

The content of this report is freely available, but publication is only permitted with explicit permission from the authors.

Copies: 6

Total pages: 156

Of this Appendices: 26

Paper finished: 14th of December 2009

Abstract:
Easy Clocking is a system capable of automat-
ically clocking in and out employees based on
presence at workstations.

Embedded devices are configured and software
is developed to detect the presence of butchers
at workstations using a localisation technology.
We analyse and compare a number of different
localisation technologies from which we choose
Bluetooth. Its applicability is evaluated by con-
ducting experiments.

A web application is developed in order to view
registered location information and to solve con-
flicts, such as if the butcher is detected at multi-
ple workstations at the same time.

Work has been done with emphasis on usabil-
ity and flexibility of the web application, making
Easy clocking effective to work with and allows
for customisation according to the needs of the
company deploying it, respectively.

Project group:
sw701b

Group members:
Christian Frost
Casper Svenning Jensen
Kasper Søe Luckow

Supervisor:
Lone Leth Thomsen

Title:
Easy Clocking
- A system for automatically clocking in and out
employees.

Theme:
Internet Development

Project timeframe:
SW7, 2nd September - 18th December, 2009

Aalborg University
Department of Computer Science
Selma Lagerlöfs Vej 300
9220 Aalborg
Telephone:(45)96358080
http://www.cs.aau.dk

Signatures

Christian Frost

Casper Svenning Jensen

Kasper Søe Luckow

iii

Preface

This report is written by three software-engineering students attending the 7th semester at
Aalborg University as a part of their semester project. The project was commenced on the
2nd of September 2009, and finished on December 18th 2009.

During the project of Easy Clocking, we have received help from a number of people which
we would like to thank. First of all, our supervisor Lone Leth Thomsen, who has been helpful
with advice regarding the project and the content of the report. Rico Wind, who helped us
understanding how StreamSpin could be modified to accommodate our needs. Rene Hansen
who gave advice on collecting and analysing location data. Finally, Andreas Weisberg and
Morten Bested who functioned as test users in our usability test.

Because we are software engineering students, this report will concentrate on subjects
related to computer science. Therefore, we assume that the reader has equivalent knowledge
in the field of computer science, as that of a 7th semester software engineering student.

Two types of source references are used throughout the report. One is a reference placed
after a period which refers to the given section. The other type of reference is placed before
a period which refers to the particular sentence or word. The sources of the references used
throughout this report, can be found in the bibliography at the end of the report.

A CD-ROM is provided including the Easy Clocking source code.

Aalborg, December 2009
- sw701b

v

vi

Contents

1 Introduction 1

1.1 Learning Goals . 1

1.2 Scenario Without Easy Clocking . 2

1.3 Scenario With Easy Clocking . 3

1.4 Actors . 6

1.5 Report Overview . 7

2 Development Method 8

2.1 Selection of Development Method . 8

2.2 Scrum in Detail . 9

2.3 Employing Scrum . 11

3 Requirements 15

3.1 Functional Requirements . 15

3.2 Non-Functional Requirements . 16

I Analysis 20

4 Localisation Technologies 21

4.1 Localisation Concept . 21

4.2 Technologies . 26

4.3 Selection of Technology . 30

5 Extensible Architecture using Plug-ins 32

5.1 Plug-in Methods . 32

6 Usability 34

6.1 Gestalt Theory . 34

6.2 Design Principles . 35

6.3 Conceptual Model . 37

6.4 Interaction Styles . 38

vii

II Design 40

7 Technical Platform 41
7.1 Location Sensor . 41
7.2 Web Application . 44
7.3 Overview . 48

8 System Architecture 49
8.1 Communication Protocols . 49
8.2 Location Sensor . 53
8.3 Web Application . 54

9 Location Sensor Design 58
9.1 Clocking Process . 58
9.2 Configuration Consistency Process . 60

10 Web Application Design 62
10.1 Navigation Design . 62
10.2 Data Design . 64
10.3 Workflow Design . 65
10.4 Presentation Design . 66

III Implementation 68

11 Location Sensor Implementation 69
11.1 Employee Monitor Loop . 69
11.2 Configuration Consistency Loop . 75

12 Web Application Implementation 81
12.1 Scaffolding . 81
12.2 Authentication and Authorisation . 82
12.3 Conflict Handling . 83

13 Testing 92
13.1 Test Methods . 92
13.2 Automated Acceptance Tests . 93
13.3 Usability Testing . 94

viii

13.4 HTML Validation . 96
13.5 Memory Consumption . 97
13.6 Ranging Technique Test . 97

IV Conclusion 105

14 Conclusion 106

15 Discussion 110

V Appendices 113

Bibliography 139

ix

1
Introduction

Today, employees in both private companies and public institutions use clocking as a central
part of their work day. Clocking is the practice of registering when an employee begins and
ends a given assignment in order to determine the time spent on it. This information can be
used to calculate salary or, as used in the Danish home care[FOA, 2008], to monitor employees
and enforce time restrictions on assignments.

Clocking has been shown to add overhead for employees. As an example, the policy
of having home carers do clocking on their PDA each time they visit an elderly has been
criticised.[FOA, 2008] Additionally, the manual process opens for mistakes potentially creating
inconsistencies in the registered data.

We propose a system, named Easy Clocking, capable of detecting employees and registering
their location with a minimum amount of interaction from the employees. Hence, the purpose
of Easy Clocking is to automate the clocking procedure in order to remove the overhead of
manual clocking while also reducing errors in registering start and end times.

Throughout the report, we use a scenario of a Danish butchery in order to relate Easy
Clocking to a concrete company, even though Easy Clocking could be applied to other com-
panies as well.

We tried to contact a Danish butchery in order to construct a scenario, create personas and
get feedback on Easy Clocking. We were unable to successfully establish such a relationship.
The mentioned areas are therefore based on our knowledge.

In the following sections, we state the learning goals of the project, describe the scenario,
describe how Easy Clocking is applied to it, and give a summary of the actors using Easy
Clocking. Finally, an overview of the structure of the remaining report is given.

1.1 Learning Goals

Besides giving a solution to the clocking problem, the project aimed at fulfilling the goals
from the study regulation for a 7th semester software engineering project. Furthermore, we
chose additional goals to gain knowledge in different aspects of software engineering. These
goals were made on the basis of what we found interesting from untried theoretical aspects

1

CHAPTER 1. INTRODUCTION

and new aspects which were related to the project. The goals from the study regulation and
our own goals are listed in the following:

• Demonstrate knowledge and understanding of Internet, Internet technologies and Inter-
net services.

• Demonstrate skills in developing an Internet application.

• Demonstrate skills in developing a user interface for Human-Computer Interaction (HCI).

• Learn how to use a framework when developing an Internet application and additionally
learn a new programming language appropriate for this type of development.

• Know the advantages and disadvantages of different localisation technologies and tech-
niques.

• Apply the theoretical knowledge of a development method introduced to us.

• Create a product that helps a customer to solve a specific task.

• Become acquainted with embedded software.

• Gain knowledge in how to make software more flexible through plug-ins.

1.2 Scenario Without Easy Clocking

This section describes our understanding of the work processes related to clocking at the
butchery, before deploying Easy Clocking. This helped us to understand the context Easy
Clocking needed to fit into.

Danish butcheries use piecework and hourly wages to determine the salary of their butch-
ers. This means they get paid based on the amount of assignments they accomplish, and the
clocking information is used to calculate their hourly wages.

Managers determine which products need to be produced for a given day, and create lists
of assignments for the individual butchers. These are placed at notice boards at the start of
a work day such that the butchers know what they need to do.

When a butcher receives his tasks, he walks to a nearby clocking machine. All butchers
carry a laminated card with a unique barcode identifying themselves. When they clock in,
they use their personal card by placing it in front of the clocking machine which scans the
barcode. Next, the butcher locates and scans the card corresponding to his assignment. The
card is placed in a card rack next to the machine, containing a card for each workstation.

When the butcher has completed his task or wants to take a break, he walks to a nearby
clocking machine and scans his personal card to clock out. Since many of the assignments
performed at the butchery involve continuous work, breaks must be frequently held. Hence,

2

1.3. SCENARIO WITH EASY CLOCKING

with the amount of breaks along with the number of different assignments a butcher needs to
perform during a work day, the butcher is required to clock in and out multiple times a day.

Finally, some workstations are not completely stationary and require the butcher to tem-
porarily leave e.g. for passing intermediate products for further processing.

1.3 Scenario With Easy Clocking

We have used the application and problem domain work product to formulate and understand
the usage and structure of Easy Clocking. The application domain reflects the work process
after Easy Clocking has been deployed, and the problem domain describes the objects in Easy
Clocking[Design, 2000].

Before analysing the problem and application domain, we found role models for Easy
Clocking. These gave us insight into aspects of this type of product, such as applicable
technologies and different deployment purposes. A description of these can be found in Ap-
pendix G.

Figure 1.1 depicts the elements of Easy Clocking applied to the scenario.

Manager

Consultant

Workstation

Location Sensor

Butcher

Web Interface

Web Interface

Web Service
Localisation

Figure 1.1: Easy Clocking applied to a butchery with management using a web application receiving
location data from location sensors.

As shown, managers and Easy Clocking consultants interact with the web application.
The butchers are detected by location sensors when working at workstations. From this,
clocking information is transferred to the web application.

3

CHAPTER 1. INTRODUCTION

1.3.1 Application Domain

The following describes a typical work day for a manager, butcher and Easy Clocking consul-
tant using Easy Clocking.

The manager plan the current day’s work through a web application by assigning tasks at
specific workstations to the butchers. After the assignments have been determined, the man-
ager reviews the previous day’s assignments which are cross checked with clocking information
from the location sensors. Possible inconsistencies, called conflicts, between the schedule and
clocking information are resolved.

The butchers receive their work assignments from printed lists of assignments pinned to
information boards. They proceed by going to their assigned workstation and work there
until they have completed their task. The butcher’s presence at the workstations is registered
by the location sensors.

Easy Clocking consultants deploy location sensors for new workstations and use the web
application for configuring the individual location sensors in terms of various parameters.

1.3.2 Problem Domain

The problem domain comprises various components as shown in Figure 1.2. The following is
a description of these, their relationships and responsibilities.

Web Application Conflict Handler Location Sensor

Detectable Tag

Butcher

Manager

Easy Clocking

Consultant

1

10..*

0..*

1 *1 1

1..*

1
1..* *1 1..*

Clocking Information

0..1

*

0..1

*

Location Sensor

Configuration

*

1

1

1

Workstation

1

1

Assignment

0..*

1

0..*1

Figure 1.2: Class diagram showing the different entities in our problem domain and their relations.

A manager uses the web application to administrate assignments for the butchers and to
interact with the conflict handler in order to resolve conflicts. The Easy Clocking consultants
use the web application to add new location sensors or change their configurations. The
configurations consist of parameters defining the behaviour of the corresponding location
sensor and are propagated to them.

4

1.3. SCENARIO WITH EASY CLOCKING

Butchers are assigned to work at workstations during a work day. A location sensor is
placed at each workstation and detects nearby detectable tags carried by the butchers. The
sensors measure the distance to the tags and register when they enter or leave a given area
around the workstation. This clocking information, is stored by the location sensors until
they are able to pass it to the conflict handler.

The conflict handler processes the clocking information and stores it for later use. It is
the responsibility of the conflict handler to keep track of and aid in solving conflicts in the
gathered information. The possible conflicts are described in the following.

Conflicts

As described previously, the butcher is initially assigned tasks that must be conducted during
the work day. This procedure gives rise to potential conflicts which are described in the
following:

• It may happen that the butcher does not show up at all the workstations corresponding
to his assignments. This conflict can only be determined by the end of the work day
and resolving it automatically by the system is difficult due to the many reasons for not
showing up such as illness and machine breakdown. The system can notify a manager
about the conflict who then must correct the conflicting information manually.

• In contrast, it may be the case that the butcher shows up at other workstations than
originally assigned by the manager. In this case, the conflict can also be resolved
manually by the manager. In addition, if it is the case that the assignments change
during the work day, the manager should be able to accommodate this by changing the
assignments in the system.

• Finally, a conflict can arise if the butcher is detected the same time at multiple work-
stations where he was supposed to work during a work day. The range in which the
butchers has been detected at the workstations can be used to infer the correct work-
station. E.g. if one workstation detects the butcher at 1 meter and another at 8 meters
then he likely had been working at the former. If this can not be inferred, the manager
must solve the conflict by talking to the butcher.

Some of the above conflicts can be resolved automatically by using a number of assump-
tions. For instance, if a butcher was not assigned to work at a specific workstation, then we
assume those measurements were made when he walked past the station or talked to a person
working there.

It would be preferable if all relevant location data have been collected by the web appli-
cation before the manager solves conflicts for that given day. If not, a manager could solve
conflicts for a work day which later would be in conflict with clocking information later re-
ceived. In this situation the manager would have to solve the conflicts the specific work day
again.

5

CHAPTER 1. INTRODUCTION

1.4 Actors

As mentioned in the problem and application domain, the actors in the system are: butchers,
managers, and Easy Clocking consultants. We will describe each of these using personas. A
persona is a precise description of an imaginary person representing a generalisation of an
actor. The description contains personal information such as age, education and background,
and technical information such as skills and needs in relation to the product.[Cooper, 2004]

Realistic personas can be based on interviews of several users, but in our project, where
we had no contact to a real butchery, we will make up the personas.

The purpose of using personas is that the developers get a common understanding of the
users of the final system. E.g. when discussing if a certain feature should be implemented
or not, personas can aid in making the decision. This way, situations where developers may
want to add certain features to the product which are irrelevant for the customers can be
avoided. [Rind, 2007]

Following is a summary of our personas. A complete persona for each of the actors can
be found in Appendix F

Butcher Michael is not acquainted with many different electronic appliances. He knows
how to do some of the most basic tasks on the family computer which include tasks
such as using home banking, checking his e-mail and playing some of the built-in card
games. At work, he knows how to operate many of the industrial machines in terms of
configuring them correctly for the particular task they have to perform.

With respect to the old clocking system, Michael has experienced many annoyances.
Specifically, when he is in a rush in the morning, it may occur that he forgets to clock
in which results in him having to explain the incident to the secretary and assure that
he actually arrived at work on time. Also he is annoyed with the fact that the clocking
machines occasionally are located relatively far away from the assignment he is working
on. Finally, he is tired of the general way manual clocking works. Cards with barcodes
specifying the assignment he is about to do together with a card containing a barcode
identifying himself need to be scanned in a specific order. He thinks there is too much
room for error, especially because many butchers need to do this multiple times a day.

Manager Bo is not acquainted with working with computers when he is at home. He only
knows how to perform simple tasks at the various systems at the butchery. Specifically,
he knows how to check his internal e-mail through a web-interface and he has attended
various computer courses to aid some of the tasks he has to perform at the butchery.

One of his main concerns is to distribute the assignments that need to be performed
the given day. It is a manual process involving looking up which orders the butchery
has received. The process of distributing the tasks relies on Bo’s knowledge of which
certifications the butchers have in order to not assign a task incorrectly. Based on this,
he devises a note specifying the task assignments which the butchers can look up in the
morning.

6

1.5. REPORT OVERVIEW

Consultant Henrik is a very experienced computer enthusiast. He possesses knowledge in
programming and knows how to use many different tools such as editors and word-
processing tools. Also, he knows how to set up SOHO networks. His interest in
programming is however limited to high-level languages and tools that abstracts the
low-level details of development.

1.5 Report Overview

We chose to separate the documentation of our development process and our product, such
that the report documents the final product. This choice was made primarily because we used
adaptive planning and iterative and incremental development. This meant that the complete
design of the system was not entirely made before moving on to implementing parts of the
system.

In the following chapters we describe our development method, how it was applied to our
project, and list the requirements for Easy Clocking. The remaining report is then structured
into the following five parts.

Part 1: Analysis We analyse areas in which we need additional knowledge before creating
Easy Clocking. These are localisation technologies, plug-in architectures, and usability.

Part 2: Design We describe the technical platform and architecture of Easy Clocking. In
addition, we describe the design of the web application and location sensors.

Part 3: Implementation The implementation of Easy Clocking is documented with detailed
descriptions of parts of the implementation with code examples, and screenshots.

Part 4: Conclusion We conclude on our project, discuss problems we have encountered, what
we have learned, and mention possible improvements.

7

2
Development Method

This chapter describes a number of possible development methods applicable to our project.
One of the methods is selected, described in more detail, and further we describe how it was
applied to our project.

We use a software development method to structure and control the development process
throughout the project.[Sommerville, 2001]

On previous semesters, we used more traditional development methods such as the wa-
terfall and the incremental method. Last semester, we were introduced to agile development
methods. These agile approaches of software development were appealing to us because they
did not seem as strict as the traditional methods. Because of this, we wanted to apply an
agile method to the project.

2.1 Selection of Development Method

Below, we describe four different agile methods, introduced in the Software Engineering course
(Software 6, 2009), and three web oriented methods introduced in the Web Development
course (Software 7, 2009). The web oriented methods are relevant because the project, among
others, concerns developing a web application.

Evolutionary Development (Evo) Uses a front-room and back-room concept for delivery of
components to the customers. It focuses on continuous measurement of progress and
risk.

Extreme Programming (XP) Defines an iterative process driven by user stories. It focuses on
being customer-driven, which requires the presence of customer representatives under
the entire development process.

Scrum Suitable for small teams of maximum seven people. Scrum defines an iterative
process driven by the use of product and sprint backlogs. The amount of ceremony and
work products used is not defined and should be adapted to the specific project.

8

2.2. SCRUM IN DETAIL

Unified Process (UP) Defines an iterative process with focus on handling high risk items in
the early iterations. The method also defines a number of work products which can be
selected depending on the project.

WebML Defines an iterative process for web development with focus on data design.

WSDM Defines an iterative process for web development with focus on users and their tasks.

OOHDM Defines an iterative process for web development with focus on application navi-
gation.

The web oriented methods were discarded since they did not apply easily to our non-web-
related components which are a considerable part of the project. Extreme programming was
discarded based on its key value of having an on-site customer at all times combined with
practices such as pair programming which we have bad experiences with.

We chose Scrum because it had the most appealing development life-cycle and because
of the idea of daily measuring the progress and the usage of backlogs seemed interesting.
However, Scrum does not define work products for development activities such as creating
requirements. Also, it does not define the structure of the individual iterations. Thus, we
decided to use work products, defined in the other development methods, where applicable.
This way, we ended up using a tailored version of Scrum.

2.2 Scrum in Detail

This section is based on material obtained from Larman [2003].

Scrum is an iterative and incremental development method which is commonly applied
in agile software development. In fact, Scrum can be regarded as a framework since it does
not explicitly dictate various work products which should be applied in the different phases.
Instead, Scrum puts emphasis on values and practices, which capture the key adaptive and
agile qualities and only encourages devising a minimal number of work products for organising
the development.

Given the fact that Scrum does not specify which activities must but conducted but
fully places this responsibility on the team, it is flexible and can thus be combined with or
complement other methods.

2.2.1 Scrum Life Cycle

The Scrum life cycle is composed of four phases. These are briefly summarised in the following.

Planning The goal of this initial phase is to establish the vision and set the expectations of
the project. During this phase, all stakeholders are allowed to contribute with various
features, use cases etc. which should be recorded in a work product called the product
backlog.

9

CHAPTER 2. DEVELOPMENT METHOD

Staging In this phase, more features are identified. Additionally, time estimates are set for
each task in the product backlog. Together with the product owner, the release backlog
is identified. This backlog constitutes tasks which must be completed at the end of the
release phase.

Development The purpose of this phase is to develop the system consisting of the items
listed in the release backlog. This is done through a series of 30-calendar day iterations
called sprints in Scrum terminology. Note that even though a sprint is set to 30-calendar
days, only the weekdays are used for developing. Before each sprint, a meeting is held
in which the product and release backlogs are refined by the stakeholders. Additionally,
they choose goals for the next iteration which may be based on highest business value
and risk. The development team, called the Scrum team, meets with the product owner
and discuss which subset of the release backlog must go into the sprint backlog. The
number of items in the sprint backlog is restricted by the time they have been estimated
to complete, since it must not exceed the time available in the 30-calendar day sprint.

Release This phase aims at deploying the release. Also, if documentation is required by the
customer, it is made. It may also be the case that the users of the developed system
need to be trained. After this phase, the life cycle of Scrum starts over again, and a new
subset of goals are selected from the product backlog and placed in the release backlog.

Besides the backlog work products, Scrum also encourages the use of a burn down chart
depicting the progress of the given sprint. Specifically, the graph shows the estimated remain-
ing effort required to complete the sprint as a function of calendar-days. Hence, the Scrum
team can get an idea of whether or not the total number of tasks that needs to be completed
can be realised in the 30-calendar time frame by looking at the tendency of the graph. The
sprint backlog graph is updated each day together with the sprint backlog.

2.2.2 Scrum Key Values

As mentioned, Scrum emphasises on various key values. The values we found the most
appealing and most different from the traditional methods are explained below.

Self-directed and self-organising team During an iteration, no one besides the Scrum team
itself are allowed to interfere in relation to how the team should achieve the iteration
goals, solving internal problems and in planning the order of the activities other than
when being explicitly requested for help. One team member is designated the Scrum
master whose main purpose is to enforce that practices and key principles of Scrum are
followed. She also represents a mediator between management and the Scrum team and
should also be capable of solving problems when asked.

No extra tasks during an iteration Once management has agreed on the work to be done for
a given iteration, it must not be changed during the iteration. This is in order to keep
the Scrum team focused.

10

2.3. EMPLOYING SCRUM

Scrum meetings Each day, a meeting where all the team members participate must be held.
Scrum encourages these meetings to be stand-up meetings where each team member
answers a set of questions in turn. From these questions, the team members learn from
each other by sharing gained knowledge.

Working demo after each iteration At the end of a sprint, a working demo is shown to the
external stakeholders where feedback is encouraged. The feedback can then be used
when planning the next sprint, if changes need to be made.

Client-driven adaptive planning Since each sprint must be planned in cooperation with the
product owner, planning becomes client-driven. Furthermore, it is important that plan-
ning is adaptive. It should e.g. be possible to change the product backlog during the
project period. This is in contrast to predictive planning which emphasises on making
a specific development plan structured around producing a pre-determined end result
within a specific timeframe.

2.3 Employing Scrum

In this section, we describe how we have employed Scrum in the project. The section describes
many concepts and decisions not introduced yet and can be skipped until a later point.

We chose to use user stories as a work product, because we previously had been presented
with this combination of Scrum and user stories by a company called Atira. They had used
this combination with success in their projects.[Atira, 2009]

A user story contains a name and an estimate of the time it takes to finish the story, and
if needed acceptance tests. The name must be a keyword or sentence that is used to refresh
the conversation regarding the specific functionality.[Cohn, 2004]

The set of user stories comprised our product backlog. In Appendix A, we have shown a
picture of our product backlog and an example of a user story.

Before starting each of the sprints, we decided which user stories to be conducted during
it. These were then decomposed into tasks such that the estimated time for a task did not
require more than a story point. This decomposition was encouraged by Scrum, in order to
more easily track the progress. Afterwards, the tasks were placed in a Scrum work product
called Sprint Backlog with three states: Planned, Ongoing, and Done.

In a project involving a customer, the choice of user stories to be implemented in a sprint
should be made in cooperation with him, but since we did not have a customer, we chose the
stories ourselves. We based the selection of user stories on their prioritisation in the project.
The prioritisation could be based on high dependency to other user stories, hence making the
user story in question central. The prioritisation could also be based on our assessment of the
user story having high value for the system.

As described previously, Scrum encourages the use of time estimating the user stories that
need to be completed. When making these, we followed the guidelines given by Cohn [2004],

11

CHAPTER 2. DEVELOPMENT METHOD

who recommends using story points. We defined a story point as a full day of work. Making
the time estimates was conducted as a team activity by using the Poker Planning Game[Atira,
2009]. In the Poker Planning Game, each team member estimates a given task and compares
it with the estimates made by the other team members. The members with the highest and
lowest time estimates, respectively, then explain their estimates. Based on this explanation,
new time estimates are made and compared. This activity is done until the team members
agree on a time estimate.

The Poker Planning Game gives insight in different member’s interpretation of the tasks,
and through the subsequent discussion, the team members should achieve a joint understand-
ing of them.

In the following we describe the activities conducted in the phases of Scrum.

2.3.1 Pre-game

We started the pre-game phase by analysing how automatic clocking by localisation could be
achieved. In the analysis, we examined how we could localise the butchers, using different
localisation techniques and technologies.

After this, we defined the vision of the project, made an analysis of the problem and
application domain[Design, 2000], and from these, we identified three actors in the system:
butcher, manager, and Easy Clocking consultant, whom we described in detail through per-
sonas. These activities were conducted in order to understand the needs of the customer.
Using these work products was beneficial for us because they gave a good overview of the
project.

The result of the pre-game was a list of user stories.

2.3.2 First Sprint

For the first sprint, we implemented a login system for the web application, capable of au-
thenticating users and restrict their access by using an authorisation mechanism. Also, we
created an initial navigation[Dolog et al., 2009] and data design[Dolog et al., 2009] of the
web application. These work products were then extended, when necessary, throughout the
subsequent sprints.

Also, we wanted to set up the location sensors with new customised firmware and develop
a simple application to detect the presence of butchers within its range. The application was
developed as a prototype in order to get acquainted with the C Bluetooth library.

Since this was our first sprint, we did not know whether the time estimates were correct.
Thus, we decided to have a shorter sprint duration of one week instead of the two weeks used
in the subsequent sprints. This way, it was possible for us to get a clear view of whether we
should change the estimates in the rest of the sprints. If Scrum is used in future projects, we
can omit this experimental sprint and have a first sprint of full duration.

