration does not need to be performed in multiple areas of the system. For
instance, one could imagine, that in case the building in which BlueCAML is deployed changes
environmentally, thus, invalidating the existing environmental information, corrections to
these can be created and placed on the central server and pushed onto the mobile devices
when they reconnect. Finally, it may be appropriate to adopt the idea of pushing content
to the mobile devices through established Bluetooth connection from the sensors instead of
using a separate communication path for that such as the use of the 3G network.

1.2.4 Easy Clocking

Last semester the authors developed Easy Clocking (Sw701b, 2009), a system capable of
automatically clocking in and out employees according to their position. Bluetooth was used
to estimate the range between a fixed point and a Bluetooth tag. The research showed that
it was possible to estimate this range with an accuracy of five meters 87% precision in an
open corridor and under preferable conditions, using the RSSI as means of deriving a distance
estimate (Sw701b, 2009).

Easy Clocking works by deploying location sensors at known positions, whose purpose is
to scan the area for Bluetooth tags. When tags are discovered, the measured RSSI value is

5

CHAPTER 1. INTRODUCTION

used to calculate the distance to them. This information is then stored in the location sensor
along with a time stamp. When the tag moves outside the detectable area, the time stamp
and distance, along with another time stamp of when the tag was last detected is send to a
server.(Sw701b, 2009)

The development of Easy Clocking showed that Bluetooth as an indoor positioning tech-
nology holds great potential, and hence established the ground for developing an indoor
positioning system using Bluetooth.

1.3 Learning Goals

Besides giving a solution to the previously described scenario, the project must fulfil the
goals from the study regulation for a 8th semester software engineering project. To gain
knowledge in even more aspects of software engineering, additional goals are set. These are
chosen based on what the authors find interesting from previously untried aspects of software
engineering related to the development of BlueCAML. The goals from the study regulation
and the additional chosen goals are listed in the following:

• Demonstrate knowledge and understanding in analysing, designing, implementing and
evaluating software for a mobile platform.

• Consider concepts and opportunities within mobile technologies.

• Account for and assess opportunities in verification and validation of software systems.

• Demonstrate skills in applying techniques, methods, models, and tools for test and
verification of software systems.

• Gain knowledge in distributed software development.

• Gain knowledge in using the model checking tool UPPAAL for verification.

• Examine different positioning techniques, implement one or more techniques, and test
them in a practical setting.

• Gain knowledge in the capabilities of Bluetooth in regards to indoor positioning systems.

1.4 Report Overview

Even though an iterative and incremental development method has been used, this will not
be reflected in the structure of the report. This means that the report will document the
final product, and not how it has evolved over time. The authors have good experience in
structuring the report this way, and hence want to repeat it.

The following two chapters describe the development method and the requirements for
BlueCAML. The remaining report is structured into the following five parts:

6

1.4. REPORT OVERVIEW

Part 1: Analysis The Bluetooth technology, positioning methods, topology of positioning
systems, fingerprinting methods, and test and verification methods are analysed and
decisions are made based on this.

Part 2: Architecture This part describes the architecture of BlueCAML and how the different
components of the system interact.

Part 3: Design This part describes the design of each of the major components of BlueCAML
and which subcomponents they consist of.

Part 4: Implementation The implementation part provides concrete implementation details
of some of the interesting areas of BlueCAML.

Part 5: Conclusion The project of BlueCAML is concluded, and encountered problems, what
have been learned, and possible improvements are finally discussed.

7

2
Development Method

This chapter describes the development method adopted in the development of BlueCAML.

Generally, the purpose of using a development method is to help structuring and control-
ling the development process (Sommerville, 1999). The chapter is based on experience gained
by using different development methods on previous projects (Weisberg et al., 2007; Frost
et al., 2008; Sw701b, 2009). Namely the incremental method (Sommerville, 1999), Object-
Oriented Analysis and Design (OOAD) (Munk-Madsen et al., 2000), and a tailored Scrum
(Larman, 2003; Sw701b, 2009) have been applied. The tailored Scrum, used for developing
Easy Clocking (Sw701b, 2009) used practices and work products, based on prior experience,
from various other methods, such as the problem and application domain analysis known from
OOAD and the vision work product known from Unified Process (UP).

According to the development of Easy Clocking, using the tailored Scrum development
method generally was a success. In this, work products such as user stories, time estimates,
and burn down charts turned out beneficial in aiding with assessing the progress of the devel-
opment process contrasting the experience gained from more traditional methods. However,
place for improvements was identified. Therefore, to explore the full potential of the method,
the authors want to adjust it further.

An adjustment, is to incorporate the process of writing a report into the Scrum project
management, since managing report writing separately was problematic in Easy Clocking.
Therefore, user stories with corresponding estimates for the report are needed.

Another lesson learned from Easy Clocking is that iteratively developing software using
Scrum requires developers to refactor or add new functionality to unfamiliar source code.
Undesirably, this often results in the developers introducing faults to the software (Sw701b,
2009). To counter this, a test-suite with automatic unit tests proved effective in catching
newly introduced faults. Based on this experience, more focus is to be put in testing the
software using different testing techniques, which also complies with the learning goals.

The following section describes the tailored Scrum development method in detail with the
chosen practices and work products to be used after applying the specified changes.

8

2.1. TAILORED SCRUM

2.1 Tailored Scrum

The authors have previously used or been introduced to various development methods. This
provides the basis for selecting practices and work products that through assessment seem
most interesting and valuable for the development of the project.

• Backlogs. (Scrum)

• Burn Down Chart. (Scrum)

• Iterative Sprints. (Scrum)

• User Stories. (XP)

• Planning Game. (XP)

• Problem and Application Domain. (OOAD)

• Comprehensive Documentation.

A more detailed description of why the practices and work products are chosen is given
in the following sections.

2.1.1 Backlogs (Scrum)

One of the key work products in Scrum is the use of backlogs, namely the product and sprint
backlog. The product backlog consists of all features, such as user stories etc., that must be
reflected in the development of the product.

In the sprint backlog, a subset of items from the product backlog is chosen to be conducted
during the particular sprint. These items are decomposed into tasks each of which can be
in one of the three states: Planned, Ongoing and Done. Normally, the items for the sprint
backlog are chosen in cooperation between all the stakeholders, but in the development of
BlueCAML, only the authors have been involved in this process.(Larman, 2003, c. 7)

Appendix D shows the sprint backlog from the first sprint of BlueCAML.

2.1.2 Burn Down Chart (Scrum)

Using a burn down chart to monitor the progress during a sprint, was a motivating factor
for completing tasks during the last semester project. Therefore, this work product will
likewise be incorporated into the development process of BlueCAML. The burn down chart
is updated as the last thing every afternoon, providing the developers a consistent overview
of the progress thereby aiding in assessing whether the sprint backlog can be completed on
time or actions need to be taken accordingly.(Larman, 2003, c. 7)

Appendix D shows the burn down chart for the first sprint.

9

CHAPTER 2. DEVELOPMENT METHOD

2.1.3 Iterative Sprints (Scrum)

Scrum, and other agile development methods (Larman, 2003, c. 7), encourage the use of incre-
mental and iterative development. In Scrum the iterations are called sprints. The duration of
the sprints may vary from project to project. The authors have used sprints of two weeks on
a previous project which differs from the normal four week sprints encouraged by Scrum. The
sprint length is chosen in order to more quickly adapt to changes in requirements, adapt to
additional work related to meetings, and more quickly detect time slippage as a consequence
of bad time estimates. The downside of the decreased sprint length is more overhead related
to evaluating and planning the sprints.

2.1.4 User Stories (XP)

A user story consists of a sentence and a time estimate indicating the effort for completing it.
The purpose of the sentence is to refresh the conversation that led to the creation of the user
story. Furthermore, acceptance tests can be added if needed. (Cohn, 2004)

Scrum does not define how items are represented in the product backlog. Therefore, work
products from other development methods can be applied for this. The combination of Scrum
and usage of user stories, known from XP, has been introduced on a previous project (Sw701b,
2009) where this combination was applied with success. Hence, this work product will also
be applied in this development process.

2.1.5 Planning Game (XP)

Scrum encourages giving each user story in the backlogs time estimates (Larman, 2003, c. 7).
Last semester, experience was gained in the Poker Planning Game (Atira, 2009) time estima-
tion technique which allows the developers to get insight into the different interpretations of
the tasks and gain a shared understanding of them.(Sw701b, 2009)

When using the Poker Planning Game, each developer estimates a given task and compares
this with the estimates made by the other developers. Afterwards, the developers with the
highest and lowest time estimates, respectively, explain how they derived the specific estimate.
Based on this, the activity is repeated and new time estimates are made, until the developers
come to an agreement.(Atira, 2009; Sw701b, 2009)

2.1.6 Problem and Application Domain (OOAD)

In previous projects (Frost et al., 2008; Sw701b, 2009), the problem and application domain
work products were used. In the development of a privacy module to StreamSpin (Frost
et al., 2008), they were used with comprehensive documentation. In the development of Easy
Clocking, the work products were only limited used to introduce the two domains for the
reader. This turned out to work well and will therefore be repeated.

10

2.1. TAILORED SCRUM

2.1.7 Comprehensive Documentation

Scrum encourages the use of documentation. However, it spans wide on the ceremony scale
meaning that it does not exclude the possibility of comprehensive documentation which is
required for an academic project report.

When developing Easy Clocking, the concept of limited documentation was used when im-
plementing the user stories, and then afterwards, as a post-rationalisation, the documentation
with corresponding diagrams was made. This was a great advantage since it revealed design
flaws etc. which then could be corrected before moving on to the next user story (Sw701b,
2009). Therefore, this will be repeated in the development of BlueCAML.

11

3
Requirements

The following lists the requirements for BlueCAML divided into functional and non-functional
requirements.

The requirements have been categorised into: Learning goal, Scope, and User story. The
learning goal requirements are selected in order to fulfil the goals set by the study regulation
and to set goals for new subject matter to be learned in this project. The scope requirements
are set in order to define the scope of the project. Finally, the user story requirements are
defined in order to specify more clearly the goals of the final product.

In the following, both functional and non-functional requirements are given. Furthermore,
a set of quality factors are given in the non-functional requirements.

3.1 Functional Requirements

The functional requirements are listed below:

• Estimate current position of users in an indoor environment. (Learning goal)

• The position must be shown on a map of the building. (User story)

• Position estimates must be provided with an interval of at maximum four seconds. (User
story)

• The accuracy of the position estimates must at minimum have an accuracy of three
meters with 80% precision. (Scope)

• The user must be able to report environmental changes and these must be retrievable
by other users. (User story)

• The average walking speed of the users is 1.4 m/s (5 km/h). (Scope)

12

3.2. NON-FUNCTIONAL REQUIREMENTS

3.2 Non-functional Requirements

Following are the non-functional requirements for BlueCAML.

• The system must be operational in a 100 square meter area with 10 people. (Scope)

• The system must be operational in indoor environments. (User story)

• The mobile application must be executable on a mobile device. (Learning goal)

• The BlueCAML infrastructure must be comprised of relatively low-cost equipment.
(User story)

• The BlueCAML system must be scalable in terms of number of concurrent users. (User
story)

Besides these requirements, the quality factors for BlueCAML are also identified. These
are described in the following.

3.2.1 Quality Factors

Quality factors are used to express to which degree different aspects for the final product are
important for the customer. E.g. besides expecting the software to meet the user requirements,
the customer might also want the software to be flexible if the circumstances, in which it is
used, are likely to change.(van Vliet, 2008)

Prioritising the quality factors helps with architectural and design decisions throughout
the project and helps setting the scope such that various irrelevant issues are stated explicitly
not to be taken into account. The quality factors are prioritised in the following categories:

Very Important Quality factors requiring much focus during the development, essentially
meaning that the product is primarily based on these.

Important Quality factors requiring focus but not to the same extent as those with a very
important prioritisation.

Less Important Quality factors which are not focused on. However, they will be taken into
account to the extent of what is good practice.

Irrelevant Quality factors not considered during development.

The definitions of the quality factors can be found in Appendix A. Table 3.1 shows the
prioritisation of the quality factors regarding BlueCAML.

Argumentation for the prioritisations is given below.

13

CHAPTER 3. REQUIREMENTS

Quality Factor Very Important Important Less Important Irrelevant

Product Operations
Correctness X

Efficiency X

Usability X

Reliability X

Integrity X

Durability X

Availability X

Product Revision
Testability X

Scalability X

Flexibility X

Maintainability X

Product Transition
Reusability X

Portability X

Interoperability X

Table 3.1: Prioritisation of the quality factors grouped into: product operation, product revision, and
product transition.

Very Important

Correctness The final system must satisfy the requirements, since these dictate what func-
tionality is considered applicable for a user. Hence, if not fulfilling these, it is not
assumed that the users are satisfied with the system.

Testability This quality factor has not been focused on in previous projects, meaning that
focusing on this will provide new knowledge which can be used later. Due to the
project taking starting point in mobile development with positioning in mind, focusing
on testability is beneficial because changes require setting up the environment which is
a time consuming process. Accommodating this can be done by emulating it through
simulation. Additionally, the study regulation dictates the necessity of emphasising on
this.

14

3.2. NON-FUNCTIONAL REQUIREMENTS

Important

Efficiency The main part of BlueCAML is executed on a mobile device with limited re-
sources, hence this must be taken into account to ensure that the software does not re-
quire more resources than available. The same applies for the signaltransmitters whom
are based on limited resources due to their embedded nature.

Usability One of the purposes of BlueCAML is to make the basis for collaborative mainte-
nance of the system. The hypothesis is that for this to be a success, it must not be a
complicated process for the users potentially degrading the incentive for users to do so.
Thus, the user interface and the process the user must participate in should be intuitive
and easy to conduct.

Reliability The system must be reliable in the sense that it must be able to handle erroneous
corrections in a proper way. Specifically, an erroneous correction should not make the
system crash or, in a gentler form, present the misreading in form of an incorrect position
to the user. Unfortunately, since the position estimates depends on the environment, it
is difficult to prevent scenarios where incorrect estimates are given. Furthermore, the
time it takes for BlueCAML to calculate a user’s position and present it on the mobile
device must be within some predefined interval, or else the presented position will be
outdated when given to the user.

Scalability The potential user group of an indoor positioning system, like BlueCAML, is
considered to be large, meaning that the system must be capable of handling a large
amount of concurrent users. If this is not taken into account, components of the system
might need to be redesigned or even the whole architecture must be reconsidered to
accommodate an unexpected increase of number of users.

Less Important

These quality factors are not focused on during the development. As an example, consider
integrity. In practice, this is an issue which should not be neglected when dealing with user
information. This especially applies when dealing with user information that potentially
may compromise their privacy. However, ensuring integrity is a subject that has to fully
incorporated and hence a significant effort is required. This effort is assessed to completely
shift focus from developing the actual positioning capabilities of the system and due to these
reasons, integrity concerns are omitted.

Irrelevant

Focus is not put in fulfilling these quality factors. For instance, consider the portability quality
factor. This is not considered relevant since it is known from previous experience (Sw701b,
2009), that the functionality of accessing the Bluetooth RSSI values is platform dependent.
The purpose of BlueCAML is to show whether Bluetooth is applicable in an indoor positioning
system, and whether mechanisms can be implemented, allowing the positioning capabilities
to be maintained in terms of accuracy. If these purposes can be fulfilled, future work could
include porting BlueCAML to other platforms.

15

Part I

Analysis

16

4
The Bluetooth Technology

The purpose of this chapter is to analyse the Bluetooth technology to reveal its characteristics
and possible complications that must be considered in the development. The analysis is based
on the Bluetooth specification (SIG, 2007).

Frequency Hopping

The Bluetooth radio operates in the 2.4 GHz ISM band; the same as Wi-Fi networks. It
uses frequency hopping in order to reduce the impact of interference from other wireless
communication using the same frequency. Specifically, Bluetooth hops every 625 microseconds
between 78 frequencies with 1 MHz intervals above 2.4 GHz. This impacts the time required
for discovering visible devices and connecting to devices since the different frequency hops
must be searched to synchronise.

Bluetooth Topology

A device can initiate a simple point-to-point connection or connect to multiple devices, thereby
forming a piconet topology. The device initiating the connections in a piconet is called the
master and all other devices are called slaves. In a piconet, there can exist only one master
and up to seven active slaves and 255 parked slaves. Both master and slaves can be part of
multiple piconets simultaneously, hence in this project, the individual signaltransmitters can
be slaves in several piconets.

It is only possible to measure the RSSI value of the seven active connections and not
inactive or parked connections. However, this is not considered a problem in this project
since the maximal number of connectable signaltransmitters at a given position is considered
to be four at most.

Received Signal Strength Indicator Properties

The Bluetooth specification does not define exactly how the RSSI values are to be measured
by the hardware. For instance, the time it takes to measure the value and when the value

17

CHAPTER 4. THE BLUETOOTH TECHNOLOGY

is refreshed due to caching, depends on the hardware implementation. An analysis of the
measured RSSI values indicates that the mobile device used in BlueCAML caches these be-
tween consecutive measurements. Due to the incompleteness of this specification, this must
be accounted for in the development.

Power Management

In the specification, it is stated that class 1 Bluetooth devices must implement power control
features in order to limit the power usage of slaves connected to a master device (SIG, 2007,
page 32). The master device should notify the slave device if it detects a signal which is
stronger or weaker than necessary, by prompting the slave to decrease or increase its radio
strength for that particular connection. This is a potential problem since the signals are the
basis for making position estimates, and hence must be considered fairly constant. It is not
stated clearly if this is the responsibility of the software or the hardware in the specification but
the authors have not been able to control this functionality from the exposed API. Regardless,
it is not considered a problem since practical measurements have not shown to be affected by
this behaviour.

Detecting Range

Class 1 Bluetooth devices, which are used in this project, have a theoretical detecting range
of 100 meters. However, during the experiments made inside a building in this project,
the practical detecting range is closer to 25 meters (SIG, 2007). This means that for a
mobile device to detect multiple signaltransmitters, these should be placed each 25 meters,
resulting in the mobile device being able to detect at least two signaltransmitters anywhere.
This means that one signaltransmitter approximately covers a 1000 square meter area, which
according to the requirements, stating that BlueCAML should be applicable of handling 10
concurrent users in a 100 square meter area, in worst case results in 100 concurrent users
per signaltransmitter. Since the signaltransmitters do not need to be actively connected to
each mobile device simultaneously, it is assessed that the requirement can be fulfilled. It is
expected that even more users can use the system concurrently with the only side effect of
having longer communication times due to collisions of the Bluetooth signals. This is opposite
to piconets where the frequency hops are divided between the devices.

In the scenario in which BlueCAML is tested, it is practically impossible to acquire 100
Bluetooth devices for testing this property. The requirement is therefore upheld through
theoretical basis.

18

5
Position Estimation

To provide the estimated position of the user on a map, a positioning estimation method is
needed. The purpose of this chapter is to highlight the position estimation methods that have
been considered as candidates for BlueCAML. The methods are described and their respec-
tive advantages and disadvantages relevant in terms of BlueCAML are exposed. This creates
the foundation for the argumentation in the subsequent selection of positioning estimation
method. Finally, considerations regarding the method with potential additions to both im-
prove accuracy, precision, and search performance are revealed. Accuracy and precision are
two common performance metrics of a positioning system whose definitions are described
below:

Accuracy Accuracy is a concept used to describe the order the estimated position deviates
from the actual position.

Precision Precision refers to the percentage of measurements retaining a particular accuracy.

5.1 Positioning Approaches

The following describes three approaches for estimating positions and is inspired by Liu et al.
(2007).

5.1.1 Fingerprinting

Using fingerprints for position estimation refers to the type of approach in which prior mea-
surements of the environment are collected and stored. The RSSI values of detectable signal-
transmitters can be used as the measurable entity, and the process of collecting these is
referred to as the offline stage. The measurements are called fingerprints, and these are made
at selected points in the environment. The fingerprints are collectively stored in a radio map
which, besides containing the fingerprints, also contain the corresponding position from which
the they were collected.

The offline stage creates the foundation for the online stage where a detectable object is
placed in the environment. The object similarly measures the RSSI values of the detectable

19

CHAPTER 5. POSITION ESTIMATION

signaltransmitters thereby creating a fingerprint. This fingerprint is then compared with the
fingerprints stored in the radio map by utilising one or more of the various pattern matching
techniques available. The fingerprint of the radio map that best matches the collected finger-
print is chosen and the corresponding position returned. Depending on the used technique,
multiple fingerprints may be found as best matching, and from these, a position is estimated.

Advantages

• Relatively good accuracy is achievable provided that fingerprints are available for small
distance intervals.

• The fingerprinting approach takes static elements in the environment into account, such
as walls, by measuring the changes introduced by these. Thus, the accuracy level of the
method is not affected as long as these elements are not moved or changed. This means
that the fingerprinting technique is not as vulnerable to radio signal phenomena such
as multi-path fading, diffraction, and reflection as other approaches because these are
accounted for in the fingerprints during the offline stage.

Disadvantages

• Requires initialising the system by conducting the aforementioned offline stage which
may be time consuming.

• Due to environmental changes such as the density of people in the environment and
refurnishment, the offline stage may need to be conducted regularly to prevent erroneous
position estimates.

• There exist various methods of conducting the pattern matching process, but in some
cases, this may be a complex task. The amount of time required to determine the
best-matching fingerprint may be a problem if the radio map is very large.

5.1.2 Triangulation

Triangulation is used to estimate a position based on measurements from three signaltransmit-
ters using geometrical views. The geometrical views are either to use lateration or angulation
algorithms. The distances to multiple signaltransmitters are used in lateration and in angu-
lation the angles to the signaltransmitters are used (Liu et al., 2007). Figure 5.1 depicts the
ideas of both lateration and angulation.

Provided that the position is to be estimated in the plane, knowing the distance to at
least three signaltransmitters is sufficient due to a single intersection point being available for
the three circles drawn with radii equal their respective distances and origo localised at the
signaltransmitters.

20

5.1. POSITIONING APPROACHES

Figure 5.1: Lateration is shown at the left where the distances to three signaltransmitters are known.
At the right, the concept of angulation is depicted, using three directions to estimate an intersection
point.

Liu et al. (2007) and Malik (2009) describe Time Of Arrival (TOA), Time Difference Of
Arrival (TDOA), Received Signal Strength Indicator (RSSI) and Angle Of Arrival (AOA) as
techniques for performing lateration and angulation.

TOA Uses the time the signal travels between two devices to estimate the distance. This
requires that the clocks of the used devices are precisely synchronised and that the signal
contains a timestamp about when it left the source.

TDOA Uses the time difference of the transmitted signal received at multiple sources to es-
timate the position of the device. This requires that the signaltransmitters are precisely
synchronised but there is no requirements for synchronisation on the mobile device.

RSSI Is used to measure the decrease in a signal’s strength as it propagates from source
to destination. By using a radio propagation model, it is possible to estimate the
distance to a signaltransmitter based on this value. The authors applied this technique
in previous research (Sw701b, 2009) and showed that an accuracy of five meters with
87% precision is possible when estimating distances under favourable conditions.

AOA Using AOA, a position is estimated using the angle from which the signal is received.
Having at least three angles, an intersection point and hence position, can be estimated.
This requires that the hardware supports measuring angles.

Advantages

• In respect to the other positioning algorithms, triangulation only requires relatively few
computations for position estimation. This is advantageous if the computations are
made on a mobile device.

21

CHAPTER 5. POSITION ESTIMATION

• The triangulation approach generally does not require a comprehensive offline stage.
Only the algorithms based on a radio propagation model require calibration after de-
ployment.

• Besides knowing the position of the signaltransmitters, no other data storage is required,
thereby being advantageous if the data needs to be stored on a mobile device.

• The triangulation algorithms hold potential for estimating precise positions which are
not constrained by some predefined granularity.

Disadvantages

• The techniques using time stamps and angles, require special-purpose hardware such
that these can be measured precisely. Time synchronisation is paramount because the
signal can travel 300 meters in only one microsecond.(Bose and Foh, 2007; Fischer et al.,
2004)

• The algorithms are vulnerable to radio propagation phenomena like multipath fading,
which may result in signals propagating in an indirect line from transmitter to receiver.

• If the environment changes significantly, the radio propagation model must be recali-
brated.

5.1.3 Proximity

Proximity is a simple positioning approach aimed at providing symbolic relative positions, that
is, the system is only capable of informing about whether or not a mobile device is within
the detectable range of the signaltransmitter. Therefore, a system based on the proximity
approach consists of setting up signaltransmitters at each position of interest. In the case
where two or more signaltransmitters observe the same signal, the mobile device is considered
collocated with the signaltransmitter that received the strongest signal.(Liu et al., 2007)

Advantages

• Because this approach mainly reports positions based on mobile devices being discover-
able, proximity is not significantly affected by the environment such as signals attenuated
by walls etc. Therefore, this approach is more robust than the others.

• It does not require heavy calculations and processing of data. Only in case multiple
signal receivers receive the same signal, a comparison is needed of the measured RSSI
values to estimate the position of the mobile device.

22

5.1. POSITIONING APPROACHES

Disadvantages

• If the proximity approach is deployed with the purpose of tracking objects with high
resolution, it may require that several signaltransmitters are installed in the environ-
ment.

• The accuracy of the proximity approach is constrained to the number of signaltransmit-
ters installed in the environment.

5.1.4 Selection of Positioning Approach

Several criteria are important for the selection of positioning approach. These are cost of
deployment, accuracy and precision, need for special hardware, required computational power,
and effort required for maintaining the positioning system.

The cost of deployment is considered equal for triangulation and fingerprinting since both
approaches require multiple signaltransmitters to be detectable at all positions in the given
area. For proximity, the amount of required signaltransmitters depends on the desired accu-
racy. With an accuracy of three meters, signaltransmitters must be deployed for every six
meters, giving it a relatively high deployment cost. The advantage, however, is that good
accuracy is achievable. Depending on the requirements for the positioning system, this ap-
proach could be either suitable or too expensive in deployment costs. The goal of this project
is to develop a positioning system which has a cheaper deployment cost in terms of amount
of needed hardware.

In respect to triangulation, the achievable accuracy in environments containing obstacles,
resulting in multipath fading etc., is not considered sufficient for presenting the estimated
position to a user. This is based on the fact that BlueCAML is using consumer-grade products
for signaltransmitters and hence cannot take the advantage of using the time based techniques.
Also, previous research, among others made by the authors, revealed that applying the theory
of radio propagation is difficult since the relationship between RSSI and distance do not take
into account variance in the environment such as density of obstacles (Sw701b, 2009; Bose
and Foh, 2007). This is generally overcome using fingerprinting. Even though fingerprinting
requires more maintenance and computational power than triangulation, the potential of high
accuracy overrules these disadvantages since this is crucial for an indoor positioning system
aiming at estimating positions of movable objects.

Research has shown that computations for fingerprinting can be performed on mobile
devices (Hansen and Thomsen, 2009). If the computations are made server-side, other prob-
lems, like scalability, must be considered where triangulation and fingerprinting, give rise to
the same problems.

The fingerprinting approach is therefore used in BlueCAML. In respect to maintaining
the system, effort must be put in finding an easy way to do this, because otherwise, it will
potentially require too many resources to be affordable for institutions deploying the system.