12

2.3. EMPLOYING SCRUM

At the end of the sprint, we had a number of unfinished user stories. This indicated that
we had underestimated our tasks, and therefore needed to correct this in subsequent sprints.
We observed that our estimates relating to the web application were nearly correct, while
the estimates related to the location sensor were not. We theorise that this is a result of
having more experience in developing web applications than working with the location sensor
hardware. Thus, in the future, we should be more aware of time estimates of user stories we
have little experience in.

As an example, we had estimated one and a half days for one person to update the firmware
and install support for Bluetooth on the location sensors. This ended up taking three days for
three persons. This resulted in a number of user stories not being finished in the sprint. These
stories were added to the second sprint. As a result of this, we corrected our estimates, in
subsequent sprints, and chose to keep a couple of days free as buffer time for accommodating
tasks, such as meetings which were not recorded in the Sprint Backlog.

Screenshots of the web application after the first sprint are shown in Appendix B.

2.3.3 Second Sprint

In the second sprint, we completed the unfinished stories from the first sprint in addition to a
set of new user stories. The focus of the sprint was to experiment with ranging, and implement
ranging and clocking on our location sensors. In addition, we configured the location sensors
to form a mesh network and customised the firmware installation by removing unused services.

In contrast to our first sprint, we successfully finished all selected user stories on time even
though we still had trouble with some time estimates being too low or too high. Furthermore,
we observed that we should set aside more time for tasks not tracked through Scrum than we
thought after the first sprint. Even though we had reserved time for meetings and documen-
tation of the project, we underestimated the time needed in order to maintain the report and
improve chapters as the project went forward.

2.3.4 Third Sprint

As with the second sprint, we managed to finish all the selected user stories on time in the
third sprint.

The sprint mainly focused on implementing assignment and workstation resources in the
web application. This was done as a preparation for the fourth phase, where these were needed
in order to handle the conflicts.

We also analysed and implemented the communication between the web application and
location sensors. This proved to be less time consuming than originally estimated.

The burn down chart showing the progress of this sprint is shown in Appendix C.

13

CHAPTER 2. DEVELOPMENT METHOD

2.3.5 Fourth Sprint

The fourth and final sprint of the project focused on usability, conflict handling, realising the
plug-in architecture, testing and deployment. The activity of improving the usability of the
system started with analysing various design principles related to usability. After conducting
the analysis, we worked on improving the user interface using these. Afterwards, a usability
test was conducted to discover flaws in the user interface. The flaws uncovered in the test,
were evaluated and the user interface was updated accordingly.

Another aspect of this sprint was the realisation of conflict handling. The process of doing
this turned out to be difficult because it involved many design issues which were hard to
comprehend before doing the implementation. Thus, the code for the conflict handler was
rewritten multiple times and much time was spent on this part during the sprint. Also, since
the conflict handler did not use the standard templates Ruby on Rails provides, we made
a presentation design[Dolog et al., 2009] of it, which helped us in clarifying what the views
should contain.

We also analysed how the plug-in architecture could be realised. It turned out that Ruby
on Rails already contained ways of doing this. However, the code already written for the web
application needed to be re-structured in order to support the usage of plug-ins.

Finally, we started conducting acceptance tests according to the requirements set for the
system. Revealed bugs due to these tests were corrected and hence we could start deploying
the system. The deployment comprised getting a stationary PC on which the web application
was hosted. The location sensors were configured to post their data to this and we verified
that everything worked as expected.

14

3
Requirements

The following lists the requirements for the project. These are divided in functional and
non-functional requirements.

The requirements have different purposes for the project. Some are made to fulfil the
learning goals, other to define the scope of the project and finally those that were elicited from
the user stories. To indicate which of these purposes had formed the particular requirement,
we mark them with (Learning goal), (Scope) or (User story), respectively.

3.1 Functional Requirements

The functional requirements for Easy Clocking are divided in web application and location
sensor. These are listed below.

3.1.1 Web Application

• The managers and Easy Clocking consultants must be able to log in to the web appli-
cation. (User story)

• The managers must be able to view/add/edit/delete butchers in the system. (User
story)

• The managers must be able to view/add/edit/delete managers in the system. (User
story)

• The Easy Clocking consultants must be able to view/add/edit/delete consultants in the
system. (User story)

• It must be possible for the managers to view/add/edit/delete assignments at specific
workstations to butchers. (User story)

• Easy Clocking consultants must be able to view/add/edit/delete location sensors in-
cluding their configurations. (User story)

15

CHAPTER 3. REQUIREMENTS

• The Easy Clocking consultants must be able to view the status of a location sensor.
(User story)

• It must be possible for the managers to associate a butcher and a tag. (User story)

• The web application must be able to detect conflicts in clocking information and allow
managers to solve these. (User story)

• The system must be able to determine if a butcher has been present at multiple work-
stations. (User story)

• The manager must be able to print out a list of the assignments that need to be con-
ducted for a given day. (User story)

3.1.2 Location Sensor

• The location sensor must be able to detect butchers located within a 10 meters range
with 5 meters accuracy. (Scope)

• The location sensor must be able to detect up to ten butchers working simultaneously
at the same workstation. (Scope)

• A butcher being within the detecting range, must be clocked in. (User story)

• The location sensor must calculate the distance to a detected butcher. (Learning goal)

• The location sensor must be capable of determining if an employee is absent for more
than a specified time interval. If this time is exceeded, the location sensor must mark
the butcher as clocked out. (User story)

• If a butcher exceeds a specified range, he must be clocked out. (User story)

• To address the issue of the location sensors being unable to directly communicate with
the web application, these should operate in a mesh network such that communication
can be routed through other location sensors to the web application. (User story)

• The location sensor must be configurable from the web application. (User story)

• The location sensors must take into account issues with connectivity to the web appli-
cation. (User story)

3.2 Non-Functional Requirements

Following are the non-functional requirements for Easy Clocking.

• The system must be easy to work with for the managers. (Learning goal)

16

3.2. NON-FUNCTIONAL REQUIREMENTS

• The system must be able to handle a capacity of 300 employees corresponding to a
relatively large company. (Scope)

• The system must be able to operate indoors since the workstations are primarily located
in buildings. (Scope)

• To have the possibility of tailoring the system to the specific needs of a company, it
must be extensible through plug-ins. (Scope)

• There should be minimal interaction between the system and the employees carrying
the mobile devices. (Scope)

• The mobile devices should be appropriate in terms of dimensions to be carried by the
employees. Furthermore, they should be economical in terms of power consumption.
(Scope)

Besides these non-functional requirements, we also identified quality factors for Easy
Clocking. These are described in the following.

3.2.1 Quality Factors

Quality factors are used to express high-level quality attributes of software. The quality
factors represent the customer’s interests in the software and which aspects of the software
having quality from the customer’s point of view.[van Vliet, 2008]

By defining a prioritised list of quality factors, we were able to guide our architectural and
design decisions throughout the project. We prioritised the quality factors in the following
way:

Very Important Quality factors having a large influence on our product or is a large focus
in the project.

Important Quality factors important for our project with some limitations to the extent
they influence the end product.

Less Important Quality factors which we do not focus on, but still take into account to the
extent of what is a good practice. These will not be used for argumentation of choices
made throughout the report.

Irrelevant Quality factors which are not focused on. These are not seen as factors the
resulting product should reflect.

Our list of quality factors is based on van Vliet [2008], and the quality factors scalability,
availability and durability. The definitions of the quality factors are listed in Appendix E.
Furthermore, we grouped the quality factors into the following groups, as defined by van Vliet
[2008]:

17

CHAPTER 3. REQUIREMENTS

Product operation This deals with factors regarding the daily use of the product.

Product revision This regards the evolution of the product

Product transition This regards possible redeployment of the product on a new platform.

Table 3.1 lists our prioritisation of the quality factors.

Quality Factor Very Important Important Less Important Irrelevant

Product Operations
Correctness X

Usability X

Reliability X

Efficiency X

Durability X

Integrity X

Availability X

Product Revision
Flexibility X

Maintainability X

Testability X

Scalability X

Product Transition
Reusability X

Portability X

Interoperability X

Table 3.1: Prioritisation of the quality factors.

The following argues for the prioritisation of the factors shown in the table.

Very Important

Correctness We chose correctness because the final system must satisfy the requirements.
This is needed, because these dictate what the system must include to be applicable for
a company that wants to apply automatic clocking.

Flexibility The non-functional requirements dictate that it must be possible to customise
the system, using plug-ins, in order to be applied in different contexts. Therefore, this
is a major concern when developing the system.

18

3.2. NON-FUNCTIONAL REQUIREMENTS

Usability This quality factor must be taken into account to make the replacement of the
manual clocking system a success, we wanted Easy Clocking to not be more complicated
than the originally.

Important

Reliability This quality factor was important in various aspects of the system. First of all, it
was important that the system correctly determined which workstation a given employee
was at. If this factor was not upheld, it could have consequences for the employees if
the system reported them as being at another workstation than in reality.

Efficiency This factor was to some extent important in the system. Specifically, the impor-
tance of efficiency was significant in relation to the location sensors because these are
based on hardware with limited computational and memory resources. In relation to
the web application part of the system, efficiency was a minor concern.

Durability This quality factor was important in relation to the data generated by the location
sensors. This data is fundamental for the system to operate in terms of determining
where employees are located. If the system was unable to determine the locations
because of data loss, it could influence how the employees were paid, for instance.
Hence, mechanisms were deployed to reduce the probability of data loss.

Reusability This quality factor was considered important because the system must be de-
ployable in different companies either as part of another system or as an independent
application.

Less Important

The quality factors with this prioritisation were not focused on. We did, for instance, not
want to focus on testability, nor did we ignore it. This meant that we only wanted to make
the system testable to the extent that we could show that the final system fulfilled the re-
quirements.

Irrelevant

We did not put any effort in the factors given the irrelevant priority. Some of them, such as
scalability, were ignored due to the scope of the project. Regarding scalability the require-
ments define that the system must be able to handle location data generated by 300 butchers
which we consider manageable without taking scalability into account. In relation to the web
application, we did not expect it to be frequently accessed and handle a great number of
concurrent users.

19

Part I

Analysis

20

4
Localisation Technologies

In order to do automatic clocking, we need to know which workstation the butcher is located
at. To accomplish this, a localisation concept is used. First, we describe our choice of
localisation concept, location estimation technique and finally localisation technology using a
set of criteria.

4.1 Localisation Concept

Before choosing a specific technology to be used for localisation of employees, it is important
to know which general localisation concept to use, since it affects the choice of technology. For
instance, the chosen concept may require that the location sensors have significant low power
consumption. During the analysis of which concept to use, we found two; Real Time Location
Systems (RTLS)[Malik, 2009] and Wireless Sensor Networks (WSN)[Romer and Mattern,
2004].

RTLS is used for real time localisation of equipment or people. This is generally achieved
by attaching small electronic tags on the equipment to be located. The tags are read by
location sensors which are placed at known positions such that they cover the area of interest.
When the location sensor registers a tag, this information is passed to a location engine.
The location engine then uses the information gathered from one or more location sensors to
estimate a location of the tag. Finally, this information is used by application software, e.g. to
display the location to a user of the application. The system requires that the location sensors
are always connected to the location engine such that they can send the raw localisation data
instantly when obtained.[Malik, 2009]

WSN are, as the name implies, a network of wireless sensors. The sensors does not
make use of a persistent power source, for instance, because they are randomly placed in
impassable terrain. Because of this, the sensors in WSN are resource constrained, and power
usage is therefore a big concern in such networks. Examples of where a WSN is used are
for environmental monitoring where researchers monitor climatic changes and for monitoring
vibrations of buildings. In both examples, the sensors are used in a wide-area and therefore,
the sensors are configured to use an ad-hoc approach in order to get reports from the sensors
far away to the location engine.[Romer and Mattern, 2004][David Culler, 2004]

21

CHAPTER 4. LOCALISATION TECHNOLOGIES

In order to illustrate the different advantages of RTLS and WSN, Table 4.1 summarises
these with respect to the project.

Advantage RTLS WSN

Detect movement at workstation X X

Indoor usage X

Real-Time Tracking X

Tag identification X

Relatively few nodes X

Robustness X

Cooperating nodes X

Table 4.1: Comparison of RTLS and WSN.

As shown in the table, RTLS has the most advantages related to this project, compared
to WSN. Therefore, we chose to use RTLS as localisation concept. This choice conflicts with
the requirement stating that the nodes should be able to be placed in a cooperating ad-hoc
network. Since RTLS fulfils the other requirements, we chose to implement the ad-hoc network
structure into RTLS in order to accommodate this remaining requirement.

To realise RTLS in the project, the butchers will be equipped with a tag which then can
be located by location sensors at each workstation. Doing this would make the project similar
to the Active Badge Location System, one of our role models, described in Appendix G.

4.1.1 Location Estimation Techniques

Ranging and positioning are two groups of techniques used to determine the position of tags.

There exist several techniques that can be used for localisation using ranging or posi-
tioning. In the following, we have described different techniques which are applicable to our
project. This also is part of the fulfilment of our learning goal regarding location techniques.

The techniques described are introduced by Malik [2009], and have been further supported
by the material from Golden and Bateman [2007], Ciurana et al. [2007], [Lionel M. Ni and
Patil, 2004] and [Feldmann et al., 2003] all of which were read as part of this report.

4.1.2 Ranging Techniques

Ranging is the concept of estimating the distance between a tag and location sensors. Various
techniques are used such as signal strength and time based calculations on signal propagation.

Time of Arrival(TOA) By measuring the time it takes for a signal to travel from a location
sensor to a tag, it is possible to estimate the distance between the two devices. This can

22

4.1. LOCALISATION CONCEPT

be done since the propagation speed for the wireless communication is known. Hence,
by multiplying the measured time with the propagation speed gives the distance. This
requires the clock of the location sensor and tag to be accurately synchronised since
they must be compared. Note that it is also possible to measure the total time for the
signal to propagate to the tag and back again, as shown in Figure 4.1.

Time Difference of Arrival(TDOA) This technique is similar to TOA. However, TDOA uses
multiple location sensors to do the measurement. The time when a signal from a tag
is received is stored by multiple location sensors and by measuring the difference in the
arrival times it is possible to make a more precise estimate of where the tag is placed.
This technique requires the clocks of the location sensors to be synchronised.

Received Signal Strength Indicator(RSSI) When a signal leaves its source, it has a specific
strength. As the signal propagates, this strength decreases with a known relationship
between distance and signal strength. It is therefore possible to estimate the distance
based on the RSSI. A problem with this technique is that the signal strength is affected
by obstacles, temperature, humidity etc.

0.11µs

0.13µs

distv
t =⋅∆

2

Figure 4.1: Time Of Arrival using the round trip time as time measurement. t is the time, v is the
propagation speed and dist is the distance between the location sensor and the tag.

4.1.3 Positioning Techniques

Positioning is the concept of determining the position of a tag either absolute or relative
to one or more location sensors. Position estimation algorithms, such as triangulation and
trilateration, use data from multiple location sensors in conjunction with ranging techniques
in order to determine the position.

Trilateration The position of a point can be determined by knowing the distance to three
or more known points. By finding the intersection between the diameters of the known
points, the searched point can be determined. Figure 4.2(a) shows an example of two
known points, which are able to determine two possible points, and Figure 4.2(b) shows
three known points determining a single possible point. The distances are calculated
using ranging techniques.

23

CHAPTER 4. LOCALISATION TECHNOLOGIES

(a) Two sensors
pinpointing
two possible
positions.

(b) Three sensors pin-
pointing a single posi-
tion.

Figure 4.2: Trilateration technique used for positioning.

Triangulation In triangulation, a position is determined by knowing the angle a given signal
travels from three or more points in relation to a common reference line. This technique
is shown in Figure 4.3 where a point is determined by drawing three lines from three
known points.

Figure 4.3: Triangulation technique used for positioning.

Nearest Neighbour It is possible to determine the position of a point by detecting nearby
known points. Ranging techniques are used in order to determine which points are close.

4.1.4 Choosing Ranging or Positioning

If ranging is used, a sensor can be placed on each workstation and configured to detect and
report tags within the range of interest, thus allowing us to detect if a butcher is close to
a given workstation. Additionally, the placement of the sensors on the workstations opens
up new possibilities. One could imagine that the sensor is able to communicate with the
workstation such that the workstation could be turned off if the respective butcher leaves

24

4.1. LOCALISATION CONCEPT

it. For instance, this could be appropriate if a given workstation requires certified butchers
because the work at the workstation is dangerous. This approach thus requires a sensor for
each workstation.

If positioning is used, the location of butchers can be determined more precisely and the
workstation areas can be defined in more detail, in contrast to defining the workstation area to
be the perimeter around a sensor. This solution requires the sensors being placed strategically
in either each room or building, depending on the chosen technology, such that all areas are
covered.

Both ranging and positioning techniques are usable in our scenario. Depending on the
density of workstations, they require different amounts of hardware from scenario to scenario.
If the workstations are placed in a relatively small area, positioning is capable of covering
the room by placing three sensors and using trilateration. However, if the workstations are
placed wide apart in a relatively large area, using positioning would require relatively much
hardware to cover the area, whereas ranging would only require one location sensor at each
workstation. Also, we consider the effort required to implement positioning higher than
implementing ranging.

Based on this analysis of ranging and positioning, we have decided to use ranging tech-
niques in our project. The primary argument for this decision is the simplicity of the ranging
approach, where positioning requires multiple sensors and relatively complex calculations are
needed for localisation determination.

We are aware that ranging potentially requires more equipment in larger deployments than
using positioning, but we have weighted simplicity over equipment usage. Using positioning
would have been the preferred solution if we had been more interested in tracking the butchers
in the sense of determining their precise location but our requirement is only to determine
symbolic positions.

In our analysis of ranging techniques, we identified three techniques to be use for localisa-
tion. The TOA and TDOA techniques use time measurements and the RSSI technique uses
signal strengths in order to determine distance.

We chose not to use the time-based techniques, since we found multiple projects discarding
these based on the time precision requirement[Thapa and Case, 2003][Kotanen et al., 2003]
while other projects using these methods utilised specialised hardware[Fischer et al., 2004].
The problem with time-based techniques is that the delay between the receiver receives a
request and send the response, is non-deterministic and can result in a significant calculation
error in the distance if used for a time-based ranging technique.[Golden and Bateman, 2007]
Because of this, and since we identified several projects describing their success in using RSSI,
we chose to use it.[Papamanthou et al., 2008][Helen et al., 2009].

25

CHAPTER 4. LOCALISATION TECHNOLOGIES

4.2 Technologies

We have used a set of evaluation criteria for choosing localisation technology. The criteria
were based on previously determined requirements and considerations for the butchery.

The criteria, which are described in more detail in Appendix D dictate that the technology
must:

• Work in an indoor environment with electrical noise.

• Not require recharging during a work day.

• Give the possibility of localising butchers in a ten meters range.

• Have a localisation accuracy of five meters.

• Not cost more than 1000 DK/Kr per workstation and 200 DK/Kr per tag.

• The technology must be reliable.

There exists a number of different technologies used in RTLS, each having their advantages
and disadvantages. Malik [2009] mentions Wi-Fi, Bluetooth, RFID, Ultra Wide Band (UWB),
ZigBee, Infrared and GPS as possible technologies for RTLS.

Early in the analysis, we excluded UWB, ZigBee, Infrared, and GPS. UWB and ZigBee
both lacked a substantial user base and available consumer products. In the case of UWB, cur-
rent governmental regulations prevent the technology from being used at distances larger than
a few meters. This is in order to prevent interference with other radio communication prod-
ucts, thus not satisfying our requirements regarding detection distance.[Commission, 2007]
GPS was discarded since it can not be used indoors, again not satisfying one of our require-
ments.[Malik, 2009] Infrared was discarded on its requirement of line-of-sight between tags
and sensor. This can be a problem because the butchery contains lots of industrial equipment
preventing that line-of-sight can be upheld.

We will in the following describe the remaining candidates: Wi-Fi, Bluetooth, and RFID.
Later, in Section 4.3, we describe the choice of which technology to use.

4.2.1 Wi-Fi

Wi-Fi, or 802.11 wireless LANs, can be used to determine ranges using ranging techniques.
This technology is interesting, in the sense that many companies and institutions already have
a Wi-Fi infrastructure in place and Wi-Fi enabled hand-held devices, such as smartphones,
are widespread.

If Wi-Fi was used, a device should be carried by the butchers in order to determine their
location in relation to workstations. These would then be able to detect Wi-Fi access points
using beacons. The access points would also be capable of detecting the devices based on

26

4.2. TECHNOLOGIES

probe requests transmitted from the devices.[Malik, 2009] Furthermore, Wi-Fi devices can be
distinguished by their hardware address, making it possible to link this with a butcher.

The following describes advantages and disadvantages of Wi-Fi in respect to our evaluation
criteria:

Interference Wi-Fi is capable of propagating signals in both in- and outdoor environments.
The signals are affected by environmental changes such as humidity, temperature, re-
arrangement of furniture and people moving around in the environment.[Malik, 2009]
This adds considerable challenges when working with signal strength based solutions.

Interference from other devices depends on the chosen Wi-Fi standard. 802.11 b/g
clients both operate in the 2.4 GHz spectrum, shared by technologies such as Bluetooth,
while 802.11 a/n clients work in the 5 GHz spectrum which are affected by much less
interference from other devices.[Xirrus, 2007]

Power Consumption Sharkey [2009] describes the power usage of different Google Android
based mobile phones, and their power consumption under different modes. He states
that an idling system draws 5 mA and a system using Wi-Fi (watching youtube) draws
340 mA. According to the criteria, we need a battery lifetime of eight hours correspond-
ing to a work day. A HTC Magic has a battery capacity of 1350 mAh meaning that
if it is under load drawing 340 mA, the battery will last for 1350mAh/340mA ≈ 4h.
From this result, we can conclude that the system must be idling for over half of the
time in order to meet the criteria of eight hours battery lifetime. We do not expect this
would influence localisation because data would not need to be exchanged constantly
but instead only periodically. Also, taking into account this calculation is based on
watching YouTube, we expect to have lower power consumption when using Wi-Fi for
localisation.

Distance The indoor connection range depends heavily on the interior of the building and
antenna construction[Stein, 2000]. Other projects have shown connection ranges in the
order of 30 meters[James F. Kurose, 2007, c. 6] to be possible, hence, this satisfies our
requirement.

Accuracy The accuracy of ranging depends on the method and algorithms employed. As an
example it has been shown that an accuracy of less than 1 meter is possible for ranges
up to 30 meters using the TOA technique.[Ciurana et al., 2007]

Price Wireless access points in essence are small computers with Wi-Fi capabilities, allowing
us to select consumer hardware for the workstations. These access points have costs in
the vicinity of 700 DK/Kr. Most smart phones are Wi-Fi enabled and can therefore be
used as tags. However, these are considered too expensive for our needs, but one could
imagine that special purpose build hardware, only providing the needs of being tracked,
could reduce the costs considerably.

27

CHAPTER 4. LOCALISATION TECHNOLOGIES

Reliability The reliability of the Wi-Fi network depends on the load on the network and
possible interference resulting in lost connections. For localisation we do not consider
the network load as a problem since only little information must be transfered.

4.2.2 Bluetooth

This technology is a short-range wireless standard for electronic devices using radio frequen-
cies. It is used in a variety of electrical appliances such as mobile phones. Bluetooth is
designed to operate at low power in a Personal Area Network, making it popular for com-
munication for remote devices. The newest version of Bluetooth as of September 2009, is
called version 3.0 and offers a transfer speed of 24 Mbps whereas its predecessors, version
1.2 and 2.0 offers 1 Mbps and 3 Mbps, respectively. Since we have bounded this project to
not include transmitting data to the butchers other than the data needed for localisation and
identification, Bluetooth 1.2 or 2.0 are considered sufficient.[BluetoothSIG, 2009]

Devices with Bluetooth enabled are discoverable by other devices with Bluetooth. This
make them appropriate for tags. Furthermore, Bluetooth devices can be distinguished by
their hardware address, making it possible to link a hardware address with a butcher.

Using the ranging techniques with Bluetooth, can be realised similarly as Wi-Fi.[Malik,
2009]

In respect to the technology criteria, we have concluded following:

Interference Bluetooth uses Frequency Hopping Spread Spectrum, meaning that the devices
have 79 different frequencies, within the assigned range, which can be chosen randomly.
This reduces the interference between multiple devices. Notice that Bluetooth and Wi-
Fi will interfere since they use the same spectrum.[Malik, 2009]

Power Consumption By experiments with a mobile phone with enabled Bluetooth, we have
verified that recharging during a work day is not necessary. Also, as stated, Bluetooth
is designed for low power consumption.[BluetoothSIG, 2009]

Distance Bluetooth devices are categorised in one of three power classes providing ranges
from 1 to 100 meters. A class 2 Bluetooth device has a range of 10 meter which is
required for this project.[BluetoothSIG, 2009]

Accuracy [Malik, 2009, c. 11] describes the typical accuracy for Bluetooth to 2 meter. This
accuracy is a guideline and depends on the used localisation techniques.[Malik, 2009]

Price For the workstations, we have found hardware that costs 700 DK/Kr. We were not
able to find a Bluetooth device which purpose was to be used as a tag. However, any
device which has Bluetooth can be used and the cheapest we found costs 200 DK/Kr.
If the butchers already have been given a work phone which has Bluetooth, this can be
used as tag.[mitEDB]

28

4.2. TECHNOLOGIES

Reliability BluetoothSIG [2009] describes Bluetooth as a robust technology, meaning that it
can be considered reliable.

4.2.3 RFID

RFID, or Radio-Frequency Identification, is a wireless technology that can be used for iden-
tifying and tracking tags placed on objects. The tags consist of a small chip attached to a
radio antenna. The chip stores information such as a unique ID which can be read from a
device called a reader. The reader has antennas which emit radio waves and receive signals
back from the tags.

RFID operates in various frequency ranges and are classified as low-frequency (LF), high-
frequency (HF) and ultra high frequency (UHF). The read distance of the tag is dependent
on which frequency range they use. Furthermore, tags can be passive, semi-passive and active
which also affect the read distance. These are described below:

Passive tags These tags do not use an internal power source to transmit signals to the
reader. Instead, they communicate with the reader by a method called back scattering
where the signal from the reader is reflected by modulating the signal to transmit data.
However, the passive tags only back scatter about 10-15 percent of the received signal,
thereby significantly reducing the distance to which the tag can be read to around a few
inches or feet.

Semi-passive tags These works similarly as the passive tags by using the back scattering
method. However, they contain a small battery which allows the circuit of the tag to
be constantly powered. Hence, there is no need for using the received signal from the
reader to power the tag which increases the reading distance compared to that of passive
tags.

Active tags These contain an internal power source, but in contrast to semi-passive tags,
they broadcast their own signal, often in predefined intervals. Active tags have practical
ranges of tens of meters. One should be aware that semi-passive and active tags requires
maintenance because of their battery usage.[Malik, 2009]

If RTLS is to be realised with RFID for location determination, active tags would be the
appropriate variant to use mainly because of the relatively high reading distance. In our
scenario, RFID readers would be placed on each workstation and every butcher should carry
their personal active RFID tag. The active RFID readers take measurement according to
one of the previously described ranging methods and forward this data to the location engine
which computes the distance from the reader to the tag.

In respect to the technology criteria we have concluded following:

Interference For the various frequencies LF, HF, and UHF there are different concerns one
should be aware of. LF has a severely low read rate in noisy environments, such as being
situated close to power transformers. UHF has a reduced performance in environments

29

CHAPTER 4. LOCALISATION TECHNOLOGIES

containing liquids and metals. HF works well in environments with electrical noise
similar to the noise mentioned for LF.[Malik, 2009]

Power Consumption The power consumption depends on the hardware, but we have found
an active tag capable of running for months. Passive tags do not contain batteries
meaning that recharging is unnecessary.[OpenPCD-Shop]

Distance The reading distance depends on which type of RFID tags is used. For the hard-
ware we have found, the indoor reading distance for the active tags is 25 meters and 10
to 50 centimetres for a passive tag.[OpenPCD-Shop][RFID-specialisten]

Accuracy [Malik, 2009, c. 11] describes the typical accuracy for RFID using passive tags to
one meter and using active tags one to three meters. This accuracy is a guideline and
depends on the localisation techniques used.

Price For each workstation, the hardware costs 1200 DK/Kr and 190 DK/Kr for an active
tag.[OpenPCD-Shop][mitEDB]

Reliability All RFID tags can be read despite extreme environmental factors, such as snow,
fog, ice, paint, and other visually and environmentally challenging conditions. Further-
more, Hiltunen [2007] describes that reading the tags can be considered reliable.

4.3 Selection of Technology

To ease the task of choosing the appropriate technology, we chose to compare Wi-Fi, Bluetooth
and RFID in Table 4.2 with respect to the criteria. For each criteria, we gave a score of 0-3,
where 0 was used when the criteria was not satisfied and 3 when the criteria was more than
satisfied.

Criteria Wi-Fi Bluetooth RFID

Interference 2 3 2
Power Consumption 1 2 3
Distance 2 3 2
Accuracy 3 3 3
Price 1* 3 2
Reliability 2 3 3

Total 11 17 15

*The score assumes that we cannot obtain a special purpose tag.

Table 4.2: Overview of the different analysed technologies and how they compare based on our
evaluation criteria.

30

4.3. SELECTION OF TECHNOLOGY

On the basis of our analysis, we concluded that all of the three technologies were suitable.
Wi-Fi was the lowest scoring technology, outnumbered by Bluetooth on several criteria.

RFID was a good candidate as our choice of technology. Unfortunately, both the price of
available equipment is high, and the equipment within our price-range lacked documentation
and was on an experimental stage to the extent that we were not entirely convinced that the
hardware would be functional.

Then, the choice had to be made between Wi-Fi and Bluetooth. Generally, Bluetooth
seemed as a better solution for this project based on the scores. Therefore, we chose using
this technology for localisation.

31

5
Extensible Architecture using Plug-ins

In this chapter, we will document how plug-ins can be used to create more extensible software,
and how a plug-in architecture was incorporated in the web application.

As stated in our non-functional requirements in Section 3.2, the web application should
be flexible by extending its capabilities with plug-ins. The motivation was to allow different
companies to extend Easy Clocking in order to support their business logic and work flows,
e.g. by adding a salary payment plug-in.

5.1 Plug-in Methods

First, it is important to note that there exists a number of methods which can be used to
improve the extensibility of software without a plug-in architecture. Examples of alternatives
include packaging parts of the software in reusable components of code and using Aspect
Oriented Programming. In this paradigm, the primary goal is to avoid scattered code such as
a logging functionality being used in multiple unrelated methods. This is achieved by isolating
the logging functionality in its own module and additionally specify where the module should
be used in the code. In a similar way, one could imagine, that the plug-in code could be
placed in its own module and specify where the code should be executed with the use of the
aspect oriented construct called advices.[Filman et al., 2004]

We chose to focus on plug-in architectures since we have never previously worked with
these. In general, plug-ins are used to extend or change behaviour in software by using
extension points. An extension point defines a part of the underlying software where new
functionality can be added by the plug-ins[Birsan, 2005]. An extension point can be imple-
mented using e.g. callback functions or signals. Stylos [2009] gives a number of examples
of applications using plug-ins to extend their functionality, such as the mp3-player Winamp
allowing skins to change its appearance and the web-browser Firefox supporting additional
video formats.

Birsan [2005] divides plug-in architectures into two groups: traditional and pure plug-in
architectures. Traditional plug-in architectures consist of host applications which are extended
by plug-ins. This is known from applications such as the Firefox and Winamp examples given
above. Pure plug-in architectures consist of a small plug-in engine dividing all functionality

32

5.1. PLUG-IN METHODS

into plug-ins which are combined by the plug-in engine in order to assemble the application. In
the pure plug-in architecture, the plug-ins are capable of extending other plug-ins or providing
functionality for other plug-ins to build upon, while the traditional architecture only allows
isolated plug-ins.

By using a pure plug-in architecture, it is possible to create new applications or reconfigure
applications by changing the configuration of chosen plug-ins. This approach is suitable when
the application is to be changed drastically[Birsan, 2005]. However, this is at the cost of
a more complex architecture, since a large set of dependencies between the plug-ins may
potentially be created with the pure plug-in architecture. This is in contrast to an application
built upon the traditional plug-in architecture with few but well defined isolated plug-ins.

Using the pure plug-in architecture makes it possible to add new plug-ins or replace existing
plug-ins in order to add new functionality or alter existing functionality. If a traditional
architecture was used, it would be necessary to know where possible companies would like to
extend our application and foresee the functionality they would like to add. As an example,
some possible uses of Easy Clocking are calculation of employee salary and measurement and
monitoring of employee work habits. In some systems, Easy Clocking would become a small
component of a larger system, made possible by structuring the Easy Clocking system as a
plug-in and designing it such that it can be combined with other plug-ins.

On the basis of the above, the pure plug-in architecture would be most appropriate for
Easy Clocking, since we do not know in which context the application is used and in which
company.

33

6
Usability

In this chapter, we introduce the Gestalt theory, design principles, conceptual models, and
interaction styles used in the field of usability and user experience. These were used in the
project when implementing and evaluating our user interface for Easy Clocking. We also
reflect upon which elements from the conceptual models and interaction styles we should use
in our project, based on the actors described in Section 1.4.

Preece et al. [2002] defines usability and user experience as how well the user can use the
system, and how aesthetically and rewarding the experience is, respectively. However, we
have not emphasised on user experience because in our opinion this is not important for Easy
Clocking.

6.1 Gestalt Theory

The Gestalt effect, which is described in Gestalt theory, is the capability of the human senses
to perceive shapes and forms from a collection of simple objects. For instance, if a collection
of objects not forming a coherent structure are arranged circularly, a human perceives the
structure as a coherent circle. Generally, the phrase “The whole is greater than the parts”
describes what Gestalt theory is about.[Kalbach, 2007]

Harnessing these human properties can be relevant when designing the layout of Web
pages because the Gestalt laws, some of which are described briefly below, can be used to
enhance the overview of information. Hence, the utilisation of the Gestalt laws can improve
the usability of the web application.

Below a brief description is given for the Gestalt laws which may be relevant for Web page
layout.[Kalbach, 2007][Stafford and Webb, 2004]

Proximity By clustering objects into groups such that the distances among themselves are
the same, regions are created which suggest that objects in each region are related.

Closure If elements are organised approximately in a specific shape, the shape will be com-
pleted perceptually even though, in reality, the elements are not completely making up
the shape.

34

6.2. DESIGN PRINCIPLES

Continuity If page elements are arranged in a continuous whole such as a line, it may appear
that the line extends even though it stops.

Similarity If shapes contain similar properties, the viewer will associate these. For instance,
if a subset of elements has the same colour, this suggests that they are associated.

Figure 6.1 depicts examples of each of the Gestalt laws. Combining the Gestalt laws, can
further improve the usability.

Proximity

ContinuitySimularity

Closure

Figure 6.1: Examples of the Gestalt laws; closure, proximity, similarity and continuity.

6.2 Design Principles

When considering enhancing the usability of a user interface, there are some design principles
one should take into account. These do not describe how the various elements on the user
interface should look like but instead provide some overall considerations that are important
regarding usability.

The design principles introduced in this section primarily concern how users see and inter-
act with the user interface. Preece et al. [2002] lists the following design principles; Visibility,
Feedback, Constraints, Mapping, Consistency and Affordance.

Visibility Visibility is the design principle concerning making clear what elements the user
can interact with. One could imagine an image on a web page which contains areas
that are clickable to produce actions. If these areas are not clearly visible, the user may
have difficulties in interacting with the functionality on the web page. In addition to
not being easily locatable, it may not be clear what action the clickable area provides.

Feedback Feedback concerns responding, in a reasonable amount of time, with information
about what action has been performed including what has been accomplished. In some

35

CHAPTER 6. USABILITY

sense, Feedback also relates to Visibility. E.g feedback is not produced in the example
with clicking on a particular area of an image, it is not clear to the user whether he has
performed an action or not and, hence, located the area or not. Instead, feedback in the
form of e.g. marking the particular area after being clicked and in addition producing
a sound will act as confirmation that the area has successfully been clicked.

Constraints The Constraints design principle concerns restricting ways of interaction that
are not related to the user’s current activity. For instance, if user information is updated
through the use of forms, it should not be possible to do the actual update before typing
in new values in the fields.

Achieving the Constraints design principle can be done in various ways. A common
approach, which can be used in the example introduced previously, is to disable the
button responsible for performing the update functionality. A disabled button can
appear greyed out and no action is provided when clicked.

Mapping The Mapping design principle is concerned with how controls and their effects are
related. It is important that this seems intuitive to the user, because wrongly mapped
controls and actions can have consequences. As an extreme example, a label with the
text “Save” should not perform a delete action. Another aspect of the Mapping design
principle refers to how controls are put relative to each other. If a page provides two
links placed next to each other for going to the previous and next page, respectively, it
would seem counter-intuitive if the link for going to the next page was placed to the left
of the link for going to the previous page.

Consistency Consistency refers to designing the user interface in such a way that similar
operations achieve similar results. By doing so, the interface will be easier to learn and
use because a single operation performs the same result on various types of objects. For
instance, one could imagine a specific icon that is consistently present at all listings of
information. By clicking the icon, the entire list of information is removed no matter
which listing the icon is clicked next to. The consistency design principle somehow also
relates to convention. As an example, a button that is disabled, is conventionally greyed
out.

Affordance Affordance is the design principle of visually indicating how a particular object is
used. A physical button in the real world, affords the user to push it. However, on screen
based interfaces, this kind of affordance is not obtainable because the interaction forms
with all elements are more or less constrained to the actions that can be performed with
the keyboard and the mouse. Therefore, on screen-based interfaces, the term perceived
affordance is used, so a button presented on a web page can afford being pushed if the
button is graphically presented with various elements to make it look like a real button.

36

6.3. CONCEPTUAL MODEL

6.3 Conceptual Model

The conceptual model concerns how a system is to be presented and how users are to interact
with the system in order to support their tasks. First, it is necessary to determine the
user’s tasks and the steps needed in order to accomplish these. The following description of
conceptual models is based on [Preece et al., 2002, c. 2] who states that the conceptual model
can be modelled using two different views, namely, activities or objects.

6.3.1 Activities

Activities concern how the users are to interact with the system in order to accomplish their
tasks. These can be used individually or combined in order to support an interaction. Com-
mon activities are:

Instructing The user instructs the system to perform actions. Examples of this are systems
such as terminals in Unix where the user writes commands to perform an action or in
a text editor which can be instructed to count the number of words in a document by
pressing the item performing the word count action in the menu.

This activity supports quick and efficient interaction with a system and is suitable when
these are conducted in a repetitive manner.

Conversing The user and system goes through a conversation, asking each other questions
and giving each other answers. Help desks often have a form used to ask the system
questions regarding problems or information, resulting in a number of answers or even
new questions.

This activity is suitable when users are trying to uncover specific information through
questions. One advantage of this activity is that it allows the user to formulate a
question in a way that is natural to the user.

Manipulating and Navigating The user manipulates and navigates in an environment which
functions as the real world. This is used in web browsers when displaying the submit
button in forms. The button is rendered as if it was a real button sticking out of the
page, which can be pressed in order to render a result.

This activity lets users quickly learn how to interact with the system and users using
the system infrequently are more capable of remembering how to use the system. In
general, this activity is more intuitive and lets users feel like they are in control.

Exploring and Browsing The user is encouraged to explore and browse information if it is
laid out such that the user easily can navigate to the correct information. This is one
of the corner stones of the World Wide Web, which allows users to navigate between
pages in order to find the desired information.

37

CHAPTER 6. USABILITY

Using this activity, users often scan through the information to find what they are
searching for. However, it requires that some effort is put into determining the structure
of the information.

6.3.2 Objects

When basing the conceptual model on objects, one tries to model the system around a number
of real world objects which are known by the user. This allows the user to quickly recognise
how to interact with the objects and understand what they represent.

An example of such a conceptual model is the one used in most spreadsheet applications
today. A spreadsheet builds upon the ledger sheet which allows users working with these types
of sheets to easily understand the concepts of spreadsheet programs and to migrate their work
processes from the physical world to the digital. The benefits of modelling the system against
real world objects are lost in case the user has no experience using these.[Preece et al., 2002]

6.3.3 Choice of Conceptual Model

In our scenario, there are two actors interacting directly with the system: managers and Easy
Clocking consultants. Both of the actors interact with the system on a daily basis.

From the above, a user interface supporting instruction and manipulating and navigating
would be suitable. Instruction would allow the users to quickly accomplish their tasks. Ma-
nipulating and navigating allows for a quicker learning curve of the system. This may seem
unnecessary since the actors works with the system on a daily basis, but according to the
personas, managers are not as proficient in computers and hence we anticipate that a more
user friendly environment would be appreciated by them.

6.4 Interaction Styles

Interaction styles extend the activities from the conceptual model, and define how the activity
is to be accomplished. This is done by defining how the interface is to be implemented, and
the elements it consists of. Skov [2009] defines the following interaction styles;

Command Direct input of commands into a terminal supports the instruction interaction.
This type of interaction style is targeted at expert users, supporting quick usage at the
cost of a steep learning curve.

Menus Menus, such as pull-down menus in GUI applications or navigation menus on web
pages, support the instruction and exploring and browsing activities. This style lets
users quickly learn how to use the system, adding structure to the decision processes
and reduce typing at the cost of screen space and the danger of overloading the user
with menus.

38

6.4. INTERACTION STYLES

Dialogues Dialogues navigate the user through a process, asking the user questions and
making decisions based on the answers, such as the process a user goes through when
withdrawing money from an ATM. This supports the conversation activity and allows
many different users of different technical levels to use the system.

Forms Forms allow users to type in information into a system in a structured fashion, thus
supporting the instruction and conversation activities. This style is best suited for
frequent users since the individual fields in the form requires knowledge to understand.
The style can be slow to use, but allows users with limited training to insert large
amounts of information.

Windows, Icons, Menus and Pointers (WIMP) This interaction style is used as desktops in
most modern operating systems such as Windows and Linux. Elements can be dragged
and manipulated in order to accomplish the user’s goals, supporting the manipulation
and navigation activity. This style is easy to learn by new users and to remember by
infrequent users.

6.4.1 Choice of Interaction Styles

The selected interaction styles depend on factors such as the types of users which should be
supported, the amount of desired training, amount of needed information and most impor-
tantly the task which needs to be solved. A system can consist of multiple interaction styles
to address different users of the system.

The managers need a more user friendly environment to work with. Even though they
work with the system on a daily basis, the command interaction style would be difficult for
them to learn. A combination of menus and forms would be more suitable, using menus to
navigate, issue instructions and create some form of structure to the work flow. The form
interaction style supports them in inserting information into the system and requires only a
small amount of training.

For our scenario, the Easy Clocking consultants are not considered expert users according
to the personas. Therefore, we do not assume that the command interaction style would be
appropriate for them. Hence, wherever possible, the interaction styles used for the managers
should be applied for the consultants as well.

39

Part II

Design

40

7
Technical Platform

This chapter identifies the technical aspects of the Easy Clocking system and prepares us
for which languages and technologies will be used in the implementation. The chapter takes
starting point in describing the technical aspects of the location sensors which comprise de-
cribing the equipment at our disposal, the firmware, and the programming language. In this
relation, we also describe the network topology used to connect the location sensors with the
web application. Afterwards, we describe the technical aspects of the web application which
mainly include arguing for the framework and programming language used.

Section 7.3 gives an overview of the choices and observations made in this chapter.

7.1 Location Sensor

This section identifies the technical requirements of the location sensor.

7.1.1 Hardware Specification

As described in Chapter 4, we chose to use Bluetooth as localisation technology. During the
analysis of this technology, we identified hardware that could fulfil our needs. The hardware
we acquired consisted of an Asus WL-500gP V2 wireless router and a Kensington K33902
Bluetooth dongle. The wireless router was chosen because of the possibility of deploying a
custom firmware to extend its functionalities and because it had USB ports meaning that
it was possible to connect a Bluetooth dongle to it. Since the location sensors are based on
consumer-grade routers, this makes the Easy Clocking system a relatively inexpensive solution
for companies to deploy.

Because we needed to develop software for the router, it was important to know the
hardware specifications of the device since an embedded device like the router may pose
constraints on its capabilities because of relatively few resources. The part of the hardware
specification[DD-WRT, 2009] that concerned our development is shown in Table 7.1.

Note that the router has 32 MB of system memory and 8 MB flash memory available.
The flash memory is used to store the firmware, applications and persistent data since it

41

CHAPTER 7. TECHNICAL PLATFORM

Platform Broadcom 5354 Chipset
CPU MIPS32 CPU running at 240 MHz
Flash memory 8 MB NAND
System memory 32 MB 16-bit DDR SDRAM
USB ports 2 x USB 2.0
Wireless radio Broadcom 802.11b/g
Network switch 4 × 10/100 Mbit LAN and 1 × 10/100 Mbit WAN

Table 7.1: Hardware specifications for the Asus WL-500gP V2 wireless router.

is maintained between reboots of the device, and the system memory is used for running
applications.

Since flash memory is limited in the number of possible writes, excessive writes to it should
be reduced. Depending on the used hardware, between 5.000 and 100.000 writes are possible
on the same block of memory[Thatcher et al., 2009]. The type of hardware in our router is
unknown since it has not been specified in its specification. Thus, the flash memory should
only be used for storing applications and data that are rarely changed.

7.1.2 System Firmware

Since the Asus WL-500gP V2 router did not support Bluetooth devices and the possibility
of installing additional programs by default, a new firmware was needed. There are several
wireless router firmwares, giving us these features. Hence, in order to choose which firmware
was most suitable, we defined certain criteria that the firmware must fulfil. These are described
in the following.

Hardware Support We wanted the device to be officially supported by the firmware in order
to reduce the amount of time needed to install the new firmware and get it into an
operational state.

Documentation Documentation must be available on how to install the firmware with USB
and Bluetooth support.

Ad-Hoc According to our requirements, it must be possible to connect the location sensors
in an ad-hoc network. The firmware must therefore support this.

Execute Applications We want to make our own software to run on the location sensor for lo-
cating Bluetooth devices. Therefore, it must be possible to execute our own applications
on the device.

In the analysis, we considered using Free-WRT, OpenWRT, Sveasoft, Tomato, DD-WRT
and Oleg. Through a brief analysis, we excluded Free-WRT since it did not support the Asus

42

7.1. LOCATION SENSOR

router.[FreeWRT, 2009] Also, we excluded Tomato and Sveasoft because of no USB support
and missing documentation, respectively.[polarcloud, 2009]

The remaining firmwares were DD-WRT, OpenWRT and Oleg which all are Linux based.
The Oleg firmware is a modification of the factory firmware from Asus targeting Asus
devices, whereas OpenWRT is a more generalised firmware supporting multiple wireless
routers.[OpenWRT, 2009b] Finally, DD-WRT is a firmware based on OpenWRT[DD-WRT,
2009].

Through our analysis, we discovered that all firmwares fulfilled the criteria, and that
there were no specific advantages in using the one over the others. Therefore, we decided to
make the choice of firmware based on knowledge gained through experiments. We had two
devices and could therefore try firmwares in parallel. We started with DD-WRT and Oleg.
With DD-WRT, we had troubles of getting the device to register USB devices, and since the
firmware is based on OpenWRT, the documentation linked to solutions for the OpenWRT
firmware. Therefore, we decided to stop experimenting with DD-WRT and do experiments
with OpenWRT instead.

When experimenting with OpenWRT, we discovered several tutorials describing how Blue-
tooth could be supported by the Asus router. This documentation seemed promising because
several sources described that they had an Asus WL-500gP V2 supporting Bluetooth. Be-
cause of this, and since the experiments with Oleg showed that it would require relatively
high effort to get Bluetooth working, we decided only to focus on OpenWRT.[Oleg, 2009] A
side effect of excluding Oleg is that the location sensor’s hardware is not constrained to Asus
products.

Through several experiments, we were able to detect other Bluetooth devices using Open-
WRT Kamikaze 8.09.1 with a Linux kernel 2.4.35[chalermlab, 2009].

Since the location sensors have limited resources, we chose to remove some of the utilities
that were not needed from the firmware. We removed utilities such as, gzip, chgrp, diff
and httpd. Even though, removing the utilities did not decrease the size of the firmware
significantly, it is, in our opinion, still important to address the relatively limited resources of
embedded devices.

The location sensors are installed and configured by the Easy Clocking consultants by
following the procedure described in Appendix H.

7.1.3 Programming Language

In the beginning of this project, we had no experience in programming embedded devices.
We therefore examined which programming language to use and found that Barr and Massa
[2006] recommend C. They also mention C++, Forth and Ada as languages used by embedded
programmers, but they all suffer from certain disadvantages. Forth is described as extremely
low-level, C++ programs are not as efficient as C programs and Ada has not gained much
foothold.[Barr and Massa, 2006, c. 1]

43

CHAPTER 7. TECHNICAL PLATFORM

We decided to use C, which main advantage, in respect to embedded programming, is
that it is a high-level language with the possibility of having a high degree of direct hardware
control.[Barr and Massa, 2006, c. 1]

7.1.4 Build Environment

As described previously, the router we are using is based on the MIPS architecture. This
means that when we had to develop the location software on our computers, which are based
on the x86 architecture, we needed an environment for generating MIPS code. What was
needed was a cross-compilation toolchain, consisting of software such as a compiler, a linker
and an assembler, running on an x86 based host system and generating code for a MIPS
target system. OpenWrt makes available this cross-compilation toolchain.[Open-Wrt, 2006]

7.1.5 Ad-Hoc Wireless Mesh Routing

According to our requirements, we needed to implement a mesh network to allow location
sensors to communicate with the location engine even though they have no direct reachability
to it. OpenWRT makes available OLSRD1 as an ad-hoc mesh network routing daemon, whose
purpose is to help routing between nodes.

OLSRD implements the Optimised Link State Routing Protocol (OLSR) protocol, which
is a proactive routing protocol, meaning that it regularly exchanges topology information
between the nodes in the network. When a node is added to the network, it selects neighbours
as Multipoint Relays (MPR) such that these can announce to the their MPRs that they can
reach the new node. When finding the path between a node and another destination in the
network, the information from the MPRs is used.[NetworkWorkingGroup, 2009]

We chose to use OLSRD since OpenWRT supports it and has documentation describing
the installation and configuration of it.[OpenWRT, 2009a].

7.2 Web Application

In this section, we introduce the hardware requirements, operating system and implementation
language used for the web application part of the Easy Clocking system.

7.2.1 Equipment and Operating System

The equipment needed for hosting the web application was limited. The only requirement is
access to the Intranet of the company and the capability of running a web server for hosting
the web application. The web application will only be accessed relatively few times during a
work day by the managers and only once in a while by the consultants, so the system will not

1olsr.org

44

olsr.org

7.2. WEB APPLICATION

have to deal with many concurrent requests and frequent access. Therefore, we assessed that
a small computer with limited processing capacity would be sufficient.

We have chosen that the machine responsible for hosting the web application is based
on Linux. Specifically, we have chosen the Ubuntu 9.04 distribution2. The choice of using
Linux instead of some other operating system is based on the group having experience with
administration, maintenance and web development on this platform. The choice of Ubuntu
is affected by the group members’ experience with this particular distribution.

7.2.2 Framework

According to our learning goals, we want to learn how to use a framework for developing the
web application. Before analysing which frameworks would be appropriate, we give a brief
description of the opportunities a web application framework provides.