In the following, a fingerprint denotes a fingerprint present in the radio map and an online
fingerprint denotes a fingerprint measured by the mobile device in the online stage.

23

CHAPTER 5. POSITION ESTIMATION

5.2 Fingerprinting Techniques

Having selected the positioning approach, the purpose of this section is to uncover the various
techniques that can be applied within fingerprinting. The techniques address issues such
as reducing the search space of the radio map and how estimation of a position can be
performed given an online fingerprint and the radio map. The description of these end up in
a comparative analysis in which choices of techniques to be applied will be given.

5.2.1 Weighted Graphs

The principles of this technique is based on the material described in Hansen and Thomsen
(2009).

Weighted graphs can be used as a technique to improve the accuracy and computational
efficiency of fingerprinting. The concept is to only consider those fingerprints that are feasibly
reached from the previous position. This way, errors like when a user is estimated to travel
through walls can be reduced and the search space can be decreased, thereby improving both
the accuracy and efficiency in terms of searching the radio map.

After the offline stage, the fingerprint positions are modelled as nodes connected by
weighted edges to neighbour positions. The weight represents the distance between the two
positions. The feasible positions can then be found from a previous position using a breadth
first search, searching in a range of how far the user is estimated to have moved. This is called
searching in the primary search space.

To prevent situations where the system gets stuck, the technique uses so-called radius
nodes, to allow illogical movement if great evidence indicates this. For instance, the system
can get stuck if at some point it estimates that the user have entered a room when the user have
not. The subsequent collection of fingerprints will be radius nodes and hence indicate that
an illogical jump through the wall is necessary to get out of the room. Each node is therefore
provided a list of radius nodes which can be reached through illogical movement. The list
of radius nodes consists of the nodes that lie within the perimeter of the circle with radius
equal to the distance for which no user is expected to have gone further between consecutive
position estimates. However, this list excludes the nodes from primary search space. For each
position estimate, this list is then, along with the primary search space, searched through.
This is called a search in the secondary search space. It is suggested that if two to three
consecutive estimates indicate that the user has made an illogical movement, a shift to an
illogical position should be made.

Figure 5.2 depicts the Weighted Graphs technique applied to a radio map. The black
mark indicates the current position, and the darker grey marks are the nodes that can be
reached through logical movement, hence, these compose the primary search space. Finally,
the lighter grey marks are the radius nodes used for the secondary search space.

24

5.2. FINGERPRINTING TECHNIQUES

Logical Moves

Radius Nodes

Current Position

Primary Search Space

Figure 5.2: Example of using Weighted Graphs to define logical paths between the different finger-
print positions.

5.2.2 Nearest Neighbour

Nearest Neighbour (NN) is one of the deterministic techniques that can be applied for esti-
mating the position of a mobile device using the radio map and an online fingerprint.

For describing the procedure of NN, assume that each fingerprint is represented as an
n-dimensional point, a, where each number, a1, a2, . . . , an, represents an RSSI value of n
signaltransmitters. Given the radio map and the online fingerprint, the procedure of NN is to
sequentially calculate the distance according to some norm from the online fingerprint to all
the fingerprints kept in the radio map. The position of the mobile device is then estimated
to be the corresponding position of the fingerprint in the radio map having the smallest
distance.(Honkavirta et al., 2009)

There exist various norms which can be used for calculating the distance. Following, is a
brief description of two of these:

25

CHAPTER 5. POSITION ESTIMATION

Euclidean distance The ordinary distance between two points which can be measured with
a ruler. Given two points a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in n-space, the
Euclidean distance between them can be calculated as

d(a, b) =
√
(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2. (5.1)

Manhattan distance This type of distance between two points a = (a1, a2, · · · , an) and b =
(b1, b2, . . . , bn) is defined as the sum of the absolute differences of their coordinates.
Specifically, the Manhattan distance can be described by the mathematical formula

d(a, b) =
n∑

i=1

|ai − bi|. (5.2)

Graphically, this means that the Manhattan distance is a grid-like path from a to b
whereas the Euclidean distance is a straight line. According to the research conducted
by Li et al. (2005), the Manhattan distance yields the best result however it is not signif-
icantly better. Due to these conclusions, the Manhattan distance is used for calculating
the distance between the two fingerprints.

A problem may occur in case two fingerprints are of different dimensions, that is the addition
or absence of RSSI values from signaltransmitters in the online fingerprint compared to the
offline fingerprint. For resolving this issue, a penalty mechanism can be implemented as is
done in the research project by Hansen (2010). The penalty system works by assigning a
default RSSI value to signaltransmitters not represented in the offline fingerprint. In the
previously mentioned research project, this default value was defined as the lowest possible
RSSI value which is -255.

NN is only capable of estimating the position of a mobile device to be one of the positions
of the fingerprints stored in the radio map. Often, a better approach is to make use of K-
Nearest Neighbour (KNN) or even Weighted K-Nearest Neighbour (WKNN). KNN is the NN
version which chooses the K nearest neighbours to the object of interest. According to Li
et al. (2007), using K = 3 or K = 4 has shown to be good parameters.

In relation to position estimation with fingerprints, KNN can be used to estimate a po-
sition of the mobile device instead of simply considering it collocated with the position of a
fingerprint as in NN. By determining the K nearest neighbours to the mobile device, one can
assign the position of the mobile device to be the average of the K nearest neighbours.

An addition to KNN is to assign weights to all the fingerprints in the radio map, thereby
describing WKNN. The procedure is the same as in KNN, however, the impact of fingerprint
1, 2, · · · ,K in the calculation of the average decrease according to the weight scheme used.
Mathematically, WKNN is defined as

x̂ =
M∑
i=1

wi · xi∑M
j=1wj

, (5.3)

26

5.2. FINGERPRINTING TECHNIQUES

where x̂ denotes the new position estimate, w denotes an assigned non-negative weight
and, finally, x denotes a point representation of a fingerprint in the radio map (Honkavirta
et al., 2009). According to Li et al. (2007), one possible weight scheme is to calculate the
inverse of the norm, such as the Euclidean distance, from the RSSI measurement to the
particular fingerprint in the radio map. This means that if the Euclidean distance is low, it
implies a high weight and opposite. Note, that if equal weights are assigned each fingerprint,
the formula is the same as KNN.

5.2.3 Probabilistic Estimation

An alternative to the deterministic methods is to store the different measured RSSI values,
e.g. in a histogram, and then use a probabilistic approach to estimate positions. This means
that a fingerprint in the radio map consists of histograms of RSSI values for each detectable
signaltransmitter. According to Li et al. (2007), Bayes rule can be used for this in the following
way

P (Lt|Ot) =
P (Ot|Lt) · P (Lt)

P (Ot)
, (5.4)

where Lt is a position at time t, Ot is an observation of RSSI values at time t, and P (Ot)
is a normalisation factor.(Li et al., 2007; Fenton, 2010)

P (Ot|Lt) can be determined using histograms of RSSI values of the discoverable signal-
transmitter for each position, since these describe the likelihood of an observation at a specific
position. This means that given a collected RSSI value, this is compared against the corre-
sponding histogram and the percentage of the occurrence of that RSSI value is then the result.
P (Lt) can be set equally for each position, hence, assuming that the likelihood of being at
each position is the same. Another scheme is to initially assign equal values of P (Lt) when
the user enters the environment. Then, as the user moves around, the value of P (Lt) at
each position can be adjusted to take into account historical data such as where the user was
previously located.(Li et al., 2007)

Notice that P (Ot) can be determined using marginalisation, which is defined(Fenton, 2010)
by

P (Ot) =
∑
i

P (Ot|Li) · P (Li). (5.5)

Li et al. (2007) describes that their research showed that using the probabilistic technique
gave better results than using NN.

27

CHAPTER 5. POSITION ESTIMATION

5.2.4 Selection of Fingerprinting Techniques

Above, a number of different techniques for estimating the best matching fingerprint is given.
The Weighted Graphs technique can be used in conjunction with NN and the probabilistic
techniques, and is hence applied to reduce search space and improve accuracy.

Even though research indicates that the probabilistic techniques yield better results than
NN, it has been decided not to use it in favour of NN. As mentioned earlier, Hansen and
Thomsen (2009) has used Weighted Graphs and in addition uses KNN and achieves an accu-
racy of three meters. Therefore, given the relatively more simplistic nature of KNN together
with the fact that sufficiently high accuracy has been achieved with it, this fingerprinting
technique is used.

28

6
Positioning Topology

Before analysing and determining the architecture of BlueCAML, the positioning topology
needs to be decided upon. The following section analyses the different topologies available for
positioning systems and concludes which one is the most suitable for addressing the scenario
of BlueCAML.

6.1 Topologies

The position of the mobile devices is estimated by measuring RSSI values as described in
Chapter 5. The measurements can be conducted by either the mobile devices or the signal-
transmitters and are further processed by either a back-end or on the mobile device.

Four different topologies for placing the positioning logic are been defined by Liu et al.
(2007). The following discusses the advantages and disadvantages introduced by these.

To maintain overview for the reader, all advantages and disadvantages for the topologies
are described even though some may overlap.

6.1.1 Remote Positioning System

In this topology, the signaltransmitters measure the RSSI values from the mobile devices and
pass this information to a back-end which calculates the position of them.

Advantages

• The radio maps only need to be maintained on the back-end since none of this logic is
placed on the mobile devices.

• It does not require specific hardware-requirements on the mobile device in relation to
position estimation because computations in this regard are placed on the back-end.

• Promotes platform-independence on the mobile device because it does not require com-
municating with the incorporated Bluetooth adapter.

29

CHAPTER 6. POSITIONING TOPOLOGY

Disadvantages

• Unable to present the estimated position to the user. This is a crucial disadvantage
since this is the specific purpose of BlueCAML.

• Scalability, with respect to number of concurrent users, is not promoted in this topology
because the computational effort required for position estimation linearly increases as
the number of users increases, which is a disadvantage in respect to some of the other
topologies.

• Using specific features of the mobile device to aid position estimation, such as a compass,
requires that this information is transmitted to the back-end.

• The user must trust the BlueCAML provider not to misuse the position estimates, by
e.g. selling the information to a third-party without the user’s knowledge.

6.1.2 Self-Positioning System

In this topology the mobile device uses RSSI values from the signaltransmitters to calculate
its own position.

Advantages

• The topology promotes scalability with respect to the manageable number of users be-
cause it does not require additional computational power of the infrastructure. This is
because the computations for position estimates are placed on the mobile devices them-
selves and thus there is no need to add more computational power to the infrastructure
in order to support more mobile devices.

• Data from sensors on the mobile device, such as a digital compass, can be taken into
account when estimating positions without requiring a new communication path.

Disadvantages

• The purpose of the system is limited to functionality similar to navigation, since the
position is not given to any external parties, which can provide context-aware informa-
tion.

• Information about the environment is required to reside on the mobile device for enabling
it to estimate its position. In relation to fingerprinting, this includes the radio map.

• Computations are made on a mobile device with limited resources, possibly limiting the
complexity of tasks that can be conducted within a given time frame.

30

6.1. TOPOLOGIES

• The radio maps must be distributed to the mobile devices, and updates to them must
be propagated.

• Complications can occur if the mobile application should be supported by multiple
platforms since it requires the mobile devices to expose an API for reading RSSI values
from Bluetooth adapters.

• Environmental information, such as people density, from the signaltransmitters cannot
be used in the position estimates without establishing a new communication path.

6.1.3 Indirect Remote Positioning System

If the estimated position from a Self-Positioning System is transmitted to a back-end, this
is called an Indirect Remote Positioning System. Hence, it is to some extent similar to a
Self-Positioning System topology and, hence, some of the advantages and disadvantages are
the same.

Advantages

• An increase in the amount of mobile devices using BlueCAML does not require addi-
tional computational power of the infrastructure. Only the network traffic is increased
due to position estimates need to be transmitted to the back-end.

• BlueCAML can be extended to make use of the position estimates on the back-end to
e.g. provide context-aware information to the user.

• The mobile device can take into account its own features, such as a digital compass,
when estimating its position without introducing a new communication path.

• The back-end can combine the received position estimates with environmental data
received from the signaltransmitters. As described in Chapter 7, this can e.g. be used
to help maintaining the radio maps.

• The topology promotes scalability with respect to the manageable number of users be-
cause it does not require additional computational power of the infrastructure. This is
because the computations for position estimates are placed on the mobile devices them-
selves and thus there is no need to add more computational power to the infrastructure
in order to support more mobile devices.

• Data from sensors on the mobile device, such as a digital compass, can be taken into
account when estimating positions without requiring a new communication path.

31

CHAPTER 6. POSITIONING TOPOLOGY

Disadvantages

• The purpose of the system is limited to functionality similar to navigation, since the
position is not given to any external parties, which can provide context-aware informa-
tion.

• The positions must continuously be transmitted to a back-end. Only doing this in
intervals would reduce the disadvantage.

• Complications can occur if the mobile application should be supported by multiple
platforms since it requires the mobile devices to expose an API for reading RSSI values
from Bluetooth adapters.

• Computations are made on a mobile device with limited resources. The user must
trust the BlueCAML provider not to misuse the position estimates, by e.g. selling the
information to a third-party without the user’s knowledge.

• Information about the environment is required to reside on the mobile device for enabling
it to estimate its position. In relation to fingerprinting, this includes the radio map.

• Environmental information, such as people density, from the signaltransmitters cannot
be used in the position estimates without establishing a new communication path.

• The radio maps must be distributed to the mobile devices, and updates to them must
be propagated.

6.1.4 Indirect Self-Positioning System

This topology is to some extent similar to an Indirect Remote Positioning System. However,
the position is estimated by the back-end and transmitted to the mobile device.

Advantages

• This topology does not require the mobile device to do computations.

• The radio maps only need to be maintained on the back-end since no logic is placed on
the mobile devices.

• BlueCAML can be extended to provide information such as context-aware information,
to the user.

• The mobile application does not require communicating with the underlying Bluetooth
component, hence a more portable client can be made.

32

6.2. SELECTION OF TOPOLOGY

Disadvantages

• Information from internal sensors on the mobile device is not directly accessible.

• The load of the back-end will increase linearly with the amount of mobile devices, which
is a disadvantage in respect to some of the other topologies.

• The user must trust the BlueCAML provider not to misuse the position estimates, by
e.g. selling the information to a third-party without the user’s knowledge.

6.2 Selection of Topology

The Self-Positioning System, Indirect Remote Positioning System and Indirect Self-Positioning
System can all be used as topologies in BlueCAML. The Remote Positioning System topology
cannot be used, since the user cannot be presented with the estimated positions.

It has been decided to use the Self-Positioning System topology. This decision is pri-
marily based on, that this topology promotes scalability in terms of manageable number of
concurrent users and hence there will be no need to extend the infrastructure with additional
computational power in case the user base increases. This is in accordance with the scalability
quality factor which is prioritised important. In this decision portability concerns have been
left out due the prioritisation of the portability quality factor.

A problem, however, with the Self-Positioning System topology is that a mechanism or
procedure must be established to enable that corrections to the radio map submitted by other
users get propagated to the remaining mobile devices accordingly. This can either be done
manually or automatically.

To solve the problem a communication path needs implemented. An obvious solution
would be to make use of the Bluetooth infrastructure constituted by the signaltransmitters.
Alternatively, the mobile device and the back-end could communicate through the GPRS net-
work, but it has been assessed that it is better to take the advantage of having the Bluetooth
infrastructure at disposal. The signaltransmitters are a link between the back-end and the
mobile device. Furthermore, this communication path opens for the opportunity, of relatively
simple extending BlueCAML in the future with tracking capabilities where the signaltrans-
mitters detect devices in a given area and report this to a back-end. In previous research
(Sw701b, 2009), it was showed, that the infrastructure can be used for this tracking purpose.

33

7
Environmental Factors Influencing Fingerprinting

The purpose of this chapter is to describe different concerns regarding the offline and online
stages of fingerprinting.

The basis of the considerations originates from other research describing various observed
phenomena when using fingerprinting (Bahl and Padmanabhan, 2000; Sw701b, 2009; Yeh
et al., 2009; King et al., 2006; Lionel M. Ni and Patil, 2004; Hansen and Thomsen, 2009). To
clarify whether or not the observed phenomena are actual problems that must be accounted
for, experiments have been conducted. Specifically, RSSI measurement method, user orien-
tation, radio map becoming obsolete over time, people density, changes in measured RSSI
values over time, and density of fingerprints are investigated. Finally, time consumption of
conducting a fingerprint is investigated and a strategy for fingerprinting is given. In this
regard, observations and concerns involved in RSSI measurements from the used hardware
are given.

This chapter also acts as an indicator of the possibilities in using Bluetooth as a positioning
technology.

7.1 RSSI Measurement Method

The RSSI values are provided by the hardware through standard API calls defined by the
Bluetooth specification. Unfortunately, a lot of behaviour regarding RSSI values, such as
the granularity of the RSSI values and the time interval between updates of them, are left
to be decided by the hardware vendors. Due to the loosely defined nature of the Bluetooth
specification, this consequently means, that Bluetooth devices from distinct vendors, are likely
to behave differently in terms of retrieved RSSI values resulting in being incomparable.(SIG,
2007)

The implementation of RSSI is not documented for the hardware used in this project.
However, through observations, it is determined that the implementation updates an internal
RSSI value cache whenever it receives a signal in the form of a packet from one of its peers, and
it is this value which is returned when enquired. If multiple enquiries are made for the RSSI
value in-between updates, the same value is returned multiple times. The authors observed
this by studying a list of consecutive RSSI measurements, where a pattern was identified.

34

7.1. RSSI MEASUREMENT METHOD

Another implication of the internal cache which was observed, is that if a Bluetooth
device is continuously enquired for RSSI values and the connection is lost meanwhile due to
for instance the user moving out of detecting range, the hardware will continue to return the
RSSI value which was last placed in the cache until a connection time out. This time out is
observed to be around 20 seconds, is exceeded.

To ensure that a retrieved RSSI value has not previously been retrieved it is therefore
necessary to actively request a signal from the signaltransmitter. This can be done using a
variety of methods of which the following are considered most appropriate:

L2CAP Ping A solution is to use the ping capabilities of the Bluetooth transport layer,
L2CAP. This layer controls the individual connections between the devices and provides
a low-level communication between them.

This approach results in a relatively low overhead since the L2CAP ping is designed for
availability checks between devices. Experiments on other hardware than the hardware
used in BlueCAML shows that a ping and subsequent RSSI measurement can be done
in approximately 12 milliseconds.

L2CAP Services As an alternative, some L2CAP level services are made available through
the Bluetooth API such as a service for remote device name retrieval and querying for
available Bluetooth services. Initial experiments with these methods showed availability
checks with subsequently RSSI measurement times in the order of 40 milliseconds.

RFCOMM Ping The final solution is to initiate an RFCOMM connection, which can be
compared to a TCP socket connection, between the two devices. Through this, it is
fairly simple to transmit a small packet to a receiver which, when receiving the packet
responds, thereby simulating a ping request. A substantial drawback of this approach
is the necessity of an application running on the signaltransmitters accepting socket
connections, which in turn increases the requirements for logic on the signaltransmitters.
Initial experiments showed that this approach allows for a ping and subsequent retrieval
of an RSSI value in 12 milliseconds.

7.1.1 Conclusion

Initially, the L2CAP ping method would seem as a good candidate since it does not require
additional logic on the signaltransmitters in contrast to the RFCOMM ping method, and it
allows for a faster retrieval of RSSI values than using L2CAP services. Unfortunately, this
method is not able to be implemented on the mobile device software used in this project since
the platform does not expose an API allowing direct access to the L2CAP layer.

The choice is then left between RFCOMM ping and L2CAP services. The absence of
required logic on all signaltransmitters is appealing since it opens for the possibility of having
two types of them, designated as smart, and dumb signaltransmitters, respectively. The
incentive for distinguishing between two different types of devices is that it potentially reduces
the cost of deploying the system since one could imagine that only one smart signaltransmitter

35

CHAPTER 7. ENVIRONMENTAL FACTORS INFLUENCING FINGERPRINTING

is required to be discoverable at any time in the environment and the rest can be dumb ones.
Dumb signaltransmitters could for instance be made of an inexpensive computer without
WLAN capabilities or even a special purpose low-powered device with Bluetooth support.

The RFCOMM ping method, however, allows for more RSSI measurements under the time
constraints but as will be shown later, it is determined that the fewer RSSI values measured
using the L2CAP remote name query are sufficient for position estimation. Therefore, there
is no incentive for using the RFCOMM ping method and hence the L2CAP services method
is used in order to solve the problem and for providing a means of having two types of
signaltransmitters.

7.2 Orientation of User

The RADAR (Bahl and Padmanabhan, 2000) research project describes, that the human
body itself is a factor which may cause signal fluctuations because the signal attenuates or
is absorbed when propagating through it. This is a problem which arises often because the
movement direction of a user may require the signal to propagate through the body.

For investigating the issue further and determine whether it poses an actual problem, an
experiment is made. In the experiment, three signaltransmitters, ST1, ST2, and ST3, are
placed in a room, as shown in Figure 7.1. A mobile device is placed in the middle of the
room, collecting RSSI values from each signaltransmitter. In the experiment, a fingerprint
is made when facing north, south, east, and west. A significant change in the fingerprints
indicates that the orientation affects the fingerprints.

The general approach used in the experiment is to collect 100 measurements which are
averaged from each signaltransmitter ten times. Previous experience has shown, that using
this method gives a representative picture of the environment, both with regards to the number
of measurements and to the fact that the same experiment is repeated ten times.(Sw701b,
2009; Bose and Foh, 2007; Malekpour et al., 2008)

Table 7.1 summarises the results from the experiment.

Orientation ST1 ST2 ST3

North -8.2 -1.7 -3.5
South -4.9 -6.2 -0.4
East -6.3 -5.8 -1.2
West -5.6 -3.6 -8.7

Table 7.1: Average measured RSSI values when facing different directions.

36

7.2. ORIENTATION OF USER

ST1

ST2

ST3

[0.2.13]

Figure 7.1: The setup used for the experiment. Three signaltransmitters, ST1, ST2, and ST3, are
placed in the room, and a mobile device measures the RSSI values from each of them. ST1 and ST2
are placed in south and north, respectively.

7.2.1 Conclusion

As shown, the orientation does influence the measured RSSI values. As an example, consider
the difference in average RSSI value for ST1 and ST2 when facing north and south, respec-
tively. When facing north, the RSSI value of ST2 is lower than ST1 and when facing south,
the opposite is observed. A similar observation can be made for ST3 when facing east and
west.

To accommodate this issue, the radio map can be constructed by taking into account
the orientation of the user. As an example this can be done during the offline stage by
collecting fingerprints in orientations corresponding to the four corners of the world or, given
that the particular rooms are made up of rectangles, a wall can be used as reference (Bahl and
Padmanabhan, 2000). Alternatively, the fingerprint could be made by turning around with
constant velocity in a particular period of time thereby measuring the average RSSI values
for all orientations. It is assessed, that given that this action has to be performed by the
users of the system, the former approach where four specific orientations are used as reference
will give the best result. The reason for not choosing the rotation option, is the requirement
for rotating with constant velocity and also, one could imagine that the user will spend more
time in the initial and end position.

The advantage of using the four corners of the world is that the system can be generalised
to be used in environments with other shapes than squares and hence target a larger market.
A great disadvantage of this approach is that it requires that the users know their orientation
with respect to the four corners of the world. However, currently some mobile devices contain
an built-in digital compass that could aid the user in knowing her orientation but they are

37

CHAPTER 7. ENVIRONMENTAL FACTORS INFLUENCING FINGERPRINTING

not common and hence it cannot be assumed that it is available for all users. However, given
that a compass is standardised, this option would be preferable (King et al., 2006). The best
option is assessed to be using the four corners of the world as reference.

When the four fingerprints are collected, a choice has to made whether to store the four
fingerprints in the radio map and associate them with the particular position from which they
were collected or to average the four fingerprints and associate that single fingerprint with the
position. If the four fingerprints are stored separately in the radio map, it requires four times
as many searches when matching a fingerprint, hence increase resource usage. Therefore, the
more simple solution of storing the average of the four fingerprints is used.

7.3 Radio Map Becoming Obsolete Over Time

In previous research (Sw701b, 2009), it was experienced that the propagation of radio signals
is highly dependent on the environment. In that connection, a problem is that the radio map
needs to be maintained as a result of environmental changes, for instance due to refurnishing.

To verify the presence of this problem, the following experiment is made using the same
scenario as the experiment in Section 7.2. First, a fingerprint is made in a room. Afterwards,
the room is refurnished and a new fingerprint is made. A change in the fingerprints then
indicates how much refurnishing influences the radio signals.

The results of the experiment are shown in Table 7.2.

Refurnishing ST1 ST2 ST3

Before -4.1 -8.2 -2.7
After -2.6 -4.6 -1.0

Table 7.2: Summary of the measurements made before and after refurnishing.

7.3.1 Conclusion

As shown, refurnishing affects the measured RSSI values. Especially, notice the average RSSI
value measured from ST2, which almost halves.

To accommodate the changes in the environment over time, the radio map needs to be
calibrated. The recalibration process is expected to be too time consuming if the responsibility
is placed on a small number of maintainers dedicated for this purpose. Instead, another
approach could be to place this responsibility on the users of BlueCAML. This is an interesting
approach because, provided that the users are willing to spend time improving the system
for their own benefice, maintenance of BlueCAML can be distributed system. A distributed
system, is defined as a system where each participant helps in achieving the common goal.

38

7.4. VARYING PEOPLE DENSITY

However, placing the responsibility of maintenance to the users give rise to other problems
mainly regarding usability and the correctness of the collected information. If a user is
given the task of maintaining the radio map, a mechanism must be implemented to ensure
that incorrect fingerprints are not placed in the radio map. A solution to this problem
can be analogous to how Wikipedia prevents articles from being vandalised due to its open
nature. Wikipedia accommodates this problem by assigning roles to different users such
as administrators, and unregistered contributors (Wikipedia, 2010). These have individual
privileges in regards to modifying the content of the articles.

A variant of the Wikipedia approach would be to have two types of fingerprints in the
system: official fingerprints and user corrected fingerprints. The official fingerprints are con-
ducted by people who are entrusted to conduct correct measurements, both in terms of working
equipment and correct location and direction awareness. Corrections conducted by the users
of the system when maintaining the system, are not considered as trustful as the officials since
the user might have made an error.

The basic principle is therefore to return the newest official fingerprint. Since this does
not take into account the user generated correction, it can be overruled by two consecutive
corrections approximately equal. Such two consecutive corrections would strongly indicate
that the environment has changed, and an average of the two is returned. This procedure is
used in BlueCAML.

7.4 Varying People Density

Another issue is signal attenuation caused by human bodies in the vicinity of the signaltrans-
mitters and mobile devices. For instance, suppose that positioning is to be deployed in a
canteen. During lunch hours, the canteen may be crowded and during the rest of the day,
close to empty. The same example holds for open office spaces that may contain few people
at the end of the day.

The factor of people density is, presumably, of importance if high accuracy is desired
during the entire day. Similar to the experiment described in Section 7.2, measurements are
made to verify the existence of the problem. Again, 100 measurements are collected from each
signaltransmitter ten times. The experiment is made in a canteen before and after lunch and
the results are summarised in Table 7.3.