A framework can consist of a set of programs, libraries and concepts which purpose is to
aid the developer in constructing web applications on top of the framework. For instance,
web applications often make use of a database but instead of leaving the responsibility to
the developer of writing a translator for mapping methods in the programming language
to interactions with the database, the framework often provides these. Furthermore, a web
application framework often provides a unified API for database access. Therefore, in case
the database backend is substituted, the developer does not need to make changes in the
code. If not using this functionality of a framework, this interaction between the application
and the database could among others be constructed by stored procedures. However, the
implementation of stored procedures varies from one database system to another and hence
they do not provide a unified API for accessing different database systems.[Black, 2006]

Many frameworks also contain a bridge between the tuples of the relational database
backend and the classes, instances and method-calls of the programming language. This kind
of mapping is called Object/Relational Mapping (ORM) and lets the developers focus on a
higher level of abstraction because interaction with the underlying database is done implicitly
by manipulating the objects in the programming language.[Black, 2006]

Some frameworks also support various architectural patterns such as MVC, which can be
utilised for e.g. enhancing the separation of concerns which provides a good overview of the
application.[Fowler, 2002]

Besides the previously described features, frameworks often provide a variety of function-
alities such as automatically generated tests. However, the general idea of using a framework
is that many commonly needed features, such as database communication, are provided by de-
fault and only a minimal effort is required by the developer to make use of them. Additionally,
frameworks for web development often automatically generate the appropriate HTML form
elements given some functionality described in the particular programming language.[Black,
2006]

2ubuntu.com

45

ubuntu.com

CHAPTER 7. TECHNICAL PLATFORM

Selection Ruby on Rails

As will be described in Chapter 8 concerning the architectural design of the system, we chose to
use the Model View Controller (MVC) architectural pattern so the chosen framework needed
to support this.

There exist many frameworks supporting the MVC pattern. Hence, in order to reduce the
number of candidates, we have focused on frameworks available for some of the most popular
programming languages as of September 2009[TIOBE-Software, 2009]. Some of these are:
Java, PHP, Python, Ruby, and C#. Since we chose to use Linux as platform, we excluded
C#, and thereby the ASP.NET MVC framework, as a candidate. For each of the remaining,
an example of a framework supporting MVC is given below.

• Apache Struts Framework3 for Java.

• CakePHP4for PHP.

• Django5 for Python.

• Ruby on Rails6 for Ruby.

When choosing the framework, we had some requirements. As stated in the learning goals,
we wanted to gain knowledge of using a framework and also a new programming language.
Therefore, we wanted a framework which uses a programming language that we are not
acquainted with. This decision narrowed down the potential candidates to Ruby with the
Ruby on Rails framework since we had experience with the remaining languages. Furthermore,
we found the philosophies and principles emphasised in Ruby on Rails interesting. In the
following, we briefly describe these[Thomas et al., 2006].

DRY: Don’t Repeat Yourself This principle means that code should never be duplicated in
a Rails application. This means that when making modifications to the code, the
programmer does not have to make changes numerous places.

CoC: Convention over Configuration CoC is the design philosophy of decreasing the number
of decisions that need to be made by the developer. The general achievement behind this
philosophy is simplicity in the form of removing configuration which may need to be done
manually by instead following a predefined set of conventions. Simplicity should not be
at the cost of reduced flexibility which is accommodated by introducing configuration
if one needs to deviate from the conventions. As an example, by convention, Ruby on
Rails assumes that for a customer model there exists a corresponding customers table
in the database.

3struts.apache.org
4cakephp.org
5djangoproject.com
6rubyonrails.org

46

struts.apache.org
cakephp.org
djangoproject.com
rubyonrails.org

7.2. WEB APPLICATION

Agile Ruby on Rails is said to be agile since it meets the agile manifesto. It is e.g. possible
to have working code early in the process, making it possible for a customer to give
feedback. Through this feedback, it is possible to accommodate the customer’s needs,
and the changes can be made quickly, because of the DRY principle, among others.

Fast cycle The modification cycle in a compiled language is, modify-compile-run and this
cycle typically takes places hundreds of times a day. Therefore Ruby, which is an
interpreted language, has an advantage in the development phase, since its modification
cycle is modify-run. This makes the development of an application faster than using a
compiled language.[Burd, 2007]

POLS: Principle of Least Surprise The creator of Ruby wanted to have fun when program-
ming in Ruby. In Ruby’s community this has been called POLS since the program-
mers believe it is fun to program when not surprised by new curiosities of the lan-
guage.[Venners, 2003]

In addition, Ruby on Rails allows for quick construction of web services such as RESTful
interfaces and supports rapid prototyping through the concept of scaffolding which can auto
generate parts of the application such as controllers and views used for editing the models.

Ruby on Rails is, as the name implies, build on the Ruby programming language. Ruby
is an interpreted scripting language supporting multiple programming paradigms and empha-
sises on being portable, which means the same Ruby program will run on a wide distribution
of platforms including Windows and Unix. Additionally, Ruby is an object oriented language
but it also supports functional, imperative and reflective programming styles and combines a
syntax inspired by Perl with Smalltalk-like features.[David Flanagan, 2008]

For developing the web application, we have used Ruby version 1.8.7 with the Ruby on
Rails framework version 2.3.4.

7.2.3 Web Server

The choice of web server for hosting the Ruby on Rails web application was not based on
specific requirements. The web server did not need to contain scalability features and load
balancing because, as stated, we did not expect the web application to be used frequently and
handle many concurrent users.

There are numerous web servers that offer the possibility of hosting Ruby on Rails web
applications. According to a survey conducted by Netcraft[Netcraft, 2009] showing the web
server usage shares as of September 2009, some of the most popular web servers supporting the
Ruby on Rails framework are Apache and Lighttpd. However, these require a more complex
configuration in order to support Ruby on Rails.

A default installation of Ruby on Rails comes bundled with an HTTP server library
called WEBrick. WEBrick offers the possibility of hosting a Ruby on Rails application with
a minimum of configuration. Because hosting the Ruby on Rails application is our only
requirement of a web server, we chose WEBrick.

47

CHAPTER 7. TECHNICAL PLATFORM

7.3 Overview

An overview of the choices and observations made in this chapter is shown in Table 7.2 and
is provided because many decisions have been made throughout this chapter.

Location sensor hardware Asus WL-500gP V2 and Kensington K33902
Location sensor firmware OpenWRT Kamikaze 8.09.1
Mesh Routing OLSRD v. 0.5.6
Location sensor programming language C
Location sensor architecture MIPS
Web application programming language Ruby v. 2.3.4
Web application framework Ruby on Rails v. 1.8.7

Table 7.2: Overview of the decisions made in this chapter.

48

8
System Architecture

The purpose of this chapter is to describe the system architecture of Easy Clocking. A system
architecture helps ease the understanding the structure of software.[Design, 2000, c. 1] During
the development process, we iteratively updated the architecture, which helped us to keep
an updated view of the structure of our components and more easily make large structural
changes to the design.

In the following, we introduce the architecture consisting of the two primary components:
the web application and the location sensors. The communication between these will be
described in the following section and afterwards we describe their responsibilities and parts.
These two components, and how they communicate, were identified on the basis of our analysis
of the problem and application domain, as described in Section 1.3.

The web application is based on the architectural design pattern MVC, a section is dedi-
cated for describing this and how it influences the architecture.

Finally, because the architecture must reflect the flexibility quality criteria, a section is
dedicated for describing how this is realised with the use of Ruby on Rails.

The architecture of the Easy Clocking system is depicted in Figure 8.1.

8.1 Communication Protocols

From Figure 8.1, we identified the need for communication between the web application
and the location sensors. To realise this, we analysed which data should be communicated.
In Figure 1.2, Section 1.3, we divided Easy Clocking into three parts: the web application,
conflict handler, and the location sensors. From this, we observed that information exchanged
between the location sensor and the conflict handler was location sensor configurations and
clocking information. The configurations are only exchanged between the web application and
location sensor, whereas the clocking information from the location sensors are transmitted
to the conflict handler. Since the conflict handler is implemented in the web application they
will not be described separately.

Exchanging data between the web application and the location sensors required net-
work communication, since they are physically separate. Before choosing the communication

49

CHAPTER 8. SYSTEM ARCHITECTURE

Database

PC-Client

Web Application

Kernel

ControllerView

Model

Location Sensor

Plug-in Plug-in ...

User

Employee

Clocking

Information

Workstation

User

Employee

Clocking

Information

Workstation

User

Employee

Clocking

Information

Workstation

Configuration

Handler

Bluetooth

API

Web service

API

Clock Engine

Persistent

Configuration

Figure 8.1: Package diagram showing the architecture of Easy Clocking, involving the location sensor
and web application components.

method, we chose to make two Business Information Flow Models[Dolog et al., 2009, c. 4]
in order to give a more detailed description of the information flow. This helped us in un-
derstanding what information needed to be communicated and how the information flowed
through Easy Clocking.

8.1.1 Information Flow in Easy Clocking

Figure 8.2 depicts the flow of clocking information between the location sensor and the web
application. When a butcher is close to a location sensor, it detects the MAC address of his tag

50

8.1. COMMUNICATION PROTOCOLS

and measures the distance to the butcher using RSSI values. The MAC address, timestamps
specifying the start and end clock, and the measured distance must be combined, and passed
to the web application which in turn stores the information. The managers are then able to
query the information using the web application.

Employee

Move to

Workstation

Employee

Information

and Location

Distance Measurement

Process Location

Data

Clocking

Information

Location Sensor .

Web Application

Update Employee

Information

Manager

View Employee

Location

Query

Timestamps

MAC Address

Figure 8.2: Flow of information in Easy Clocking, initiated by a butcher close to a sensor.

Figure 8.3 depicts the flow of information involved in changing the configuration for a
location sensor. When an Easy Clocking consultant uses the web application to change the
configuration of the sensors, the new configuration is stored in the web application. We chose
to store this copy to ensure that even if a sensor fails, its configuration can later be restored.
Afterwards, it is passed to the location sensor, which overwrites its current configuration with
the new one. The configuration of location sensors is not considered to be a frequent operation
since it should only be needed when the environment in which it is deployed is changed.

8.1.2 Communication Methods

We had a number of options when choosing a communication method. First, we needed to
choose the component to be responsible for initiating the connection and how this connection
should be realised.

51

CHAPTER 8. SYSTEM ARCHITECTURE

Easy Clocking

Consultant

Configure

Location Sensor

Range Threshold

Movement Threshold

Configuration

Time-awayConfigurationConfiguration

Location Sensor

Location Sensor ID

Web Application

Figure 8.3: Flow of information in Easy Clocking, initiated by an Easy Clocking consultant changing
a sensor configuration.

We chose to let the location sensors initiate the connection because we wanted to only
transmit information when available. If the connection was initiated by the web application,
this would result in probing for information even if there was not any, hence this would waste
unnecessary resources.

From a previous course, we were introduced to a number of communication methods which
could be used. These were SOAP, RESTful, and Internet Sockets. On previous projects, we
have used Internet Sockets. Because of this, and since we through a brief analysis showed
that SOAP and RESTful web services would be more appropriate choices because of their
library methods and built-in support in Ruby on Rails.[Thomas et al., 2006, c. 25] Therefore,
we excluded Internet Sockets, respectively.

A web service is called RESTful, if it fulfils the architectural principles of REpresentational
State Transfer (REST). This means that the web service must fulfil the following:[Dolog et al.,
2009, c. 2]

• Operations must use the HTTP methods; GET, POST, PUT or DELETE to interact
with resources. GET should be used to retrieve a resource, POST to create a resource,
PUT to update a resource and DELETE to delete a resource.

• The web service must not store session data, meaning that the web service is stateless.

• URIs hold the state information. E.g. the client can use this to continue interacting
with the web service.

• The data is transferred using HTTP. Data can be represented in a markup language
such as XML. The payload must be written in the body of the HTTP method.

52

8.2. LOCATION SENSOR

RESTful web services are by default supported by Ruby on Rails, meaning that models
can be rendered as XML documents without requiring great effort. This means that if only
resources, which are already models in MVC, need to be accessed by web services, this is
relatively easy to implement.

Applying SOAP in Easy Clocking would, in our opinion, require unnecessary implementa-
tion, because remote procedure calls should be implemented for each functionality, to achieve
the same already existing in RESTful. Through remote procedure calls, we could emu-
late the resource-oriented nature of RESTful. For instance, in order to update the name
of a butcher in the model, this is done by specifying the URI of that butcher and use the
PUT HTTP method in RESTful and specify the name attribute to be updated. In SOAP,
this functionality would have been implemented through a remote procedure call such as
update_butcher_name(butcher_id, name).

We chose to use RESTful web services instead of SOAP since Ruby on Rails, supports the
concepts of REST by default. The fact that the location sensor configuration and clockings
are models in Rails, hence resources, we did not need to communicate information that was
not already represented a model in Easy Clocking. This is in contrast to SOAP where the web
services are more focused at exposing operations than resources through remote procedure
calls.

When using scaffolding in Ruby on Rails, the GET, POST, PUT and DELETE HTTP
methods on resources automatically comply with REST, and the client can choose to receive
the data rendered in XML. Even though we only wanted to use the web service for realising
the two previously described communication paths, it would not require much effort to make
other resources available by means of web services.

8.2 Location Sensor

The location sensors detect employees and register their arrival with a clock in timestamp,
and their departure with a clock out timestamp. This information is later sent to the web
application.

We considered the possibility of letting a device carried by the employee handle the clock
in and out logic. However, in our opinion this was an inappropriate solution since it would
be possible for an employee to manipulate the clocking information to his own benefit if
appropriate security mechanisms were not implemented.

As shown in Figure 8.1, the location sensor is based on a layered architecture, that is,
functionality of one layer builds upon the functionality provided by the layer below. This
helps increasing the abstraction of lower layers in upper layers, which also improves the
cohesion of the components of the location sensor. E.g. all functionality related to using
Bluetooth devices is encapsulated in a single component, which publishes a simple API, free
of implementation details, to the above layers. This makes the code in the above layers more
understandable.[Design, 2000]

53

CHAPTER 8. SYSTEM ARCHITECTURE

The different components of the location sensor are described below.

Clock Engine This component uses the Bluetooth API to detect butchers in a given range
from the sensor. To do this, it uses the Configuration Handler and the Bluetooth API
to access the configuration and to communicate with the Bluetooth device, respectively.
Finally, when clocking information is ready for being passed on to the web application,
the Web service API is used.

Configuration Handler The purpose of this component is to provide an abstraction of
the Persistent Configuration component with functions such as reading and writ-
ing to the configuration. The abstraction is used by the Clock Engine because the
configurations define the behaviour of the clock engine.

Persistent Configuration This component stores the configuration of the particular lo-
cation sensor. The configuration comprises variables defining the behaviour of the loca-
tion sensor and variables such as the URL to the web application. The configuration of
the location sensor is stored persistently and hence provides a means for the consultant
to configure the location sensor when it is deployed such as setting the URL to the web
application.

Web service API In Section 8.1, we described the information flow in Easy Clocking. From
this we identified that the location sensors needed to communicate with the web appli-
cation through web services.

The Web service API gives an abstraction of the communication with the web appli-
cation. The component is therefore used by the Clock Engine and the Configuration
Handler. The Clock Engine component uses the component for posting the retrieved
clocking information to the web application. The Configuration Handler uses it for
interacting with the functionality for checking the consistency of the configuration file
kept on the web application and on the location sensor. If the configuration file is in-
consistent, the Configuration Handler uses it for retrieving the configuration kept on
the web application. Web services defined in Clocking Information and Workstation
of the kernel are used for the described purposes.

Bluetooth API This component creates an abstraction of the communicating the Bluetooth
hardware.

8.3 Web Application

The web application component constitutes the part of the Easy Clocking system which will
be responsible for interacting with the users of the system, that is, the managers and the Easy
Clocking consultants. Moreover, it is also the part of the system which will be responsible for
communicating with the location sensors through the RESTful web services.

The web application is comprised of two different components, namely the kernel and
plug-ins interacting with the kernel. These two are introduced in the following.

54

8.3. WEB APPLICATION

8.3.1 Kernel

The kernel component contains the logic needed for realising the fundamental functionality
of the system. Specifically, its area of responsibility is to publish web services to the location
sensors and to provide basic functionality not influenced by the specific business logic of the
various companies using the system.

As shown in Figure 8.1, the sub-components of the kernel conform to the architectural
pattern of MVC, which will be described in the following section. Each of the components
constituting the MVC pattern contains four components which altogether realise the kernel.
These are introduced in the following.

Clocking Information This component is responsible for handling the clocking informa-
tion of the system. First of all, by adhering to the principles of REST, it makes it possi-
ble for location sensors to post their clocking information. The Clocking Information
component is after retrieval of this information responsible for storing it in the model,
and, hence, the database. Finally, the view part displays the clocking information.

User The User component contains the logic needed for a user system consisting of two
different roles; manager and consultant. In addition, it also contains a pseudo-user
for the location sensors, needed for restricting access to the web services and to the
functionality for posting clocking information. The User component also contains an
authorisation system which restricts access to the web application if the user has not
logged in.

Workstation This component represents the workstations of the system and, hence, there
is a workstation entity stored in the model for each location sensor. The Workstation
component also contains the configurations for the individual location sensors. Through
the view of this component, consultants can alter the configuration which will be prop-
agated to the corresponding location sensor. The propagation process is realised by
publishing web services for the location sensors.

Employee This component represents the employees of the system. Each employee has a
MAC-address associated which is used to connect retrieved clocking information with a
specific employee.

Model View Controller

As shown in Figure 8.1, we chose to use the MVC architectural design pattern for the web
application. This pattern separates the presentation layer from the model and separates the
controller from the view.[Fowler, 2002, c. 14] Thus, the fundamental idea is to separate
concerns of the development. This way, it is possible to reuse code on several pages instead
of otherwise having duplicated code. Also, a significant advantage of this separation is that
it provides a natural way of developing a web application.[Black, 2006]

55

CHAPTER 8. SYSTEM ARCHITECTURE

Note, that there exist a number of alternative design patterns, such as the Front Controller
and Page Controller, which can be used to structure web applications. Front controllers uses
a single controller, parsing the request and determining which concrete action to perform.
Using the page controller, a separate file is created for each logical page, relying on the web
server to determine which page controller to invoke.[Fowler, 2002]

The different components of MVC are described in the following and is illustrated in
Figure 8.4.[Dolog et al., 2009, s. 7.1.3]

Model The model contains the business logic. Generally the model defines business actions
which can be reused. Furthermore, it should be mentioned that the model ignores how
the data are represented for the users.

View The view contains the user interface logic. A model may have multiple views which
can be used for different purposes.

Controller The controller manages requests made to the application by intercepting the re-
quest and then decide which business action to be used. This business action then
changes the state of the application, activating the view which then presents the pro-
cessed data for the user.

Controller

Model

View

select

modification

notify stateresponse

request

Client Server

Figure 8.4: The Model View Controller architectural pattern used for a web application.[Fowler,
2002, c. 14]

The following example shows how MVC can be used to structure the development process.

56

8.3. WEB APPLICATION

Example 1 (Example of how MVC can be used.)
Initially, the development of the web application can start with identifying all the entities
that constitutes the domain of the web application. In this phase, the developer does not
need to consider which actions should be provided or how data is presented. Instead, the
model of the web application is developed. Afterwards, decisions about which actions should
be provided to interact with the model can be considered which constitute the development
of the controller. Finally, the developer can make decisions about how the actions should be
made available or represented in the view.[Black, 2006, c. 2]

8.3.2 Plug-in

As described in Chapter 5, we chose to use a pure plug-in architecture for Easy Clocking.
This is depicted in Figure 8.1 where plug-ins can be connected to the kernel. Having plug-ins
connected to the kernel might seem as conforming to the traditional plug-in architecture.
Actually the kernel is intended to be implemented as a plug-in itself, which other plug-ins
depend on, giving the opportunity of using Easy Clocking as a plug-in in other systems. This
helps achieving the flexibility quality factor, since Easy Clocking either can be used as the
main application using external plug-ins or be a plug-in in a larger application.

Ruby on Rails has a built-in plug-in architecture, with the same characteristics as the pure
plug-in architecture. The architecture allows packaging models and controllers into a plug-in
which can be combined with additional plug-ins into a single application. We extended Ruby
on Rails with the Desert1 Ruby gem, which enhanced the plug-in architecture by adding
support for migrations and views in the plug-ins.

The pure plug-in architecture has some pitfalls as described by Birsan [2005]. We have
added notes regarding these pitfalls and how they apply to the plug-in framework for Ruby
on Rails in Appendix J.

Using Ruby on Rails’ built-in plug-in architecture extended by Desert fulfilled the require-
ment of being a pure plug-in architecture and was supported by Ruby on Rails simplifying
future implementation.

1github.com/pivotal/desert

57

9
Location Sensor Design

In designing the location sensor software, we chose to use flow diagrams to represent the logic
of it. This makes it possible to give a structured design of a procedural language such as C
before writing the code. Blauch and Johnson [2001] describe several advantages of having a
structured design, such as early detection of design flaws. This is a great advantage because
it may require a lot of effort to fix a design error found at the end of the implementation.
Using the structured design approach also helps splitting the application into modules which
then can be individually developed by multiple teams.[Blauch and Johnson, 2001]

Flow diagrams are shown for the clocking process and the configuration consistency pro-
cess, which we found non-trivial and most interesting. We chose that the clocking and the
configuration consistency process run concurrently. Separating these in their own thread of
execution is convenient because it provides an easy way of controlling when for instance the
configuration consistency check is conducted.

9.1 Clocking Process

In the design of the clocking process, we used the knowledge gained by examining the applica-
tion and problem domain, described in Section 1.3. From these, we were able to formulate the
necessary logic used when clocking in and out, the configuration parameters, and conflicts.
In the following, we briefly describe the parameters and argue for their necessity.

Distance Threshold To limit the area in which the location sensors registers butchers, a pre-
defined distance threshold is used. E.g. a workstation in a cold store may require a
relatively large detecting range in contrast to a workstation at an assembly line.

Time-away Threshold In some circumstances, it may also be necessary for the butcher to
leave the workstation temporarily. A time-away threshold denoting for how long a
butcher is allowed to be absent from his workstation is used. This is in order to avoid
clocking out the butcher immediately.

Movement Threshold If the butcher moves beyond this threshold from his average observed
distance, then a new clocking information is created for that new average. Thus, if he

58

9.1. CLOCKING PROCESS

walks from a machine to an adjacent machine, clocking information will be created for
the time intervals he was close and far away from the location sensor, respectively.

In respect to the conflict detection in overlapping areas, we chose not to let the location
sensors be responsible for resolving this issue. Not doing so would require them to exchange
information about registered butchers. Instead, we chose to let the location sensors pass all
their location registration data to the web application, which would then be responsible for
resolving multiple occurrences of a butcher from different location sensors.

On the assumption that the manager has specified which tasks a particular butcher has to
perform during his work day, the web application would be able to resolve multiple occurrences
of the same butcher by comparing the location sensors corresponding to his tasks with the
location sensors that passed information to the web application. The location data sent by
the sensors, not related to his tasks, could be marked as discarded by the web application.

Finally, to address the conflict of the scenario where a butcher is detected by two work-
stations in the same time interval, which he is assigned to work at during the work day, we
decided to let the location sensor store ranges from the butcher to the location sensors in time
intervals. This way, it would be possible to compare ranges in time-intervals hence determine
how the butcher had been working. Therefore, we chose to design the application such that
if a given movement threshold between the butchers previous range and his current range is
exceeded, the butcher must be clocked out with his previous range and clocked in with the
new range. If the movement threshold was not exceeded, the previous range would have to
be updated taking into account previous ranges and the current range. An example of the
result of using the movement threshold is shown below:

Example 2 (A butcher detected at multiple workstations.)
Michael has been detected in the following time intervals with the corresponding range to the
bone cutter.

13:34 - 13:56, 1 meter
13:56 - 14:56, 8 meter

In the same time intervals he is detected at the mincer.

13:34 - 13:56, 9 meter
13:56 - 14:56, 2 meter

This example illustrates how the range for time intervals can be used to infer that Michael
has been working at the bone cutter from 13:34 to 13:56 and at the mincer from 13:56 to
14:56.

Figure 9.1 depicts the flow diagram of the clocking process. As shown, a distance threshold
is checked when unprocessed localisation data is received. If this holds, the butcher is either
clocked in, if it is the first time he is detected, merged if he has not moved beyond the
movement threshold since last detection or, if he has moved, clocked out with his previous
range and clocked in with a new range. Finally, when the localisation data has been processed,
the butchers are clocked out if they have not been detected within the time-away threshold.

59

CHAPTER 9. LOCATION SENSOR DESIGN

Localisation data

[yes]

[no]

[no]

[no]

[no]

[no]

[yes]

[yes]

Clock-in

Clock-out

Merge clock

Clock-out

Get employees

Has

unprocessed

clockings?

Has moved

since last

clocking?

Existing

clocking?

Is time-away

threshold

exceeded?

Is distance

threshold

exceeded?

Has

unprocessed

employees?

[no]

[yes]

[yes]

[yes]

Figure 9.1: Flow diagram showing the processing procedure for clocking information and subsequent
check of employees that must be clocked out.

9.2 Configuration Consistency Process

The configuration of the location sensors is made by an Easy Clocking consultant through
the web application, as described by the consultant’s responsibilities in Section 1.3.

In Section 8.1, we described it was the responsibility of the location sensors to initiate a
connection to the web application in order to get the configuration. To keep the configurations
on the web application and on the location sensors consistent, it was therefore required by the
location sensors to regularly request the web application for updates of their configurations.