Lunch ST1 ST2 ST3

Before -10.4 -9.8 -12.0
During -13.7 -15.5 -13.2

Table 7.3: Table summarising the results of conducting the test in a canteen before and during lunch.

39

CHAPTER 7. ENVIRONMENTAL FACTORS INFLUENCING FINGERPRINTING

7.4.1 Conclusion

From these results, it can be concluded, that people density is a factor which cannot be
neglected if high accuracy is desired. Especially the measured RSSI values for ST2 vary
significantly.

Different approaches for accommodating the differences in people density have been ex-
amined and are described below:

• Construct radio maps corresponding to the times of the day where the density is known
to vary significantly. This presumes that the people density in an environment is a
function of time.

• Additional logic on the signaltransmitters could be used in order to determine the num-
ber of connected mobile devices in the area. This approach relies on that the number
of people using the system provides a sufficient heuristic of the total number of people
in the area.

• Yin et al. (2005) describes that one radio map can be used and adapted according to the
current environmental conditions. They use a number of reference signaltransmitters
statically placed in the environment which measure the signal strengths of the a subset
of the other signaltransmitters.

Regression analysis is used to construct a model to describe the relationship between
fingerprints and reference measurements that indicate the current state of the environ-
ment. This is done for each signaltransmitter present in each fingerprint in the offline
stage.

In the online stage, the models can be used to, given a measurement of the current state
of the environment, correct the radio map accordingly. Yin et al. (2005) describes that
improvements in the order of 10-15% were observed in their position estimates using
this particular approach.

• The authors have theorised that one potentially could use a single relationship to de-
scribe how environmental changes affect the signaltransmitters, hence making a joint
regression analysis. In contrast to the above this would avoid having multiple relation-
ships that need to be devised, hence this approach is not as complex as the one suggested
by Yin et al. (2005). It is assumed that the relationship is monotone.

The approach using times of the day to choose a radio map has been assessed to not
be practically feasible to positively affect fingerprinting. This is primarily based on the as-
sessment of time not being a sufficient heuristic of people density for several reasons, such
as people crowding a specific area due to a meeting that irregularly takes place or an event
happening in the weekend.

The variation of using the number of users using the system to determine the people
density has also been considered unrealistic, since it is in the authors opinion that the number

40

7.4. VARYING PEOPLE DENSITY

of people in an area cannot be determined based on the number of detectable Bluetooth
devices. Even if this could be determined, a way to change the radio map accordingly also
needs to be found.

The approach suggested by Yin et al. (2005) seems promising, but on the cost of adding
additional information to the radio map, adding an offline processing stage, and increasing
the calculations necessary for position estimation. In the offline stage, regression analysis for
devising mathematical relationships need to be constructed.

If the approach suggested by the authors can be used in practice, it is beneficial due to
its simplistic nature. Therefore, to verify if this holds, experiments are conducted to examine
the existence of a relationship between signal strength changes to reference tags and changes
to the fingerprints in the radio map. To do this, following procedure is conducted:

1. Four signaltransmitters, are set up in an area. One of them, designated the master, is
chosen as the one from which reference measurements, are made to the other signal-
transmitters. The master is left out in the subsequent experiment.

2. Reference measurements are made from the master to the signaltransmitters and a
reference fingerprint from a predefined location is made from a mobile device to the
signaltransmitters.

3. The environment is then changed. After each change, the master measures reference
RSSI values of the signaltransmitters and a fingerprint is conducted at the predefined
location. The changes are made using other Bluetooth devices to create interference,
tinfoil to weaken the signal strengths, and people to absorb the signals. For each change
this step is repeated.

4. Finally, the experiment is repeated in another environment, since, if a model exists, it
must be usable in all areas.

Table 7.4 shows the results from the experiments.

Area 1

ST1 ST2 ST3 R1 R2 R3

-6.4 -5.5 0.1 -6.4 -5.5 -0.3 Ref
⇑ -4.6 ⇑ -4.6 ⇑ 0.4 ⇓ -19.7 ⇓ -12.6 ⇓ -3.6
⇑ -4.0 ⇑ -2.3 ⇑ 0.3 ⇓ -19.4 ⇓ -12.4 ⇓ -4.0
⇑ -5.6 ⇑ -2.7 ⇑ 0.9 ⇓ -19.8 ⇓ -12.6 ⇓-3.9
⇑ -3.4 ⇑ -2.9 ⇑ 0.3 ⇓ -20.2 ⇓ -12.6 ⇓ -4.4
⇑ -4.8 ⇑ -2.1 ⇓ -0.1 ⇓ -18.5 ⇓-10.12 ⇓-2.7

Area 2

ST1 ST2 ST3 R1 R2 R3

-0.1 -1.9 5.9 -7.1 -11.2 -2.7 Ref
⇑ 0.0 ⇓ -9.9 ⇓ -0.1 ⇓ -14.0 ⇓ -19.6 ⇓ -10.6
⇓ -0.4 ⇓ -3.5 ⇓ -0.1 ⇓ -8.0 ⇓ -14.0 ⇓ -9.6
⇑ 0.0 ⇓ -2.4 ⇑ 6.5 ⇑ -3.0 ⇑ -11.0 ⇓ -3.2
⇓ -0.8 ⇓ -4.2 ⇓ 2.6 ⇓ -11.4 ⇓ -17.3 ⇑ -2.2
⇒ -0.1 ⇓ -3.8 ⇓ 4.5 ⇓ -8.5 ⇓ -11.3 ⇑ -2.3
⇒ -0.1 ⇓ -2.8 ⇓ 3.2 ⇓ -7.7 ⇓ -11.5 ⇓ -3.1

Table 7.4: RSSI measurements in two areas when applying changes to the environment. The rows
marked with Ref are the measurements made when no changes have been applied and therefore
these are used as reference. The arrows indicate whether the RSSI measurements have increased or
decreased in respect to the reference in the given area.

41

CHAPTER 7. ENVIRONMENTAL FACTORS INFLUENCING FINGERPRINTING

As shown in the table, the general tendency in the RSSI measurements of the reference tags
is that the RSSI values decrease. However, in the fingerprint measurements, there is no general
tendency. In the first area, the tendency is that the RSSI values in fingerprint increase when
the RSSI values of the reference tags decrease. In the second area, the tendency is that the
RSSI values in the fingerprints decrease when the RSSI values of the reference tags decrease.
Based on these results, the conclusion is, that a linear, or monotone in general, relationship
cannot be established between RSSI values of the fingerprint and reference tags. Thus it is
concluded that this more simple approach to the problem is not applicable.

The other proposed solutions seem promising, but since focus is on examining a simpler
solution, none of them are implemented in BlueCAML.

7.5 Signal Strength Fluctuations over a short Time-Frame

With regards to the offline stage, it is desirable to reduce the measurement time as this reduces
the effort required for constructing the radio map. Furthermore, if fingerprints in the online
stage are too time consuming, it would be more difficult to convince the user to conduct them.

To analyse the behaviour of RSSI measurements over a short time-frame, an experiment is
conducted in which a mobile device collects RSSI values from a signaltransmitter over a time
period of five minutes. The results are used to determine the minimum length of the time
RSSI measurements need to be collected for making a sufficient accurate average. For every
250 milliseconds interval, the average of the collected RSSI values is calculated and plotted
into a graph. In Figure 7.2, all RSSI values are plotted with the corresponding time frame
from which they were collected.

7

8

9

10

2

2,5

3

RSSI over time

0

1

2

3

4

5

6

0

0,5

1

1,5

2

0
,2
5

RSSI

Seconds

Figure 7.2: Averaged RSSI values for each 250 milliseconds time interval. The experiment was
conducted over a time frame of five minutes.

42

7.6. DENSITY OF FINGERPRINTS

7.5.1 Conclusion

In the figure, the black graph shows the number of measurements conducted in each of the
intervals which shifts between seven and eight measurements. The second graph shows the
RSSI values which fluctuated between 0 and 2.75 during the five minutes time-frame. The
average of RSSI values over the entire time-frame was determined to be 0.98.

It is notable from the graph, that the RSSI values fluctuate a small amount over a short
time-frame. In Table 7.5, the worst case and average error for different time intervals have
been calculated from the entire collected data set. From the table, it can be observed that if
only time intervals of 250 milliseconds are used, then the worst observed error between the
calculated average and the average over five minutes is 2.4 with an average error of 0.4.

Time Frame Worst Case Error Average Error

250ms 2.45 0.40
500ms 1.35 0.28
750ms 0.89 0.21
1000ms 0.79 0.19
2000ms 0.39 0.13
3000ms 0.38 0.10
4000ms 0.24 0.08
5000ms 0.29 0.08

Table 7.5: Various time frames and their corresponding worst case and average error.

For the offline stage, measurement times of 2000 milliseconds which have a worst and
average error of 0.4 and 0.1 are assessed to be acceptable errors. This would result in each
fingerprint, with four visible signaltransmitters and four directional measurements, taking 32
seconds. The same is valid for the maintenance part.

In the online stage, a minor erroneous position calculation is acceptable as long as it can
be done quickly. It has been assessed, in respect to the scenario, that the mobile device can at
best collect RSSI values from four signaltransmitters at each location meaning that if a new
position estimate is needed for every four seconds, minus the time used for connection estab-
lishment, which is described later, then each measurement must at most use approximately
500 milliseconds for the actual position estimate calculation.

7.6 Density Of Fingerprints

Before conducting the offline stage, one must decide upon the density of the fingerprints, that
is, the distance between consecutive fingerprints in the radio map. To do this, one should
take into account the purpose of the system. If the purpose is to provide relatively accurate

43

CHAPTER 7. ENVIRONMENTAL FACTORS INFLUENCING FINGERPRINTING

tracking of a movable object, then the density should be high to provide a good estimate
of the position of the object. In contrast, if only positioning at room-level is required, the
fingerprints can be relatively sparse.

7.6.1 Conclusion

As described in Chapter 3, the purpose of BlueCAML is to enable the user to follow her
movement in an indoor environment. Thus, it is desirable to have as high accuracy as possible.
The effort required in creating the radio map must also be taken into account. If a lower
accuracy of the system is enough, then having a lower density of fingerprints is preferable
since it requires less effort and maintenance when working with the radio maps.

In previous research (Sw701b, 2009) it has been shown that two to three meters movement
is required in order to have an observable change in RSSI value. Thus, is desirable to place
fingerprints with three meters interval, such that they are distinguishable. This density has
also been used by other indoor positioning systems (Hansen and Thomsen, 2009).

7.7 Time Measurements of the Fingerprint Process

In order to create a fingerprint and estimate the position of a mobile device, a number of
RSSI measurements needs to be collected in a limited amount of time. A goal of BlueCAML
is to be able to update the position estimate at least every four seconds, as stated in the
requirements. Therefore, it must be examined if the measurements can be made within this
period of time.

The phases involved in position estimation are identified as the following:

• Discovering detectable signaltransmitters in the area.

• Establishing connections between the mobile devices and the signaltransmitters.

• Measuring RSSI values from the signaltransmitters.

• Calculating the position based on the measurements.

Experiments are conducted to determine the required time for these phases. In the first
phase, a discovery search refers to the mobile device searching for visible signaltransmitters
by hopping between different frequencies. Since the Bluetooth devices are not synchronised,
they do not know the sequence of frequencies the signaltransmitters are hopping between.
Consequently, a relatively high amount of time is needed in order to discover all devices.
According to Woodings et al. (2002), approximately ten seconds are necessary if following
the procedure defined by the Bluetooth specification (SIG, 2007). It is possible to limit the
time used on searching, but this would potentially only return a subset of the visible devices.
The theoretical discovery time has been confirmed by experiments conducted by the authors
where 60 discovery searches in average took 10.2 seconds.

44

7.7. TIME MEASUREMENTS OF THE FINGERPRINT PROCESS

To determine the required time for the second phase, a single mobile device is continuously
connecting and disconnecting from a signaltransmitter while registering the connection times.
The experiment is conducted until 500 connections have been established. This number is
considered appropriate for providing the basis for calculating the average connection time.
The experiment shows that a connection in average takes 3.7 seconds. To make sure that
the connection time in itself does not exceed the requirement in an actual use of the system,
Bluetooth load is put on the signaltransmitter, simulating multiple users connecting to it.
The result of doing this shows that the average connection time does not exceed 3.7 seconds.

Experiments to examine the time used for the third phase, has already been conducted and
showed that RSSI values should be measured for 500 milliseconds to each signaltransmitter.

Finally, experiments are conducted on the mobile device to determine the average time
needed for the calculations related to position estimations.

Table 7.6 summarises the findings in this experiment.

Discover Connection Measure RSSI Calculations

10s 3.7s 500ms 50ms

Table 7.6: Overview of time usage of different operations related to position estimation.

7.7.1 Conclusion

As described, the discovery and connection phases use a considerable amount of time.

The connection time is 3.7 seconds the position estimate is above the four seconds require-
ment, and measuring RSSI values from four signaltransmitter and conducting one position
estimate, this requires 5750 milliseconds.

In order to reduce the time needed for position estimation, a strategy is needed. Assuming
that it is possible to compute which signaltransmitter is likely to be detectable given the
previous estimated position, it is possible to maintain a list of connected signaltransmitters,
by connecting to one new visible signaltransmitter for each position estimate. This approach
seems usable given that the available signaltransmitters does not change substantially over
short distances. If the system is unable to use the current estimated location to determine
which signaltransmitters it should connect to, then it could fall back to use the discovery
search. However, due to the required amount of time for conducting this operation it should
in general be avoided. Also, the discovery can be used as an initialisation phase where
signaltransmitters are detected to ground the basis for further processing.

As described, the time required for the discovery phase can be reduced by only discovering
a subset of the detectable signaltransmitters. However, in the authors’ opinion, a decrease
from ten seconds to e.g. six seconds does not matter since the time required for the task still
exceeds the requirement of four seconds. Therefore, if the time requirement is to be exceeded,
it is preferable to ensure that all detectable signaltransmitters are discovered.

45

8
Test and Verification Methods

This chapter gives an overview of testing fundamentals which are used throughout the project
in order to ensure conformance to the requirements and reduce faults. Also, the chapter
complies with the learning goal concerning test and verification.

There exist different definitions of the terms test and verification. In this chapter, the
following definitions are used conforming to the Test and Verification course the authors have
attended during the work on this project (Mathur, 2008):

Testing Testing is aimed at detecting faults in a program.

Verification Verification is aimed at proving the correctness of a program according to a
specification.

Using testing, one can execute an application or parts of it with different inputs in order
to find possible faults caused by these. If no faults are revealed, then one cannot assure that
there are no faults, but only that the program functions with the tested input.

With verification, one proves that the program is correct with respect to the specification.
This requires that the specification is correct and the methods used to prove this do not
themselves contain faults.

Both of these approaches are described in further detail in the following.

8.1 Testing

The following describes different ways to categories a test and how tests can be constructed.
Mathur (2008) and Sommerville (1999) are used as reference.

Different sources for constructing tests can be derived, how tests are applied to different
phases of the development, how tests can be generated, and, finally, how test coverage can be
determined, are described.

46

8.1. TESTING

8.1.1 Test Sources

Tests can be derived from different sources such as requirements and the source code itself.
The different test sources allow the tests to focus on different aspects of the program.

Informal Requirements Informal requirements, such as requirements expressed in natural lan-
guage, are often used when generating tests. The requirements specify functions, their
inputs, their outputs, and expected behaviour, which can be transformed into tests by
a developer. A problem with informal requirements is that they can easily be expressed
ambiguously and tests derived from these can thus easily contain faults in regards to
the desired behaviour.

Formal Requirements Formal requirements are expressed using mathematical expressions,
models, or some other formal representation. In relation to informal requirements these
are easier to express without ambiguity. Furthermore, since they can be expressed
without ambiguity they can be used for automatically generating tests.

Source Code If the source code is available, tests can be constructed by evaluating the
actual implementation and the internal logic. Access to the source code also allows for
evaluating the test coverage of the code in order to measure how much is tested and
ensure that the most critical parts of the source code are covered through tests.

The different sources for test generation are suitable for different approaches to testing.
The formal requirements approach requires the presence of a precise specification, defining
all input, output, and behaviour in an unambiguous format. This is not used in this project,
since the requirements are expected to change, it is estimated that maintaining a formal
specification would be too time consuming.

Thus, a combination of the informal requirements and source code are used in order to
generate the tests. This involves creating tests from the requirements and internal logic.

8.1.2 Tests Applied to Different Development Phases

Different types of testing can be conducted in different phases of the development. These
different types of tests are as follows:

Unit Testing Unit testing is conducted in the coding phase and focuses on individual com-
ponents, such as a class or an individual function. These are tested in isolation from
the surrounding system.

Integration Testing Integration testing is conducted in the integration phase, in which the
developer takes a newly developed component and integrates it into other existing com-
ponents. This type of testing thus focuses on the interoperability between multiple
components.

47

CHAPTER 8. TEST AND VERIFICATION METHODS

System Testing System testing is conducted on the entire system. Thus, this type of test-
ing involves all components of the system and checks whether the system fulfils its
requirements.

Regression Testing Regression testing is conducted when changes are made to the system,
and it must be verified that the changes do not break any existing requirements. Thus
tests selected for regression testing consist of those directly related to the changed code
and parts of the system which could have been affected by the change.

Acceptance Testing Acceptance testing is used to approve a release of a program. This is
done by constructing tests which exercise the requirements, in an environment which
is as close as possible to the anticipated operation environment. This type of test can
then be used to decide whether the program is ready for release or not.

Beta-Testing Beta-testing consists of end-users getting access to the system before being
finalised, such that they can test it through normal use. The main difference between
this type of testing and usability testing is the way it is conducted and when they take
place in the development phases. Usability tests can be used throughout the phases
whereas beta-testing is conducted in the end of the development. Furthermore, usability
testing is directly focused on how the users interact with and use the application, while
beta-testing is conducted by the users themselves and can uncover problems ranging
from usability problems to functional problems.

In this project, all of the above testing methods except beta-testing are used. Beta-testing
is omitted since testing of the system is conducted by the authors themselves, and possible
external input from others is covered using usability tests.

Unit testing and integration testing are conducted throughout the development using
automatic testing tools. This ensures that these can be conducted quickly and often, which
allows for easy regression testing when changes are made to the system.

System testing is conducted manually. This is because of the structure of BlueCAML
which consists of multiple applications running on different machines. This adds some diffi-
culty in automatically testing BlueCAML as a single entity since actions need to be initiated
on one machine which results in changes on another. Acceptance tests are conducted as one
of the final tasks of the project in order to verify that the final system meets the requirements.

8.1.3 Test Generation

Different approaches exist for creating the tests, directed at source code, in an efficient manner.
The following describes four different approaches to this:

Equivalence Partitioning Testing using equivalence partitioning involves analysing the input
domain of all inputs to the application, and dividing it into input equivalence classes.
All inputs in an equivalence class should result in the same behaviour of the application,
and thus only one input from each equivalence class needs to be tested.

48

8.1. TESTING

As an example, if a function accepts all positive integers, one can create two equivalence
classes: one with all positive integers, and one with all negative integers, and test the
behaviour of the application from a sample from each of these classes.

Boundary-Value Analysis A common place for failures to occur is in the boundaries of equiv-
alence classes. E.g. if an equivalence class consists of the positive numbers below 10 and
another consists of the positive numbers greater than or equal to 10, then there exist a
boundary at 10. This boundary is then tested by examining the boundary values 9, 10
and 11.

Since boundary analysis uses equivalence classes, some overlap exists between tests
constructed with these methods.

Cause Effect Graphing Cause effect graphs builds on the notion of causes, which are input
to the application, and effects, which are output from the application. The different
causes are then connected with the effects in a graph, together with edges indicating
relations such as dependencies and exclusion. The resulting graph can then be used to
generate tests, based on the required inputs used to cause the different effects.

Finite-State Models (FSM) The specification of an application can be used to create an FSM
which in turn can be used to auto-generate tests. These tests can then check if the
application conforms to the behaviour described in the model, ensuring its conformance
to the specification.

From the above, only two of the test generation methods are used in this project: equiva-
lence partitioning and boundary-value analysis. These are selected based on their simplicity.

The remaining methods require representing the requirements in some intermediate form
which then is used to auto-generate tests. This is considered too comprehensive for this
project.

8.1.4 Test Adequacy

Test adequacy concerns determining whether the tests are sufficient for their purpose. In
order to do this, a number of methods can be used. Three of these, which have been described
by Mathur (2008), are listed in the following.

Control Flow Control flow expresses the test coverage of the application in terms of either
statements, blocks of statements, conditions, or decisions which have been evaluated
under test. This method thus expresses how much of the application is examined when
executing the tests and can indicate if there exists parts of the application which are
uncovered.

Data Flow Data flow adequacy is a measure of the test coverage of changes to and usage
of data in the application. In contrast to the control flow adequacy method, data flow

49

CHAPTER 8. TEST AND VERIFICATION METHODS

adequacy measures how many of all possible paths, in respect to data, are examined as
part of the tests.

Mutation Test adequacy assessment through mutation is considered a white-box technique
in which the original source code is changed slightly. The changed program is denoted
as the mutant. The incentive to conduct mutation can be explained through a simple
example. Consider the expression boundary < max_val which has been tested. In
this case one might ask whether this is the correct expression or whether boundary <
max_val + 1 is the correct one. To prove the alternate solution correct or wrong, one
can simply mutate the original source code, run the test, and verify whether or not the
mutant behaves differently.

In respect to this project, it is not important which method is used, since the main purpose
of this is to ensure that components are not by accident neglected when testing.

From the described methods, the used IDE can be extended with NCover (NCover, 2010)
which is a program that supports control flow adequacy. This method is therefore used.

8.2 Verification

In the Test and Verification course, model checking has been introduced for verification. In
model checking, a formal model is constructed, e.g. by using finite-state automata. The
process of constructing the model can be done by examining the specification of the software.
Model checking allows for checking whether or not the software upholds certain properties
that are essential for proving its correctness. The result of checking properties can be one of
three different outcomes: satisfied, not satisfied, and unable to determine. The last case may
be present in situations where the model checker is incapable of properly terminate due to an
upper bound of iterations being exceeded or other such limitations.(Mathur, 2008)

When conducting model checking, with verification purposes, one must in most cases
try to limit the verification space of the software due to the combinatorial explosion of the
state space which results in a time consuming process or in the worst case a problem being
practically impossible to verify due to its size.(Mathur, 2008)

To verify models, model checkers such as UPPAAL (Bengtsson et al., 1996), TAPAs
(Calzolai et al., 2008) and PRISM (Hinton et al., 2006) can be used. Since lectures have
been given on UPPAAL, and a more in-depth analysis of the possible model checkers is out
of scope for this project, UPPAAL is chosen.

One should be aware, that by using a tool like UPPAAL to verify properties of a model,
gives rise to some concerns. These include, that if the tool verifies a certain property, the
reliability of the answer relies on a correct implementation of the tool. Also, in that context,
the tool cannot determine whether the model is in accordance to the specification. Finally,
verifying properties of a model only describe the behaviour of the model and not the actual
implementation. Therefore, if for instance the model does not yield a deadlock, the implemen-

50

8.2. VERIFICATION

tation must be exactly equal to the model before it can be inferred that the implementation
does not yield a deadlock neither.

In the following, UPPAAL is introduced.

Introduction to UPPAAL

UPPAAL uses timed automata to model a system for which certain properties can be verified.
As an example, the property of deadlock can be verified, by a thorough search that covers all
dynamic behaviours of the system.(David and Amnell, 2002)

UPPAAL comprises a model checker engine which can be used either directly or through a
GUI. This makes it possible to use UPPAAL both on normal desktop computers for designing
the models and using more powerful servers to do the actual model checking.

The following description of the UPPAAL notation builds upon David and Amnell (2002),
Bengtsson et al. (1996), and University and University (2006).

A UPPAAL model consists of a number of timed automata, each representing parts of the
system. These are called templates and consist of locations, edges, and a number of attributes
on these.

For the locations, the following attributes are used in this project:

Name The locations can have names identifying them. These can be referred to when
checking certain properties.

Initial State Each template must have exactly one initial state. This state is marked with a
double circle.

Invariants The invariants can be used as progress conditions, that is, if a location is labelled
with an invariant, the system must only be in that location as long as the invariant is
true. For instance, if a location is annotated with the invariant time <= 5 where time
is a clock variable, then the system is not allowed to stay in that location for more than
five time units. Clock variables are used to keep track of time and are automatically
incremented whenever the model changes state.

Committed Locations If a location is marked committed, represented by a C, it essentially
means that, when the location is entered, time is frozen and the next transition must
involve at least one of the outgoing edges of the committed locations. Hence atomic
actions can be simulated.

The edges can be annotated with the following:

Selections Is used to non-deterministically bind an identifier to a value given a scalar set or
a bounded integer. Thus, selections can be used to select an element of a set in order
to represent a specific process from a list of processes.

51

CHAPTER 8. TEST AND VERIFICATION METHODS

Guards If an edge is annotated with a guard, it means that the automaton is only able to
fire the particular edge if the guard expression evaluates to true. As an example, if one
wants to fire an edge if and only if the clock variable time is above five time units, one
would place the time > 5 guard on the edge.

Synchronisation Two running templates, called processes, can synchronise over channels
using complementary actions. E.g. when defining a channel called c, using c! in one
template represents a sent signal through the channel and c? represents receiving the
signal by another process. When two processes synchronise, both edges are fired at the
same time, meaning that the two involved processes change location.
The previously described synchronisation is called a binary synchronisation. Another
variant is making broadcast channels. This variant of synchronisation allows a sender,
c!, to synchronise with multiple receivers, c?.

Updates The update expression is executed when the edge is fired. This can be used to
make variable assignments.

As described previously, the purpose of a model checker is to verify the model with respect
to a requirement specification. To do this, the specification must be expressed in a formal
language of which UPPAAL makes use of a query language consisting of path formulae and
state formulae. As the name implies, path formulae expresses paths of the model and state
formulae describe the state.

State formulae are expressions in UPPAAL that can be evaluated like the boolean ex-
pression var == 5. State formulae also include testing whether a particular process is in a
particular location which is expressed as Proc.loc where Proc denotes the process and Loc
the location. In addition, UPPAAL also makes available a special keyword, deadlock, which is
the state formula evaluating to true for all deadlock states. This is a convenient state formula
to use in the verification of the model as it enables testing whether or not the model can
result in a deadlock state.

The path formulae can be classified into three different property classes, namely: reacha-
bility, safety, and liveness. Following is a brief description of each of these.
Reachability Properties of this class ask whether a given state formula, ϕ, possibly can be

satisfied by any reachable state. In UPPAAL this type of property is expressed as E3ϕ.

Safety These properties are used to describe that some state formula will possibly or never
occur. For instance, it may be convenient to verify that a deadlock never occurs in a
model. Provided that ϕ denotes a state formula, A2ϕ says that in all reachable states,
ϕ should be true. On the other hand, E2ϕ says that there should exist a maximal path
such that the state formula, ϕ, is always true.

Liveness Properties of this type are used to describe that something will eventually happen.
In UPPAAL, these properties are described using the path formula A3ϕ which describes
that the state formula, ϕ, is eventually satisfied. However, a more convenient property is
the response written as ϕ; ψ which means that whenever ϕ is satisfied, then eventually,
ψ will be satisfied.