60

9.2. CONFIGURATION CONSISTENCY PROCESS

This would require the configuration to be passed over the network each time the location
sensor requests for potential changes in the configuration. Since we did not expect the config-
uration of the location sensors to be changed often after the initial installation of the location
sensor, we wanted to only transmit the configurations when changes had been made to them.
Thus we divided the update process into two calls to the web service of the web application.
One call checks if an updated configuration is available and one fetches the configuration if
this is the case. This reduced the amount of overall network traffic between the location
sensors.

Note that after the initial installation of the location sensors where they are configured
according to the given environment, the configuration can only be expected to be changed
in case the environment in which the workstation is situated, is changed. We assessed that
checking for configuration updates once a day was sufficient. However, this results in periods
where the configuration could be inconsistent.

Figure 9.2 depicts the flow diagram of the process described above.

[yes]

Configuration Consistency

[yes]
Request for

consistency
Web-server

available?
Process Result

Update

Configuration

Wait

Consistent

configuration?

[no]

Web-server

available?

Request updated

configuration
Process Result

[yes]

[no]

[no]

Figure 9.2: Flow diagram showing the process of keeping the configuration consistent with the
configuration stored by the web application.

61

10
Web Application Design

In this chapter, we document the design of our web application using the work products:
navigation design, data design, workflow design and presentation design and architecture
design. These are described by [Dolog et al., 2009, c. 5] as models for documenting web
applications. Notice that the architectural design was made in Chapter 8

The different work products helped us in both understanding the structure of the web
application and in identifying the functionality we needed to implement.

10.1 Navigation Design

A navigation flow diagram consists of views and relations between these depicting navigation
paths for the user.

The navigation flow diagram for our web application is shown in Figure 10.1. It was based
on an analysis of the requirements for the web application as described in Chapter 3 and
further refined throughout the development process.

We identified a number of resources, each containing a generic set of views such as a view
for adding new resources or editing a resource. The generic views are shown in the navigation
flow diagram in the upper right corner. Each resource, such as the Assignments resource,
encapsulates a number of views related to it. This is used later in the implementation when
creating controllers, where there will be a controller for each resource.

If the user’s credentials are invalid, he will be redirected to the Login page. When his
credentials are valid, he will be allowed to proceed to other parts of the application depending
on his user role, that is, manager or consultant. The consultants are allowed to access the
consultants and workstations resources, and managers the remaining resources.

10.1.1 Web Services

In order to support the location sensors, it was necessary to provide two web services, namely,
one to handle consistency of configurations and one to receive new clocking information as
previously described. In Section 8.1 we argued that RESTful web services must be used. The

62

10.1. NAVIGATION DESIGN

User

Login

Manager

Overview

Consultant

Overview

Login

Specify

username and

password

Assignments

Assignments

<generic>

Print List

List of

assignments for

a specific day

Select date

Back

Consultants

Consultants

<generic>

Workstations

Workstations

<generic>

Conflicts

Conflicts

List Employees

List of employees

for the specific

date

Select dateBack/Save

Employees

List of conflicts of

an employee

Validate

Back

Show assignments

Consultants
Workstations

Conflicts

Managers

Managers

<generic>

Employees

Employees

<generic>

Clockings

Clockings

<generic>

Menu

Employees/Managers/

Clockings/Assignments

<Generic>

<Resource>

A list of

<resources>

Add <resource>

Edit <resource>

information

Edit <resource>

Add a new

<resource>

Show <resource>

Show information of

<resource>

Delete

Back/Create

Back

Show/Update Edit

Show

Back

New

Figure 10.1: Navigation flow diagram of the web application including boxes indicating the different
controllers.[Design, 2000]

following two views are made available to the location sensors, and are not included in the
navigation diagram since the location sensor does not navigate through the views:

Clocking According to the navigation flow diagram, it is possible for a manager to add new
clocking information manually. Since the location sensors also require this functionality,
we decided to reuse it by letting the location sensors post information to the same view
as the managers after successfully authenticating themselves.

63

CHAPTER 10. WEB APPLICATION DESIGN

Configuration Consistency The location sensors needed to access their configuration as a step
in their configuration consistency process. Therefore, we allowed access for the location
sensors to the workstation configuration view. This view returns the configuration
rendered in HTML for the consultants and XML for the location sensors.

To reduce the amount of transmitted traffic over the network, an additional view was
added which allows the location sensor to check if a new configuration is available.

10.2 Data Design

In the data design, we analysed which data must be stored by the system and how the data
were interrelated. This resulted in the ER-diagram shown in Figure 10.2.

First of all, Easy Clocking had to contain users who could use the web application, namely
the managers and the consultants. Since the same type of information needed to be stored for
each type of user, we decided to have one table for users and distinguishing their role by an
attribute. In addition, employees, assignments, workstations, clockings and the configuration
of the location sensors were also stored in the database.

As shown, there is a many-to-many relationship between assignments and employees. The
reason for this is that butchers can be assigned multiple tasks and multiple assignments
can have multiple butchers. Also, there is a many-to-one relationship between task and
workstation since assignments can only be related to one workstation, but a workstation can
be related to several assignments.

users

PK id

first_name

last_name

role

login

crypted_password

employees

PK id

enabled

first_name

last_name

employee_number

tag_mac

assignments

PK id

date

title

FK1 workstation_id

assignments_employees

FK1 assignment_id

FK2 employee_id

clockings

PK id

clock_start

clock_end

average_distance

discarded

FK1 employee_id

FK2 workstation_id

workstations

PK id

title

enabled

ip

detectingrange

timeaway

movementthreshold

is_propagated

last_consistency_check

Figure 10.2: ER-diagram showing the data in the web application.

64

10.3. WORKFLOW DESIGN

Using the ER-diagram, it was possible to identify the models in MVC. As an example of
how this was done, one can consider the employee table. First, this is an entity in the system,
which indicates that it is a resource hence a model. Furthermore, the relationships between
the models can be inferred from the diagram.

10.3 Workflow Design

The workflow design model, as described by [Dolog et al., 2009, C. 5], is used to model the
workflow of a web application and how a user interacts with it throughout the process.

We chose to create a workflow model for managers solving conflicts in the location sensor
data. This diagram was made since conflict handling is non-trivial and is central for the usage
of Easy Clocking. Using this, we improved our understanding of the process and identified
functionality which needed to be implemented.

Generate list of

unassigned

assignments

Generate list of

uncompleted

assignments

Generate list of

time conflicts

Show conflicts

View Butchers having conflicts the

selected date

Select date

Select Butcher

Resolve conflicts
Resolve more

conflicts?

[yes]

[no]

Manager Web Application

Figure 10.3: Workflow model showing the process involved when the manager resolves conflicts in
the system.

Our workflow is shown in Figure 10.3 and is based on a UML activity diagram, as suggested
by [Dolog et al., 2009, C. 5]. The figure shows that the manager initially selects a date where

65

CHAPTER 10. WEB APPLICATION DESIGN

he wants to resolve conflicts. The web application responds by showing the butchers having
conflicts at the specified date. The manager now has the opportunity of resolving the conflicts
for one of the shown butchers. If he selects a butcher from the list, the web application will
perform some algorithms on the clocking information of the selected butcher which will output
the conflicts. This is represented in the diagram by the fork to three actions which are joined
afterwards to display the total conflicts.

After the conflicts have been generated, the manager now has the opportunity of resolving
them. Because there may be dependencies among the various conflicts, the manager can
validate his changes whenever he likes. The manager can at any point choose to go back to
the the list of butchers having remaining conflicts.

10.4 Presentation Design

The goal of the Presentation Design is to structure the information on individual pages in
order to bridge the gap between the web application design and the visual representation of
it.[Dolog et al., 2009, C.5]

We will use the abstract widgets design, as described by [Dolog et al., 2009, C.5], to
describe the user interface at a high level of abstraction. The abstract widgets design consists
of compositions of widgets, each assigned a role which indicates its responsibility such as
displaying text or receiving user input. This helped in determining the different elements a
view consists of without taking into account layout and graphics.

We only used this work product in order to design the conflict page, since this was one of
the non-trivial pages in the web application.

Figure 10.4 shows a simplified abstract widgets design for the conflict page, where parts
of the contents have been simplified in order to reduce its size.

The Easy Clocking element, which is the main application itself, is composed of a Main
Menu, a Main Body and a Site Banner widget. The Main Body contains a Page Title, a
Status Indicator for Conflicts, and an element for each type of conflict. The List of Clockings
widget, which is used to display time conflicts, further contains Clock Collections which again
contains individual Clockings. The necessity of this widget is described later. The Clock
Collection widget continues down to individual pieces of information shown in the view, such
as the name of a workstation for a clocking.

66

10.4. PRESENTATION DESIGN

Easy Clocking

Abstract Interface

Site Banner

Composite Interface

Element

Main Body

Composite Interface

Element

Main Menu

Composite Interface

Element

Managers

Simple Activator

Employees

Simple Activator

Conflict Handler

Simple Activator

...

Simple Activator

Page Title

Simple Exhibitor Title

Simple Exhibitor

Conflict Status Indicator

Composite Interface

Element

List of Clockings

Composite Interface

Element

Uncompleted Assignments

Composite Interface Element

Unassigned Assignments

Composite Interface Element

Clock Collection

Composite Interface

Element

...

Composite Interface

Element

Workstation name

Simple Exhibitor

...

Simple Exhibitor

...

Composite Interface

Element

Clocking

Composite Interface

Element

Figure 10.4: Abstract widgets design for the web page displaying a butcher’s conflicts for a given
day.

67

Part III

Implementation

68

11
Location Sensor Implementation

The location sensor part of the system is divided into two separate main loops: the em-
ployee monitor loop and the configuration consistency loop. The design of these was given in
Chapter 9. The employee monitor loop processes employee location information and notifies
the web application when an employee clocks in or out. The configuration consistency loop
updates the location sensor configuration if it has changed. In our implementation, the two
loops run concurrently which is realised by using an implementation of POSIX Threads.

In the following, we provide a brief introduction to the start-up phase of the location
sensor application in order to give the reader an idea of how the application on the location
sensor works. Generally, the start-up phase can be divided into two steps, namely: initialise
configuration and initialise threads.

Initialise configuration When the location sensor application is executed, it starts by re-
questing the configuration of itself from the web application. The web application will
respond with a set of configuration variables. The location sensor will afterwards write
these to its own configuration file and, in addition, set the internal configuration of the
application accordingly.

Initialise threads After the configuration has been initialised, two threads are created for
the previously described loops and the location sensor application is transitioned to the
running phase.

In the following, we will document the implementation of the two loops.

11.1 Employee Monitor Loop

In the design of the location sensor described in Section 9.1, we identified the activities
involved in the employee monitor loop. In this, employee location information is processed
and employees clocked out. Afterwards, the clocking information of clocked out employees are
sent to the web application. Figure 11.1 shows a sequence diagram of the process described
earlier.

69

CHAPTER 11. LOCATION SENSOR IMPLEMENTATION

Clocking manager Sensor_manager Clocking

get_rssi_values

rssi values

get_employee_from_list

insert_clocking

loop

[For each

rssi value]

Employee Clock-out Employee

loop

[For each

employee]

get_employee_list

correct_employee_clock

[If timeaway threshold

has been exceeded]

clockout_employees

Figure 11.1: Sequence diagram showing the employee monitor loop.

Each entity in the figure, such as the sensor manager, corresponds to a file containing a
set of C functions and data structures needed for realising the functionality of the particular
entity.

In the following, we give a brief description of each of the entities and functions involved
in the sequence diagram.

Clocking Manager The responsibility of the clocking manager is to process the raw data
retrieved from the location sensors, calculate the distance to the butcher and store the data for
later usage. The calls shown in Figure 11.1 originates from the function clocking_start().

• clocking_start() - The purpose of this function is to start the clocking process. When
the incoming RSSI values are found, the clocking manager is used to insert them into
the correct RSSI buffer. An RSSI buffer is associated with each employee instance and is
used as a part of the process of merging clocking information and making new clockings.

70

11.1. EMPLOYEE MONITOR LOOP

Sensor Manager The sensor manager abstracts the communication between the Bluetooth
device and the rest of the application. Communicating with Bluetooth devices is realised by
using the BlueZ library. BlueZ is the official Linux Bluetooth protocol stack1.

• get_rssi_values() - The purpose of this function is to get RSSI values from all the
detected tags, and return these with the corresponding MAC addresses.

Employee Defines an employee data structure and functions used to manipulate this. The
employee data structure stores the employees and pointers to the relevant clocking data struc-
tures.

• get_employee_from_list() - When the function is invoked with the MAC address of
the detected butcher, either a butcher structure already present in the list is returned
or a new structure is added to the list and returned.

• get_employee_list() - The purpose of this function is to return the data structure of
the employees.

Clocking Defines the clocking data structure used to represent the time intervals employees
have been present at different ranges from the location sensor.

• insert_clocking() - The purpose of this function is to insert new clockings into a
clocking list.

Employee Clock Out Defines the logic needed for clocking out employees.

• correct_employee_clock() - The purpose of this function is to correct the clock of the
employee if he has been absent for longer than the time-away threshold. In this case,
the clock out timestamp of the last inserted clocking element of his clocking list must
be corrected with the timestamp for which he was last seen, that is, the last time he
was within the detecting range of the location sensor.

11.1.1 Data Structures

The purpose of this section is to give an overview of the date structures in the clocking
component.

The data structures, including interrelationship and details about their contents, are de-
picted in Figure 11.2.

The clocking and employee data structures are interrelated sequentially in singly- and
doubly-linked list, respectively. First of all, a doubly-linked list data structure was chosen for
representing the employee elements. We also considered using various tree data structures or

1bluez.org

71

bluez.org

CHAPTER 11. LOCATION SENSOR IMPLEMENTATION

next

dist_sum

clock_start

clock_end

average_dist.

Clocking

dist_count

next

prev

last_seen

tag_mac

rssi_buffer

buffer_index

Employee

clock_ptr

next

prev

last_seen

tag_mac

rssi_buffer

buffer_index

Employee

clock_ptr

... next

prev

last_seen

tag_mac

rssi_buffer

buffer_index

Employee

clock_ptr

next

dist_sum

clock_start

clock_end

average_dist.

Clocking

dist_count ... next

dist_sum

clock_start

clock_end

average_dist.

Clocking

dist_count

... ...

Figure 11.2: Illustration of the data structures of the location sensor.

hash-table structures. However, even though such data structures perform better in lookups,
we chose to use linked lists. This decision was made because the implementation was simpler
and we only anticipated a small amount of employees in the list. We assumed that only ten
employees would be present at the location sensor at one time, as defined in our requirements.
If this assumption would prove to be wrong, then changing the data structure would be trivial,
as long as the API is preserved to access and use the data structure.

Choosing a doubly-linked list instead of a singly-linked list was based on the need of
sometimes removing employee elements present in the middle of the employee list. This is
easier with a doubly-linked list.

Each employee element contains a pointer to a list of clocking elements containing infor-
mation about clock in and clock out times etc. The clocking elements are ordered into a
singly-linked list. This is sufficient because we primarily insert new elements to the head of
the list and search sequentially through it.

Arranging the clocking elements in a data structure was done as part of implementing a
caching mechanism. According to our non-functional requirements, an important consider-
ation was to ensure that the clocking information remain durable. It must be ensured that
whenever clocking information are captured and stored temporarily in the location sensor,
loss of this data must not happen as a consequence of a connection failure to the web ap-
plication. Data is only removed from the internal memory of the location sensor when the
clocking information has successfully been transmitted to the web application. The linked list
of clocking information is used to store clockings that have failed to be transmitted. When
a connection to the web application is available again, the linked list of clockings is emptied
after successfully sending the clockings.

72

11.1. EMPLOYEE MONITOR LOOP

Memory Consumption

In Chapter 7, we stated that we had relatively limited memory resources available, namely,
32 MB system memory shared between all processes. To ensure that the above mentioned
data structures could fit into this memory in case of a network failure such that clocking
information is accumulated, we conducted the following calculations. A single entry in the
employee list and clocking list takes up 48 bytes and 32 bytes of memory, respectively. These
numbers have been obtained by using the sizeof operator from C.

The following example illustrates the number of possible clockings using 1 MB of the total
memory.

Example 3
If we assume the location sensor has registered 1000 employees, the following number of
clockings can be stored in 1 MB of memory.

1MB − 1000× 48byte
32byte

= 29.750

This results in space for 29.750 clockings, or approximately 30 clockings for each employee.

Using the above example, we assessed that the available memory is enough and that it
would be possible to accumulate clockings for at least a couple of days if the communication
path between the sensor and web application fails.

11.1.2 Code examples

To document the implementation of the employee monitor loop, code examples are shown in
the following.

Listing 11.1 shows the implementation of how clock in is made. �
static void filter_dist_and_insert_to_clocking_list(employee_str ∗employee, float

new_dist) {
if(is_list_empty(employee−>clock_str) == IS_EMPTY || fabs(employee−>clock_str−>

dist_average − new_dist) >= get_movement_thres())
employee−>clock_str = insert_clocking(employee−>clock_str, new_dist);

else
5 merge_dist_value_and_clock_str(employee−>clock_str, new_dist);

update_employee_timestamp(employee);
}
 	
Listing 11.1: The function responsible for making new clockings and merging existing clockings.

73

CHAPTER 11. LOCATION SENSOR IMPLEMENTATION

As shown, the condition checks if the given butcher already contains a clocking struct.
If it does, a new clocking struct is inserted to the front of the list. Besides this check, the
current range between the employee and location sensor and the average distance of his most
recent clocking is compared against the predefined movement threshold, namely the movement
threshold. If none of the above mentioned conditions are fulfilled, the new range is merged
with the current clocking struct by updating the average range of the time interval. Finally,
the timestamp indicating when the butcher was last detected, is updated.

To clock out, we have implemented the code shown in Listing 11.2 �
void clockout_employees() {

employee_str ∗employee_list = get_employee_list();

while(employee_list) {
5 if(difftime(time(NULL), employee_list−>last_updated) > get_time_away_thres()) {

if(is_list_empty(employee_list−>clock_str) == IS_NOT_EMPTY)
correct_employee_clock(employee_list);

}
employee_list = employee_list−>next;

10 }
}
 	

Listing 11.2: The function responsible for clocking out employees.

The loop of the function traverses the list of butchers and checks if their last seen time
exceeds the predefined time-away threshold for the particular workstation. If this is exceeded,
the butcher is considered away from the workstation and must be clocked out. This is done
by inserting the last seen timestamp in the newest clocking struct.

When RSSI values have been captured, corresponding distances computed and clockings
assigned to the correct employees, the list of employee is traversed sequentially. For each
employee, their list of clockings is processed. All clocking structures containing a timestamp
specifying a clock out time, are send to the web application. The process of sending clocking
information is the last step conducted in the employee monitor loop.

The implementation of the caching mechanism is part of the process of sending the clocking
information. The caching mechanism is realised simply by checking whether or not the data
could be sent to the web application. If it could not, the information is kept in the location
sensor’s internal memory in the linked list data structure as previously described, and no
information is modified. The data is attempted sent when the employee monitor loop processes
the list of clocking structures again. When the data has been sent, it is removed from the
linked list and the employee monitor loop starts over again.

74

11.2. CONFIGURATION CONSISTENCY LOOP

11.2 Configuration Consistency Loop

The configuration consistency loop is responsible for keeping the configurations of the location
sensor and the web application consistent. In Section 9.2, we presented the flow diagram of
this loop. The implementation realising the decisions and processing states of this diagram is
shown in the sequence diagram depicted in Figure 11.3.

Configuration Consistency Webservices Lib XML ProcessorConfiguration Handler

check_consistent_config

new configuration

xpath_query

extracted value

get_and_set_config_var

update_thresholds

xpath_query

threshold

loop

Figure 11.3: Sequence diagram showing the process involved in updating the local configuration
because a new configuration has been made in the web application.

The sequence diagram shows the interrelationship between the various entities involved
in the scenario where the configuration consistency loop determines that a new configuration
has been made in the web application.

The general process of performing configuration consistency on the location sensor starts
with making an HTTP GET request to the web application. Based on this request, the web
application looks-up if any new configuration is available that needs to be propagated to the
sensor. In the scenario where a new configuration is available, the HTTP GET request re-
turns an XML document indicating this. A new HTTP GET request is made for retrieving
an XML document containing a representation of the configuration of the given workstation.
The values of the configuration are extracted using XPath expressions. The local configura-
tion, which includes the configuration file and internal configuration variables, are updated
according to the extracted values.

When we implemented the configuration consistency part, we had some considerations
with respect to how the retrieved XML document should be processed. Specifically, we had

75

CHAPTER 11. LOCATION SENSOR IMPLEMENTATION

to choose which technology to use for extracting the values of the XML documents. We
considered using XPath or XQuery for this purpose. XPath is a domain specific language
which models the XML document in a tree structure with each node corresponding to an
element in the XML document. For selecting specific nodes in the tree structure, XPath
makes use of path expressions which hierarchically specify the nodes to be selected of the
tree.[Møller and Schwartzbach, 2006, C. 3]

XQuery provides a means of both extracting and manipulating XML documents. Further-
more, it can be used for XML data transformations and provides many additional features
such as the opportunity of using FLWOR expressions that can be used for iteration and bind-
ing of variables for temporary results. XQuery uses an XPath expression syntax for specifying
nodes.[Møller and Schwartzbach, 2006, C. 6]

We needed a technology with the capability of extracting single values from an XML
document. Both XPath and XQuery fulfilled this. However, XQuery provides many additional
features which were unnecessary for our purpose. E.g. if transformations of retrieved XML
documents were necessary, XQuery would have been appropriate. Based on this, we decided
to make use of XPath for extracting the values of the retrieved XML document.[Cohen, 2009]

In the following, we summarise the purposes of the entities presented in the sequence
diagram of Figure 11.3.

Configuration Consistency The configuration consistency entity represents the overall ab-
straction of all the details involved in the process of determining whether a new configuration
has been made available and in this case update the local configuration accordingly.

• start_conf_consistency() - The purpose of this function is to start checking the
consistency of the configuration stored in the web application and the configuration
stored locally on the sensor. The function will run in an infinite loop and perform the
configuration consistency check periodically according to a specified interval.

Web services Lib The web service lib entity contains all functionality which relate to com-
munication using RESTful web services. It abstracts over setting up all the HTTP requests
with the appropriate HTTP method. This is done using libcurl2 which is a URL trans-
fer library. The web service lib has been made thread safe using mutex on critical regions
because the employee monitor loop and the configuration consistency loop use this library
concurrently.

• check_consistent_conf() - This function performs an HTTP GET request to the web
application. Due to the decision of using RESTful web services, the URL receiving
this request is constructed such that it identifies the specific workstation making the
request. The check_consistent_conf() function returns a value specifying whether or
not a new configuration has been made available.

2curl.haxx.se

76

curl.haxx.se

11.2. CONFIGURATION CONSISTENCY LOOP

• get_and_set_config_var() - This function will be called in case there is a new con-
figuration available on the web application. The function performs an HTTP GET
request with a URL containing an ID of the workstation requesting the new configura-
tion. The function processes a buffer containing the HTTP GET response which is an
XML document and set the configuration parameters accordingly.

XML Processor The XML processor entity is a library containing all functions needed for
processing the XML documents used in the application. In the location sensor, the library
provides functions for evaluating XPath expressions on XML documents stored in string
buffers. The functions made available by this library are based on libxml23.

• xpath_query() - This function evaluates a specified XPath expression on an XML doc-
ument. The result is stored in a string for further processing. In making configuration
consistency, the xpath_query() function will initially be used to determine whether
there is a new configuration or not. If there is, additional XPath expressions are per-
formed on the received XML document containing the configuration variables in order
to extract the specific values of the new configuration. These are used later in the
configuration consistency process.

Configuration Handler The configuration handler entity is responsible for all functionality
concerning maintaining the configuration locally on the location sensor. This responsibility
involves keeping the configuration file consistent with the internal configuration variables used
in the application. It provides functions for reading, writing and updating every configuration
variable. The functionality needed in relation to configuration consistency is only to update
all configuration variables according to the configuration that has been received. As with the
web services lib, the configuration handler has also been made thread safe using the same
mechanisms for achieving this. This was necessary because the configuration handler is used
by both loops.

• update_thresholds() - This function is used to update the local configuration in the
sensor. This process involves updating the configuration file which specifies the settings
the given sensor is using. Besides the configuration file, internal configuration variables
are also updated to reflect the new values.

11.2.1 Code Example

In this section, we provide a code example of performing configuration consistency between
the web application and the location sensor. Besides the main loop which has been described
previously, an interesting part of the implementation is how the XPath expressions are eval-
uated on an XML document. Specifically, this operation is conducted by the xpath_query()
function which was briefly introduced in the previous section. The code for this function is
shown in Listing 11.3.

3xmlsoft.org

77

xmlsoft.org

CHAPTER 11. LOCATION SENSOR IMPLEMENTATION

�
int xpath_query(const char ∗xpath_expr, char ∗∗result) {

xmlDocument xml_document;
xmlXPathObjectPtr xpath_obj;
xmlNodePtr node;

5 char ∗tmp_result;

xml_document = ∗opened_xml_doc;
xpath_obj = xmlXPathEvalExpression((xmlChar ∗)xpath_expr, xml_document.xpath_ctx);

10 if (!xpath_obj) {
report_error("Error: unable to evaluate xpath expression", xpath_expr);
xmlXPathFreeContext(xml_document.xpath_ctx);
return 1;

}
15 node = (xmlNodePtr) xpath_obj−>nodesetval−>nodeTab[0];

tmp_result = (char ∗) node−>children−>content;

∗result = (char ∗)safe_malloc(sizeof(char) ∗ strlen(tmp_result));
strcpy(∗result, tmp_result);

20

xmlXPathFreeObject(xpath_obj);

return 0;
}
 	
Listing 11.3: The function responsible for evaluating an XPath expression on an XML document
stored in a buffer.

On line 8, xpath_obj is initialised with the result of evaluating the XPath expression pro-
vided as argument on the XML document. The evaluation is performed by the xmlXPathEvalExpression()
function which is defined in libxml2. The xpath_obj contains information about the eval-
uation of the XPath expression. In order to extract the specific node which was matched
with the XPath expression, line 15 extracts this and the information is pointed to by node
which is defined as an xmlNodePtr type. Line 16 finally extracts the content of the node and
this information is afterwards copied to *result whose address is given as argument to the
function.

Prior to calling this function, a requirement is that the XML document is read into mem-
ory, and prepared to be queried. This is realised with a call to open_xml_document(). This
function sets opened_xml_doc in line 7 to the correct XML buffer read into memory. Sim-
ilarly, when the XPath expression has been evaluated on the document, one must explicitly
close the document with a call to close_xml_document() which also de-allocates the memory
used for the memory representation of the XML document.

The reason for not giving xpath_query() the responsibility of opening and closing the
document before and after evaluating the XPath expression, respectively, is that we need to

78

11.2. CONFIGURATION CONSISTENCY LOOP

evaluate multiple XPath expressions on the same document in order to extract the configu-
ration variables.

Listing 11.4 shows an example of a location sensor configuration rendered in XML. �
<workstation>

<created−at type="datetime">2009−11−10T07:53:11Z</created−at>
<id type="integer">3</id>
<ip>192.168.1.1</ip>

5 <is−propagated type="boolean">true</is−propagated>
<last−consistency−check type="datetime">2009−11−12T14:52:45Z</last−consistency
−check>

<movementthreshold type="integer">4</movementthreshold>
<timeawaythreshold type="integer">5</timeawaythreshold>
<detectingthreshold type="integer">10</detectingthreshold>

10 <updated−at type="datetime">2009−11−12T14:52:45Z</updated−at>
</workstation>
 	

Listing 11.4: XML document of a location sensor configuration.

To select the threshold nodes, the path expressions shown in Table 11.1 are used.

Path expression Result

/workstation/movementthreshold 4
/workstation/timeawaythreshold 5
/workstation/detectingthreshold 10

Table 11.1: Using path expression on the location sensor configuration shown in Listing 11.4.

When publishing web services which communicate with applications by exchanging XML
documents, it is generally a good idea to perform a validation check on the received document.
This is primarily done because a naive approach of simply processing the document can result
in anomalous behaviour if the document does not conform to what is expected. The approach
used for validating XML documents is to define a schema describing the requirements of the
XML documents. Additionally, defining such a schema, can be used as a means of documenting
the API of the web service.[Ray, 2003]

The schema can be defined in various schema languages such as XML Schema and Docu-
ment Type Definition(DTD) schema. DTD is a rather simple language with limited expressive
power such as the inability of constraining the data type of the values in the elements and
no support for namespaces. XML Schema on the other hand is more expressive than DTD,
expresses the schema in XML and is self-describing.[Møller and Schwartzbach, 2006]

In Appendix I, the XML Schema and DTD defining the requirements of an XML document
representing a workstation is given.

Ray [2003] states that one should consider omitting XML validation if one is reasonably
certain that the XML documents conform to the rules anyway because a schema is more or

79

CHAPTER 11. LOCATION SENSOR IMPLEMENTATION

less a quality-control tool. In Easy Clocking, we only make available the web services for
the location sensors which we have developed ourselves. Because of this fact, validation is
unnecessary since we are sure that the XML documents received on the location sensor are
correct. In our case, validation would only add overhead when exchanging the documents.
The validation process would be more appropriate in situations where the web services are
more publicly available such as on the Internet for other users. Validation would also be
important if XML documents are manually constructed by humans because this open for
mistakes.

80

12
Web Application Implementation

In this chapter, we describe the implementation of the web application by describing our
usage of scaffolding, how we have implemented authentication and authorisation ending with
an in-depth description of the interface for conflict handling. Code examples for the conflict
handling and screenshots of the web application are provided.

12.1 Scaffolding

Ruby on Rails offers a concept called scaffolding when developing a web application. Scaffold-
ing is “..a quick way to generate some of the major pieces of an application.”[Gunderloy, 2009].
It is capable of generating the necessary models, views and controllers for listing, viewing,
editing, adding and deleting a resource using a command line tool.[Gunderloy, 2009]

Using this concept has certain advantages. It conforms to agile development because it is
possible to have a presentable application early in the process. Furthermore, it results in fast
development if the generated code does not require too many modifications in order to fulfil
the specific needs.[Thomas et al., 2006]

Even though the generated code may require many modifications, Thomas et al. [2006]
mentions that scaffolding still can be used. Using it in these cases make it possible for the
developer to rely on the functionality of the generated code when systematically modifying
or replacing it. Again, the advantage is to have an early working application with all gen-
eral functionalities. This way, both developer and customer have an overview of the entire
application which iteratively is developed to the final application.[Thomas et al., 2006]

Since we had no experience in using Rails, we saw it as an advantage that Rails was able to
generate code which we could modify later. This way, we had the possibility of getting to know
Ruby on Rails by examining the generated code. Because of these advantages, we decided to
make use of scaffolding which for instance was used in developing the functionalities of adding,
removing, editing and listing the butchers. A method generating the views for butchers, is
given in Listing 12.1. �
> ./script/generate scaffold Employee name:string first_name:string last_name:string

employee_number:integer tag_mac:string
 	
Listing 12.1: Command to create add, remove, edit and list views, a model and a controller for
butchers through scaffolding.

81

CHAPTER 12. WEB APPLICATION IMPLEMENTATION

12.2 Authentication and Authorisation

Ruby on Rails does not provide an authentication or authorisation framework, but RubyOn-
Rails [2009] lists some reusable implementations.

Initially, we discussed the advantages and disadvantages of writing our own authentication
and authorisation framework versus using an existing solution. Writing our own solution
would result in a system better matching our requirements and problem domain, while using
an existing solution would save us time and reduce the risk of faults resulting in security
problems since the code had been used by a larger user base.

We chose to use one of the existing solution mentioned by RubyOnRails [2009] which were:
RESTful-authentication1, Authlogic2 and Clearance3. The concepts behind the implementa-
tions were similar, providing the central authentication and authorisation logic while defining
mechanisms used to integrate with our own user models and controllers.

Our requirement for the solution was authentication through a username and password
with authorisation through the use of roles. We discarded Clearance since it lacked documen-
tation, so we could not verify its compliance with our requirements. Of the two remaining
options, we chose to use Authlogic, since its documentation better described the integration
procedure.

The implementation consisted of installing the Authlogic plug-in, add the authentication
business logic to the user model and add authorisation methods in the controllers. We created
an ApplicationController, which all other controllers inherit from. In this we added a
method for each user role, such as require_consultant, which is used to restrict access by
only allowing consultants for certain views. Listing 12.2 shows the implementation of this
method. �
def require_consultant

require_role([0], "You must be a consultant to access this page")
end

5 def require_role(role_ids, error_msg)
require_user
if current_user && !role_ids.include?(current_user.role) then
store_location
flash[:notice] = error_msg

10 redirect_to new_user_session_url
return false

end
end
 	

Listing 12.2: Authorisation method, only giving access to consultants.

1github.com/technoweenie/restful-authentication
2github.com/binarylogic/authlogic/tree/master
3github.com/thoughtbot/clearance

82

github.com/technoweenie/restful-authentication
github.com/binarylogic/authlogic/tree/master
github.com/thoughtbot/clearance

12.3. CONFLICT HANDLING

In line 2, require_role is called with a possible error message and the role to require.
Line 7 checks if the user has the correct role, and if not, in line 9, shows a message to the
user, and line 10 redirects to the login page. If the method does not return, the view is shown
as normal.

12.3 Conflict Handling

This section documents how the conflict handling was implemented in the web application.
The purpose of the conflict handler is to support the work flow described in Section 10.3
regarding managers resolving conflicts in location data.

We chose to document the conflict handler in detail since it was one of the interesting
parts of the web application.

12.3.1 Models

The conflict handling component contains a single model with business logic in order to detect
conflicts between clockings. The following four methods are contained in the model.

findcollections() This method takes a list of all the clockings for a given day and returns
a list of clock collections. These are described later in the view part. The collections
consist of merged clockings based on their clock start, clock end and workstations. The
method is capable of filtering discarded clockings if needed, which is used when the
clockings are used to detect conflicts.

findtimeconflicts() By providing a sorted array of a butcher’s clock collections this
method returns an array containing which collections, conflicted with each other.

findmissingassignmentconflictsi() Given a list of assignments and clockings, it returns
a list of assignments that have not been completed by the butcher.

findextraplaceconflicts() Given a list of assignments and clockings, it returns a list of
workstations that the butcher has been working at when not supposed to.

Code Example

Since the conflict handler does not contain any models which map to the database, we have
chosen to show another model from the kernel of Easy Clocking. Listing 12.3 shows the
clocking model. The model specifies which other models it relates to but does not define
the contents of the model. This is deduced by Ruby on Rails based on a number of migration
files which define changes to the database.

83

CHAPTER 12. WEB APPLICATION IMPLEMENTATION

�
class Clocking < ActiveRecord::Base
belongs_to :employee
belongs_to :workstation

end
 	
Listing 12.3: The class file of the clocking model specifying the relationships between other models.

Listing 12.4 shows how we implemented conflict detection of clockings with overlapping
time intervals. �
def Conflicthandler.findtimeconflicts(clockcollections)

allconflicts = Array.new
i=0
while(i<clockcollections.length)

5 if(clockcollections[i].first==nil)
i += 1
next

end
localconflicts = Array.new

10 j = i+1

while(j<clockcollections.length)
if(clockcollections[j].first==nil)

j += 1
15 next

end
if clockcollections[i].last.clock_end > clockcollections[j].first.clock_start and

clockcollections[i].first.workstation_id != clockcollections[j].first.
workstation_id
localconflicts.push(i) if localconflicts.empty?
localconflicts.push(j)

20 end
j += 1

end
allconflicts.push(localconflicts) if !localconflicts.empty?
i += 1

25 end
return allconflicts

end
 	
Listing 12.4: The method responsible for locating time conflicts.

As shown, the method takes one argument, which is an array of clocking information for
one butcher gathered into collections. A collection is a list of time intervals, sorted on their
start time, which abstracts over one or more clockings. Multiple clockings can be combined
into a collection if their end time equals the start time of another clocking measured on the
same workstation, which is the case if the workstation clocks an butcher out and in again in
order to register a new average detection distance.

84

12.3. CONFLICT HANDLING

Each collection is compared to the other collections to find potential conflicts. This is
done using the two loops in line 4 and 12. Time conflicts are detected in the condition shown
in line 17. This condition compares the two current collections to check if the first collection’s
end timestamp is greater than the start timestamp of the second collection. Furthermore, a
check is made to ensure that the collections are belonging to two different workstations.

If a conflict is detected, the index of the two conflicting collections are pushed to an array
called localconflicts in line 18 and 19. Note that the compared collection is only added
once to the list, avoiding duplicates in the list. Finally in line 25, the localconflicts is
pushed to allconflicts and the loop continues with a new collection.

12.3.2 Views

From the navigation design constructed in Section 10.1, the conflict handling part of the web
application is comprised of three different views. These three views are briefly described in
the following.

Date Selection This is the initial view of the conflict handling part of the web applica-
tion. For selecting a specific date for resolving conflicts, a calendar is provided. After
choosing the date for resolving conflicts, the manager is redirected to the page showing
the butchers related to that date.

Conflicting Butcher Selection This is the page to which the manager is redirected after
specifying the date from the view described previously. This view shows a list of all the
butchers related to the selected date. Corresponding to each butcher is a link providing
the manager the opportunity of resolving the potential conflicts at another page. When
the conflicts of a butcher have been resolved, this will be indicated to the manager such
that he knows which butchers have remaining conflicts.

Resolving Conflicts This page is redirected to when the manager chooses to resolve
conflicts for a particular butcher. The page shows all the recorded clockings associated
with the butcher. Consecutive clockings, that is, clockings that can be chained are
ordered into collections which are indicated on the page to give a better overview.
Conflicts related to clockings overlapping in their time intervals, have a link next to each
other which indicate the clockings of the list they are conflicting with. The manager
can select clockings that should be committed to the system, provided that they do
not conflict. Furthermore, the view also displays conflicts regarding a butcher being
at too few and too many workstations according to his assignments. In this relation,
functionality is provided to resolve these.

Code Example

In the design of our web application, we have used the design principles and Gestalt effects
as described in Chapter 6. We have focused on applying these to the pages related to conflict

85

CHAPTER 12. WEB APPLICATION IMPLEMENTATION

handling, especially Resolving Conflicts. In the following, we will describe the design of
Conflicting Butcher Selection and Resolving Conflicts in relation to the functionality
and usability of the pages.

Furthermore, we used the abstract widgets design, described in Section 10.4, to know
which widgets were needed on Resolving Conflicts.

Conflicting Butcher Selection When a manager selects a day to solve conflicts for, a list
of employees registered to work that day is presented. A screenshot of this page is shown in
Figure 12.1. Each employee is listed, and if an employee has a conflict, the corresponding row
will be marked by a red colour. At the far right, a link allows the manager to navigate to
Resolving Conflicts.

Figure 12.1: Screenshot of a list of employees registered at the location sensors for a specific date.
Employees highlighted with red have conflicts.

We have applied some of the Gestalt effects on our menu (1), such as the proximity effect
by grouping menu items related to each other and the closure effect by encasing the menu in
a coloured box. This makes it easier to identify which items are part of the menu. We have
divided the normal navigation items to the left and log out to the right of the menu, since log
out is an action that is not related to navigation.

Design principles such as visibility have been used when deciding how links are displayed,
which all are shown with an underline and either black colour for the menu or blue for the
content. The black colour is used for the menu since blue clashes with the orange colour of
the menu. Only links have underlines and no other elements use this visual indicator.

86

12.3. CONFLICT HANDLING

Also, the consistency design principle has been used in the usage of colours, placement
of elements and usage of visual clues. E.g. by always using the same variant of red to mark
conflicting items or by placing the menu and headings at the top of the page.

Listing 12.5 contains the view used to render Conflicting Butcher Selection. A table
is rendered by looping over an array of employees, printing their name, employee number and
constructing a link to Resolving Conflicts. �
<h1>Listing employees</h1>

<table>
<tr>

5 <th>First name</th>
<th>Last name</th>
<th>Employee number</th>

</tr>

10 <% @employees.each do |employee| %>
<tr <%= conflict_class(employee) %>>
<td><%=h employee.first_name %></td>
<td><%=h employee.last_name %></td>
<td><%=h employee.employee_number %></td>

15 <td><%= link_to ’Details’, :controller=>’conflicthandler’, :action => ’employee’, :
id=>employee.id %></td>

</tr>
<% end %>
</table>

20 <div id="controlbar">
<%= link_to ’Back’, :controller=>’conflicthandler’, :action => ’index’ %>

</div>
 	
Listing 12.5: View for displaying a list of butchers and showing if they have a conflict for the given
day.

Resolving Conflicts Figure 12.2 shows the page used to resolve conflicts. On this page, we
display the three types of conflicts are displayed.

When a conflict is present, a warning will be shown in a red box (1). Otherwise, if no
errors are present, the box is green. In it, the types of present conflicts are listed, and a link is
provided which scrolls the page down to that group of conflicts and highlights them by fading
them in and out of the page a couple of seconds. This allows the manager to quickly locate the
particular conflict and navigate to it. Highlighting the elements supports the feedback design
principle, by showing something to the user when clicking the link to the conflict. JavaScript
is used to create the visual effects, in addition to various other visual effects and client-side
logic.

In the same manner, a link is shown at each time conflict (2) which, if pressed, highlights
the collection and all other collections of clockings it is conflicting with. All collections part
of a conflict, are coloured red.

87

CHAPTER 12. WEB APPLICATION IMPLEMENTATION

All clockings part of a collection are hidden, and can be shown by pressing the folder icon
located to the left of each collection (3). This is to reduce the amount of information shown
on the page such that the user quickly can find relevant information. When clicking the icon,
the clockings fades in, and out when clicked again. Listing 12.6 shows the highlight function
which takes an array of elements which needs to be highlighted. This function is called by an
event handler on the show conflict links. �
var highlighted_lines = new Array();
function highlight_conflicts(highlight) {
start_color = ’#FF5A5A’;
end_color = ’#ffff99’;

5

// disable highlights
i = highlighted_lines.length;
while (i > 0) {
i−−;

10

if (highlight.indexOf(highlighted_lines[i]) != −1) {
// line already highlighted

} else {
// fade out

15 new Effect.Highlight($(’collection_’ + highlighted_lines[i]),
{ startcolor: end_color,
endcolor: start_color,
restorecolor: start_color});

20 highlighted_lines.splice(highlighted_lines.indexOf(highlighted_lines[i]));
}

}

// enable highlights
25 i = highlight.length;

while (i > 0) {
i−−;
new Effect.Highlight($(’collection_’ + highlight[i]),

{ startcolor: start_color,
30 endcolor: end_color,

restorecolor: end_color});

if (highlighted_lines.indexOf(highlight[i]) == −1) {
highlighted_lines.push(highlight[i]);

35 }
}

};
 	
Listing 12.6: The function highlight_conflicts takes an array of collection ids and highlights
their rows.

88

12.3. CONFLICT HANDLING

The function highlight_conflict can be split into two main parts. The first part,
starting at line 6, iterates over a list of already highlighted lines, checking in line 11 if they
should be highlighted again, and if not, line 15, removes the highlight effect.

The second step, starting at line 24, highlights all lines in the highlight list. This creates
the effect of the row changing colour. If the line is already highlighted, the colour will flicker
shortly. The highlight effect is applied in line 28.

It is possible to remove collections of clockings or individual clockings from the set of used
clockings by toggling the checkbox to the right at each row (4). Furthermore, it is possible
to discard all clockings or individual clockings by either toggling the checkbox besides the
collection or the clocking itself. JavaScript is used to improve feedback when toggling the
checkboxes by changing the state of other checkboxes if needed. E.g. if a checkbox next to a
collection is unchecked, then all clockings in that collection are unchecked.

12.3.3 Controller

Before implementing the controller part of conflict handling, we identified which methods it
should include. First of all, a method for each view is required in order to handle requests to
the view. Furthermore, we used the work flow of conflict resolving, described in Section 10.3,
to identify what functionality the controller should provide. As shown in Figure 10.3, the
controller must contain logic to detect the presence of three types of conflicts.

In the following we have listed the methods identified for the controller.

index This method is empty, since all that was needed, was the possibility of selecting a
date to be used for the employee index view and thus this only needs to specify which
view to render.

employeeindex Finds all clocking and assignment information for the given date. This
information is then passed to the different conflict methods, to detect the presence
of potential conflicts. It instantiates an array of butchers who have conflicts in their
information. This array is then used by the view to present the manager with a list of
butchers for whom he must resolve conflicts.

employee This method is almost similar to employeeindex, but it instantiates multiple
arrays that are used by the view to present the conflict information. E.g. it instantiates
an array holding the uncompleted assignments.

89

CHAPTER 12. WEB APPLICATION IMPLEMENTATION

Figure 12.2: Screenshot of a conflict page for an employee for a given work day. The page allows a
manager to resolve possible conflicts.

90

12.3. CONFLICT HANDLING

Code Example

Listing 12.7 shows the controller used to render the view shown in Listing 12.5. The method
employeeindex takes a date as input through a post request and shows a list of employees. �
def employeeindex

session[:date] = params[:date] if params[:date]

if session.has_key?(:date)
5 @date = Date.parse(session[:date])

datetime = DateTime.parse(@date.to_s)
assignments = Assignment.find_all_by_date(@date)
clockings = Clocking.find_all_by_clock_start(datetime..(datetime+1))

10 @employees = Conflicthandler.getemployees(clockings,assignments)

if request.post?
Conflicthandler.discardnonassignedclockings(@employees,clockings,assignments)

end
15

@conflicting_employees = Conflicthandler.conflicting_employees(@employees,
clockings, assignments)

end

if session.has_key?(:date)
20 respond_to do |format|

format.html
end

else
flash[:notice] = ’Please select a date’

25 redirect_to :controller=>"conflicthandler",:action => "index"
end

end
 	
Listing 12.7: Method responsible for rendering the Conflicting Butcher Selection view.

In line 4 a check is made to ensure a date has been selected. If not, the body of the method
is skipped and in line 25 the user is redirected to a page where he can select a date.

In line 12, a check is made if the HTTP request was a post. If so, the method tries to
resolve some of the conflicts automatically by discarding clockings from assignments for which
the butcher has not been assigned.

If a date is selected, a list of assignments is fetched for the date in line 7 and a list of
clocking collections is fetched in line 8. In line 10 and 16, a list of employees and conflicting
employees is generated on the basis of the list of assignments and clocking collections. These
are saved in an instance variable, making them available to the view when rendered.

91

13
Testing

In this chapter, we describe how Easy Clocking has been tested. Initially, we argue for our
choice of testing methods and, afterwards, we describe how the tests were conducted.

13.1 Test Methods

As described in our non-functional requirements in Chapter 3, we did not want to emphasise on
testing when creating the product. Because of this, we decided mainly to focus on automated
acceptance tests to ensure that the functional requirements had been implemented correctly.
Additionally, some of the acceptance tests conducted reflect integration testing. Integration
tests are mainly performed when testing the communication path between the location sensor
and the web application. Furthermore, the tests helped in verifying that the reliability quality
factor was achieved.

Using these automated acceptance test made it possible for us to, relatively fast, test
if changes in the code had affected the functionality. Therefore, these tests were executed
regularly during the project period.

If we had chosen to put more effort into testing, we would have made unit tests for all the
methods which especially would have been an advantage if we were regularly re-factoring the
code. However, since Easy Clocking was not the case since it was not meant to be deployed
at this stage, unit tests were only applied to central parts of the code.

With respect to usability tests, we analysed different test methods. With a customer from
a butchery, our plan was to do an Instant Data Analysis[Kjeldskov et al.] test in the usability
lab with four to five managers using Easy Clocking. Nielsen [2000] describes that usability
tests should not be made with more than five users since you learn less and less as you add
more users to the test. Also, his research indicates, that using five users for tests, discovers
approximately 84% of the problems. However, since we had no customer, we decided to not
put much effort into usability testing. Instead, we chose to conduct a less time consuming test
as described by [Krug, 2005, c. 9] who states a more informal approach. The main difference
is that the method does not require much planning, other than loosely deciding what should
be tested, and the pre-processing of the test data is described to be done during a lunch talk.

92

13.2. AUTOMATED ACCEPTANCE TESTS

Also, [Krug, 2005, c. 9] mentions that one should remember that doing a low-cost usability
test, is better than not doing anything.

When developing a web application, an important part is to verify that valid HTML is
generated. Therefore, we also wanted to test this.

In order to ensure that the location sensor software can successfully operate in the available
memory, we tested both the memory footprint and if memory leaks were present.

To examine that the RSSI ranging technique was usable for Easy Clocking, we conducted
experiments to show whether RSSI could be used for determining distance in practice or
not. If such a relation existed it would give us the possibility to measure the RSSI and then
calculate the distance between the tag and the location sensor.

13.2 Automated Acceptance Tests

Ruby on Rails provides a test framework, which we have used to create automated acceptance
tests. The tests primarily focus on using HTTP methods to simulate how the web application
is used. An example of such a test is shown in Listing 13.1. �
test "should create clocking" do
login_as :web1
assert_difference(’Clocking.count’) do
post :create, :clocking => {:clock_start=>"2009−11−10 10:06:14", :clock_end

=>"2009−11−10 11:06:14", :average_distance=>"15", :tag_mac=>"AA:FF:AA:FF:AA:FF",
:workstation_id=>workstations(:work1) }

5 end

assert_response :success
end
 	

Listing 13.1: Acceptance test simulating a location sensor posting clocking information.

As shown, the first thing conducted in the test case is to login as a web service. Afterwards,
clocking information is posted and if the total amount of clockings in the database increases
by one, the test succeeds.

Similarly, we did automated acceptance tests for the location sensors. For this, we used
a test framework called CUnit1 which allowed us to create automated acceptance tests. An
example of such a test case is shown in Listing 13.2. �
void test_caching(void) {

employee_str ∗employee;
clock_str ∗clock_iter;
const char ∗original_base_url;

5 int clock_num;

1cunit.sourceforge.net

93

cunit.sourceforge.net

CHAPTER 13. TESTING

original_base_url = get_base_url();

set_base_url("http://wrongbaseurl");
10

employee = insert_employee_in_list("AA:BB:CC:DD:EE:FF");
for(clock_num = 3; clock_num > 0; −−clock_num) {

employee−>clock_str = insert_clocking_in_list(employee−>clock_str, 22);
employee−>clock_str−>clock_start = time(NULL);

15 employee−>clock_str−>clock_end = (time_t)((int)time(NULL) + 100);
}

send_employee_clockings();

20 clock_iter = employee−>clock_str;
for(clock_num = 3; clock_num > 0; −−clock_num, clock_iter = clock_iter−>next)

CU_ASSERT_PTR_NOT_NULL(clock_iter);

set_base_url(original_base_url);
25

send_employee_clockings();

employee = is_employee_in_list("AA:BB:CC:DD:EE:FF");
CU_ASSERT_PTR_NULL(employee);

30 }
 	
Listing 13.2: Acceptance test testing the caching functionality of the location sensor.

First, the URL to the server is set to a non-existent server, such that the location sensor
can not connect to it. This is done to simulate the situation where a connection between
the web application and the location sensor can not be established. Next, a set of clocking
information is added to an employee and afterwards attempted passed to the web application.
Since the connection is not established, the clocking information will be left for later delivery.
Hence, we assert that the amount of clockings are still present. Finally, the URL is set right,
and the clocking information is passed to the web application.

13.3 Usability Testing

In the usability test, we asked two students from 7th semester in Software Engineering who
had no previous knowledge in Easy Clocking, to use it.