52

Part II

Architecture

53

9
Technical Platform

The purpose of this chapter is to highlight the technical aspects of the constituents of Blue-
CAML. Specifically, this chapter emphasises on determining the appropriate implementation
languages and prepares for which technologies will be part of the system.

With relation to the mobile application, various essential choices need to be made. Among
others these comprises determining which language and platform provide the necessary func-
tionality for enabling that positioning can be performed. Also, it is important that the correct
map format is decided upon.

The back-end is only supposed to store the radio map and expose an API for manipulating
and retrieving it through services. In this regard, the appropriate programming language is
chosen.

Finally, an implementation language for the logic residing on the signaltransmitter is
decided upon, and in addition the appropriate network topology is found.

9.1 Back-end

On a previous project (Sw701b, 2009), knowledge was acquainted with Ruby on Rails which
proved to be capable of quickly prototyping applications especially in regards to simple data
storage and retrieval through web services. For this project, Ruby on Rails 2.3 along with
its default web server WebBrick are used. The back-end is installed on Windows XP. In
a deployment situation, the back-end can easily be migrated to other platforms supporting
Ruby on Rails.

Ruby on Rails uses RESTful interfaces by default. This means that the web services
comply with the architectural principles of REpresentational State Transfer (REST) defined
below (Rodriguez, 2008):

• The GET, POST, PUT and DELETE HTTP methods should be used. GET is used
when retrieving a resource, POST when creating a resource, PUT when updating a
resource, and DELETE when deleting a resource.

• The web service must be stateless, meaning that session data must not be stored.

54

9.2. MOBILE DEVICE

• The URIs used in REST web services should be easy to guess the meaning of. Therefore,
directory structure-like URIs are encouraged.

• The response data must be returned in the body of the HTTP response and is typically
either represented in; JSON, XML or XHTML.

9.2 Mobile Device

In respect to the mobile application, a programming language, data storage type, and map
format must be defined. This is done in the following sections.

9.2.1 Programming Language

Since some programming languages are platform dependent, the choice of programming lan-
guage depends on the specific platform. The available hardware with a corresponding platform
are listed below:

• iPhone 3G - iPhone OS

• HTC Diamond Touch - Windows Mobile 6.0

• Nokia E66 - Symbian OS v9.2

Since the development of BlueCAML is primarily focused on the applicability of Bluetooth
for indoor positioning, the authors have not found it crucial to find alternatives to the available
hardware. If it had been crucial, Google’s Android would be interesting to examine further,
based on its lately, almost explosive, growth in market share.(Canalys, 2010)

The mobile devices open for the usage of Objective-C using Cocoa, Java using Java Mi-
cro Edition (Java ME), languages supported by the .NET Compact Framework (.NET CF)
including C#, Visual Basic and Visual C++, and Symbian C++ using S60 3rd Edition.

Programs written in Objective-C can be compiled for iPhone and is a small extension to the
ANSI C programming language that supports the object oriented programming paradigm.(Apple,
2009)

Programs written in Java can be compiled for the Java Virtual Machine (JVM) and run on
the HTC and Nokia mobile devices, hence opens for platform independent development. The
Java ME platform is a subset of Java SE and its purpose is to make it possible to develop Java
applications for mobile phones, embedded devices etc. with limited resources (OracleSDN,
2010).

C# compiled code can be run on the HTC Diamond Touch using .NET CF which is
a downscaled version of the .NET Framework where components not relevant for mobile
development has been excluded (Fitzek, 2009, c. 8).

55

CHAPTER 9. TECHNICAL PLATFORM

Symbian C++ is used for developing software for the Symbian platform. It is a specialised
subset of C++ and can result in a steeper learning curve (Foundation, 2010).

In order to determine which platform and programming language would suit the require-
ments best, a brief analysis is conducted in which their features and possibilities are examined.
The first question to ask in this analysis is whether or not the platform and corresponding
programming language provide a means of collecting RSSI values from the Bluetooth device.
This question is alpha and omega because, as outlined previously, the mobile device is re-
sponsible for collecting the RSSI values. In determining whether or not this is possible, the
documentation of the individual platforms and programming languages are consulted and the
conclusion is that Symbian, iPhone and Java ME do not implement such features. However,
Windows Mobile with the .NET CF does and is therefore used.

Even though the project aims at showing the applicability of Bluetooth for an indoor
positioning system, Java ME would have been desirable because of its write once, run any-
where design philosophy. This lets the program run on virtually any device equipped with a
JVM provided that they implement the same configuration, hence making it cross-platform.
Because of this, a system developed using Java ME undoubtedly targets a wider market
segment.

According to an analysis conducted by Canalys (2010), the leading smart phone oper-
ating system vendors as of 2009 are, in decreasing shipments, Symbian, RIM, Apple, Mi-
crosoft and Google. As of this writing, all of these except Apple’s iPhone and Google’s
Android natively employ or give by default the possibility of employing a JVM, thus, they
are capable of executing the same program, provided that they implement the same con-
figuration. Note that there exists solutions for converting Java ME applications to iPhone
applications.(DEVELOPMENT, 2008; Symbian, 2010; Sun, 2005; Burnette, 2007; Mysaifu,
2010a,b)

The .NET CF provides the opportunity of using various languages and even let them
intermix seamlessly. The choice of appropriate language is described below.

.NET Compact Framework

As previously described, the .NET CF is, in respect to the .NET Framework, a smaller, more
client oriented framework (Yao and Durant, 2010). (Fitzek, 2009, c. 8) describes that the size
of .NET CF is around eight percent of the full .NET Framework, meaning that the framework
can fit into devices with limited memory resources. It consists of the base class libraries and
includes functionality targeting the mobile platforms such as special forms.

The Common Language Runtime (CLR) is placed on top of the operating system and
its purpose is to execute the .NET byte code on the platform. To make this process more
efficient and economising the power consumption, the CLR has been developed from scratch
for the .NET CF.(Barnes, 2010)

Using the CLR to execute the application, opens for development in different programming
languages, such as C#, Visual Basic, and Visual C++. Using C# has been assessed to be

56

9.2. MOBILE DEVICE

an advantage because of prior experience. Also, it is not considered beneficial to use two
programming languages for development since there is no advantage in doing so for developing
the mobile application. It is therefore developed using C# and the .NET CF 3.5. Utilising
an intermix of programming languages could be desirable in situations where one wants to
accommodate the various preferences of developers.

9.2.2 Storage of Data on the Mobile Device

The mobile application needs to store radio maps. Some considerations are needed when
choosing how to store this data on the mobile device. The data is to be loaded into memory
on initialisation, so the speed of retrieving the data from the storage is less important.

For storing the data, two alternatives have been identified, namely a database such as a
spatial database or using XML. It has been identified that using a database would not intro-
duce advantages of significance. In contrast, however, depending on the database, it would
introduce another dependency to an external library whereas .NET contains built-in function-
ality for manipulating XML entities etc. Also, the fact that potential geometrical operations
can be made by mobile application itself, minimises the advantages of using a spatial database
considerably. Therefore, the radio maps are stored in XML files in BlueCAML.

9.2.3 Choice of Map Format

A map of the current environment is necessary in order to show the estimated position visually
to the user. In order to render this map, two possible solutions are evaluated; a pre-rendered
raster image and rendering the environment using IFC models.

Using a raster image would require that an image is made for each supported environment,
either manually or by using pre-existing technical documents which are corrected. A drawback
is the inability to change the visual representation of the map without re-rendering the images,
such as if the colour and thickness of the walls need to be adjusted.

In contrast, this is resolved using IFC models. These models contain detailed information
about buildings such as walls, windows, doors, and even electrical wiring. This allows for
rendering the environment based on this information and changing the renderer if necessary.
All buildings built or renovated by the Danish government with a budget above 20 million
are required to have an IFC model (DetDigitaleByggeri, 2010). Using the IFC model, one
can render the environment both in 2D or 3D in contrast to the 2D format of a raster image
which shows the flexibility of using IFC in relation to raster images.

Due to the high level of detail provided in the IFC models, they tend to become quite large.
However, it has been successfully used in mobile devices in the research project conducted
by Ferial Shayeganfar and Tjoa (2008). It has been assessed, that the full IFC model is not
the best solution in BlueCAML. This is both due to the unnecessary level of detail and the
requirement of conducting position estimation on the mobile device which potentially require
high computational effort. Fortunately, a variant of the IFC model has been developed, namely

57

CHAPTER 9. TECHNICAL PLATFORM

the Portable IFC (PIFC) (Šikšnys, 2010). The PIFC format extracts relevant information from
the IFC model and defines the position of walls, defines the names of different areas such as
offices, and annotates the positions of relevant elements such as Wi-Fi access points. All other
data kept in the IFC model such as plumbing and wiring are not taken into account. This
means that the file size of PIFC is significantly reduced in respect to the original IFC file
from which it was derived. As an example, an IFC file for the building for Department of
Computer Science at Aalborg University was reduced from 9.5 MB to a PIFC file of size 141
KB. The PIFC model is represented in XML format, which must be read by the renderer in
order to extract the coordinates for the different parts of the environment before rendering
the map.

Another variant is the CityGML model (CityGML, 2010) which similarly is a less detailed
version of the IFC model and provides the opportunity of specifying the detail-level of the
individual objects. Finally, CityGML aims at providing detailed outdoor objects such as
streets or vegetation which may be necessary if one wants to model the objects of a city
(Stephan Mäs and Wang, 2008). Customisation with the PIFC model is possible such that
signaltransmitters, for instance, are represented also. CityGML could potentially be used,
however, it is more a format aiming at describing objects that may exist in an outdoor
environment which is not necessary in the case of BlueCAML.

Between PIFC and CityGML, it has been determined that PIFC is the proper choice due
to its detail level being in accordance with the purpose of BlueCAML, that is, walls, doors
and other elementary objects for defining the structure of a building are representable.

It has been assessed that using a raster image or the PIFC model are equal in regards
to required effort in their implementation. From the authors experience, displaying a raster
image in a GUI and drawing additional information, such as the current position on top of
the image, is fairly simple (Jensen et al., 2007). Rendering the PIFC model would require
more effort, but an implementation already exists for rendering the model in 2D on mobile
phones. By reusing this implementation, the effort would be greatly reduced.

One added concern is the increased requirements for rendering the map on the mobile
device from the PIFC format. However, experience from the existing implementation of the
2D renderer shows that a modern mobile phone is capable of rendering it fluently. Due to
this reason, the PIFC model is chosen as map format on the mobile application.

9.3 Signaltransmitter

Regarding the signaltransmitters, the following sections describe the hardware specification,
programming language, and network topology of them.

58

9.3. SIGNALTRANSMITTER

9.3.1 Hardware

The infrastructure of BlueCAML is similar to the one used in Easy Clocking (Sw701b, 2009),
meaning that the hardware remain the same. The specification of the signaltransmitters is
shown in Table 9.1 (DD-WRT, 2009).

Device Asus WL-500gP V2
Price 700 Dk/kr
Firmware OpenWRT Kamikaze 8.09.1
Linux Kernel 2.4.35
Platform Broadcom 5354 Chipset
CPU MIPS32 CPU running at 240 MHz
Flash memory 8 MB NAND
System memory 32 MB 16-bit DDR SDRAM
USB ports 2 x USB 2.0
Wireless radio Broadcom 802.11b/g
Network switch 4 × 10/100 Mbit LAN and 1 × 10/100 Mbit WAN

Table 9.1: Hardware specifications for the signaltransmitters (DD-WRT, 2009).

Other hardware than the listed could be used as long as the device can support making
the Bluetooth adapter discoverable to the environment. Depending on whether a smart or
dumb signaltransmitter is set for deployment, the device requires network capabilities in case
a smart signaltransmitter is desired. Thus, the requirements for them are fairly low.

As shown in the table, the signaltransmitters use the OpenWRT firmware which is an
open source Linux based firmware for embedded devices. This means that it is applicable by
a number of devices, hence the signaltransmitter application should be executable on any of
these as long as they have this firmware.(OpenWrt, 2010)

The signaltransmitters are based on the MIPS architecture meaning that a cross-compilation
toolchain is required for generating the executable when developing on an x86 based archi-
tecture. OpenWRT makes available such a cross-compilation toolchain.(OpenWrt, 2010)

9.3.2 Programming Language

For programming embedded devices, a variety of programming languages are possible. At the
previous project, C was used for programming the WL500gP router. The experiences with this
language was generally positive, but as the size of the application grew, it gradually tended
to be more difficult to maintain an overview of where different functionality was located in
the source. During the construction of that application, it was also frequently necessary to
construct elementary data structures with accompanying helper functions for manipulating
and accessing them. Due to these experiences, together with the desire of applying a new

59

CHAPTER 9. TECHNICAL PLATFORM

and so far untried programming language for embedded software development, it has been
decided to try a new one.

In this project, C++ has been decided as implementation language for the application
residing on the signaltransmitter. The primary argument for this choice is due to language
features and extensions over C that makes object oriented programming convenient in C++.
The main features of the object oriented programming paradigm such as promoting inheri-
tance, encapsulation, abstraction and polymorphism are some of the language features which
could accommodate some of the experiences acquired with C. Additionally, C++ supports
the full C and C++ standard libraries and makes available the Standard Template Library
(STL) which contains a number of useful and elementary templates through the support for
generic programming. Among others, the STL contains common data structures such as lists,
vectors, and hash maps which are conveniently applied without much effort as in contrast to
the requirement of manually implementing them in C.

Many programming languages supporting the object oriented programming paradigm con-
tain aforementioned features. However, as will become apparent later, the signaltransmitter
needs to communicate with a web server using the HTTP protocol for being compliant with
the RESTful interface. In the previous project, similar functionality was required and much
experience was acquired in using the HTTP transfer library libCURL for C. Also, experience
was acquired in in-memory XML parsing and XPath evaluations using the libxml2 XML li-
brary which also will be an essential part of the signaltransmitter. Both libraries are also
compliant with C++ due to their usage of language linkage to C++. Essentially, this means
that acquired knowledge in these two libraries can be transferred directly to an implementa-
tion in C++. This is the primary argument for choosing C++ instead of for instance Java
which is also possible due to available virtual machines for the MIPS architecture. The in-
centive of using Java could have been due its platform independent nature thereby promoting
portability through the write once, run anywhere principle. However, for this project, porta-
bility is not an issue that will be taken into account, and should the necessity arise due to
different hardware for instance, GNU cross-compilation toolchains exist for the majority of
different architectures.

9.3.3 Network Topology

The network topology used in the previous project was based on a mesh network which was
realised through the utilisation of the Optimised Link State Routing (OLSR) protocol. The
primary incentive of basing the topology on this, is that it enables a relatively effortless in-
stallation of new signaltransmitters in case new areas of the particular building become of
interest. The installation comprises physically setting up the signaltransmitter and make it
part of the mesh network. Afterwards, the signaltransmitter is capable of wirelessly commu-
nicating with the back-end by routing data through other nodes of the network. However, it
was discovered that the implementation of the OLSR protocol for OpenWRT was very un-
stable and practically insufficient for enabling a mesh network to successfully be constructed.
Since no alternative solution has been found for this project, the network topology is based

60

9.3. SIGNALTRANSMITTER

on the star topology meaning that the nodes are connected to a central router of which may
be part of another star topology and so on such that data from a signaltransmitter is routed
through these until reaching the destination, the back-end, eventually. However, in an actual
deployment setting, the mesh network topology could be set up statically by defining the
appropriate routes in each of the signaltransmitters.

61

10
System Architecture

The purpose of this chapter is to describe the system architecture of BlueCAML, which helps
ease the understanding of the general structure and dependencies of the system (Munk-Madsen
et al., 2000). During the agile development process, the architecture has been iteratively
updated and could therefore be used as a reference during development, since it forms the
basis for the design.

10.1 Architecture

The following introduces the architecture, shown in Figure 10.1, which is comprised of the
three primary packages: the mobile application, the back-end application, and the signaltrans-
mitter application. The responsibilities of each of these and their sub-packages are described
throughout the chapter.

Three architectural patterns are used, namely the Model View Controller (MVC) pattern
for the back-end application, the Model View Presenter (MVP) pattern for the mobile appli-
cation, and the layered architecture which is used both in the signaltransmitter application
and the mobile application. These patterns are described in the sections corresponding to the
specific packages in which they are applied.

10.2 Back-end Application

The purpose of the back-end application is to store the radio map at a central location, such
that it can be distributed to the mobile devices as needed. It is also responsible for receiving
corrections to the radio map and modifying it accordingly. These tasks are accomplished
by providing RESTful web services to the signaltransmitters, which in turn handles requests
from the mobile devices.

The back-end application follows the MVC (Fowler, 2006b) architectural pattern which is
the conventional way to structure Ruby on Rails back-end applications (RailsGuides, 2009).
This pattern separates concerns in the application, such as the presentation layer from the

62

10.2. BACK-END APPLICATION

Mobile Application

Engine Layer

View

Management

Layer

Hardware Layer

Radiomap

Signaltransmitter Application

Presenter

Connection

Manager

Bluetooth Layer HTTP Layer

Back-end Application

Model View

Controller

Model

Figure 10.1: UML package diagram, depicting an overview of the three main packages comprising
BlueCAML: the mobile application, the back-end application, and the signaltransmitter application.
Dependencies are depicted by arrows.

model and input handling from view generation. The following describes the model, view,
and the controller in the back-end application.

Model The Model contains all business logic and stores all information related to the ap-
plication. This consists of the radio map and logic used to manipulate it.

View The View is responsible for rendering pages to the user based on data provided by
the controller. Thus, there exist views for each of the provided RESTful web services
for retrieving radio maps and uploading corrections to the radio map.

Controller The controller is responsible for handling user input which is limited to the calls
to the RESTful web services from the signaltransmitters. When called, it must first ma-
nipulate the models before handing the necessary information to a View which renders
a response to the calling signaltransmitter.

63

CHAPTER 10. SYSTEM ARCHITECTURE

10.3 Signaltransmitter Application

The signaltransmitter application consists of three packages, namely: the Bluetooth Layer,
HTTP Layer, and Connection Manager. The architectural pattern constituting these packages
is based on the layered architecture in which the Bluetooth Layer and the HTTP Layer
encapsulate relatively low level functionality providing a higher level of abstraction through
interfaces to the upper layer; the Connection Manager. Besides providing a higher level of
abstraction to upper layers, the layered architecture is also convenient in situations where some
functionality in a lower layer needs to be changed. This is due to the layered architecture
emphasising on enhancing cohesion and lower coupling.

In the following, the three packages are described individually.

Bluetooth Layer The Bluetooth Layer comprises all functionality concerning Bluetooth in
the signaltransmitter application. Specifically, this layer interacts with the local Blue-
tooth adapter in order to measure RSSI values and handles communication with the
mobile devices through Bluetooth. In case the Bluetooth stack of the signaltransmitter
is substituted by another implementation than originally used, the implementation of
the Connection Manager remains unchanged as long as the new implementation of the
Bluetooth Layer complies with the same interface.

HTTP Layer This layer provides functionality used for communicating with the back-end
through the RESTful web services provided by it.

Connection Manager The Connection Manager aggregates the functionality of the two lower
layers and is therefore responsible for processing incoming requests from the mobile
application and take actions accordingly.

10.4 Mobile Application

The mobile application package, follows the idea behind the MVP architectural design pattern.
More specifically it is based on the Passive View variant of MVP (Corporation, 2008; Fowler,
2006a). The general concept of MVP is to separate the concerns of the user interface and
the model, consisting of business logic and application state, by using a presenter. The main
difference between MVP and MVC is that in MVP, only the presenter interacts with the
model, whereas in MVC both the view and controller is allowed to do this.

The reason why the mobile application only to some extent follow the idea behind the
pattern instead of actually applying it, is that different sources disagree on how it should
be applied (Corporation, 2008; Fowler, 2006a; Cerrada, 2008). Some describe that a view
should be present for each resource in the model, while others do not explicitly state this. In
BlueCAML, there is one view, since there is no need to present the user with actual resources.
In other applications, e.g. an order management system, one could imagine having different
views for orders, customers, etc.

64

10.4. MOBILE APPLICATION

The Passive View design pattern has a number of side-effects besides providing a structure
for controlling user interaction. By decoupling the view and the presenter, it is possible to
replace the view depending on where it is used. E.g. one could imagine an application having
a view for desktop usage and one for mobile device usage. Also, if BlueCAML is extended
with functionality for e.g. not showing maps but only context-aware information to the users,
this could be implemented as a separate view.

Another side-effect is increased testability. The Presenter contains the logic related to
user interaction, which can be called directly and tested. The user interface only contains the
minimum amount of logic needed to control the user interface, thereby reducing the amount
of logic not tested if tests are omitted for it. Using the pattern therefore complies with the
testability quality factor.

The different packages in the mobile application architecture are described below.

Model The Model contains all business logic and stores the application data and state. It
is further divided into the following layers, whom are based on layered architecture.

Engine Layer The Engine Layer is responsible for the high level logic of the application,
namely: estimating the position of the mobile device and maintaining the radio
map.

Management Layer The Management Layer consists of business logic used by the En-
gine Layer in order to e.g. collect fingerprints, and maintain connections to signal-
transmitters.

Radio map The Radio Map package contains the radio map information and provides
functions used to manipulate and compare elements in it. This package is shared
between the Engine Layer and the Management Layer.

Hardware Layer The Hardware Layer encapsulates all Bluetooth related functionality
which are dependent on the hardware on which the mobile application runs. The
purpose of the layer is to be able to substitute the layer according to the underlying
hardware if necessary.

View The View is responsible for the GUI and initial handling of user interaction. It also
contains the map which is used to show the user’s current location.

As selected in Section 9.2.3, the map is rendered from a PIFC model. In order to read
and render this model to the screen, a pre-existing package is used. Throughout the
report, this package is referred to as the PIFC Renderer. Since it is not the focus of this
project to create a PIFC Renderer, it has been decided to reuse this component.

Presenter The Presenter is responsible for handling the user interaction, by calling the ap-
propriate methods in the Engine Layer in order to make position estimates and maintain
the radio map. Furthermore, it is capable of calling methods in the View to show the
result to the user.

65

CHAPTER 10. SYSTEM ARCHITECTURE

For instance, if a user presses a button in the View, a call is made to the Presenter from
the View, which then processes the action. If necessary, it calls other methods in the
Model in order to change the application state. When the Presenter has processed the
action, it calls the View to present the result to the user.

66

11
Communication

As described in Chapter 6, BlueCAML consists of three packages: the mobile application,
signaltransmitter, and the back-end. These packages needs to communicate with each other
in order to update and maintain radio maps. This chapter describes how the communication
is realised.

As described, following two events result in the need of communicating between the dif-
ferent parts of BlueCAML.

• The mobile application sends fingerprints, containing measurements from a number of
signaltransmitters to the back-end through the smart signaltransmitters in order to
update the radio map.

• The mobile application retrieves an updated radio map from the back-end by commu-
nicating through the smart signaltransmitters.

The following describes the message format used for the communication between the
applications and uses model checking to verify a number of properties of the communication
protocol.

11.1 The Communication Protocol

The communication protocol is as follows: the mobile application sends a request to the
signaltransmitter, either requesting a radio map or sending corrections to it. Depending on
the type of request, the signaltransmitter further communicates with the back-end, requesting
the radio map or update it, respectively. In the case of the mobile application requesting the
radio map, it is send back from the signaltransmitter. If the mobile application is correcting
the radio map, it receives a response immediately. Afterwards, the signaltransmitter continues
to send the corrections to the back-end.

When correcting the radio map, multiple calls need to be made between the signaltransmit-
ter and the back-end. This is the case since RESTful interfaces specify that only one resource
should be modified in a single request. Since the fingerprint and individual measurements,

67

CHAPTER 11. COMMUNICATION

comprising it, are different resources, these need to be added over multiple calls. Hence, to
simulate that these comprise a single request, a transaction mechanism can be implemented.
When the fingerprint is send, it sets the transaction to uncommitted. After all measurements
have successfully been uploaded, the state of the transaction is set to committed, thereby
signalling that the entire fingerprint is uploaded. Only fingerprints with committed state are
afterwards considered.

11.2 Message Format

Communication between the signaltransmitters and the back-end is done using RESTful in-
terfaces, meaning that signaltransmitters uses the HTTP protocol for communication.

In respect to the communication between the mobile application and the signaltransmitter,
a customised message format is used. Figure 11.1 depicts this message format consisting of a
6 byte header and a variable length payload.

Command Status Payload Size Payload

1 byte 1 byte 4 bytes X bytes

header

Figure 11.1: Header for the communication requests sent between the mobile application and the
signaltransmitters.

As shown, the first byte indicates the specific command the mobile application requests
handled. One byte is sufficient due to only two commands currently being supported in
BlueCAML. When data is sent from the signaltransmitter to the mobile application, this field
should contain the code for the requesting command even though it is not used by the mobile
application.

The next byte indicates the status of the request. A status code of zero indicates success
and all other status codes indicate a particular type of failure. The status is followed by a
payload size field which is a four byte integer indicating the size of the following payload. The
size is essential to know how much data should be received after the header.

68

11.3. VERIFICATION OF PROTOCOL

11.3 Verification of Protocol

In Section 8.2 UPPAAL was introduced as a tool for statically verifying specifications or
applications using model checking. In this section, it is described how the tool is used to
verify different properties of the protocol.

The following describes the templates used in modelling the communication protocol.
Notice that all channels used for synchronisation between the processes are made broadcast
such that if a process is listening, it can synchronise, otherwise, the system continues.

The communication has been modelled using four templates: one for the mobile applica-
tion, two for the signaltransmitter, and one for the back-end. The signaltransmitter is divided
into two templates in order to model the communication between the mobile device and the
back-end, respectively.

The time intervals have been determined experimentally by measuring the time it takes
of simulating the operations. The time unit of the clock variables is in milliseconds.

11.3.1 Mobile Client

The MobileClient template, depicted in Figure 11.2, models the locations and edges of the
MobileClient. It starts in the location marked Idle and from here, it can synchronise with
the StReceiver by firing the only outgoing edge and signal ConnectingSt. When StReceiver
has synchronised with MobileClient by signalling ConnectedSt, the MobileClient template
can execute one of two different actions; it can either choose to send a fingerprint by signalling
SendFingerprintSt or it can choose to get the radio map by signalling GetRadioMapSt. After
conducting one of these two synchronisations, MobileClient enters respective wait locations
in which it is able to wait for a total of 1000 and 5000 time units.

In case of getting the radio map, MobileClient times out if it has not within this time
frame received either a time out signal from the back-end or a radio map.

In case of sending the fingerprint, MobileClient times out if it has not synchronised with
the SendFingerprintStatusSt within the time frame. Finally, MobileClient enters the Idle
location again and is ready to connect to StReceiver.

11.3.2 Signaltransmitter Receiver

The StReceiver template, depicted in Figure 11.3, models the process of the signaltrans-
mitter handling the requests from the mobile client. As shown, it starts by connecting with
a MobileClient process, and when connected, enters ConnectedToMobile. From there, it
waits for the channel the MobileClient process synchronises with, depending on whether
a radio map is requested or a fingerprint is sent. If synchronising with GetRadioMapSt,
the process waits for the Backend process to be ready for requests. When it is, the request is
passed on by signalling GetRadioMapBackend, and later when Backend signals on the SendRa-
dioMapSt channel, synchronises with the MobileClient process. When waiting for Backend,

69

CHAPTER 11. COMMUNICATION

StRespondedFingerprint

StRespondedRadioMap

ReceivedTimeOut

TimeOut

ConnectingToSt

StResponded

WaitForFingerprintStatus
time<=1000

WaitForRadioMap
time<=5000

ConnectedToSt

Idle

TimeOutFromBackend[curstid][mid]?

time>=5000
time=0

time>=1000
time=0

ConnectedSt[curstid][mid]?