Since usability primarily was improved with respect to conflict handling, we set up test
data to simulate different conflict scenarios which we wanted our test users to solve.

Before each test, we described to the test users what the purpose of Easy Clocking was.
Afterwards, we asked them to do certain tasks, one by one. The introduction and the tasks
are described in Appendix L.

94

13.3. USABILITY TESTING

13.3.1 Results

From the tests, we identified a number of usability problems. Some were related to the test
users lacking insight into the work flow and terminology we assume the managers to know,
while others could be mapped to the Gestalt laws and design principles described in Chapter 6.
Because of time constraints, we selected only to correct those problems that would increase
the usability while limiting the implementation time.

A list containing some of the errors and the changes we made is given below.

• The test users were in doubt what the purpose was of the View conflicts link, which was
placed to the right of a conflict. Pressing the link highlighted other clocking collections
which it conflicted with.

We renamed the link to Highlight conflicts and changed the highlight logic to also
highlight the clock collection itself. This way, it is more obvious that the link highlights
some items, and now all clock collections involved in the conflict are highlighted and
not only some of them.

• The test users were in doubt what the field Measured distance, for each clocking, was
a measure for. One thought it was the distance the employee had moved while he was
detected. They were also a bit confused since the number did not contain a unit.

We added a unit to the number and renamed the field to Measured range, which we
expect to help in the understanding.

• The test users were able to solve the time conflicts at the top of the page. However, if
the corrected time conflicts introduced conflicts related to missing assignments shown
lower on the page, they had difficulty in spotting these. The message at the top of the
page was still indicating a conflict, which the test users were unable to identify.

We changed the conflict message to include text describing which type of conflicts were
present, and links moving the viewpoint of the browser to the conflict while fading the
area containing the conflict in and out of the page. This should make it more obvious
where the conflict is located.

We observed that many of the problems we encountered could be solved both by changing
the user interface and by instructing the user in how the system works. The problems were
not related to the inability of solving the problem, but how it was intended to be done. We
changed many of the user interface elements in order to improve usability of Easy Clocking.
However, we expect, based on Kjeldskov et al. [2005] who describes that some problems
disappear over time because users find their ways through the system, that a manager would
have learned his way around the system over time.

One large problem remaining, which we did not implement, was the complexity in estab-
lishing the necessary overview in order to fix the conflicts quickly. A possible solution would
be to create a more visual representation of the conflicts, by showing the time intervals and

95

CHAPTER 13. TESTING

overlapping time intervals by drawing lines on a timeline. A possibility would even be to allow
the manager to use this diagram to solve the problem by manipulating the lines. A mock-up
of this diagram is shown in Figure 13.1.

Figure 13.1: Mockup showing how time conflicts could be represented.

In the diagram, clocking information from the mincer and the bone cutter conflict.

13.4 HTML Validation

There are various reasons for verifying the validity of HTML. According to W3C [2009], the
problem with invalid HTML is that different web browsers may parse the invalid HTML differ-
ently and hence style or layout of the parsed HTML can be presented differently. Conforming
to the HTML standard, avoids these problems.

Our web application uses the HTML standard XHTML 1.0 Transitional. The Transitional
flavour of XHTML provides the opportunity of making small adjustments to the mark-up
which benefits older browsers that do not understand style sheets. There is also the strict
flavour of XHTML which separates elements such as font, colour and layout effects to a CSS
thus giving a mark-up which is free of any layout details.[W3C, 2009]

To validate that our generated HTML conforms to the Transitional standard, we made
use of a plug-in for the Mozilla Firefox web browser called HTML Validator2 which applies
offline algorithms on the HTML of the visited page. The algorithms report errors if the pages
contain HTML that is not conforming to the standard specified in the DOCTYPE element of
the HTML document.

Verifying the validity of the generated HTML has been conducted by visiting all web pages
comprised by Easy Clocking with the Firefox plug-in enabled. After this test, we conclude
that all of our pages conformed to HTML Transitional.

2addons.mozilla.org/en-US/firefox/addon/249

96

addons.mozilla.org/en-US/firefox/addon/249

13.5. MEMORY CONSUMPTION

13.5 Memory Consumption

In Chapter 11, we assessed that the 32 MB of available memory are enough for our application,
but it is important to ensure that the memory footprint does not grow over time because of
e.g. memory leaks.

In order to test for memory leaks in the application, we used the tool Valgrind3 which can
run an application and count the number of allocations and de-allocations of memory. The
goal is to ensure that all allocations in the lifespan of an application are de-allocated again.

Running Valgrind on our location sensor software test-suite, we were able to detect some
memory leaks which were removed. The end result of the memory-leak test was as follows:

Allocated De-allocated
3.500 3,438

The end system has some allocations which have not been de-allocated. Analysing these
with Valgrind, we concluded that these are allocated at application initialisation and used
throughout its lifetime, such as configuration values being read into memory. We can use this
information to conclude that, to our knowledge, the location sensor software is free of memory
leaks.

13.6 Ranging Technique Test

The purpose of this Section is evaluate the accuracy of distance measurements calculated on
the basis of RSSI values, in order to conclude if they are sufficient for Easy Clocking.

We start by describing a radio propagation model, used to calculate distance based on
RSSI values. We then conduct an experiment to calculate the path loss exponent, a constant
used by the radio propagation model. Using this, we conclude on the accuracy of the measured
distances.

13.6.1 Radio Propagation Model

There exist different types of radio propagation models proposing a theoretical relationship
between RSSI values and distance. A commonly accepted model is the log-distance path loss
model, which is given by;[Papamanthou et al., 2008]

3valgrind.org/

97

valgrind.org/

CHAPTER 13. TESTING

P (d) =P (d0)− 10nlog
(
d

d0

)
, d > d0 (13.1)

m
d

d0
=10

P (d)−P (d0)
−10n (13.2)

m

n =
P (d)− P (d0)

−10log
(

d
d0

) (13.3)

In the log-distance path loss model, P (d) denotes the measured RSSI value at a distance d
and P (d0) denotes a measured RSSI value at some reference distance d0. The RSSI value at the
reference point can be determined through experiments. Typically this RSSI value is measured
at one meter.[Rappaport, 2002, c. 4] Finally, n represents the path loss exponent, which is an
expression of the rate of which the received RSSI decreases in terms of distance.[Mao et al.,
2007][Rappaport, 2002, c. 4] Its value can be determined experimentally.

As shown, the model proposes that the relationship between RSSI and distance is logarith-
mic. Logarithmic growth is very slow meaning that at some distance, a possible increase of
the distance will not influence the RSSI significantly. Furthermore, the RSSI values obtained
by our equipment are expressed as integers, and therefore, we anticipated problems because
after a certain distance, the distance would need to be increased much in order to change the
RSSI value.

13.6.2 Received Signal Strength Indication Distribution

As described, we wanted to determine the path loss exponent n experimentally. To do this,
we first wanted to ensure that the theoretical radio propagation model conformed to practice.
This was done by first examining how obtained RSSI values are distributed when measured
from predefined distances. From this, it can be concluded whether or not a single RSSI value
is sufficient to calculate a distance to a butcher. If e.g. all the measured RSSI values at
a distance are equal, only one measurement would be necessary to calculate the theoretical
distance. Next, we examined if the relationship between RSSI values and distances in our
experiment followed the propagation model.

The experiment was conducted by placing the location sensor and the reference Bluetooth
device about half a meter off the ground. Afterwards, the initial measurement was conducted
with one meter between the Bluetooth device and the location sensor. Here, 300 RSSI mea-
surements were captured by the location sensor and stored for later processing. This process
was repeated for intervals of one meter up to a total of 20 meters. Conducting 300 measure-
ments at each interval was considered sufficient based on the approach used by other similar
projects. Specifically, the project by Bose and Foh [2007] and the project by Malekpour et al.
[2008] conducted 80 and 1000 measurements at each interval, respectively. At the end, we

98

13.6. RANGING TECHNIQUE TEST

had obtained a total of 6000 measurements which would be the base for determining the path
loss exponent.

In order to show how the RSSI measurements of the experiment were distributed, we made
histograms for each of the intervals. These show the frequency of the various RSSI values at
the given distance. The histograms for all the intervals are shown in Appendix K.

Tadakamadla [2006] and Bose and Foh [2007] have done similar research and conclude
that RSSI values are normally distributed. We want to verify that this is also the case for our
experiment. If we can verify this, then it can be used as an indicator that our experiment is
valid and that we can use the measurements for making conclusions about the value of the
path loss exponent.

The normalised histogram depicting each of the occuring RSSI values as a percentage of
300 measurements, measured at a distance of 4 meters, is shown in Figure 13.2.

0,2

0,25

0,3

-14 -12 -10 -8 -6 -4 -2 0

0,2

0,25

0,3

Frequency Distribution

P
e

rc
e

n
ta

g
e

0

0,05

0,1

0,15

0

0,05

0,1

0,15

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Frequency Distribution

Normal Distribution

RSSI (dBm)

P
e

rc
e

n
ta

g
e

Figure 13.2: Frequency distribution and normal distribution of 300 RSSI values measured at a 4
meter distance.

As shown, we have, besides the histogram, depicted a curve approximately resembling the
frequencies of each RSSI value. If this curve is a bell-shaped curve[Rumsey, 2003] the data
is said to be normally distributed. Rumsey [2003] describes the properties of a bell-shaped
curve to be the following:

• The curve must be symmetric.

• It must have a top in the middle, with tails to the left and right.

• The mean is in the middle of the shape.

• 95% of the data is contained within two standard deviations of the mean.

99

CHAPTER 13. TESTING

It can be difficult to determine if the properties hold, since it depends on graphically
interpretation of the curve. Another way of determining if the RSSI values are normally
distributed is to do a normal probability plot.[Thomas A. Ryan and Joiner, 1976] Hesse
[1998] has given an example of the procedure of doing this which we followed to create the
graph shown in Figure 13.3.

R² = 0.997
-4

-2

0

-15 -10 -5 0

Normal Probability

RSSI (dBm)

-14

-12

-10

-8

-6

Normal Probability

Plot

Linear (Normal

Probability Plot)

Z
-S

co
re

Figure 13.3: Normal probability plot using RSSI measurements at 4 meters distance.

As shown the graph is approximately a constant line which is confirmed by the correlation
coefficient of 0.997[Weisstein]. As defined by Thomas A. Ryan and Joiner [1976] this means
that the RSSI values are normally distributed.

Now it is possible to depict the standard deviation, which is an expression of how much the
values varies from the mean, for each distance to show if it fluctuates at certain distances. If
it does, this would result in having many unreliable RSSI measurements at certain distances
thus making it difficult to calculate a distance using these. The standard derivation is an
expression of how much the values varies from the mean and is computed using the following
formula:

σ =

√√√√ 1
n
·

n∑
i=1

(xi − µ)2 (13.4)

100

13.6. RANGING TECHNIQUE TEST

Here, it is assumed that a random variable X has mean µ and takes random values from
a finites data set x1, x2, · · · , xn with each value having the same probability of occurring. µ
is computed as:

µ =
1
n
·

n∑
i=1

xi (13.5)

As shown the mean is defined as what would normally be referred to as the arithmetic
average.

In Figure 13.4, we have depicted the standard deviation computed for each interval. As
shown, connecting the standard deviations, approximately resembles a constant line. This in-
dicates that the experiment has not been affected by environmental changes when the distance
between location sensor and Bluetooth tag was increased. The span of standard deviation is
from 1.35 to 2.17 which conforms to the project by Bose and Foh [2007] who obtained similar
results.

0

1

2

3

0 5 10 15 20 25

Standard Deviation

Linear (Standard

Deviation)

Distance (m)

R
S

S
I

(d
B

m
)

Distance (m)

Figure 13.4: Standard deviation, with corresponding linear trend line for distances from 1 to 20
meters.

To verify that the measured RSSI values generally followed a logarithmic model, we de-
picted the measurements with a corresponding logarithmic trend line. Notice that each point
is derived from taking the average of the 300 RSSI values at the particular distance. As shown
in Figure 13.5, the measurements tend to follow this logarithmic growth, meaning that the
measurements and the radio propagation model has the same tendencies.

101

CHAPTER 13. TESTING

-6

-4

-2

0

0 5 10 15 20 25

Mean of Measured RSSI

Distance (m)

R
S

S
I

(d
B

m
)

-16

-14

-12

-10

-8

Mean of Measured RSSI

Log. (Mean of Measured RSSI)

R
S

S
I

(d
B

m
)

Figure 13.5: Mean of measured RSSI values.

13.6.3 Determining the Path Loss Exponent

To determine the path loss exponent, we initially calculated the path loss exponent for each
of the RSSI values using Formula 13.3. Afterwards, we calculated the average of these which
turned out to be 0.71. However, when later using this in the radio propagation model we
got significant distance errors. Therefore, we decided to follow the procedure as described by
Bose and Foh [2007], where the distance is calculated, given an RSSI value when using various
path loss exponents. Depicting the resulting tendency lines makes it possible to identify the
path loss exponent giving the best approximation to the reference graph. Figure 13.6 depicts
the result of conducting this procedure in our experiment. The graph with no markers is
the actual distances for RSSI values based on the data from Figure 13.5, and hence it is the
reference graph. As shown, using 0.71 did not yield a graph closely resembling the reference
graph. Instead, it turned out that adjusting the path loss exponent to 0.83 resulted in a path
loss model fitting best.

According to [Rappaport, 2002, c. 4], the path loss exponent indoors should be around 2
to 3. From this, along with our measured path loss exponent, we concluded that determining
the path loss exponent is connected with great uncertainty. Therefore, in order to use the
radio propagation model in practice we expect that a path loss exponent should be calculated
for each deployed location sensor. This complicates the deployment phase.

102

13.6. RANGING TECHNIQUE TEST

100

n = 1.31

D
is

ta
n

ce
 (

m
)

1

10

-16 -14 -12 -10 -8 -6 -4 -2 0

n = 1.09

n = 0.71

n = 0.83

Expon. (Mean of Measured RSSI)

D
is

ta
n

ce
 (

m
)

RSSI (dBm)

Figure 13.6: Trendlines using different path loss exponents depicted on a logarithmic scale.

13.6.4 Accuracy and Precision

Using the derived path loss exponent, we wanted to verify how often an accuracy of 5 meters
was achievable.

According to Figure 13.2, we observed that the RSSI values were distributed around
a mean. This meant that we could not expect to get the same RSSI values for multiple
measurements at the same distance. Therefore, a way of minimising the deviations was
needed. We experimented with calculating the average signal strength of 10 measurements
and concluded that this was sufficient to compensate for erroneous measurements. To get a
better result, more RSSI values could be taken into account, but this would be at the cost of
time required to measure them. We assessed that 10 measurements for each butcher in the
detecting range was possible within approximately 5 minutes for 10 butchers. Notice that
since we have already shown that the RSSI values were normally distributed, it makes sense
to calculate the average of a set of RSSI measurements, because they are equally distributed
around the mean[Rumsey, 2003].

Figure 13.7 depicts the cumulated frequency of the accuracy calculated from measured
RSSI values for distances from 1 to 20 meters. The graph was derived by calculating the
difference of the calculated distance based on an RSSI measurement and comparing it with
the actual distance. As shown, 87% of the calculated distances were within 5 meters accuracy.

103

CHAPTER 13. TESTING

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12
Accuracy (m)

P
e

rc
e

n
ta

g
e

Figure 13.7: The cumulated frequency shows the percentage of distance measurements which lies
within a given accuracy.

Chan et al. [2006] describes that by using Wi-Fi for positioning, an accuracy of 1 meter is
achievable with a precision of 90% with noisy signals. Since we assume that these experiments
have been more thoroughly conducted than ours and that filtering algorithms might have been
used, we expected our precision to be lower. This is because we have not addressed issues
influencing the experiment such as the propagation phenomenon called multipath fading.
Multipath fading means that the radio signal takes different paths when propagating from
the source. This can e.g. be caused by obstacles and humans, resulting in indistinguishable
signals and hence the signal strengths.[Malik, 2009, c. 2][Bose and Foh, 2007][Tadakamadla,
2006]

In our opinion, the achieved precision is acceptable for detecting a butcher in favourable
environments, but we do not expect this precision to hold in a practical deployment of Easy
Clocking. In deployment environments there might be high humidity and metal surfaces which
all affect the reliability of the RSSI values.[Tadakamadla, 2006] Our suspicion was confirmed by
sampling measurements in other environments with more obstacles and interference, because
these indicated that only a significant lower precision was achievable.

104

Part IV

Conclusion

105

14
Conclusion

Throughout this project, we have created Easy Clocking, a system for automatically clocking
in and out employees based on their presence at workstations which can be used in many
different of scenarios. It consists of a number of location sensors, placed at each worksta-
tion, which locates employees, and communicates their presence and location data to a web
application. In our scenario, managers are capable of scheduling assignments to employees,
verifying if they have worked on their assignments and resolve possible inconsistencies be-
tween the information registered by the location sensors and the assignments. The system is
created with a goal of being flexible such that it can be applied to different companies.

We used a butchery as an example of a company using the Easy Clocking system, but it
can be applied to any companies wanting to verify the presence of employees at specific points,
in order to calculate salary, analyse work habits or track time usage on tasks and more. One
example is the Danish home care, which have been criticised for their usage of clocking when
visiting homes, since this process requires the employees to manually registering start and end
times of tasks on a PDA[FOA, 2008]. Using Easy Clocking, this process could be automated,
leaving the home care employees to spend more time on home care, and thus help the elderly,
and spend less time on clocking. Another example is that statistics can be made on the work
habits of the employees to plan assignments to prevent that employees conduct stagnant or
repetitive work potentially having health implications.[Arbejdstilsynet, 2009]

One large advantage of Easy Clocking over manual clocking is the ease of use for employees,
who do not need to interact with the system but are automatically detected. This avoids time
overhead connected with manual clocking and human errors.

Using the butchery example, we created a set of functional and non-functional require-
ments for Easy Clocking, which we fulfilled during the project.

The driving force of the project was a set of learning goals which stated what we wanted
to achieve and learn from the project while ensuring we covered the required topics from the
study regulation. In the following each of the learning goals are concluded upon.

Gain knowledge of Internet technologies We have demonstrated knowledge of Internet, Inter-
net services and Internet technologies by developing a web application aimed at being
hosted on an Intranet of a company. The web application makes use of various technolo-

106

gies, namely: RESTful web services, XML, HTML, CSS, HTTP protocol, and sessions.
Throughout the implementation, we documented our knowledge of these.

Usability The user interface of the web application was designed using various principles
and techniques known from the field of Human Computer Interaction. Specifically, the
Gestalt laws was harnessed by using the proximity and closure effects which enhance
the usability of the user interface. Also, the user interface reflected usage of design
principles such as consistency and feedback.

In order to verify the usability of Easy Clocking we made a usability test in which we
discovered a number of usability problems with our initial implementation. We were
able to recognise these from the usability principles, and correct a number of them in
the final implementation.

New language and framework We gained experience in using a framework along with a new
programming language for developing web applications. This was achieved by using
the Ruby programming language and the Ruby on Rails framework. These had a steep
learning curve and required more time to learn than we had anticipated. Regardless, the
separation of concerns through MVC in the framework showed to be beneficial because
it provided a good overview of the application.

Localisation Technologies and Techniques We gained theoretical knowledge of different local-
isation technologies and techniques. After conducting an analysis of these, we were
able to compare them and determine the most suitable for Easy clocking. We based
our choice on a set of criteria, such as price and detecting range, our requirements and
scenario.

We chose to use the Bluetooth technology using the Received Signal Strength Indicator
(RSSI) technique for determining distance from a location sensor to a Bluetooth device.
We gained practical knowledge in using both of these in our implementation of Easy
Clocking.

For RSSI, we showed that using a radio propagation model to calculate the range was
applicable on our hardware under favourable conditions in the environment. However,
it was later discovered that the distance measurements fluctuated in environments with
great interference and obstacles. This indicated that this should be solved in future
development, e.g. by using another ranging technique, filtering the measured values or
by using a positioning technique.

Development Method As development method, we chose to tailor the agile development
method Scrum which was a success. We gained a lot of experience in agile methods by
using Scrum, and will in later projects use parts of it such as burn down charts, user
stories and time estimations, while altering some parts of the process to better fit the
requirement of conducting an academic report.

Real customer To make the product even more realistic, we wanted to get in contact with
a butchery to analyse the work flow of the clocking procedure further. Also, we wanted

107

CHAPTER 14. CONCLUSION

to present our evolving product to them to get feedback to form the development in the
direction of their possible needs. We ensured that the project did not depend on this
contact, by defining our understanding of the clocking procedure and creating personas
to define the target group. This meant that the only loss was the feedback. This could
have been provided by other students, but we did not do this since the main purpose of
talking to a butchery was to make a product that could be used in real-life.

We contacted the person from the Danish butchery Danish Crown, dealing with student
contacts. Unfortunately, after a few conversations our phone calls and e-mails were
not replied to. Furthermore, we contacted them through their website, but similarly,
we got no response. From this, we learned that in upcoming projects, we should be
more persistent when contacting a potential customer and it should be clarified early
in the project whether the customer will participate or not. Also, we learned that later
projects should not be dependent on customer contact.

Embedded software A large part of the project constituted developing the embedded soft-
ware. Beforehand, none of us had experience with this type of development and this
resulted in many observations which we had not anticipated. Specifically, we observed
that the realisation of the location sensor was relatively difficult compared to the same
development for a regular PC. The firmware used on the location sensors, OpenWRT,
provided limited hardware support and lacked documentation which made hardware
support for our Bluetooth device a difficult process, since we needed to install the
needed packages and configure the software ourselves.

Moreover, many of the needed software packages, for instance libCURL, were over a year
older than the latest releases. This gave rise to some confusion because the documen-
tation did not conform to the version of the package available and hence the software
utilisation was a time consuming process. From these experiences, we can conclude that
one must thoroughly examine the possibilities and limitations the embedded device
offers in terms of both hardware support and additional needed software.

Plug-in The web application used a plug-in architecture which was designed in such a way
that Easy Clocking could be used in many different companies. The plug-in architecture
makes it possible for a company to implement their own business logic which utilises the
data made available by the kernel of the system. However, due to prioritisation, we did
not explore all solutions for implementing a plug-in architecture but instead focussed on
relatively few. Moreover, we did not include considerations in our plug-in architecture
about the procedure for actually deploying Easy Clocking in a company. For instance,
there are considerations such as how the source code of Easy Clocking is prevented from
being directly read after being deployed. In this relation there are also considerations
about how to limit access to the entire source code when extending it with customised
plug-ins. Because these considerations have not been included, we have not successfully
achieved the learning goal concerning making the application flexible to accommodate
the various needs of different companies.

108

An important lesson learned through this project was that the number of areas of concern
should be reduced when they comprise great uncertainty in terms of knowledge. In this
project, we have touched upon many different areas without having prior knowledge and in
addition, we chose to work in a small group for the first time. Due to these factors, we had
difficulties in correctly assessing the workload. In the future, a better approach would be
to focus on relatively few areas and structure the project such that the scope of the project
could be changed more easily. Additionally, conducting a risk analysis identifying potential
issues, dependencies among different components and the magnitude they negatively impact
the project if not being completed could be convenient to aid identifying problems ahead of
time.

The next step for Easy Clocking is to focus on improving the capabilities of the localisation
component. A solution to this problem, will significantly improve the applicability of Easy
Clocking as an automatic clocking system. Furthermore, some considerations remain to be
addressed with regards to the implemented plug-in architecture.

109

15
Discussion

The purpose of this chapter is to comment on some of the aspects in the development which
could be made differently. Also, we assess how these aspects would have affected the project.
Furthermore, the chapter clarifies the aspects that have not been taken into account but
are essential if Easy Clocking was to be deployed in a production environment. Finally, the
purpose is to describe some of the problems encountered during the development process.

Ruby on Rails We expected some difficulties in using Ruby on Rails since the framework
with corresponding programming language was new to us. We chose it because we
wanted a challenge in web development while learning a new programming language
and framework. After reading some documentation, we were able to use the scaffolding
concept, which made it possible to get a working prototype of the web application early
in the project. In our opinion, using scaffolding is a great advantage since a lot of trivial
code is auto generated. However, in the beginning of the project, it was difficult to
understand how the auto generated code worked. Also, the policy of convention over
configuration made learning difficult since some of the conventions were not intuitive.

Ruby on Rails uses pluralisation of nouns, e.g. to indicate if an attribute refers to one or
more models. We had a lot of trouble getting used to its semantics, which in our opinion
conflicted with the Ruby on Rails principle of least surprise, described in Section 7.2.2.
Also, we discovered that iterating over entities in models could be done using different
syntax which again conflicted with this principle.

In some sense, Ruby on Rails 2.3.4 seems immature, because we at several occasions
wrote code, primarily interacting with the models, which logically should be correct but
was not. In finding solutions to these problems, we found the documentation insufficient,
and used great effort in searching for alternative solutions.

Despite the previous critique, we do not want to leave out Ruby on Rails as a candidate
for web development in later projects, because we now know some of its peculiarities.

Localisation Techniques We selected to use ranging as localisation technique to determine
if an employee is present at a workstation. Even though this approach was possible in
theory, it proved to be problematic in practice. We observed that the measurements
were more dependent on the environment than expected. If we were to continue working

110

on localisation of employees, we need to find a better way of doing this. A possible
solution would be to address the issue of fluctuations by filtering the measurements.
For this, a filtering algorithm such as the Kalman Filter can be applied[Helen et al.,
2009]. Also, we could use other approaches for measuring distance such as Time of
Arrival, or use positioning techniques in order to determine the employee’s position
with greater confidence.

Scrum Development Method Generally, using Scrum turned out to be a positive experience,
even though there were parts of the method we would like to change or not use at all in
future projects. One element we want to remove is the user roles, and most notably the
Scrum master. In our project group, we have a more cooperative approach of managing
the process which works flawlessly.