SendFingerprintStatusSt[curstid][mid]?

SendRadioMapSt[curstid][mid]?

SendFingerprintSt[curstid][mid]!
time=0

GetRadioMapSt[curstid][mid]!
time=0

stid : stid_t
ConnectingSt[stid][mid]!

curstid = stid,
time=0

Figure 11.2: UPPAAL model for MobileClient and its communication with the StReceiver tem-
plate.

the StReceiver process enters TimeOutBackend if it has been waiting for longer than 500
time units.

If synchronising with SendFingerprintSt from the ConnectedToMobile location, the model
simulates that the received fingerprint either is in accordance with the expected format or not.
In both cases, the ReturnFingerprintStatusToMobile location is reached. Only if the format is
correct, a task is added to a queue used by StSender. From ReturnFingerprintStatusToMobile,
the SendFingerprintStatusSt channel synchronises with the MobileClient.

11.3.3 Signaltransmitter Sender

Figure 11.4 depicts the StSender template. This models the process of continuously sending
fingerprints from a queue to the back-end. This process is made in steps to simulate trans-
actions in REST. Therefore, an uncommitted fingerprint is firstly send to the back-end, then
the measurements are send, and finally the fingerprint is committed. If the fingerprint is not
committed it will not be used in further processing by the back-end.

It starts in the location called Idle from which it, whenever the queue is non-empty, can
start sending if the Backend process is ready for receiving. If the uncommitted fingerprint
is send, the process enters the WaitForBackendUncommittedFingerprint location. Next, the
WaitForBackendUncommittedFingerprint location is entered, and StSender waits for Backend

70

11.3. VERIFICATION OF PROTOCOL

ReturnFingerprintStatusToMobile

time<=100

WrongSyntax

QueueingFingerprint

TimeOutBackend

ConnectingToMobile
time<=400

BackendRespondedRadioMap
time<=500

WaitForRadioMapBackend
time<=500

CheckingFingerprintSyntax
time<=500 GetRadioMap

time<=500

ConnectedToMobile

idle

time>=10

SendFingerprintStatusSt[stid][curmid]!

time=0

time>=100

time>=500

queue[stid]++,
time=0

TimeOutFromBackend[stid][curmid]!

time=0

time>=500

time>=300
ConnectedSt[stid][curmid]!

time>=100
SendRadioMapSt[stid][curmid]!

time>=100 && queue[stid]<TASKS_NUM

SendRadiomapBackend[stid]?
time=0

GetRadioMapBackend[stid]!
time=0

SendFingerprintSt[stid][curmid]?
time=0

GetRadioMapSt[stid][curmid]?
time=0

mid : mid_t
ConnectingSt[stid][mid]?

curmid = mid,
time =0

Figure 11.3: UPPAAL model for the StReceiver template which handles incoming requests from
the MobileClient processes.

to respond. When the Backend responds, StSender enters the ReadyToSendMeasurement lo-
cation. Here, sending the measurements is modelled and upon completion, the WaitForBack-
endMeasurement is entered until the Backend responds by synchronising with Measuremen-
tResponseBackend. Finally, the fingerprint needs to be committed, modelled by synchronising
with SendFingerprintCommittedBackend and entering theWaitForBackendCommittedFinger-
print location waiting for response from Backend. Finally, the queue is decremented by one,
indicating that the task is complete.

All the locations, depending on synchronisations with the Backend process, can time out.
In the time out locations, the StSender process retries its task after backing-off for 2000 time
units.

71

CHAPTER 11. COMMUNICATION

CommittedFingerprintTimeOut

MeasurementTimeOut

UncommitFingerprintTimeOut

SecondTimeOut
time<=2000

FirstTimeOut
time<=2000

BackendResponded

ReadyToSendCommittedFingerprint

time<=500

WaitForBackendMeasurement
time<=1500

ReadyToSendMeasurement
time<=500

WaitForBackendCommittedFingerprint
time<=500

ThirdTimeOut
time<=2000

WaitForBackendUncommittedFingerprint

ProcessingQueue
time<=500

idle

time=0

time=0

time>=500
time>=2000

time=0

time>=500

time>=500

time>=2000
time=0

time=0

time>=500

time>=2000
time=0

time>=500

SendFingerprintStatusBackend[stid]?
queue[stid]--

time>=1500

SendFingerprintCommittedBackend[stid]!
time=0

MeasurementResponseBackend[stid]?
time=0

SendMeasurementBackend[stid]!

time=0

UncommittedFingerprintResponseBackend[stid]?

time=0

SendFingerprintUncommittedBackend[stid]!
time=0

queue[stid]>0
time=0

Figure 11.4: UPPAAL model for the StSender template which is responsible for sending requests
from StReceiver to the Backend.

11.3.4 Back-end

The Backend template, depicted in Figure 11.5, models the back-end of the system. The
template starts in the initial location marked Idle. From this location, it is able to synchro-
nise with four different channels namely: GetRadioMapBackend, SendFingerprintUncommit-
tedBackend, SendMeasurementBackend, and SendFingerprintCommittedBackend. All these
channels represent the interactions available for the signaltransmitter. For each of the loca-
tions having an edge annotated with one of the previously described channels, an invariant is
associated together with an outgoing edge on which a guard is placed. The invariant together
with the guard represent how long the particular operation takes.

72

11.3. VERIFICATION OF PROTOCOL

ModifyFingerprint
time<=100

CreateFingerprint
time<=250

CreateMeasurement
time<=300

ProcessRadioMap
time<=400

time>=70

SendFingerprintStatusBackend[curstid]!

stid:stid_t

SendFingerprintCommittedBackend[stid]?

time=0,
curstid=stid

time>=200
UncommittedFingerprintResponseBackend[curstid]!

stid: stid_t

SendFingerprintUncommittedBackend[stid]?
time=0,
curstid = stid

time>=200
MeasurementResponseBackend[curstid]!

stid:stid_t

SendMeasurementBackend[stid]?
time=0,
curstid = stid

time>=200

SendRadiomapBackend[curstid]!

stid: stid_t
GetRadioMapBackend[stid]?

time=0,
curstid=stid

Figure 11.5: UPPAAL model of the Backend template communicating with StSender.

73

CHAPTER 11. COMMUNICATION

11.3.5 Verification

Using the described query language, certain properties of the model can be checked. List-
ing 11.1 shows an excerpt of the verified statements. �

1 A [] !exists(i:mid_t)(MobileClient(i).TimeOut)
2 E<> exists(i:mid_t)(MobileClient(i).StRespondedFingerprint)
3 E<> exists(i:mid_t)(MobileClient(i).StRespondedRadioMap)
4 E<> StReceiver(0).ReturnFingerprintStatusToMobile
5 E<> StReceiver(0).BackendRespondedRadioMap
6 E<> StSender(0).BackendResponded
7 A [] StSender(0).UncommitFingerprintTimeOut imply StSender(0).time==500
8 A [] StSender(0).MeasurementTimeOut imply StSender(0).time==500 || StSender(0).time==1500
9 A [] StSender(0).CommittedFingerprintTimeOut imply StSender(0).time==500

10 A [] StReceiver(0).TimeOutBackend imply StReceiver(0).time==500
11 A [] !deadlock
 	

Listing 11.1: Verified properties of the communication.

Generally, the model contains three MobileClient processes, two StReceiver processes,
two StSender processes, and one Backend process. The scenario is chosen to simulate load
on the signaltransmitters since there is one more mobile client than signaltransmitters, and
likewise with the signaltransmitter and the back-end. The purpose is to verify whether the
listed statements hold for this setup. The statements are described in the following.

• Line 1 - Verifies that, when connected to the StReceiver process, the MobileClient
process does not time out, meaning that the StReceiver always returns a response
within the expected time.

• Line 2 - Checks that at some point the MobileClient process gets a response when
sending a fingerprint.

• Line 3 - This verifies that, the MobileClient process at some point gets the requested
radio map.

• Line 4 - Checks that the StReceiver process eventually reaches the ReturnFinger-
printStatusToMobile location indicating that the StReceiver responds to the MobileClient
process. Similar statements are made for the other StReceiver processes.

• Line 5 - Checks that the StReceiver class eventually reaches the BackendRespondedRa-
dioMap location indicating that the StReceiver process responds to the MobileClient
process. Similar statements are made for the other StReceiver processes.

• Line 6 - Verifies that the StSender process eventually receives a response from the
Backend process indicating that the fingerprint has been successfully stored. Similar
statements are made for the other StSender processes.

74

11.3. VERIFICATION OF PROTOCOL

• Line 7 - This verifies that the clock variable equals 500 when the StSender process
enters the UncommitFingerprintTimeOut location.

• Line 8 - This verifies that the clock variable equals 500 or 1500 when the StSender
process enters the MeasurementTimeOut location.

• Line 9 - This verifies that the clock variable equals 500 when the StSender process
enters the CommitFingerprintTimeOut location.

• Line 10 - This verifies that the clock variable is equal to or above 500 time units when
the StReceiver process receiver enters the TimeOutBackend location.

• Line 11 - This verifies that the simulation does not reach a deadlock.

All the properties are concluded to be satisfied by UPPAAL. This means that if the code
reflects the model, the properties also holds for the code.

75

Part III

Design

76

12
Back-end Application

The back-end application consists of a number of models used to store the radio map, and
some RESTful interfaces used to access and maintain the radio map. In the following, the
available web services, data design, and classes involved are described.

12.1 Web Services

The following web services are identified to fulfil the need of the signaltransmitters to get
a radio map and send corrections to it. Their descriptions are part of this chapter since
they pose an essential interface to the signaltransmitter that should be examined as clearly
as possible to avoid that the signaltransmitter application, heavily relying on this interface,
needs to be redesigned.

Get Radio Map This operation is supported through a single RESTful web service which
allows the signaltransmitters to call it and get the radio map in XML format.

Send Corrections In order to support the signaltransmitter sending corrections to the finger-
print, a number of RESTful web services are made available. First, a fingerprint must
be created, and a call must be made for each measurement which should be added to
this fingerprint. Finally, a call is made to mark the fingerprint as committed.

All web service requests are handled by a controller, before using a view to render the
response.

12.2 Data Design

In this section, the data design is described for the underlying models used in BlueCAML.
Essentially, the data design conforms to the data structure of the Weighted Graphs algorithm
and is responsible for storing relevant information that allows for constructing a radio map
suitable for being stored on the mobile devices. The entity-relationship diagram modelling
the database of the back-end, is shown in Figure 12.1. Using an entity-relationship for this

77

CHAPTER 12. BACK-END APPLICATION

purpose is appropriate because the involved entities, attributes, and relationships can be
directly mapped to a relational database which is used in the back-end.

locations

PK id

FK1 radiomap_id

x_coord

y_coord

floor

radiomaps

PK id

name

edges

PK id

FK1 location_id

FK2 neighbour_id

weight

fingerprints

PK id

FK1 location_id

bluecamlowned

created_at

signaltransmitters

PK id

mac

smartst

x_coord

y_coord

floor

measurements

PK id

FK1 fingerprint_id

FK2 signaltransmitter_id

rssi

Figure 12.1: ER-diagram showing the relationships of the entities in the model of the back-end.

The radiomaps entity is responsible for storing the various radio maps BlueCAML is com-
prised of. This allows for having a centrally located back-end that governs multiple buildings.
This entity is related to the locations entity with one-to-many cardinality describing all
the locations the particular radio map is comprised of. In order to implement the Weighted
Graph data structure, the edges entity relates a location with multiple other locations
and in addition describes the weight of the edge, that is, the distance from two connected
locations .

A single location can contain multiple fingerprints thereby allowing a history of
fingerprints to be constructed. This is useful in regards to the maintainable part of Blue-
CAML where user-supplied fingerprints need to correct the currently stored fingerprints. The
bluecamlowned attribute, indicates whether or not the particular fingerprint has been con-
ducted as part of the official measurements.

As previously described, a fingerprint is comprised of multiple RSSI measurements from
a number of signaltransmitters. To make this relationship in the model, the measurements
and signaltransmitters entities are used. The measurements entity contains an average
RSSI measurement from the particular signaltransmitter to which it is related in the model.
Finally, the signaltransmitters entity contains information about the signaltransmitters in
the radio map which includes the Bluetooth MAC-address, a boolean value describing whether
or not the particular signaltransmitter is smart, and finally the coordinates of its location.
The coordinates are not currently being used, but they have been included due to the premise
that they might be convenient in a deployment situation where maintainers need to determine
where specific signaltransmitters are located in the environment.

78

12.3. CLASSES

12.3 Classes

The purpose of this section is to describe the classes involved in the back-end. It has been
assessed that including this design document is convenient, because it provides a good overview
of the entire application. Hence, this design document is included for all constituents of
BlueCAML due to its importance.

The documentation of the design of the back-end application is not based on a UML
class diagram due to the classes not being associated with each other directly. Only the
models of the MVC architectural design pattern are interrelated, but this relationship can
be directly transposed to the previously described data design. Due to this, the classes are
simply represented in their respective component of MVC which can be seen in Figure 12.2.

Fingerprint Edge

Location

View

Model

SignaltransmitterMeasurement

Radiomap

MeasurementsFingerprints Radiomaps

Controller

Measurements

Fingerprints

Radiomaps

Figure 12.2: Classes involved in the back-end. The figure shows to which component they belong
in the MVC architectural design pattern. The arrows indicate how information is passed among the
constituents of MVC.

In the following, an accompanying description of each of the classes in the view and the
controller is given.

View

Fingerprints This class is responsible for rendering the view of the Fingerprint entity of the
model. With regards to the signaltransmitter, this involves representing the attributes
of Fingerprints in XML.

Measurements Similar to the previous class, this class renders the Measurements entities in
XML.

Radiomaps This view is responsible for rendering and entire radio map as XML. This is
necessary when the mobile devices request radio maps.

79

CHAPTER 12. BACK-END APPLICATION

Controller

Fingerprints This controller accepts incoming HTTP request with the HTTP methods POST
and PUT. The POST request, is with respect to the principles of RESTful interfaces,
used for creating a new resource as described in Section 9. This means that when a mo-
bile device uploads a fingerprint, a POST request will be issued. When the previously
mentioned POST has been issued, the fingerprint is considered uncommitted. When
Measurements have been uploaded as well and connected to the uncommitted finger-
print, the PUT request is performed, thereby, in terms of RESTful interfaces, signalling
that the resource should be updated to be committed.

Measurements The Measurements controller accepts incoming POST HTTP requests which
are used to create new RSSI measurements when a mobile device uploads a fingerprint.

Radiomaps This controller implements functionality when a HTTP GET request is issued
to the web server. This indicates that a resource is requested for retrieval in terms of
RESTful interfaces. In this case the entire radio map is retrieved.

80

13
Signaltransmitter

The following chapter documents the design of the signaltransmitter application. This is done
by describing the classes of it and how they interrelate. Furthermore, the activity of uploading
a fingerprint to the back-end is described in detail.

13.1 Classes

This section serves to describe the design of the signaltransmitter application in terms of its
classes. For this purpose, a UML class diagram is used and the particular class diagram of
the signaltransmitter application is depicted in Figure 13.1.

Optparser

ConnectionManager

BluetoothDeviceBtSocket

Command

Connection

HttpManager

XmlParser

0..*

1

1

1

1

1

Main

11

1

1

GetRadioMapCmd SendFingerprintCmd

1

1

1

1

11

1

1

11

1 1

Figure 13.1: Class diagram depicting the structure of the signaltransmitter.

In the following, a description of each of the classes is provided.

Main The Main class is responsible for initialising the application. This comprises setting up
the environment with the OptParser class and subsequently initialising ConnectionManager
to accept and process incoming Bluetooth requests.

Optparser This class is responsible for setting up the environment and acts as a helper class
for Command and ConnectionManager. Doing this, comprise parsing the command line
arguments provided to the application. The Optparser class is based on the Singleton

81

CHAPTER 13. SIGNALTRANSMITTER

design pattern to restrict that only one instantiation of the class to be possible. When-
ever an object is instantiated, a reference to the same object will be retrieved containing
the environment just described.

ConnectionManager The ConnectionManager’s area of responsibility comprises setting up
a Bluetooth RFCOMM socket on the local Bluetooth device listening for incoming
requests from mobile devices. A request is processed by means of using the corresponding
derived class of the Command class.

BtSocket This class is responsible for creating an RFCOMM socket listening for incoming
requests on the local Bluetooth device.

BluetoothDevice The BluetoothDevice class represents the local Bluetooth device in the
signaltransmitter. Hence, it contains the MAC address of the device and provides access
to it.

Connection This class is used for representing the connection between the signaltransmitter
and the mobile devices. Besides this representation, it offers the possiblity of writing
and reading to and from the client socket. Hence, it is capable of reading and writing
header information dictated by the protocol and for processing the payload accordingly.

Command This abstract class is used for providing a means for the ConnectionManager
class to use the supported commands through polymorphism. The subclasses of the
Command class act as a proxy between the mobile devices and the back-end when, for
instance, the mobile devices requests the radio map. There are two subclasses of this
class which are described below.

GetRadioMapCmd This concrete class of the Command class implements the function-
ality necessary for retrieving the radio map from the back-end and subsequently
send it to the requesting mobile device.

SendFingerPrintCmd This concrete class of the Command class, implements function-
ality concerning sending a fingerprint to the back-end. For doing this, it first
processes the incoming XML from the client and extracts the location of which the
particular fingerprint was conducted and additionally extracts RSSI measurements
with corresponding signaltransmitter. Afterwards, the SendFingerPrintCmd class
passes this information to the HttpManager which is responsible for queuing the
REST HTTP request thereby caching it and processing it when available.

HttpManager The HttpManager class contains functionality that allows for interacting with
a web server with RESTful interfaces. In the case of sending a fingerprint to the web
server, the HttpManager contains some dedicated logic that allows for queuing HTTP
requests. In this relation, the HttpManager places the request in a queue and a dedicated
thread is responsible for continuously processing this. Finally, the HttpManager is based
on the Singleton pattern to allow only a single instance of the class to be created.

82

13.2. UPLOAD FINGERPRINT ACTIVITY

XmlParser For subclasses of the Command class, the response from the web server and re-
quests from the mobile devices are represented as XML which need to be parsed. The
XmlParser class is responsible for conducting in-memory processing of the XML through
the evaluation of XPath expressions.

13.2 Upload Fingerprint Activity

The purpose of this section is to document the activity of uploading a fingerprint from the
signaltransmitter to the back-end utilising its RESTful web services. Hence in the following,
it will be assumed that the mobile device, prior to this activity, has successfully uploaded
a valid fingerprint represented as XML, parsed it, and, finally, the RSSI measurements have
been extracted. The final step is to construct an element that represents the particular HTTP
request for the fingerprint and enqueue it into a shared queue data structure. In Figure 13.2,
the UML activity diagram of the queue processor is depicted.

Process HTTP request queue

Is queue empty?

[no]

[yes]

Conduct POST HTTP request for fingerprint

HTTP request failed or timed out

[yes] Back-off a few seconds[no]

Incorrect HTTP response

[yes]Dequeue HTTP request

[no]

Conduct POST HTTP request for measurement
HTTP request failed or timed out

[no]

[yes]

Back-off a few seconds

Send measurements

More measurements in list?

[yes]

[no]Conduct PUT HTTP request for fingerprint

HTTP request failed or timed out

[yes]

Back-off a few seconds

[no]

Figure 13.2: UML activity diagram showing how the signaltransmitter interacts with the back-end
to send a fingerprint.

The activity takes starting point in investigating whether or not the queue contains HTTP
request elements that need to be processed. If there are any, the next step is to conduct a
POST HTTP request to the back-end to the fingerprint resource. According to the model
outlined in Chapter 11, the signaltransmitter should keep conducting the HTTP request until
it is successfully received at the back-end. This means that in case it fails, it will back-off a
few seconds and thereafter try again. In the subsequent HTTP request, the same procedure

83

CHAPTER 13. SIGNALTRANSMITTER

will be assumed. The corresponding HTTP response from the HTTP POST contains the
newly created fingerprint instance comprising all its attributes including the id represented in
XML.

The id is necessary for constructing a relationship between the fingerprint and the mea-
surements entities. Subsequently, a loop is performed that conducts HTTP POST requests to
the back-end for each RSSI measurement. Whenever a measurement is posted, the fingerprint
id to which it belongs is additionally provided.

The final step is to conduct a HTTP PUT request to the newly created fingerprint. This
is used for setting the fingerprint into the committed state. If this request is not successfully
conducted, the uploaded fingerprint will not be considered complete and will be omitted
in later processing by the back-end. Given that the HTTP PUT request was conducted
successfully, the HTTP request element will be dequeued from the queue and the loop starts
over again by processing the next request.

84

14
Mobile Application

This chapter documents the packages which the mobile application consists of, and how
they interact with each other. Furthermore, the activities of the location engine and the
maintenance engine are described.

14.1 Classes

Figure 14.1 depicts the class diagram for the mobile application. As shown, the mobile
application consists of five packages which consist of multiple classes. The packages and
classes are described in the following.

As previously described the mobile application is based on the MVP design pattern.

Presenter

This package consists of a single class responsible for handling all user input.

Presenter The Presenter class links the view with the model by handling all user inter-
action. Also, it interacts with the model to change the application state and interacts
with the View Layer to show changes in the application state to the user.

View Layer

The classes in this package are responsible for all user interface related operations.

View The View class creates a Windows Form which is configured with all user interface
related elements. Therefore, the class is responsible for representing information to the
user.

PIFC Renderer The PIFC Renderer is responsible for rendering the map on the GUI. It is
a component which contains a number of classes in order to handle both the PIFC file
format and rendering of a map. The View class is responsible for creating and controlling
this component.

85

CHAPTER 14. MOBILE APPLICATION

View Layer

Engine Layer

Hardware Layer

Management Layer

LocationEngineRadioMap

Location

Measurement

SignalTransmitter

Fingerprint

IFingerprintTechnique

Presenter

View

IBluetoothDevice

PIFC

BluetoothDevice

1

1

1

1

1 1

1

1

1

*

1

1

1

*

1 1

ConnectionManager

FingerprintManager

KNearestNeighbour

WeightedGraph

Neighbour

1*

1

1

Coordinate

1
1

MaintenanceEngine

1

1

1

1

1

*

CommunicationManager

1

1

11

Radio Map Data

1

1

1

*

1

1

BluetoothSocket

BluetoothSocketEndPoint
1

1

1

*

1

1*

1 1

1

1

1

1

1

1

Figure 14.1: Class diagram depicting the structure of the mobile application.

Engine Layer

The classes contained in this package are responsible for estimating the location of the user
and for providing the functionality in relation to maintaining the radio map.

LocationEngine The area of responsibility of this class comprises conducting a fingerprint
by using the FingerprintManager and then, by utilising a specific strategy, estimate
the position of the user by comparing the conducted fingerprint with the fingerprints
contained in the radio map.

MaintenanceEngine The purpose of this class is to provide the user with the functional-
ity of maintaining the radio maps. Thus, it must conduct fingerprints by using the
FingerprintManager in four directions at a given location and send the final finger-
print to a smart signaltransmitter.

86

14.1. CLASSES

Management Layer

The purpose of this package is to provide business logic to the two engines in the Engine
Layer.

CommunicationManager This class is responsible for all data transmission between the mo-
bile application and the back-end through the signaltransmitters. It uses the ConnectionManager
to find an appropriate signaltransmitter it can communicate with.

ConnectionManager This class is responsible for maintaining a list of connected signaltrans-
mitters. This is used by the FingerprintManager when measuring RSSI values and by
the CommunicationManager when selecting a signaltransmitter for data transmission.

FingerprintManager The FingerprintManager is capable of measuring RSSI values from
multiple signaltransmitters and construct fingerprints which is used in position estima-
tion and maintenance.

IFingerprintTechnique Since research continuously is made in fingerprint techniques, it is
expected that the used technique might need to be changed over time. Therefore the
current technique is implemented using this interface making the process of replacing it
relatively easy. The classes implementing this interface are described below.

KNearestNeighbour In Chapter 5, it was determined that the KNN fingerprint tech-
nique is used. This class is the implementation of that technique. The class inherits
from the IFingerprintTechnique class such that it can be used as a technique in
the FingerprintManager by using polymorphism.

WeightedGraph As previously described in Chapter 5, the Weighted Graphs finger-
printing technique is used in the mobile application. This class is the implementa-
tion of that technique. Notice that it inherits from the KNearestNeighbour class.
This is done since it is a set of extra ways to optimise the KNN position estimation
technique.

Radio Map Data

The classes in this package represent the data related to the radio map which must be handled
in the mobile application. This includes locations, signaltransmitters, and measurements.
These classes are only used to represent the data, and all data manipulation is done by the
Management Layer.

RadioMap This class reflects the data used to represent a radio map, and references the
locations and signaltransmitters in it. The class is based on a Singleton design pattern
which ensures that only one instance of a radio map exists that can be shared among
the different classes.

87

CHAPTER 14. MOBILE APPLICATION

Location A Location is a combination of a location in the building, represented with a
Coordinate, and an associated Fingerprint. Furthermore, the location refers to other
locations through the Neighbour class in order to specify its neighbouring locations.

Neighbour This class references Location and the distance to it from the Location which
owns the Neighbour. The Location class could contain this information, but for code
readability, it has been split into its own class.

Coordinate This represents a specific point in the building in x, y, and floor coordinates.
This class is used throughout the application when representing a physical location in
the building.

Fingerprint This represents a fingerprint which contains a list of Measurements associated
with a specific Signaltransmitter.

Measurement The Measurement class represents an actual measurement to a signaltrans-
mitter, containing an averaged RSSI value.

SignalTransmitter The signaltransmitters are represented using this class, containing their
MAC-address, id-number, and an indication of whether they are smart or dumb.

Hardware Layer

The purpose of this package is to provide an abstraction layer above the hardware implemen-
tation of the Bluetooth device. This way, the other classes do not need to be aware of the
specific hardware implementation.

IBluetoothDevice The purpose of this interface is to increase testability since a dummy
Bluetooth device can be used as long as it fulfils the interface. The classes implementing
this interface are described below.

BluetoothDeviceWM6 This class handles communication with the Bluetooth device.

BluetoothSocket This class is responsible for establishing an RFCOMM socket on the local
Bluetooth adapter of the mobile device.

BluetoothSocketEndPoint The class is used in regard to establishing an RFCOMM socket
connection to a remote Bluetooth device. The specific code in this class is inspired by
Microsoft code samples (Microsoft, 2010).

14.2 Activities

In the following, two different activities in the mobile application are described in further
detail. These are the main operations of the location engine and the maintenance engine.
They are shown since, they represent central parts of the mobile application.

88

14.2. ACTIVITIES

For the purpose of visualising the activities, UML activity diagrams have been used. The
convenience of these is evident in that they provide a good overview of relatively complex or
essential procedures that need more emphasis to avoid subsequent errors. In this regard, an
improved understanding is obtained or so far undiscovered functionality identified.

14.2.1 Location Engine

The main process of the location engine can be divided into eight steps. Of these, two are
related to the ConnectionManager and three are related to position estimation. Figure 14.2
shows an activity diagram of the location engine when conducting position estimates.

Initialise connections

Number of connections above threshold

Create fingerprint Select primary search space Match fingerprint with search space

Update list of connected

signaltransmitters

Position estimate

[no]

[yes]

Select secondary search spaceMatch fingerprint with secondary search space

Select primary or secondary match

Figure 14.2: A UML activity diagram showing the main process of the location engine concerned
with creating position estimates and invoking the ConnectionManager when appropriate.

The location engine’s first task is to invoke the ConnectionManager in order to update
the list of currently connected signaltransmitters. The ConnectionManager then removes or
adds new connections as appropriate within certain time-limits. If the number of connected
signaltransmitters is below a certain threshold, it is estimated, that the position estimate is
too inaccurate and the location engine invokes the ConnectionManager again to search for all
visible signaltransmitters. For instance, if only one signaltransmitter is detected, it is difficult
to make a match in the radio map.

Since it is desirable to reduce the number of times the initialisation operation is conducted,
because it can be time consuming, the threshold is set to two based on experiments. Also, an
upper bound of concurrently connected signaltransmitters is given. This is based on the fact
that in the offline stage, no more than four signaltransmitters could be detected simultaneously
at a location, meaning that trying to connect to a fifth, simply would be waste of time.

89

CHAPTER 14. MOBILE APPLICATION

When the current connections have been maintained, six actions are conducted to get a
position estimate. First, a fingerprint is created by invoking the fingerprint manager which
in turn measures the RSSI values of connected signaltransmitters. Then, the primary search
space is selected and the fingerprint is matched with this. Afterwards, the secondary search
space is selected and the fingerprint is likewise matched with this. Before estimating the
position, either the result of the primary of secondary search space is chosen. The estimated
position is then based on this match.

14.2.2 Maintenance Engine

The purpose of the maintenance engine is to create fingerprints for specific locations and
upload them to the back-end in order to maintain the radio map. This process involves a
number of steps which continuously prompts for confirmation from the user. The actions
required for carrying out the operation of successfully collecting a fingerprint are shown in
Figure 14.3.

Search for signaltransmitters

Combine fingerprints Upload fingerprint

Show map to user
User selects location

[no]Ask user to face the given orientation

More Orientations

Measure orientation

User confirms

[yes]

Figure 14.3: A UML activity diagram showing the actions involved in maintaining a single location.

Initially, a map is shown to the user on which locations having associated fingerprints are
shown. The user selects a location and is instructed to wait while a discovery search is used
to determine all visible signaltransmitters at the current location. The user is then asked to
face north, east, south, and west and constructs fingerprint. These four fingerprints are then
merged, calculating the average of the measured RSSI values, and uploaded to the back-end
which is then responsible for further processing.

Throughout this process, the user is allowed to cancel the operation or the maintenance
engine cancels the process itself if it determines that it is unable to find any signaltransmitters.
This has not been shown in Figure 14.3 for verbosity reasons.

90

Part IV

Implementation

91

15
Back-end Application

Most of the models, views and controllers in the back-end application have been generated by
the Ruby on Rails framework using its scaffolding system. One of the interesting parts of the
back-end applications is the construction of a radio map based on the data in the database.
Specifically, how corrections to the radio map are taken into account will be focused on during
this chapter. A detailed explanation of this implementation is given in the following.

15.1 Construction of Radio Map

The radio map is constructed using the stored locations, fingerprints, and signaltransmitters
which are combined into an XML document. When the users maintain the radio map, they
associate new fingerprints with the existing locations such that multiple fingerprints are as-
sociated with them. However, for simplicity, only one fingerprint is stored for each location
when transferred to the mobile device. The advantage of this approach is that if the strategy
of combining the correction fingerprints is changed, then it can be done server side and prop-
agated to the users when they update their radio map. Otherwise, it would require the users
to update their mobile application.

As described in Chapter 7, there exist two types of fingerprints in the system: official fin-
gerprints and user corrections. The procedure is to either return the newest official fingerprint
or the average of two consecutive approximately equal corrections, made after the last official
fingerprint.

Listing 15.1 shows how the choose_fingerprint method is defined, which is responsible
for selecting the actual fingerprint used for a given location in a radio map. The method is
placed in the Location model. �

1 def choose_fingerprint
2 official_fingerprint = fingerprints.find(:last,
3 :conditions => {:bluecamlowned => true, :committed => true},
4 :order=>’created_at ASC’)
5

6 if official_fingerprint == nil
7 return nil

92

15.1. CONSTRUCTION OF RADIO MAP

8 end
9

10 corrections = fingerprints.find(:all,
11 :conditions => ["created_at>? AND committed=?",
12 official_fingerprint.created_at, true],
13 :order=>’created_at DESC’)
14

15 corrections.each_with_index do |correction, index|
16 if index+1 < corrections.length
17 if has_same_signaltransmitters(correction, corrections[index+1]) and
18 correction.distance_to_fp(corrections[index+1]) < 9
19 return get_average_fingerprint(correction, corrections[index+1])
20 end
21 end
22 end
23

24 return official_fingerprint
25 end
 	

Listing 15.1: The method choose_fingerprint is responsible for selecting the best fingerprint for
a given location.

First, in line 2-4 the last committed official fingerprint for the given location is found. The
fingerprints belong to the current location and contains fingerprints associated with it.

In line 6, a check is made, which ensures that at least one official fingerprint exists,
otherwise the method returns nil. This assumes that not all locations have an associated
official fingerprint.

On line 10, a list of corrections is retrieved by selecting all committed fingerprints created
after the last official fingerprint. These are placed in a list with the newest first.

In line 15, the list is then iterated, first checking if there exists one more correction in the
list, shown in line 16. If it does, the current and consecutive corrections are compared in line
19 and 20. If they contain the same signaltransmitters and have a distance below 9 then the
average of the two are returned. The distance threshold of 9 is derived from the assessment
that the RSSI values for four signaltransmitters at maximum must deviate with three RSSI
values, giving a Manhattan distance of 9. In an actual deployment, this number should be
adjusted based on experiments.

93

16
Signaltransmitter

The signaltransmitter application comprises several essential components for enabling the
proxy-like behaviour between the mobile device and the back-end. It contains two threads of
execution: One which is responsible for accepting and processing incoming requests on the
RFCOMM socket and one which is responsible for continuously processing the HTTP request
queue. Multi-threading is based on an implementation of the POSIX thread (pthread) library.

When the first thread accepts an incoming connection from a mobile device, it starts by
reading the number of bytes equivalent to the header of the communication message format.
It starts by extracting the command requested by the mobile device which can be either the
retrieval of the radio map or that a fingerprint is requested for upload. In addition, it extracts
the payload size from the header information and reads the additional bytes corresponding to
this number from the RFCOMM socket and buffers it for further processing.

The following describes the implementation of the activity of uploading a fingerprint to
the back-end. This activity is chosen since it represents one of the interesting parts of the
signaltransmitter.

16.1 Upload Fingerprint

When a request is made from the mobile device to the signaltransmitter, it performs a lookup
in a hash table which hashes a command to the corresponding Command subclass. Using
polymorphism, the process function on this is then called. In case of retrieving a radio map,
the signaltransmitter performs a HTTP GET request on the radio map resource of the back-
end and writes the HTTP response back to the client. In case of the desire to upload a
fingerprint, the signaltransmitter parses the payload as an XML document, by using libxml2,
and extracts the relevant information such as RSSI measurements and location from which
the fingerprint was conducted through the utilisation of XPath evaluations. The extracted
data is placed in a suitable element representing the desired HTTP request to the back-end,
and requests the HttpManager to conduct the HTTP request. The HttpManager signals that
it has successfully received the request which indicates that the signaltransmitter can respond
back to the mobile device with status field of the header set to zero.

94

16.1. UPLOAD FINGERPRINT

The HttpManager abstracts over a queue in which the aforementioned HTTP requests are
placed. The second thread of execution processes this queue by means of the http_req_processor
function. In the following the implementation details of this function will be given.

16.1.1 Processing HTTP requests

In Listing 16.1, an excerpt of the http_req_processor is given. �
1 void ∗Httpmanager::http_req_processor(void ∗t_arg) {
2

3 ...
4

5 for (;;) {
6 pthread_mutex_lock(&process_http_req_mutex);
7

8 if (empty_queue())
9 pthread_cond_wait(&process_http_req_cond, &process_http_req_mutex);

10

11 Http_post_fp cur_http_post = get_front_queue();
12

13 meas_list = cur_http_post.get_meas_lst();
14 fp_res_url = cur_http_post.get_fp_res_url();
15 loc_id_str = cur_http_post.get_fp_loc_id();
16

17 post_field_str = construct_fp_post_fields(loc_id_str.c_str());
18 do {
19 memset(post_resp_buf, 0, http_post_buf_size);
20 http_ret_code = post(fp_res_url.c_str(), post_field_str.c_str(), &

post_resp_buf);
21 if (http_ret_code == Httpmanager::FAIL || http_ret_code == Httpmanager::

TIMEOUT)
22 sleep(http_err_sleep_time);
23 } while(http_ret_code != Httpmanager::SUCCESS);
24

25 ...
26 }
 	

Listing 16.1: The http_req_processor is responsible for processing the FIFO queue of HTTP
requests.

As shown, the http_req_processor runs in an endless loop. In this, it initially blocks the
calling thread, by calling the pthread_cond_wait routine. It will perform this call when the
queue is empty. http_req_processor will be blocked until the process_http_post_cond
condition variable is signalled which is done whenever a HTTP request element is placed in
the queue as a consequence of a mobile device wanting to upload a fingerprint. The reason for
using a condition variable is that it provides a means for threads to synchronise based upon the
actual value of data. Alternatively, the thread executing the http_req_processor function

95

CHAPTER 16. SIGNALTRANSMITTER

could continuously poll to check whether it has become non-empty. Polling is generally
resource consuming since the thread would always be busy conducting this check. This is
especially critical in terms of the signaltransmitter which contains limited resources that
should be preserved whenever possible as this might possibly negatively influence the thread
responsible for reading from the RFCOMM socket.

When the condition variable has been signalled, the next step in the function is to retrieve
the front element of the HTTP request queue, line 11. From this element, the linked list
of RSSI measurements is extracted together with the resource URL of the fingerprint and
the location id from which the fingerprint was conducted. Given the location id, the POST
fields of the subsequent POST of the fingerprint are constructed. This comprises setting the
location id belonging to the fingerprint, setting that the fingerprint is currently uncommitted
as part of the transaction, and finally set that the uploaded fingerprint is from a user in the
post fields.

The last step of the excerpt is entering a do-while loop in which the http_req_processor
continuously tries to conduct a POST request based on the URL transfer library libcURL.
The POST request is performed to the URL constructed from a base URL and the fingerprint
resource part. When the HttpManager class was instantiated, the base URL was provided and
the fingerprint resource part is simply concatenated to this. When the response code from
the HTTP request is SUCCESS , the loop breaks and the http_req_processor continues in a
similar manner with conducting HTTP POST request for each of the RSSI measurements in
the meas_list linked list and finally commit the transaction with a HTTP PUT request to
the newly created fingerprint.

96

17
Mobile Application

In order to keep the user interface responsive, the application is based on multiple threads
of execution. One thread is always used for the user interface, denoted the UI thread. This
thread is used for rendering the user interface and reacting to user interaction. The Presenter
class ensures that all actions using the model and potentially could make the user interface
unresponsive are executed in a worker thread. Thus, when the View calls the Presenter, it
creates a worker thread which further processes the request, and invokes back into the UI
thread in order to update the View Layer.

In the following, the implementation details are described for the two central parts of
the application. These are how the LocationEngine estimates a position and how the
MaintenanceEngine is used to maintain radio map information for a specific location. Fur-
thermore, notes are provided on changes made to the reused PIFC Renderer.

17.1 Position Estimation

The UML sequence diagram has been adopted because it provides a good overview of concrete
functionality which is to be implemented. In addition, the usage of sequence diagrams has
been assessed appropriate because they provide a description of a procedure on an abstraction
level that can relatively easy be converted into the actual implementation.

The main method of the LocationEngine is the UpdateLocation method which is re-
sponsible for position estimation. Figure 17.1 depicts a UML sequence diagram of calling
UpdateLocation .

As shown, the LocationEngine starts by calling UpdateConnectedSignalTransmitters
on the BluetoothConnectionManager with the fingerprint from the last measurement. Using
this information, the BluetoothConnectionManager maintains a list of connected signaltrans-
mitters by establishing a connection to those that should be detectable in the given area. The
connections are made using the Connect method of the BluetoothDeviceWM6 class. Also, a
time limit is taken into account such that only a relatively small number of connections are
tried to be established. The purpose of doing this is to keep the update interval as low as
possible by continuously connecting to new signaltransmitters.

97

CHAPTER 17. MOBILE APPLICATION

opt [ConsecutiveLocsReached = false]

opt [secNearest.Count > 0]

opt [previousLocationEstimate != null]

loop [foreach potential st && time<timeLimit]

loop [foreach st]

opt [could not connect to signaltransmitters]

loop [foreach st]

LocationEngine BluetoothConnectionManager BluetoothDeviceWM6FingerprintManager
WeightedGraphFingerprintTechni

que Location

UpdateConnectedSignalTransmitters(lastFp)

Connect(st)

status

Initialise()

Discovery(maxDevices)

sts

Connect(st)

status

status

MakeFingerprint()

GetRSSI(st,timelimit,conHandler)

rssiList

ConductStrategy(fp)

GetLocationsWithinDistance(primSearchSpace)

locationList

NaiveFingerprintTechnique

KNearestNeighbour(fp,KNearestNeighbour,k)

locationList

GetRadiusNodes(radiomap,secSearchSpace)

KNearestNeighbour(fp,secSearhSpace,1)

GetNearestNeighbourFingerprints()

distance

location

listLocation

locationList

DistanceToRadiomapFingerprint(fp,primNearest)

distance

DistanceToRadiomapFingerprint(fp,secNearest)

distance

Figure 17.1: UML sequence diagram depicting the classes and method invocations involved in the
UpdateLocation method.

If the UpdateConnectedSignalTransmitters is not able to maintain a list of connected
signaltransmitters of a predefined size, an initialising phase is started by calling Initialise
on the BluetoothConnectionManager. In this phase, the BluetoothDeviceWM6 class first
makes a discovery scan and afterwards establishing connections to the discovered signaltrans-
mitters are tried.

Having a set of connected signaltransmitters, the FingerprintManager is used to measure
RSSI values from each of these by using the GetRSSI method from the BluetoothDeviceWM6
class. This fingerprint is then used in the final step where the ConductStrategy method of
the WeightedGraphTechnique class is used to estimate the position of the user.

98

17.1. POSITION ESTIMATION

Figure 17.2 shows a screenshot of the mobile application when presenting a position esti-
mate to the user.

Figure 17.2: Screenshot of the mobile application when a position estimate is presented to the user.
The white triangle indicates the currently estimated position.

In the following, the ConductStrategy is described since it comprises the most interesting
functionality of the LocationEngine.

17.1.1 ConductStrategy

The ConductStrategy method of the WeightedGraphFingerprintTechnique class performs
the Weighted Graphs fingerprint technique given the fingerprint collected during the online
stage and the radio map. In Listing 17.1, the implementation of this method is shown. �

1 public override void ConductStrategy(Fingerprint fingerprint)
2 {
3 if (this._bestMatchingLocation == null)
4 _primSearchSpace = this._radioMap.Locations;
5 else
6 _primSearchSpace = this._bestMatchingLocation.GetLocationsWithinDistance(this.

_primSearchSpaceDist);
7

8 List<Location> primaryNearestLocations = KNearestNeighbour(fingerprint,
_primSearchSpace, this._kNearestNeighbour);

9 Location primaryBestMatchingLocation = primaryNearestLocations[0];
10

11 _secSearchSpace = primaryBestMatchingLocation.GetLocationsWithinRadius(this.
_radioMap, this._secSearchSpaceDist).Except(_primSearchSpace);

99

CHAPTER 17. MOBILE APPLICATION

12

13 List<Location> secBestMatchingLocations = KNearestNeighbour(fingerprint,
_secSearchSpace, 1);

14

15 if (secBestMatchingLocations.Count() > 0 &&
16 DistanceToFingerprintInRadiomap(fingerprint, secBestMatchingLocations[0].

Fingerprint) <
17 DistanceToFingerprintInRadiomap(fingerprint, primaryBestMatchingLocation.

Fingerprint))
18 {
19 this._secSpaceHistory.AddLocationToHistory(secBestMatchingLocations[0]);
20

21 if (this._secSpaceHistory.IsConsecutiveNumberOfLocsReached())
22 {
23 this._locationsCloseToEstimate = new List<Location> {

secBestMatchingLocations[0] };
24

25 this._bestMatchingLocation = secBestMatchingLocations[0];
26 this._estimatedLocation = secBestMatchingLocations[0].Coordinate;
27 this._secSpaceHistory.ClearHistory();
28 return;
29 }
30 }
31 else
32 {
33 this._secSpaceHistory.ClearHistory();
34 }
35

36 this._locationsCloseToEstimate = primaryNearestLocations;
37

38 this._bestMatchingLocation = primaryBestMatchingLocation;
39 this._estimatedLocation = MergeLocations(primaryNearestLocations);
40 }
 	

Listing 17.1: The ConductStrategy method implementing the Weighted Graphs fingerprinting
technique.

Initially, when calling the method, a check is performed in lines 3-6 to determine whether
or not it is the first time the method is being called. In case it is, _bestMatchingLocation
is set to null. This is necessary due to the problem that when the mobile application is
initialised, it is not known where the user is located. For instance, there may be multiple
entrances to the building in question or the user might choose to start the mobile application
somewhere inside the building. Given that the method is called the first time, it is therefore
necessary to omit conducting the actual Weighted Graphs fingerprint technique in which only
a subset of the fingerprints of the radio map are subject for further calculations. Instead,
the entire radio map must be examined which is done by initialising the _primSearchSpace
variable to all the locations of the radio map. Otherwise, given that the method has been
called more than once, the primary search space is initialised to the feasible locations of the

100

17.1. POSITION ESTIMATION

current location to which the user was previously considered to best be collocated with. The
feasible locations comprise all locations recursively being neighbours to the current location
within the primary search space distance.

The primary search space distance is expressed as the walking speed of the user multiplied
by the update interval. As mentioned previously, the aimed update interval of BlueCAML is
four seconds. Since the requirements state that the average walking speed of the users is 1.4
m/s (5 km/h), the primary search space radius is 1.4m

s · 4s = 5.6m.

When the primary search space has been initialised, the next step in the Weighted Graphs
fingerprinting technique, conducted in line 8, is to perform the KNN algorithm to receive theK
locations having fingerprints with the shortest distance to the online fingerprint fingerprint .

The KNearestNeigbour algorithm is inherited from the NaiveFingerprintTechnique and
implements a penalty system when calculating the Manhattan distances between correspond-
ing RSSI measurements from signaltransmitters in the online fingerprint and radio map, re-
spectively. The penalty system punishes the Manhattan distance calculation if the online
fingerprint contains RSSI measurements from signaltransmitters that are not present in the
corresponding fingerprint in the radio map. The penalty encompasses adding the missing RSSI
measurement from the radio map with 127 which is the highest possible RSSI measurement.
This way, lower RSSI measurements result in lower penalties and vice-versa.

The location with a corresponding fingerprint with the shortest Manhattan distance, is
then subsequently used for calculating the radius nodes surrounded by the user. All radius
nodes, including some of the nodes that were deemed a part of the primary search space
are found by calling GetRadiusNodes which essentially searches the entire radio map for
locations having an Manhattan distance within the secondary search space radius. This
radius is expressed as the walking speed multiplied by the update interval multiplied by the
history size. In BlueCAML, a history size of two is used which is in accordance with a similar
approach conducted by Hansen and Thomsen (2009). This yields a secondary search space
with radius 1.4m

s · 4s · 2 = 11.2m. To filtrate the nodes of the primary search space from
the radius nodes, a call is made to CalcSecSearchSpace which returns the actual secondary
search space.

From the secondary search space, the best matching location is determined by calling the
NN algorithm in line 13. Notice that a check is needed to ensure that the list of locations in
the secondary search space is nonempty which is the case the first time ConductStrategy is
called. This is where the need of the history becomes evident. The identified location of the
secondary search space is added to the history given that it has an Manhattan distance that
is shorter than the one identified from the primary search space. This is an indicator that
the system should make an illogical jump to the location from the secondary search space.
However, the jump is only made if the history contains the required number of consecutive
locations to the secondary search space. This check is conducted in line 21. If the illogical
jump was deemed inappropriate, the K nearest neighbours found in the primary search space
are used for calculating a single location to which the user is considered to be located. This
functionality is done by averaging the coordinates of the K nearest neighbours. Besides

101

CHAPTER 17. MOBILE APPLICATION

estimating this location, the fingerprints from the K nearest neighbours are saved. This is
necessary in a subsequent step of the UpdateLocation method previously introduced, because
the signaltransmitters comprising these fingerprints are candidates for being connected to as
mentioned in the introduction of this chapter.

17.2 Radio Map Maintenance

The process of maintaining the radio map for a specific location involves multiple interactions
between the user and the MaintenanceEngine controlled by the Presenter class. Figure 17.3
shows the sequence of calls under normal operation and the different classes involved in this
task, and how they interact with each other. Logic involved in cancellations and errors
have been omitted for verbosity. Furthermore, the interaction from the Presenter to the
View Layer has been simplified by merging multiple calls into the NotifyUser call. This
call abstracts a number of calls which change the View Layer either by showing notification
messages or changing the available menus.

Notice that the Presenter calls DoNextMaintenanceAction on itself, which is a function
executing the necessary steps in order to accomplish this action. The actions are, as de-
scribed in Section 14.2.2, find signaltransmitters, conduct fingerprint when facing north, east,
south, and west, and upload the fingerprint to the back-end. The four measurements are con-
ducted after prompting the user to confirm her direction and the View Layer calls back to the
Presenter, which can be seen at the beginning of the loop. Note that the ConnectionManager
class further utilises the BluetoothDeviceWM6 class which further uses the BluetoothSocket
and BluetoothSocketEndPoint classes. However, these are not depicted due to verbosity.

In the following, a more detailed description is given for the transmission of a fingerprint
to the back-end and interaction between the MaintenanceEngine and the Presenter. This
logic is part of the BluetoothDeviceWM6 class.

102

17.2. RADIO MAP MAINTENANCE

loop [foreach direction

in (north, east, south, west)]

View Presenter MaintenanceEngine ConnectionManagerFingerprintManager CommunicationManager

LocationSelected

SetLocation

DoNextMaintenanceAction

DoNextAction

FindSignaltransmitters

Initialize

NotifyUser

PromptUserForDirection

ConfirmClicked

DoNextMaintenanceAction

NotifyUser

DoNextAction

DoMeasurement

MakeFingerprint

Fingerprint

DoNextMaintenanceAction

NotifyUser

DoNextAction

UploadMeasurement

SendFingerprint

NotifyUser

Figure 17.3: UML sequence diagram depicting the sequence of calls involved in maintaining the
radio map at a specific location.

103

CHAPTER 17. MOBILE APPLICATION

17.2.1 Transmission of Fingerprint

In order to update the radio map in the back-end, the fingerprint is first transmitted to a smart
signaltransmitter, which in turn is responsible for transmitting it further to the back-end.

The code example in Listing 17.2 shows the TransmitFingerprint method responsible
for transmitting fingerprints to a signaltransmitter. �

1 public void TransmitFingerprint(Fingerprint fp, byte[] mac, int locationId)
2 {
3 Socket socket = BluetoothSocket.GetLocalSocket();
4 socket.SetSocketOption(SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout,

1000);
5 socket.Connect(new BluetoothSocketEndPoint(mac, SERVER_PORT));
6

7 string fpXmlString = fp.ToXmlString(locationId);
8

9 DataPacket request = new DataPacket();
10

11 request.Command = ’S’;
12 request.Status = 0;
13 request.Payload = Encoding.UTF8.GetBytes(fpXmlString.ToCharArray(), 0, fpXmlString.

Length);
14 request.PayloadSize = request.Payload.Count();
15

16 this.SendPacket(socket, request);
17

18 DataPacket response = this.ReadPacket(socket);
19

20 socket.Close();
21

22 if (response.Status != 0)
23 throw new ServerCommunicationException();
24 }
 	

Listing 17.2: The TransmitFingerprint method is responsible for sending the fingerprint through
a RFCOMM socket to a signaltransmitter.

The TransmitFingerprint method takes three parameters: the Fingerprint to transmit,
the MAC-address of the destination signaltransmitter, and the id of the location where the
fingerprint was made.

An RFCOMM socket connection is established in line 3-4 using the BluetoothSocket
helper class. Then, in line 6-13 a DataPacket is prepared, setting the command and payload.
The command “S” instructs the signaltransmitter to receive a new fingerprint, which is located
in the payload part of the packet.

In line 15, this request packet is sent, and a response packet is read in line 17. The
status of the response is checked to see if the fingerprint was correctly received by the signal-
transmitter, which is the case when the status is zero. If not, an exception is thrown. In

104

17.2. RADIO MAP MAINTENANCE

general, this procedure can throw two exceptions: ServerCommunicationException if some
error occurred on the signaltransmitter, and SocketException if the connection attempt to
the signaltransmitter failed or made a time out.

17.2.2 Presenter and Maintenance Engine Interaction

The interaction between the Presenter, View Layer, and the MaintenanceEngine is com-
plicated by the introduction of multiple threads. Listing 17.3 shows an excerpt of the
DoNextMaintenanceAction method in the Presenter class which illustrates how this is con-
ducted. �

1 public void DoNextMaintenanceAction()
2

3 ...
4

5 case MaintenanceEngineActions.MeasureNorth:
6 case MaintenanceEngineActions.MeasureEast:
7 case MaintenanceEngineActions.MeasureSouth:
8 case MaintenanceEngineActions.MeasureWest:
9 this._view.ShowNotice(MSG_COLLECTING_INFO);

10

11 ThreadPool.QueueUserWorkItem(new WaitCallback(delegate(object state)
12 {
13 this._maintenanceEngine.DoNextAction();
14

15 this._view.BeginInvoke(new MethodInvoker(delegate()
16 {
17 if (this._maintenanceEngine.NextAction == MaintenanceEngineActions.

UploadMeasurement)
18 this.DoNextMaintenanceAction();
19 else
20 this.PromptUserForMaintenanceDirection();
21 })) ;
22 })) ;
23

24 break;
25

26 ...
27

28 }
 	
Listing 17.3: Excerpt of the DoNextMaintenanceAction method in the Presenter responsible for
measuring values from four different directions.

As shown, the excerpt is based on a switch statement which checks on the next action of
the MaintenanceEngine. This part handles the case of the next action being a measurement
in one of four directions.

105

CHAPTER 17. MOBILE APPLICATION

In line 11, a job is enqueued to be executed by a worker thread in the thread-pool.
This is done in order to allow the UI thread, which is executing this action, to proceed
with other tasks such that the user interface can continue to be responsive. On line 13, the
MaintenanceEngine is called in order to execute its next action, which in this case involves
constructing a fingerprint.

In line 15, the BeginInvoke method is called on the View class which requests the delegate,
defined in line 12-22 to be executed on the UI thread when possible. This is done to exit
the worker thread and return to the UI thread. In line 17, the new next action of the
MaintenanceEngine is then checked, and if the next action is UploadMeasurement , it calls
the DoNextMaintenanceAction method on itself again in order to get into the case statement
which handles this action. If not, the next action involves another directional measurement,
and thus the PromptUserForMaintenanceDirection method is called which interacts with
the View Layer in order to get the user to change direction.

17.3 PIFC Renderer

The PIFC renderer is a reused package which has been changed slightly in order to better
integrate with the remaining application. The main change made to the PIFC renderer is the
movement of a private Form object to the argument list of it. Previously, the lowest layer of
the renderer created its own Form for creating a window visible to the user, which it added
buttons and other logic to. The problem is that this Form is only accessible from the renderer
itself. This is changed such that a Form is created externally, and given to the renderer which
then is responsible for rendering the map on the Form.

Furthermore, the PIFC Renderer works with a number of objects which can be placed
on the map such as Wi-Fi hotspots. These are displayed on the map and support the user
clicking on them. In order to show maintainable locations on the map, a new type of these
objects are added and necessary APIs created such that they can be added and removed at
runtime. This is necessary to do directly in the PIFC Renderer, since it does not support
adding other types of objects to the rendering processes than a predefined set.

Besides these structural changes, only a few minor corrections have been made to bet-
ter support changing the rendered map from the code controlling it. As an example, the
PIFCRendererFacade class, which acts as an interface between the PIFC Renderer and the
View, is modified such that zoom and panning of the map can be controlled through it.

106

18
Testing

Throughout the development of BlueCAML a number of different test methods have been
applied in order to improve and check the overall quality of BlueCAML.

The following tasks are documented in this chapter.

• The memory usage of the signaltransmitter application has been checked for no leakage
of memory under operation.

• The power consumption of the mobile application is examined.

• Unit tests have been conducted for the program in order to reduce faults and ensure
that it follows the specification.

• A usability test has been conducted to improve the user interface and make it more
accessible for users.

• The accuracy of the positioning system has been tested in practice in an environment
inside a building.

18.1 Resource Usage

Different approaches exist for measuring resource usage in software. More modern approaches
consist of static code analysis where the source code is analysed by a program which estimates
the upper bounds on resource usage (Heckmann and Ferdinand, 2005). In addition, there also
exist tools for dynamically examining the resource consumption of the particular application.

C++ used for the development of the signaltransmitter application, does not include a
garbage collector. Hence, dynamically allocated memory on the heap must manually be deal-
located to reduce the memory footprint in terms of introduced memory leaks during the
lifespan of the application. This is especially of importance with regards to the signaltrans-
mitter because it contains relatively low resources and therefore can be expected to be prone
to memory leaks. Manually handling memory allocation and deallocation is often subject to
faults in the program (Evans, 1996).

107

CHAPTER 18. TESTING

For analysing the memory consumption and determine whether or not there have been
introduced memory leaks, one of the Valgrind (Valgrind, 2010) tools has been applied to the
signaltransmitter application. Valgrind is a set of tools that can be used for memory debugging
and profiling among others. The Memchecker tool of Valgrind is capable of replacing the
standard C memory allocator with its own implementation which is the essential component
in detecting memory leaks and other memory related faults such as reading memory which
has not yet been allocated.

In the following, the test results from using Valgrind on the signaltransmitter application
are shown. The test has been conducted on the interface it exposes to the only communication
instantiator; the mobile device. This means that Valgrind has been used both when the mobile
device requests the radio map, and when it uploads a fingerprint. Due to both interface
functions having the same memory footprint, the table shown in 18.1 contains only a single
row.

Definitely lost Indirectly lost Possibly lost

0 bytes 0 bytes 144 bytes

Table 18.1: Memory leaks in the signaltransmitter application.

As shown, the signaltransmitter application does not introduce memory leaks in the cat-
egories “definitely” and “indirectly lost”. These are the most crucial memory leaks. Valgrind
reports memory leaks as “possibly lost” when there is a high likelihood of introducing a mem-
ory leak. However, given that Valgrind executes an application with debugging information,
it is capable of pointing out precisely what caused the memory leak. With respect to the
144 bytes that possibly are lost, Valgrind reports that this is due to the thread continuously
processing the HTTP request queue. This memory leak can be considered as a false posi-
tive since the memory leak is only introduced if the program halts because the thread is not
destroyed properly. However, in practice this will never be the case since the thread will be
continuously running in an endless loop and does not at any point during program execution
exit. For test purposes, the loop, however, needs to be broken after a single iteration since
otherwise it would not be possible for the application to terminate.

18.2 Power Consumption

When developing mobile applications, power consumption is a concern that should be taken
into account. Therefore, the power consumption of the mobile application is examined to
ensure it does not drain the battery after short usage. To do this, the Windows Mobile
Power Management (Johnson, 2009) benchmarking tool is used. This tool measures the power
consumption over time, meaning that it can run simultaneously with the mobile application
continuously estimating positions.

Figure 18.1 depicts the outcome of the Windows Mobile Power Management tool.

108

18.3. UNIT TESTING

Figure 18.1: Power consumption of the mobile application while conducting position estimates.

As shown, the power consumption is 252mA. From the HTC Diamond specification (HTC,
2010), it is stated that the battery capacity is 900mAh. Therefore, it is estimated that the
application can be run for 900mAh

252mA = 3.6h before the battery is drained. This is considered
sufficient since it is assumed that a user can recharge her mobile device once a day and that
the application is not assessed to be used that long each day.

18.3 Unit Testing

In Section 8.1, it is decided that unit, integration, system, regression, and acceptance tests are
conducted. In this chapter, however, only a concrete example of a unit test with equivalence
partitioning is shown. The reason for not providing examples of the remaining test types is
due to verbosity.

As an example of unit tests using equivalence partitioning three tests for
the ConnectionManager class are shown in this section. Specifically, the
UpdateConnectedSignalTransmitters , which is responsible for updating a list of cur-
rently connected signaltransmitters, is tested.

This function uses five values; four of them given through the constructor of the
ConnectionManager class and one given as an argument to the tested method. The values
given to the constructor set the minimum and maximum number of connected signaltrans-
mitters, stores a reference to the Bluetooth device, and sets the maximum amount of time
allowed for connecting to new signaltransmitters. To the method, a list of the last measured
fingerprints is given.

In the following example, the maximum amount of time the function is allowed to connect
to the signaltransmitters is changed in order to test the different behaviours of the method.
The specification states the following.

1. If possible, the connection manager must connect to the minimum number of connectable
signaltransmitters regardless of given time limits.

2. If additional time is available, then connect to an additional signaltransmitters.

3. The connection manager must not connect to more than the maximum allowed signal-
transmitters regardless of remaining time for initiating connections.

From the above, the connection time limit can be partitioned into three equivalence classes:

109

CHAPTER 18. TESTING

1. Connection time limits being below the required time for connecting to other than the
minimum number of signaltransmitters.

2. Connection time limits being above the required time for connecting to more than the
minimum but not the maximum number of signaltransmitters.

3. Connection time limits being above the required time for connecting to more than the
maximum number of signaltransmitters.

In each case, a test can be made which sets this time limit, calls the method, and checks
the resulting number of connections. A test which tests each of the defined cases is given in
Listing 18.1. The test is constructed using the NUnit test-framework which is chosen because
of its ability to be easily integrated into Visual Studio. �

1 [Test]
2 public void TestExtendedButLimitedConnection()
3 {
4 ConnectionManager connectionManager = null;
5 Fingerprint fp = GetFingerprintWithMeasurements(5);
6

7 BluetoothDeviceDummy bluetoothDevice = new BluetoothDeviceDummy();
8 bluetoothDevice.DummyConnectionTimeout = 200;
9

10 // case 1 − Only time to connect to minimum
11 connectionManager = new ConnectionManager(2, 4, bluetoothDevice, 100);
12 connectionManager.UpdateConnectedSignalTransmitters(new List<Fingerprint> { fp });
13

14 Assert.AreEqual(2, connectionManager.ConnectedSignalTransmitters.Count());
15

16 // case 2 − Connect to more than minimum but not maximum
17 connectionManager = new ConnectionManager(2, 4, bluetoothDevice, 500);
18 connectionManager.UpdateConnectedSignalTransmitters(new List<Fingerprint> { fp });
19

20 Assert.AreEqual(3, connectionManager.ConnectedSignalTransmitters.Count());
21

22 // case 3 − Connect to max signaltransmitters
23 connectionManager = new ConnectionManager(2, 4, bluetoothDevice, 5000);
24 connectionManager.UpdateConnectedSignalTransmitters(new List<Fingerprint> { fp });
25

26 Assert.AreEqual(4, connectionManager.ConnectedSignalTransmitters.Count());
27 }
 	

Listing 18.1: Example of a unit test using equivalence partitioning for the ConnectionManager class.

Line 5 prepares a fingerprint for being input to the tested method. This fingerprint
contains measurements to three signaltransmitters the connection manager can connect to.

In line 7 a Bluetooth device dummy is instantiated. Normally, the Bluetooth device
communicates with the hardware, but in order to isolate the connection manager, this dummy

110

18.4. USABILITY TESTING

is used. The dummy is constructed such that it allows the connection manager to connect
to all signaltransmitters. The dummy is further configured in line 8 in which its connection
time is set to 200 milliseconds. This is done to control the number of possible connections
that can be made.

In line 11, a connection manager is instantiated such that it requires minimum two and
maximum four connections. Furthermore, the connection time limit is set to 100 milliseconds.
By setting this to 100 milliseconds, there will not be enough time to connect to the minimum
amount of connected signaltransmitters, which takes approximately 400 milliseconds. The
tested method is called in line 12, and the number of connections is checked in line 14.

This test is repeated for the two other cases, by changing the connection time in order to
test the equivalence classes. In line 16-20, case 2 is tested and in line 22-26 case 3 is tested.

Note, that in relation to this test, the outcome is influenced by time. Due to the application
and underlying system not having real-time properties, it cannot be ensured that the test will
succeed regardless of the environmental state. For example, in test 2, if, for some reason, the
first two connections exceed 500 milliseconds of time usage, this test will fail.

18.4 Usability Testing

Emphasis must be put in usability testing due to the importance of users being able to
understand and use BlueCAML, and thus it must fulfil the usability quality criteria. On a
previous project, the informal usability testing approach described by Krug (2005) was applied
successfully. The approach resulted in a number of critical usability problems being discovered.
These were corrected and resulted in improving the application from a user-perspective. Due
to this success, a similar approach is conducted in this project.

Since usability primarily is improved for the maintenance of the radio maps, this part will
be tested in the usability test. Therefore, different tasks covering the aspects of this are made
and asked solved by the test users.

Two students attending the 8th semester in Software Engineering are used to test the
system. The purpose of BlueCAML is described to the test users, and afterwards, a set of
tasks are given which must be solved one by one. Appendix B describes the introduction and
the tasks.

A screenshot of the final version of the mobile application is shown in Figure 18.2. This
figure can be used as reference in the following.

18.4.1 Results from the First Test

The first test is conducted and results in a number of observed problems. These problems are
then corrected before conducting the next usability test, which is, based on experience, yields
better results. This way, it is possible to test the changes made to the problems uncovered in
the first test, and possibly uncover new problems now introduced.

111

CHAPTER 18. TESTING

Figure 18.2: Screenshot of the final version of the mobile application in maintenance mode.

In the first test the following problems are observed.

1. The user has difficulties in seeing the current estimated position shown on the map
before entering maintenance mode.

2. The user comments on the Wi-Fi hotspot icons which are shown on the map, and asks
why they are present and whether they are of any importance to the usage of the system.

3. The user does not know if the “update radio map” or “change mode” buttons should be
used for entering maintenance mode. The user thinks that the button “update radio
map” should be used for transmitting corrections of the radio map and not download
an updated radio map.

4. Yellow stars are shown to the user when entering maintenance mode, but what these
represent are not initially apparent.

5. After explaining what the yellow stars represent, it is still not apparent to the user how
to interact with these in order to maintain a given location. Specifically, the need for
double clicking the yellow stars is difficult to the user.

112

18.4. USABILITY TESTING

6. The user does not know how to react when instructed to change direction to north, south,
etc. The user wants to consult a real compass in order to find the desired direction in
which the measurement is to be conducted.

The following changes are made in order to correct the above.

• The Wi-Fi hotspots are removed from the map in order to correct item 2.

• The “Update radio map” menu item is renamed to “Fetch new radio map”, in order to
remove some confusion in regards to this menu item in item 3 and 5.

• The “Change mode changed” menu item is renamed to “Maintenance mode” and “Posi-
tioning mode” depending on the current mode, such that it is more apparent that this
menu item is used to change to the desired mode, which was difficult in 3.

• Instructions are added to the screen informing the user that the starts should be double
clicked when in maintenance mode. This should help remove confusion in item 4 and 6.

No solutions are implemented for item 1 and 6 before the next usability test is conducted
as a result of time scheduling. However, these are corrected afterwards.

18.4.2 Results from the Second Test

In the second test, the following observations are made in regards to usability problems with
the application.

1. The user mentions problems with the visibility of the currently estimated position on
the screen and mentions that the position marker is very small.

2. The user is confused in regards to some rooms not being rendered in the same colour
on the map as other rooms and what this could possibly mean.

3. The user has difficulty in seeing the stars when entering maintenance mode since the
map is zoomed out and thus the stars are very small.

4. The user has difficulty in selecting a location by double clicking a star. Initially, the user
only click once on the star and determines that this is not the correct way to interact
with them.

5. The user exhibits problems when asked to face a specific direction. As in the previous
test, the user cannot figure out how to face the specific directions when not given tools
showing where north, south etc. are.

113

CHAPTER 18. TESTING

From this test, it is concluded, that the previously resolved issues are not observed again.
Specifically, the problem of changing from positioning to maintenance mode is more intuitive
than before. The two problems which were not fixed in the first test are observed again.

The following changes are made to the application based on the usability test:

• The current position marker is increased in size with a factor two in order to fix item 1.

• Arrows are added in order to show the user which direction she should face in order to
fix item 5. Thus, if the user should face the north wall of the building, an arrow now
shows the direction the user needs to face in relation to the map.

Other possible solutions could be to add a compass to the interface, but this requires
support from the hardware.

Item 2 is not fixed since this is a problem with the provided PIFC model and missing
room information in the file which result in the PIFC Renderer rendering the rooms without
a floor.

Item 3 is not fixed because of limitations in the PIFC Renderer, which does not allow
changes to the map and zooming in one operation, and it does not provide the necessary
functionality to query these operations in a straight-forward manner.

The task of double clicking, as described by item 4, is not easy, and only requiring a single
click would make it easy to activate the wrong location by mistake. A solution would be to
click once to mark a position and then press another button to confirm in order to verify the
selection. Implementing this solution would require changing the PIFC Renderer which uses
double clicking to respond to single clicks. If implemented, the usage of the PIFC Renderer
would therefore be inconsistent since double clicking should be used in some situations and
not in others. Therefore, the proposed solution is not implemented.

18.5 Accuracy and Precision of Position Estimates

In the following, the accuracy and precision of the position estimates are determined on the
basis of a concrete test scenario. First, the approaches for collecting the offline and online
RSSI measurements are described.

18.5.1 Offline Stage

The fingerprints for the offline stage are made as described in Chapter 7. This means that
fingerprints are made in intervals of three meters, where RSSI values for each detectable
signaltransmitter are measured for 2000 milliseconds as is determined in Chapter 7 for the
four orientations: north, south, east, and west.

114

18.5. ACCURACY AND PRECISION OF POSITION ESTIMATES

Figure 18.3 depicts the area used for positioning. The area consists of both rooms and
corridors. Also, the area contains a parallel path, which is assumed not to be clearly distin-
guishable when calculating the position estimates. Therefore, the area represents a varying
and challenging environment which creates the foundation for testing how well position esti-
mation by BlueCAML is in general.

ST5

ST4

ST3

ST1

ST2

2

3

11

8

9

12131417181920

28 29 30 3231

33 34 35 36 37

39

5

7

10

23

24 25 26 27

6

1516

38

2122

4

Figure 18.3: The test scenario which forms the basis for determining the accuracy of BlueCAML.
Grey circles represent locations at which fingerprints have been conducted during the offline stage.

The signaltransmitters are strategically placed in the area, such that the minimum de-
tectable signaltransmitters on each fingerprint is three, which is assumed to be sufficient for
position estimates.

18.5.2 Online Stage

In the online stage, a walking path covering the majority of the area is chosen as depicted in
Figure 18.4. The space between two consecutive black circles indicates the path in which a
fingerprint is collected. This means that the person collecting the fingerprints in the online
stage is constantly moving along the path. In the authors’ opinion, this gives a more fair
picture of the accuracy than if the person had been statically placed at a location at which
the fingerprint was collected. To create a large data set, the route shown in the figure, has
been traversed three times.

115

CHAPTER 18. TESTING

ST5

ST4

ST3

ST1

ST2

2

3

11

8

9

12131417181920
10

0

28 29 30 3231

33 34 35 36 37

39

5

7

10

23

24 25 26 27

6

1516

10

3 10

4

10

5 10

8

10

9

11

0

11

1

38

11

3

11

2

11

2

11

2

11

2

11

2

11

2

11

2

11

2

11

2

11

2

11

2

Figure 18.4: The traversed route in the test scenario. Grey and black circles represent locations at
which fingerprints have been conducted during the offline and online stage, respectively.

18.5.3 Calculation of Accuracy

The evaluation of accuracy and precision of BlueCAML takes starting point in the requirement
of three meters accuracy with 80% precision. The accuracy at 80% precision is used as the
primary criterion for evaluating the overall accuracy of BlueCAML, because the main objective
is to assure the users of BlueCAML how much an estimated position deviates in most cases
and not the relatively high accuracy seldom achievable.

For determining the accuracy and precision achievable by BlueCAML, a benchmarker
tool is developed. The incentive for developing this tool is that different techniques with
various configurations, such as varying K in KNN, can be compared. A short description and
screenshots of the benchmarker tool can be found in Appendix C.

As previously described in Chapter 5, KNN combined with the Weighted Graphs technique
is used in BlueCAML. However, to evaluate Weighted Graphs’ effect, the accuracy calculations
are done both with and without Weighted Graphs. Furthermore, K in KNN is varied in order
to show how this constant affects the result.

The accuracy is determined by calculating the difference between the estimated positions
and the actual positions. By grouping the observed errors for each meter, it is possible to
determine the precision.

116

18.5. ACCURACY AND PRECISION OF POSITION ESTIMATES

Figure 18.5 shows the accuracy of the KNN strategy without Weighted Graphs with K
ranging from 1 to 4.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Accuracy (m)

P
re

c
ic

is
io

n
 (

%
)

K = 1

K = 2

K = 3

K = 4

Figure 18.5: Accuracy and precision obtained using different K in KNN.

As shown, the results with different K in KNN do not vary significantly. The most distinct
part is observed in accuracies between three and nine meters, where the result with K = 3
approximately has a precision 5% points above that when K = 2. In the 80% to 100%
precision interval, which, as previously described, is of interest in respect to BlueCAML,
K = 3 and K = 4 slightly outperform the other two. Because it cannot be determined which
of the two yields the better result, K = 3 is chosen as most appropriate since it requires minor
less computations.

Generally, it is observed for all configurations, that the estimated positions get stuck when
the user walks through the curve in the upper right corner. This means that position estimates
after this point generally have a low accuracy. Even updating the radio map in the specific
corner does not resolve the issues, and hence it must be a problem with the offline fingerprints
in that area being too close to the online fingerprints in other areas.

The same approach is used with KNN combined Weighted Graphs. Figure 18.6 shows the
results using this search strategy while varying K between 1 and 4.

As in the case of using KNN without Weighted Graphs, the results with Weighted Graphs
show the same tendency, that is, varying K does not provide a significant change in accuracy

117

CHAPTER 18. TESTING

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Accuracy (m)

P
re

c
is

io
n

 (
%

)

K = 1

K = 2

K = 3

K = 4

Figure 18.6: Accuracy and precision obtained using different K in KNN together with Weighted
Graphs.

nor in precision. These results might be caused by similar reasons as in the test with KNN
without Weighted Graphs. K = 3 is chosen as the most appropriate value for similar reasons
as in the previous test.

In order to determine whether Weighted Graphs improves the results from KNN, the
results from both of these are compared. K is set to 3 based on the conclusion made in the
previous test.

Figure 18.7 shows how these two strategies compare.

The results of comparing KNN with and without Weighted Graphs show that there is not
a significant improvement in using KNN with Weighted Graphs. At the desired precision of
80%, Weighted Graphs yield better results but besides, KNN tends to be better. However,
during simulation with the benchmarker tool, it is discovered that KNN tends to randomly
select locations in the scenario. Therefore, an estimate based on these may in average yield
good results even though the estimated positions are randomly determined. The Weighted
Graphs technique is more likely to follow the path of the user, but due to the previously
mentioned problem of getting stuck, the subsequent estimates are relatively poor.

The conclusion is, that by using Weighted Graphs, an accuracy of ten meters can be
obtained with a precision of 81%.

118

18.5. ACCURACY AND PRECISION OF POSITION ESTIMATES

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Accuracy (m)

P
re

c
is

io
n

(%

)

Nearest Neighbour

Weighted Graph

Figure 18.7: Accuracy and precision obtained from KNN and KNN with Weighted Graphs when
K = 3.

119

Part V

Conclusion

120

19
Conclusion

In this project, focus has been put in developing BlueCAML which is a system aimed at
providing position estimates of mobile devices using Bluetooth and show this to the user on
a provided map of the particular building.

With regards to conducting position estimates, the fingerprint technique is used. Due to
many influencing factors such as varying environmental conditions, the accuracy and precision
of the fingerprint technique degrades over time, hence, estimating erroneous positions of the
user. Because of this problem, a significant effort has been put in introducing a method allow-
ing the users to perform corrections to the system thereby targeting the accuracy and precision
levels remain stable regardless of influencing factors. This also adds a distributed perspective
of the system due to maintenance being put on the user side. Therefore, the development of
BlueCAML complies with the overall theme of this project, namely, Distributed and Mobile
Software. The entire development of BlueCAML is in accordance with the learning goals
from the study regulation, namely, Demonstrate knowledge and understanding in analysing,
designing, implementing, and evaluating software for a mobile platform and Consider concepts
and opportunities within mobile technologies.

As described, the accuracy of BlueCAML is ten meters with a precision of 81%. This
does not fulfil the requirement of having an accuracy of three meters with that particular
precision. However, it still opens for the possibility of further research in Bluetooth for indoor
positioning systems, since a number of other fingerprinting techniques that might enhance the
accuracy can be applied. Even if these do not enhance the accuracy, the current accuracy is
more than enough for systems aiming at room-level position estimation.

BlueCAML is based on an architecture involving three different components: mobile de-
vice, signaltransmitter, and back-end. The back-end stores information relevant to the build-
ings participating in BlueCAML. In addition, the back-end is responsible for retrieving the
necessary information needed for the fingerprint technique to users on demand. In this regard,
it also implements functionality for processing and storing the corrections made by the users.
Signaltransmitters are strategically placed around in the building and act as proxies between
the mobile devices and back-end exposing an API which the mobile devices can use both in
regards to maintaining the radio map and for retrieving it as well.

121

CHAPTER 19. CONCLUSION

In the present effort, the realisation of BlueCAML complies with all requirements initially
set except for the time constraint between consecutive calculated position estimates. The goal
was to calculate the position estimate every four seconds, however, this requirement cannot be
upheld since it takes 5.8 seconds if a single connection is established. This result is primarily
due to the time needed for establishing a connection for RSSI measurements and the actual
measuring of RSSI values. However, given the assumption that a new connection is not needed
between consecutive position estimates, the time required is reduced to 3.1 seconds.

Due to the requirement of an API on the mobile device allowing the retrieval of RSSI
values of the local Bluetooth adapter, the choice of platform is unfortunately deemed limited.
Only the Windows Mobile platform exposes this functionality as of this writing which results
in a limited target group due to Windows Mobile currently having a relatively low market
share on the mobile market. It would have been beneficial to use Symbian or even target, to
some extent, platform independence with Java.

In addition, an important discovery has been made. Specifically, being the first actual
mobile application developed by the authors, it has been discovered that one should to a
more wider extent know what functionality is required to be available for instance in terms
of APIs than for similar development for a desktop application where this functionality often
is taken for granted. For instance, it was discovered that a ping functionality was vital
for ensuring correct measurements as a consequence of the implementation of RSSI values
and additional handling of these. The ping request was a necessity for accommodating an
important discovery made in relation to how the Bluetooth hardware and Bluetooth stack
implementation handle RSSI values in terms of caching. Specifically, RSSI values are not
measured whenever requested from the API, but instead include caching the latest ones which
are then retrieved. This is undocumented and the Bluetooth specification does not make
explicit what an actual Bluetooth implementation must comply with. This is crucial in terms
of positioning based on RSSI due to the reliance on new RSSI values of the current position.

The communication channel between the mobile device to the back-end via the signaltrans-
mitter has also been subject to significant effort due the establishment of an application layer
communication protocol. Besides the design, verification has been paramount to among oth-
ers ensure that the protocol does not potentially result in deadlocks. In this regard, analysis
has been conducted in the field of static verification and most notably in the UPPAAL model
checking tool. Using model checking for this purpose is appropriate due to the easiness of
modelling the states and actions of a communication protocol. Through the utilisation of this,
it can be concluded that the protocol is deadlock free. Also, modelling the communication
protocol helped in discovering design flaws in the communication protocol.

Testing has also been subject for emphasis. Various methods and techniques have been
examined through analysis. In particular, tests have been generated through equivalence
partitioning and boundary analysis and executed with NUnit. Furthermore, test adequacy
has been determined through test coverage with the NCover tool. The emphasis on test
and verification complies with the learning goals: Account for and assess opportunities in
verification and validation of software systems, Demonstrate skills in applying techniques,

122

methods, models, and tools for test and verification of software systems, and Gain knowledge
in using the model checking tool UPPAAL for verification.

Besides the actual development of BlueCAML, a comprehensive pre-analysis has been con-
ducted in order to delve into important issues that influence fingerprinting and positioning
in general. This pre-analysis has primarily focused on experimentally confirming the issues
presence and in addition their amount of impact and has thereby grounded the basis for which
issues BlueCAML needs to accommodate in order to be as good and innovative as possible.
The experiments have given birth to several analysis tools developed by the authors for inves-
tigating the individual influencing factors, which among others comprise, how orientation of
users affect RSSI measurements, density of people in the area, and the radio map becoming
obsolete over time to name a few. The conclusions made in each of these experiments have
been taken into account in the development of BlueCAML except how varying people density
should be accommodated remains without a concrete solution.

An extensive amount of resources and research effort has been put in confirming the
hypothesis that the varying amount of people can be modelled by measuring the difference
in environmental changes from reference measurements to current measurements and use
regression analysis. Unfortunately, the discoveries made in this regard conclude that a simple
relationship does not exist and thereby leaves the question of how to address the issue open.
Nonetheless, the authors still see the research effort as a scientific contribution in this area
since it generally is a problem for indoor positioning systems. This analysis is in accordance
with the learning goals: Examine different positioning techniques, implement one or more
techniques, and test them in a practical setting and Gain knowledge in the capabilities of
Bluetooth in regards to indoor positioning systems.

123

20
Discussion

The aim of this chapter is to comment on some of the aspects, solutions to discovered problems,
and things which could have been done differently. Some of these are of concern if BlueCAML
should be deployed in a real world setting and some merely improvements. Besides, the
purpose is also to comment on the development related issues which should be taken into
account in future projects.

Fingerprinting

As pointed out in the report, a problem of using fingerprinting is the effort required to make
the offline stage and afterwards the effort required to maintain the radio maps. In some
scenarios, the offline stage could be expected to be of interest for the service provider, such
as shopping malls. In such cases, the problem might be relatively low. In contrast, scenarios
where the owners of buildings cannot see the profit of having this service, there might be low
interest in spending resources in the offline and maintenance stages. BlueCAML is primarily
directed at the latter scenarios, because it provides a relatively low-cost infrastructure and it
provides a means of relocating the effort required for the stages from the service provider to
the users of the system.

In respect to the accuracy, BlueCAML does not achieve similar results compared to Hansen
and Thomsen (2009), who achieved better results using Wi-Fi. The main difference is how
often it is possible to update the user’s position, and hence how far the user can walk within
this interval. In Hansen and Thomsen (2009), the user is estimated to be walking three meters
in the update interval, whereas in BlueCAML the user walks six meters. This means that the
primary search in the Weighted Graphs technique, is twice the size in BlueCAML in respect to
Hansen and Thomsen (2009), hence, an accuracy of less than six meters cannot be expected.

To accommodate for the observations of using the Weighted Graphs technique, the density
of fingerprints in BlueCAML could be decreased such that it matches the walking distance
between the intervals. This would decrease the primary and secondary search spaces, which
might help to do more accurate estimates.

124

Dynamically Changing the Radio Map

The problem regarding dynamically changing the radio map in respect the state of the en-
vironment had high priority, since all present solutions to this problem seemed to require a
significant effort to carry out. However, as mentioned the simpler solution proposed by the
authors did not work and no other solution is implemented. Therefore, if BlueCAML is to be
set into production, this problem must be handled to maintain the given accuracy throughout
the entire day where the environment is expected to change.

Which solution is appropriate is difficult to say. If time was not a factor, it would be
interesting to implement all analysed approaches and compare them. However, especially the
solutions of using the signaltransmitters, hence the infrastructure, to help change the radio
map seem relevant for BlueCAML. The reason for this is that these would make use of the
potential of having complete access to the dedicated infrastructure, which can be a problem
for systems using an existing infrastructure where system administrators might not want this
allowed.

Verification Using UPPAAL

In general, UPPAAL turned out as a great tool with a relatively intuitive design. Also, the
opportunity of a command line utility gave rise to execute the model checker remotely on the
application server at our disposal. This was very helpful since the model checking process for
certain properties need to run for several hours to determine whether or not it was satisfied.
However, some deficiencies were observed. Some of these even seem to be based on design and
architectural flaws of the tool which, if corrected, would increase the potential of UPPAAL
even more. A deficiency, was the discovery made that UPPAAL apparently only allow a single
thread for the state simulations. This significantly reduces the amount of resources which can
put into model checking as this only allow a single CPU for executing this thread.

The GUI of UPPAAL offered a very useful visualisation of the protocol and how the various
components of the system communicate and take actions accordingly. In this regard, UPPAAL
has proven useful for finding deficiencies in the communication design. The visualisation could,
however, also be done using an appropriate UML diagram, but it does not offer the possibility
of actually simulating the system which proved important.

In terms of adding the time constraints to the model in UPPAAL, this turned out to
not add a large degree of significance to the project. The purpose was to see whether the
mobile applications could request radio maps and upload fingerprints within a given time
frame provided that concurrent mobile applications are using the same signaltransmitter as
well as back-end. However, due to the time constraints being simple in the model, it was
possible with some effort to manually confirm whether actions for a small number of mobile
devices and signaltransmitters could be conducted within a given time frame.

During the simulation of the communication protocol, it was discovered that the initial
model was too complex and suffered from state-space explosion which resulted in UPPAAL
crashing due to insufficient resources. The lesson learned from this is that emphasis should be

125

CHAPTER 20. DISCUSSION

kept in modelling as simple as possible to avoid state-space explosion leading to practically
unsolvable problems.

Security and Privacy Concerns

Security has not been a concern in developing BlueCAML, therefore multiple security mech-
anisms should undoubtedly be implemented before deployment.

Currently, the back-end lacks authentication and authorisation mechanisms meaning that
everyone with access to it can create, edit and delete the resources, such a fingerprints. As
a solution to this, mechanisms as the ones used in Easy Clocking (Sw701b, 2009), such as a
login system, can be implemented. This would ensure that the signaltransmitters would have
to provide correct credentials before being able to change the resources.

In addition, data sent on the communication paths is not secured, meaning that the data
potentially could be a victim of packet interception or injection. Whether this is an actual
problem depends on the users’ opinion, meaning that a survey should be conducted in order
to clarify this. The reason for this is that the data sent does not contain any confidential
data, other than RSSI values and the users current position or a radio map. In the authors’
opinion the only data that to some extent could be confidential would be the user’s current
position, but as mentioned if it should be confidential should be the users decision. To secure
the communication paths, encryption on all data sent could be enforced.

Extendibility

BlueCAML is developed with the special purpose of presenting the user with her position
and to let the user help maintaining the radio map. However, one could imagine parts
of BlueCAML being integrated in other systems. For instance, a system like StreamSpin
contains modules for indoor and outdoor positioning with Wi-Fi and GPS, respectively. If
the accuracy achievable by BlueCAML using Bluetooth would be of interest for StreamSpin,
e.g. to provide indoor room level positioning, it would be relatively easy to extend StreamSpin
with the functionality of BlueCAML. First of all, the StreamSpin client is written in .NET CF,
and secondly BlueCAML uses the same coordinate system and map format as StreamSpin.

Additionally, BlueCAML could be extended itself by means of providing context-aware
information, navigation etc. to the users. Also, it could be extended with the possibility of
using the signaltransmitters to track Bluetooth devices similar to what BLIP Systems (BLIP,
2010) does.

Finally, the idea of letting the users help maintain the radio map could be adopted by
other indoor positioning systems.

126

Part VI

Appendices

127

Appendix Contents

Appendix A Quality Factor Definitions 129

Appendix B Usability Test Plan 130

Appendix C Benchmarker Tool 131

Appendix D Tailored Scrum 132
D.1 Sprint Backlog . 132
D.2 Burndown Chart . 133

128

A
Quality Factor Definitions

Product Operations
Correctness Extent to which a program satisfies its specifications and fulfils the

user’s mission objectives.
Reliability Extent to which a program can be expected to perform its intended

function with required precision.
Efficiency The amount of computing resources and code required by a program to

perform a function.
Usability Effort required to learn, operate, prepare input, and interpret output of

a program.
Integrity Extent to which access to software or data by unauthorised persons can

be controlled.
Availability The extent to which the program is operable in respect to the total

running time.
Durability The extent to which data is persistent when first stored in the program.

Product Revision
Flexibility Effort required to modify an operational program.
Maintainability Effort required to locate and fix a fault in an operational program.
Testability Effort required to test a program to ensure it performs its intended

function.
Scalability Extent to which the program can handle information when the program

is scaled according to some factor.
Product Transition
Portability Effort required to transfer a program from one hardware configuration

and/or environment to another.
Reusability Extent to which a program can be used in other applications related to

the packaging and scope of the functions that the program performs.
Interoperability Effort required to couple one system with another.

Table A.1: Quality factor definitions (van Vliet, 2008, c. 6). Availability, durability and scalability
are defined according to our understanding of them.

129

B
Usability Test Plan

The introduction read for the test subjects, in the usability test, is described below:

Usability Test Introduction Welcome to this test session. During the tests it is important
that you are aware that we are testing the system, not you. To improve the system you
must think aloud and honestly let us know what you think.

BlueCAML is a system whose purpose is to make indoor positioning possible using a
Bluetooth enabled mobile device. It works by measuring signal strengths, to a number of
signaltransmitters, thereby composing a fingerprint for a specific location. Afterwards,
this fingerprint is compared to a database of fingerprints made from an initialisation
phase. This database is called a radio map. Basically, the position related to the best
matching fingerprint is returned.

Over time, the radio map gets outdated and hence must be updated to maintain the
accuracy of the position estimates. In BlueCAML, the users are asked to help updating
the database.

After the introduction is read, to the test users they are asked to do the following tasks
one by one:

• Start the application.

• What is the initial thoughts of the GUI?

• The radio map needs to be maintained. Navigate to this functionality.

• What is represented by the different presented symbols?

• The location at the left must be maintained.

• Now the radio map must be updated.

• The above tasks must be repeated with no connection to the back-end.

• What are the general consideration of the maintenance phase?

130

C
Benchmarker Tool

To show the difference in accuracy using different techniques with different parameters, a
benchmarking tool is developed. In its current state the tool makes available the KNN position
estimation technique where K can be varied. Also, it makes available the option of combining
KNN with Weighted Graphs.

Giving the tool the positions of the actual walked path and the collected fingerprints, it
can simulate the position estimates using the Location Engine from the BlueCAML mobile
application. The tool can both depict the walked path and the matched positions on a map
and give a cumulated frequency of the accuracy using the given settings.

Figure C.1 shows a screenshot of the tool.

Figure C.1: Screenshot of the Benchmarker tool.

131

D
Tailored Scrum

The following appendix depicts the sprint backlog and the burndown chart for sprint 1, both
taken from Bananascrum which is an online Scrum tool.

D.1 Sprint Backlog

Figure D.1 depicts the sprint backlog from the first sprint of BlueCAML.

Figure D.1: The sprint backlog of the first sprint in the development of BlueCAML.

As shown the backlog both contains product and report relevant items.

132

D.2. BURNDOWN CHART

D.2 Burndown Chart

Figure D.2 depicts the burn down chart from the first sprint.

Figure D.2: The burn down chart from the first sprint of BlueCAML.

133

Bibliography

Apple(2009). Objective-c. http://developer.apple.com/iphone/library/
documentation/General/Conceptual/DevPedia-CocoaCore/ObjectiveC.html#//
apple_ref/doc/uid/TP40008195-CH43 (15th February 2).

Atira(2009). Scrum and agile methods the real world. https://intranet.cs.aau.dk/
fileadmin/user_upload/Education/Courses/2009/SOE/Slides/lecture14_atira.pdf
(15. October 2009).

Bahl, P. and Padmanabhan, V.N.(2000). Radar: an in-building rf-based user location and
tracking system. INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, 2, 775–784 vol.2. doi:
10.1109/INFCOM.2000.832252. URL http://dx.doi.org/10.1109/INFCOM.2000.832252.

Barnes, D.(2010). Fundamentals of microsoft .net compact framework development for
the microsoft .net framework developer. http://msdn.microsoft.com/en-us/library/
aa446549.aspx (16th February 2010).

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and Yi, W.(1996). UPPAAL—a tool
suite for automatic verification of real-time systems. Hybrid Systems III, 232–243.

BLIP(2010). Marketing and tracking solutions. http://www.blipsystems.com/ (17th Febru-
ary 2010).

Bose, A. and Foh, C.H.(2007). A practical path loss model for indoor wifi positioning en-
hancement.

Burnette, E.(2007). Jobs: No java for you. http://blogs.zdnet.com/Burnette/?p=238
(15th February 2010).

Calzolai, F., De Nicola, R., Loreti, M., and Tiezzi, F.(2008). TAPAs: a tool for the analysis
of process algebras. Transactions on Petri Nets and Other Models of Concurrency I, 54–70.

Canalys(2010). Canalys quarterly research highlights. http://www.canalys.com/pr/2010/
r2010021.html (15th February 2010).

Cerrada, R.(2008). Model view presenter part i – building it from scratch. http://www.
cerquit.com/blogs/post/MVP-Part-I-e28093-Building-it-from-Scratch.aspx (5.
May 2010).

CityGML(2010). Hompage of citygml: Current news. http://www.citygml.org/1524.

Cohn, M.(2004). User Stories Applied: For Agile Software Development. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA.

Corporation, M.(2008). Model-view-presenter pattern. http://msdn.microsoft.com/en-us/
library/cc304760.aspx (5. May 2010).

134

http://developer.apple.com/iphone/library/documentation/General/Conceptual/DevPedia-CocoaCore/ObjectiveC.html#//apple_ref/doc/uid/TP40008195-CH43
http://developer.apple.com/iphone/library/documentation/General/Conceptual/DevPedia-CocoaCore/ObjectiveC.html#//apple_ref/doc/uid/TP40008195-CH43
http://developer.apple.com/iphone/library/documentation/General/Conceptual/DevPedia-CocoaCore/ObjectiveC.html#//apple_ref/doc/uid/TP40008195-CH43
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/SOE/Slides/lecture14_atira.pdf
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/SOE/Slides/lecture14_atira.pdf
http://dx.doi.org/10.1109/INFCOM.2000.832252
http://msdn.microsoft.com/en-us/library/aa446549.aspx
http://msdn.microsoft.com/en-us/library/aa446549.aspx
http://www.blipsystems.com/
http://blogs.zdnet.com/Burnette/?p=238
http://www.canalys.com/pr/2010/r2010021.html
http://www.canalys.com/pr/2010/r2010021.html
http://www.cerquit.com/blogs/post/MVP-Part-I-e28093-Building-it-from-Scratch.aspx
http://www.cerquit.com/blogs/post/MVP-Part-I-e28093-Building-it-from-Scratch.aspx
http://www.citygml.org/1524
http://msdn.microsoft.com/en-us/library/cc304760.aspx
http://msdn.microsoft.com/en-us/library/cc304760.aspx

BIBLIOGRAPHY

David, A. and Amnell, T.(2002). Uppaal2k: Small tutorial.

DD-WRT(2009). Wl-500g premium v2. http://www.dd-wrt.com/wiki/index.php/WL500G_
Premium_v2 (4. May 2010).

DetDigitaleByggeri(2010). The Digital Construction: The Ten Construction-
Requirements (danish site). http://www.detdigitalebyggeri.dk/public_client/
de-ti-bygherrekrav (accessed 10 March 2010).

DEVELOPMENT, I.(2008). alchemo-for-iphone. http://innaworks.com/
alcheMo-for-iPhone.html (18. Februrary 2010).

Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., and Burgelman, J.C.(2001). Scenarios
for ambient intelligence in 2010.

Evans, D.(1996). Static detection of dynamic memory errors. SIGPLAN Not., 31(5), 44–53.
doi:http://doi.acm.org/10.1145/249069.231389.

Fenton, N.(2010). Bayes rule. http://www.eecs.qmul.ac.uk/~norman/BBNs/Bayes_rule.
htm (1st March 2010).

Ferial Shayeganfar, A.A. and Tjoa, A.M.(2008). A smart indoor navigation solution based on
building information model and google android.

Fischer, G., Dietrich, B., and Winkler, F.(2004). Bluetooth indoor localization system. Pro-
ceedings of the 1st Workshop on Positioning, Navigation and Communication (WPNC’04).

Fitzek, F.H.P.(2009). Mobile phone programming - and its application to wireless networking
aug 2007.

Foundation, S.(2010). Symbian c++ in a nutshell. http://developer.symbian.org/wiki/
index.php/Symbian_C%2B%2B_in_a_Nutshell (15th February 2).

Fowler, M.(2006a). Passive View. http://martinfowler.com/eaaDev/PassiveScreen.html
(accessed 3 May 2010).

Fowler, M.(2006b). UI Architectures. http://martinfowler.com/eaaDev/uiArchs.html (ac-
cessed 5 May 2010).

Frost, C., Jensen, C.S., Larsen, H.W., Luckow, K.S., Madsen, L.S., and Weisberg, A.(2008).
Privacy module for streamsp!n. Technical report, Aalborg University, Department of Com-
puter Science.

Hansen, R.(2010). Conversations with rene hansen, ph.d. candidate, department of computer
science, aalborg university.

Hansen, R. and Thomsen, B.(2009). Efficient and accurate wlan positioning with weighted
graphs.

135

http://www.dd-wrt.com/wiki/index.php/WL500G_Premium_v2
http://www.dd-wrt.com/wiki/index.php/WL500G_Premium_v2
http://www.detdigitalebyggeri.dk/public_client/de-ti-bygherrekrav
http://www.detdigitalebyggeri.dk/public_client/de-ti-bygherrekrav
http://innaworks.com/alcheMo-for-iPhone.html
http://innaworks.com/alcheMo-for-iPhone.html
http://www.eecs.qmul.ac.uk/~norman/BBNs/Bayes_rule.htm
http://www.eecs.qmul.ac.uk/~norman/BBNs/Bayes_rule.htm
http://developer.symbian.org/wiki/index.php/Symbian_C%2B%2B_in_a_Nutshell
http://developer.symbian.org/wiki/index.php/Symbian_C%2B%2B_in_a_Nutshell
http://martinfowler.com/eaaDev/PassiveScreen.html
http://martinfowler.com/eaaDev/uiArchs.html

BIBLIOGRAPHY

Heckmann, R. and Ferdinand, C.(2005). Verifying safety-critical timing and memory-usage
properties of embedded software by abstract interpretation. In Proceedings of the conference
on Design, Automation and Test in Europe-Volume 1, 618–619. IEEE Computer Society
Washington, DC, USA.

Hinton, A., Kwiatkowska, M., Norman, G., and Parker, D.(2006). PRISM: A tool for auto-
matic verification of probabilistic systems. Tools and Algorithms for the Construction and
Analysis of Systems, 441–444.

Honkavirta, V., Perala, T., Ali-loytty, S., and Piche, R.(2009). A comparative survey of wlan
location fingerprinting methods. Wpnc: 2009 6Th Workshop On Positioning, Navigation
And Communication, Proceedings, 243–251.

HTC(2010). Htc - products - htc touch diamond - specification. http://www.htc.com/www/
product/touchdiamond/specification.html (25. May 2010).

Jensen, C.S., Bested, M., Hansen, J.L., Larsen, H.W., and Dinh, L.(2007). Chess dominator.
Technical report, Aalborg University.

Johnson, J.I.(2009). Windows mobile power management. http://www.codeproject.com/
KB/windows/WiMoPower1.aspx (25. May 2010).

King, T., Kopf, S., Haenselmann, T., Lubberger, C., and Effelsberg, W.(2006). Compass:
A probabilistic indoor positioning system based on 802.11 and digital compasses. URL
http://www.informatik.uni-mannheim.de/pi4/publications/King2006g.pdf.

Krug, S.(2005). Don’t Make Me Think: A Common Sense Approach to Web Usability, 2nd
Edition. New Riders Press.

Larman, C.(2003). Agile and Iterative Development. A Managers Guide.

Li, B., Wang, Y., Lee, H., Dempster, A., and Rizos, C.(2005). Method for yielding a database
of location fingerprints in wlan. Communications, IEE Proceedings-, 152(5), 580 – 586.
doi:10.1049/ip-com:20050078.

Li, B., Salter, J., Dempster, A.G., and Rizos, C.(2007). Indoor positioning techniques based
on wireless lan.

Lionel M. Ni, Yunhao Liu, Y.C.L. and Patil, A.(2004). Landmarc: Indoor location sensing
using active rfid. Online Document. www.cs.ust.hk/~liu/Landmarc.pdf.

Liu, H., Darabi, H., Banerjee, P., and Liu, J.(2007). Survey of wireless indoor positioning
techniques and systems. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 37(6), 1067 –1080. doi:10.1109/TSMCC.2007.905750.

Malekpour, A., Ling, T.C., and Lim, W.C.(2008). Location determination using radio fre-
quency rssi and deterministic algorithm. Communication Networks and Services Research,
Annual Conference on, 0, 488–495. doi:http://doi.ieeecomputersociety.org/10.1109/CNSR.
2008.32.

136

http://www.htc.com/www/product/touchdiamond/specification.html
http://www.htc.com/www/product/touchdiamond/specification.html
http://www.codeproject.com/KB/windows/WiMoPower1.aspx
http://www.codeproject.com/KB/windows/WiMoPower1.aspx
http://www.informatik.uni-mannheim.de/pi4/publications/King2006g.pdf
www.cs.ust.hk/~liu/Landmarc.pdf

BIBLIOGRAPHY

Malik, A.(2009). RTLS For Dummies. Wiley Publishing, Inc.

Mathur, A.P.(2008). Foundations of Software Testing. Addison-Wesley Professional.

Microsoft(2010). Code Samples for Windows Mobile. http://msdn.microsoft.com/en-us/
library/bb158662.aspx (accessed 15 May 2010).

Munk-Madsen, A., Mathiassen, L., Nielsen, P.A., and Stage, J.(2000). Object Oriented Anal-
ysis and Design. Marko.

Mysaifu(2010a). Mysaifu jvm - a free java virtual machine for windows mobile. http://
www2s.biglobe.ne.jp/~dat/java/project/jvm/index_en.html (16th February 2010).

Mysaifu(2010b). Mysaifu jvm - a free java virtual machine for windows mobile. http://
www2s.biglobe.ne.jp/~dat/java/project/jvm/index_en.html (16th February 2010).

NCover(2010). NCover. http://www.ncover.com/ (accessed 21 May 2010).

OpenWrt(2010). Openwrt. http://openwrt.org/ (4. May 2010).

OracleSDN(2010). Java me technology. http://java.sun.com/javame/technology/index.
jsp (15th February 2010).

RailsGuides(2009). Getting started with Ruby on Rails. http://guides.rubyonrails.org/
getting_started.html (accessed 5 May 2010).

Rodriguez, A.(2008). Restful web services: The basics.

SIG, B.(2007). Specification of the Bluetooth System Version 2.1+ EDR, Volume 0.

Sommerville, I.(1999). Software Engineering. Addison Wesley.

Stephan Mäs, W.R. and Wang, F.(2008). Conception of a 3d geodata web service for the
support of indoor navigation with gnss.

Sun(2005). Programming the blackberry with j2me. http://developers.sun.com/
mobility/midp/articles/blackberrydev/ (15th February 2010).

Sw701b(2009). Easy clocking - a system for automatically clocking in and out employees.
Technical report, Aalborg University, Department of Computer Science. Christian Frost
and Casper Svenning Jensen and Kasper Søe Luckow.

Symbian(2010). Java me quick start - symbian developer community. http://developer.
symbian.org/wiki/index.php/Java_ME_Quick_Start (15th February 2010).

University, U. and University, A.(2006). Uppaal. http://www.uppaal.com/ (4. May 2010).

Valgrind(2010). Valgrind Home. http://valgrind.org (accessed 16 May 2010).

van Vliet, H.(2008). Software Engineering: Principles and Practice. John Wiley & Sons.

137

http://msdn.microsoft.com/en-us/library/bb158662.aspx
http://msdn.microsoft.com/en-us/library/bb158662.aspx
http://www2s.biglobe.ne.jp/~dat/java/project/jvm/index_en.html
http://www2s.biglobe.ne.jp/~dat/java/project/jvm/index_en.html
http://www2s.biglobe.ne.jp/~dat/java/project/jvm/index_en.html
http://www2s.biglobe.ne.jp/~dat/java/project/jvm/index_en.html
http://www.ncover.com/
http://openwrt.org/
http://java.sun.com/javame/technology/index.jsp
http://java.sun.com/javame/technology/index.jsp
http://guides.rubyonrails.org/getting_started.html
http://guides.rubyonrails.org/getting_started.html
http://developers.sun.com/mobility/midp/articles/blackberrydev/
http://developers.sun.com/mobility/midp/articles/blackberrydev/
http://developer.symbian.org/wiki/index.php/Java_ME_Quick_Start
http://developer.symbian.org/wiki/index.php/Java_ME_Quick_Start
http://www.uppaal.com/
http://valgrind.org

BIBLIOGRAPHY

Weisberg, A., Frost, C., Larsen, H., Luckow, K., Myrup, M., and Poulsen, T.(2007). Student
assessment system. Technical report, Aalborg University, Department of Computer Science.

Wikipedia(2010). Wikipedia:protection policy. http://en.wikipedia.org/wiki/
Protection_policy (11. March 2010).

Woodings, R., Joos, D., Clifton, T., and Knutson, C.(2002). Rapid heterogeneous connection
establishment: Accelerating Bluetooth inquiry using IrDA. In Proc. of WCNC. Citeseer.

Yao, P. and Durant, D.(2010). Programming .NET compact framework 3.5; 2nd ed. Pearson
Education, Boston, MA. Order from outside CERN via Inter Library Loan.

Yeh, L.W., Hsu, M.S., Lee, Y.F., and Tseng, Y.C.(2009). Indoor localization: Automatically
constructing today’s radio map by irobot and rfids.

Yin, J., Yang, Q., and Ni, L.(2005). Adaptive Temporal Radio Maps for Indoor Location
Estimation. In Proceedings of the 3rd Annual IEEE International Conference on Pervasive
Computing and Communications (IEEE PerCom 2005), 85–94.

Šikšnys, L.(2010). Work by laurynas Šikšnys, ph.d. candidate, department of computer sci-
ence, aalborg university.

138

http://en.wikipedia.org/wiki/Protection_policy
http://en.wikipedia.org/wiki/Protection_policy

	Introduction
	Scenario
	Related Work
	Learning Goals
	Report Overview

	Development Method
	Tailored Scrum

	Requirements
	Functional Requirements
	Non-functional Requirements

	I Analysis
	The Bluetooth Technology
	Position Estimation
	Positioning Approaches
	Fingerprinting Techniques

	Positioning Topology
	Topologies
	Selection of Topology

	Environmental Factors Influencing Fingerprinting
	RSSI Measurement Method
	Orientation of User
	Radio Map Becoming Obsolete Over Time
	Varying People Density
	Signal Strength Fluctuations over a short Time-Frame
	Density Of Fingerprints
	Time Measurements of the Fingerprint Process

	Test and Verification Methods
	Testing
	Verification

	II Architecture
	Technical Platform
	Back-end
	Mobile Device
	Signaltransmitter

	System Architecture
	Architecture
	Back-end Application
	Signaltransmitter Application
	Mobile Application

	Communication
	The Communication Protocol
	Message Format
	Verification of Protocol

	III Design
	Back-end Application
	Web Services
	Data Design
	Classes

	Signaltransmitter
	Classes
	Upload Fingerprint Activity

	Mobile Application
	Classes
	Activities

	IV Implementation
	Back-end Application
	Construction of Radio Map

	Signaltransmitter
	Upload Fingerprint

	Mobile Application
	Position Estimation
	Radio Map Maintenance
	PIFC Renderer

	Testing
	Resource Usage
	Power Consumption
	Unit Testing
	Usability Testing
	Accuracy and Precision of Position Estimates

	V Conclusion
	Conclusion
	Discussion

	VI Appendices
	Appendix Quality Factor Definitions
	Appendix Usability Test Plan
	Appendix Benchmarker Tool
	Appendix Tailored Scrum
	Sprint Backlog
	Burndown Chart

	Bibliography