The parts we really liked, and were a big help in our project, were user stories, time
estimates and burn down charts. Using these tools, we were able to more easily assess
progress in contrast to previous projects where more traditional methods were used such
as the incremental model. In the future, we hope to improve this part as we improve
our time estimates, which we had some trouble getting right. We base these problems
on lacking experience.

Our greatest problems with Scrum were its policy of not planning ahead when imple-
menting user stories and our choice of not including tasks related to the creation of the
report. Planning a bit further than only one user story at a time would have saved
some time by reducing the amount of code written and later discarded in the project.
We also observed that some conceptual problems were left unresolved until late in the
project. These would have been revealed if we had designed more ahead of time. The
separation of Scrum and the report was problematic, since we had difficulties in plan-
ning our sprints without taking the tasks related to the report into account. In the
future, we should track both of these tasks in Scrum, treating them collectively as the
final product.

The policy of not planning ahead also had its positive effects. It was easier to priorities
user stories, concentrating on implementing the ones important to us, and discarding
or reducing magnitude of user stories which we were unable to schedule in the time
allocated for developing the software. These were discarded without having used any of
our development time or having incorporated their design into the current software.

Concentrating on getting the most important and fundamental user stories ready first
resulted in having a working and functional product early in the project. This was
reassuring, since we had something finished in contrast to projects where we used a
more traditional waterfall model, and the product was finished very late in the project.

Having a working product each iteration and showing it to a customer, collecting feed-
back on the product, would have given some of the agile processes more meaning, because
a customer would very likely give us feedback prompting us to change our development
plan. The lack of a customer resulted in a feature set nearly unchanged throughout the
project since we had a fairly good view of our goals and desired features.

111

CHAPTER 15. DISCUSSION

Usability and Usability Tests We tried to conduct an informal usability test on our product
in the later stages of development. Here, we observed that with a small number of
testers, we would get a lot of useful information about the usability of our product.

We also observed how a small number of quick changes to the user interface results in a
substantial improvement in usability. A problem with only conducting a single usability
test, was that we could not verify if changes made to the interface solved the problems.

If we were to focus on usability in a later project, we would conduct the same type
of usability test multiple times throughout the project. This would give us even more
feedback, allowing us to verify the impact of our changes and allow us to change the
user interface conventions before the full user interface has been developed. It would
also be possible that we could gather feedback on the product itself, and discover new
features to implement.

Security Considerations There are multiple security mechanisms which undoubtedly would
have been a requirement if the system was set into a production environment.

Currently, the Bluetooth devices are naively identified by their MAC-addresses without
some supporting security mechanism. Hence, the system is vulnerable to exploits such as
MAC-spoofing which is a relatively easy operation to conduct on a networked device. By
using MAC-spoofing, an employee would be capable of stealing the identity of another
employee which in the worst case could affect the salary system if this is based on the
information generated by Easy Clocking. To address this issue, the MAC identification
system should be supported by an authentication mechanism such as certificates.

In addition, the system lacks security in the communication paths. Currently, data sent
via the communication path between the location sensor and the web application is
sent in clear text, thus potentially being a victim of packet interception or injection for
instance. This issue could be addressed by forcing encryption on all data sent over the
communication path. Similarly, in relation to using the web application, an encryption
mechanism such as SSL could be implemented to avoid similar problems.

Privacy Aspects Roy Want and Gibbons [1992] mention several considerations to be taken
into account when deploying a localisation system. They describe how employees some-
times do not want to be tracked and that they should be given the possibility of not
being registered. In Easy Clocking, this kind of freedom would not be possible since the
purpose of the system is to replace the manual clocking procedures.

Another privacy aspect is to whom the localisation data is available. This means that
the butchers must be assured that only the managers can access their data and that this
data will not be used against them. This can be achieved by having certain management
policies that must be fulfilled when handling the data[Roy Want and Gibbons, 1992].

If, when deployed, a great effort is put into introducing the advantages for each user
group of the system, we expect that some of the privacy issues can be handled before
they actually occur.

112

Part V

Appendices

113

Appendix Contents

Appendix A Pregame 115

Appendix B First Sprint 116

Appendix C Third Sprint 117

Appendix D Technology Evaluation Criteria 118

Appendix E Quality Factor Definitions 120

Appendix F Persona 121
F.1 Butcher . 121
F.2 Manager . 122
F.3 Easy Clocking consultant . 123

Appendix G Role Models 124

Appendix H Configuration of a Location Sensor 127

Appendix I XML Schema and DTD 131

Appendix J Pitfalls in Using Pure Plug-in Architecture 133

Appendix K RSSI Frequency 135

Appendix L Usability Test Plan 137

114

A
Pregame

Figure A.1(a) shows our product backlog used in the developing process and Figure A.1(b)
shows an example of a user story.

(a) Product backlog. (b) Three sensors pinpointing a
single position.

Figure A.1: User story defining the need of a login system, which is fulfilled when the acceptance
tests are passed.

115

B
First Sprint

Figure B.1(b) shows a screenshot of the login page of the web application after the first sprint
and Figure B.1(a) shows a screenshot of the page listing the butchers in the system. This
page is viewable by managers.

(a) The listing of Butchers after the first
sprint.

(b) View presenting the butchers of the sys-
tem.

Figure B.1: Screenshots of the web application after first sprint.

116

C
Third Sprint

Figure C.1 depicts the burn down chart for the third sprint.

Figure C.1: Burn down chart for the third sprint.

117

D
Technology Evaluation Criteria

We have used the following criteria in the evaluation of the different technologies. The criteria
were based on requirements we see as critical in order to accomplish our goals in the project
and in order to support a company.

Interference When using wireless technologies with multiple location sensors in a given area,
one must consider how interference of the location sensors might affect the localisation
and potentially preventing positive identification of the tag. In general, a butchery is an
indoor environment containing various electrical powered machines with motors. These
generate electrical noise which potentially may interfere with the radio signals of the
chosen technology. Additionally, many surfaces are made of flat metal which may result
in radio signals interference. It must therefore be possible to achieve the other criteria
under these conditions.

Power Consumption Power consumption should generally be a concern in modern projects
since there is a public focus on environmentally friendly solutions. Furthermore, in our
project where the employees need a remote device, such as a tag, it is important that
the power consumption is low, such that the device does not require recharging during
a work day.

Distance The reading distance from the tag to the sensor is of significant importance. If
the reading distance is as low as a few inches or feet, it may not be usable because it
can be difficult to detect the employees. To fulfil the requirements it must be possible
to for a location sensor to read tags in a range of 10 meter.

Accuracy It is important that the range of a tag can be determined with a reasonable
accuracy in order to do the clocking for the right workstation. The accuracy must be
5 meter. With this accuracy it is possible to tell which workstation is nearest to an
employee. This accuracy is sufficient in order to achieve the system requirements.

Price Our solution for automatic clocking must be affordable for companies, meaning that
the cost of deploying the system must not be too high. Therefore the choice of technology
among others depends on value for the customer in respect to the cost. The hardware
used at each workstation must not cost more than 1000 DK/Kr. And the tags used

118

for identification must not cost more than 200 DK/Kr. With these prices, it would be
possible to deploy the system on 10 workstations with 20 employees for 14.000 DK/Kr
which in our opinion is affordable for a company.

Reliability The localisation of the employees must be built on a reliable technology in order
to satisfy both the employees and the company. In an unreliable system an employee
might have been working a given period of time without being registered.

119

E
Quality Factor Definitions

Product Operations
Correctness Extent to which a program satisfies its specifications and fulfils the

user’s mission objectives.
Reliability Extent to which a program can be expected to perform its intended

function with required precision.
Efficiency The amount of computing resources and code required by a program to

perform a function.
Usability Effort required to learn, operate, prepare input, and interpret output of

a program.
Integrity Extent to which access to software or data by unauthorised persons can

be controlled.
Availability The extent to which the program is operable in respect to the total

running time.
Durability The extent to which data is persistent when first stored in the program.

Product Revision
Flexibility Effort required to modify an operational program.
Maintainability Effort required to locate and fix an error in an operational program.
Testability Effort required to test a program to ensure it performs its intended

function.
Scalability Extent to which the program can handle information when the program

is scaled according to some factor.
Product Transition
Portability Effort required to transfer a program from one hardware configuration

and/or environment to another.
Reusability Extent to which a program can be used in other applications related to

the packaging and scope of the functions that the program performs.
Interoperability Effort required to couple one system with another.

Table E.1: Quality factor definitions.[van Vliet, 2008, c. 6] Availability, durability and scalability
are defined according to our understanding of them.

120

F
Persona

F.1 Butcher

Personal Information Michael is 45 years old. He has short dark hair, brown eyes and a
moustache. He is close to being overweight but is not concerned with it because he does not
want to change dietary habits and start exercising. He lives about five kilometres away from
the butchery where he works from 7:00 AM to 3:00 PM five days a week. Although he could
use his bicycle for getting to work, he uses the car of the family. His family consists of his wife,
Ann, 45 years old, whom Michael has known since his childhood. They have to daughters,
Elisa and Sofie, aged 20 and 22, respectively. Elisa has just finished her education as a cook
but due to limited job offerings, she has not found a job yet. Sofie is currently attending her
fourth semester in philosophy at the nearby university. Both daughters are still living with
their parents. Ann is working as a cashier at a grocery store.

When Michael gets home from work he enjoys watching TV. He has a passion for crime
series. Besides, he also enjoys tinkering with small projects at home. He has recently built a
new terrace in their backyard and is currently considering tearing down a wall to expand the
space of their living room.

Technical Information Occasionally, Michael uses the stationary family computer. He pri-
marily uses it for paying bills through home banking and also checks his email account through
Microsoft Outlook. He only rarely surfs the Internet, but when he wants specific information,
he knows how to make use of search engines. Once in a while, he also enjoys playing some of
the card games that came pre-installed with the computer. Finally, he knows the basic usage
of Word. However, it is primarily used when he needs to write letters, hence, he seldom uses
it.

In relation to his technical skills at work, he has many years of experience with a variety of
the workstations at the butchery. Specifically, he knows how to operate many of the industrial
machines in terms of pushing the right buttons and configuring some of the machines according
to the particular task they have to perform. When he is at a piecework task, he uses a
laminated card with a barcode and his name on. The barcode is scanned every time he is
assigned a piecework task both at the beginning and at the end. Additionally he needs to
clock-in and -out every morning and evening, respectively. In this relation he has frequently

121

APPENDIX F. PERSONA

made errors. For instance, some days the traffic can be chaotic because he lives in the city
and this may result in that he forgets to clock-in because he needs to hurry in order to not be
late at work. When he annoyingly realises that he forgot to clock-in, he needs to spend some
of his lunch-break at the office where a secretary needs to correct his error manually.

When he is doing a piecework task, it also may happen that he forgets to clock-in correctly.
In order to clock-in he needs to find the correct card with a barcode and name corresponding
to the task he is assigned to do. He thinks this can be annoying because he first needs to
locate this card and scan it and afterwards scan his own personal card. Besides this, it may
sometimes occur that the particular task he performs is located relatively far from one of the
clock-in machines. Hence, in some cases it may be that he needs to walk about 100 meters
for reaching the closest clock-in machine.

He hopes that the new system will be much better than the old approach of doing clock-in
manually. He hopes the introduction of the new system will remove some of his annoyances.
However, he hopes that the adoption of the system will only require him minimal education
because he does not want anything that may be more complex than the existing system.

F.2 Manager

Personal Information Bo is 52 years old, 170 cm tall with short blond hair. Straight
after public school he went to get a butcher education and has therefore been working at the
butchery most of his work life. He started by working as a normal butcher at the workstations,
doing piecework. But an accident at work gave Bo certain back injuries. This ended his
dream of being a butcher since it was impossible for him to handle the demanding job at the
workstations for a whole work day. In the month after the accident Bo worked part time but
later he advanced to manager.

Bo does not have a wife or any children, he only has a dog which he has named King. His
hobby is hunting which he uses almost all his spare time on. When having shot a deer or the
like he enjoys cutting it up, as it reminds him, of the old days at the butchery.

Technical Information At home Bo has no computer, but at work he is used to working
with a computer for e-mailing internally at the butchery. The mail system is used through
a web interface. Also since he has become a manager he has been attending several courses
where e.g. he has been trained to use a computer to help him at his work.

Bo’s job is to distribute the butchers at the different workstations according to which tasks
need to done. He does this by looking up a task list on the Intranet, made by his boss, and
then by remembering where the butchers normally work, and at which workstations they are
certified to work, he distributes the tasks and writes them on a piece of paper. This paper
is then put on a notice board in the butchery such that the butchers can check it when they
come in for work.

122

F.3. EASY CLOCKING CONSULTANT

F.3 Easy Clocking consultant

Personal Information Henrik is 33 years old. He is athletically built but is not overweight.
He is 175 cm tall, has medium long hair and green eyes. 7 years ago he received a bachelor
degree in computer science. He wanted a break between taking his bachelor degree and master
degree but he has not yet pulled himself together to start studying again. Instead, since he
left university, he has been focused on gaining experience in industry. He has been employed
by various companies and has primarily worked with the programming part of the projects.
Today he is employed as a consultant by the company offering the Easy Clocking system for
automatic clocking at industrial companies. He has no children and is not married yet but
has been seeing a girl, Joanna, frequently for the last 3 years. They are currently considering
moving together in Henrik’s apartment. Henrik lives about 20 kilometres away from the
butchery and therefore uses his car every day.

In his spare time he enjoys tinkering with small gadgets. He enjoys multifunctional devices
and one of his main passions is to write small programs for his telephone. He especially finds
it amusing utilising some of the in-built sensors such as the accelerometer. Besides tinkering
with gadgets, he is also very passionate about movies. Especially, he enjoys movies that fit
into either the science-fiction genre or action. He owns a fascinating amount of movies some
of which need to be stored in the basement simply because there is not enough room in his
little apartment.

Technical Information Henrik has experience with computers that dates back to his child-
hood. Ever since he started using a computer, he has been working with it practically every
day. Therefore, he is acquainted with many programs such as various word-processing tools
such as Word but also with more basic text editors needed for formatting LATEXdocument such
as Vi. Because of his deep passion with computers, he is also familiar with putting together
the components that make up a computer and setting up SOHO networks.

One of Henrik’s inabilities is however programming in what is considered low-level lan-
guages such as assembly and C. In fact, he is not fascinated with the low level details of
programming. He is more focused on being given a set of high level functionality which
abstracts the low level details. If it is possible to utilise tools or drag and drop-like code
generation, he prefers that instead of writing it himself.

Henrik hopes that the new Easy Clocking system will be easy to customise and configure.
According to configuring the individual location sensors, he hopes that this can be done
graphically instead of using a terminal and execute a series of commands. For the plug-in
part of the system he would be pleased to construct these and harness the location based data
through high level and easy-to-use features.

123

G
Role Models

When developing a new system it is a good idea to study existing systems. This makes it
possible to draw inspiration or reuse modules from other systems and thereby possible reduce
the effort required to create ones current system.[Design, 2000, c. 2]

We are not aware of other systems which have implemented an automatic clocking based
on the location of the butchers. However, we know that there are systems which to some
extent make use of some of the same ideas that will be central in the development of our
location system. In the activity of finding potential role models, which may give inspiration
to our location system, we have come across StreamSpin [AAU, 2009], LANDMARC [Lionel
M. Ni and Patil, 2004] and The Active Badge Location System [Roy Want and Gibbons,
1992].

StreamSpin

StreamSpin is a location-aware system which main concept is “...delivering and receiving
mobile services. The services can be either explicitly subscribed to, or based on user context
and meta-data.” [AAU, 2009] In some sense this can be related to our project where we want
to do the clocking based on the context which the butchers are in.

The advantage of extending StreamSpin to our needs is that we have experience with
its architecture from a previous project. However, there are also certain disadvantages in
combining our project and StreamSpin. The main concept in StreamSpin is that the mobile
devices calculate their location and give this to the server, which then pushes some context
aware information to the clients. This concept differs from ours where it is the embedded
units at the workstations that give the location of the mobile device to the server. Because
of this difference in the main concepts, we believe the result of extending StreamSpin would
require too many modifications with respect to developing our own system. Furthermore the
architecture of StreamSpin is characterised by its scalability in case of many concurrent users,
which in our case is not required to that degree. Our thoughts of StreamSpin have been
confirmed by one of the developers at StreamSpin.

124

Even though we not are going to base our location system on StreamSpin we will still, to
some extent, use it as a role model in the sense that it is a system which uses the location of
its clients to take action.

LANDMARC

LANDMARC[Lionel M. Ni and Patil, 2004] is a location sensing prototype which utilises
Radio Frequency Identification (RFID) for locating objects in indoor environments. The pro-
totype environment consists of a sensing network whose responsibility is locating objects.
These sensors are RFID readers and support communication over the IEEE 802.11 protocol.
This enables wireless communication to a central server responsible for processing the incom-
ing data and calculating locations of the objects carrying detectable tags. Using a wireless
protocol as the fundamental framework of all communication in the infrastructure eases the
deployment of the location system because cabling is not needed. Each movable object car-
ries an RFID tag. Because LANDMARC targets indoor localisation, the developers try to
accommodate problems with the tag being under conditions that may influence the accuracy
of localisation. Specifically, various obstacles and materials may affect the accuracy of in-
door localisation. To accommodate these issues without making use of extra RFID readers
which are relatively expensive, LANDMARC uses the approach of setting up reference RFID
tags at known locations from the readers. By determining how the signal strength between
reader and the reference tag is influenced by the particular environment this knowledge can
be transferred to the calculation of the movable objects carrying the tags thus increasing the
accuracy significantly.

The LANDMARC approach gives inspiration to the system we are to develop. Initially,
we could adopt the idea of letting the sensors wirelessly communicate with the central server
for easing the deployment and possibly maintenance of the system. The idea of using RFID
for location determination is also attractive because of feasible accuracy and relatively low-
cost hardware. In the conclusion of the article about LANDMARC, they state that they are
currently experimenting with a similar system in which they have substituted RFID with
Bluetooth.

Active Badge Location System

The Active Badge Location System[Roy Want and Gibbons, 1992] is an early system for
locating people and has been a role model for several other localisation systems. LANDMARC
has drawn inspiration from The Active Badge Location System.

The Active Badge Location System makes use of automatically determining the location
of individuals carrying a tag referred to as the Active Badge. Periodically the Active Badge
emits a unique code every 15 seconds by using infrared signals. The signals are picked up by
a network of sensors placed in the ceilings which, when receiving the signal forwards it to a
central computer which displays information about where the individual is located. Because
The Active Badge System makes use of infrared communication a requirement is line-of-sight

125

APPENDIX G. ROLE MODELS

between the badge and the sensors. Also, the signals only operate within approximately 6
meters of range.

The Active Badge System also gives inspiration for the system we are about to develop.
Initially, the use of infrared technology for location determination may not suit our scenario
because a butchery contains large industrial machines and some areas may be crowded with
many obstacles thus requiring a significant amount of sensors to accommodate the requirement
of line-of-sight.

The article about The Active Badge System focuses on privacy issues which turned out
to be a major concern when the system was deployed at various institutions. Specifically,
of major concern is how the location data about individuals is used and who is allowed to
access it. Some sort of mechanism or policy must ensure that the information is not somehow
misused. Also, there may be areas where it is inappropriate to locate people such as in the
locker rooms. This is an interesting area which we have to take into account.[Roy Want and
Gibbons, 1992]

126

H
Configuration of a Location Sensor

When a new location sensor must be deployed at the butchery the following must be followed.

• The location sensor must be added to Easy Clocking using the web application. During
this process a unique IP address must be specified.

• The firmware on the location sensor must be updated with the customised firmware for
Easy Clocking. This can be done by putting the location sensor into diagnostic mode,
hold reset while powering it on, and then issuing aftp as shown in Listing H.1. After 5
the location sensor can be restarted. The location sensor can then be reached through
the LAN port on its default IP, 192.168.1.1, using telnet.

• To install the OLSRD daemon the command shown in Listing H.2 must be issued.

• Issuing passwd, on the location sensor, sets a defined password and enables SSH access.

• The network configuration file must then be similar to the configuration shown in List-
ing H.3. Where the <WIRELESSIP>, under Wi-Fi, is substituted with a unique IP
address which is used by the OLSRD for the mesh network.

• The wireless configuration must then be changed to the one shown in Listing H.4. Note
that <KEY> must be set to the appropriate key for the network.

• To configure OLSRD the line “option config_file ’/etc/olsrd.conf” ’ in /etc/config/olsrd
must be uncommented. Next /etc/olsrd.conf must be similar to H.5. Where <IP> is
substituted with the IP defined for the location sensor in the web application.

• The firewall must be configured by placing script in Listing H.6 at /etc/firewall.user.[OpenWRT,
2009a]

• The localisation application can then be copied to the location sensor and set to initialise
on reboot by inserting the list in Listing H.7 at /etc/init.d/easyclocking and adding the
script to the list of upstart scripts.

127

APPENDIX H. CONFIGURATION OF A LOCATION SENSOR

�
atftp −−trace −−option "timeout 1" −−option "mode octet" −−put −−local−file

openwrt−EasyClocking.trx 192.168.1.1
 	
Listing H.1: Command for updating the firmware of the location sensor. �

opkg install olsrd
 	
Listing H.2: Command for updating the firmware of the location sensor. �

VLAN configuration
config switch eth0

option vlan0 "0 1 2 3 5∗"
option vlan1 "4 5"

5

Loopback configuration
config interface loopback

option ifname "lo"
option proto static

10 option ipaddr 127.0.0.1
option netmask 255.0.0.0

LAN configuration
config interface lan

15 option ifname "eth0.0"
option proto static
option ipaddr 192.168.1.1
option netmask 255.255.255.0

20 #### WAN configuration
config interface wan

option ifname "eth0.1"
option proto dhcp

25 config ’interface’ ’wifi’
option ’proto’ ’static’
option ’ifname’ ’wl0’
option ’ipaddr’ <WIRELESSIP>
option ’netmask’ ’255.255.255.0’

30 option ’defaultroute’ ’0’
option ’peerdns’ ’0’
 	

Listing H.3: /etc/config/network �
config wifi−device wl0

option type broadcom
option channel 5
REMOVE THIS LINE TO ENABLE WIFI:

5 option disabled 0

128

config wifi−iface
option device wl0
option mode adhoc

10 option ssid ’EASYCLOCKING’
option encryption wep
option key <KEY>
 	

Listing H.4: /etc/config/wireless. �
DebugLevel 0
IpVersion 4
ClearScreen yes
Hna4

5 {
#Virtual IP − To receive data from server
<IP> 255.255.255.255

}

10 AllowNoInt yes
UseHysteresis yes

Hysteresis parameters
HystScaling 0.50

15 HystThrHigh 0.80
HystThrLow 0.30

LinkQualityLevel 0
Pollrate 0.05

20 NicChgsPollInt 3.0

Interface "wl0"
{

AutoDetectChanges yes
25 }
 	

Listing H.5: /etc/olsrd.conf. �
#!/bin/sh
#Copyright (C) 2006 OpenWrt.org

iptables −F input_rule
5 iptables −F output_rule

iptables −F forwarding_rule
iptables −t nat −F prerouting_rule
iptables −t nat −F postrouting_rule

10 # The following chains are for traffic directed at the IP of the WAN interface

129

APPENDIX H. CONFIGURATION OF A LOCATION SENSOR

iptables −F input_wan
iptables −F forwarding_wan
iptables −t nat −F prerouting_wan

15

WIFI=wl0
LAN=eth0.0
WAN=eth0.1

20 iptables −A input_wan −p tcp −−dport 22 −j ACCEPT

Allow connections to olsr info port.
iptables −A input_wan −p tcp −−dport 1979 −j ACCEPT

25 # OLSR needs port 698 to transmit state messages.
iptables −A input_rule −p udp −−dport 698 −j ACCEPT
iptables −A forwarding_rule −i $WAN −o $WIFI −j ACCEPT
iptables −A forwarding_rule −i $WIFI −o $WAN −j ACCEPT

30 # For forwarding LAN & WIFI in nodes
iptables −A forwarding_rule −i $LAN −o $WIFI −j ACCEPT

For WIFI clients to connect to nodes.
iptables −A forwarding_rule −i $WIFI −o $WIFI −j ACCEPT

35

For connecting a wired lan client of node 1 to wired lan client of node 2
iptables −A forwarding_rule −i $LAN −o $LAN −j ACCEPT

WIFI needs to go to LAN ports, too!
40 iptables −A forwarding_rule −i $WIFI −o $LAN −j ACCEPT
 	

Listing H.6: /etc/firewall.user script.[OpenWRT, 2009a] �
#!/bin/sh /etc/rc.common

START=90
STOP=15

5 start() {
cd /usr/sbin

/usr/sbin/clocking_application &

}
10

stop() {
killall clocking_application

}
 	
Listing H.7: /etc/init.d/easyclocking.

130

I
XML Schema and DTD

In Listing I.1, the XML Schema defining the requirements of an XML document representing
a workstation is given. �
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified
">

<xs:element name="workstation">
5 <xs:complexType>

<xs:all>
<xs:element name="created−at" type="date"/>
<xs:element name="id" type="intpos"/>
<xs:element name="ip">

10 <xs:simpleType>
<xs:restriction base="xs:string">

<xs:pattern value="((1?[0−9]?[0−9]|2[0−4][0−9]|25[0−5]).)
{3}(1?[0−9]?[0−9]|2[0−4][0−9]|25[0−5])"/>

</xs:restriction>
</xs:simpleType>

15 </xs:element>
<xs:element name="is−propagated">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:boolean">
20 <xs:attribute name="type" type="xs:string" fixed="boolean

"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
25 <xs:element name="last−heartbeat" type="date"/>

<xs:element name="movementthreshold" type="intpos"/>
<xs:element name="timeawaythreshold" type="intpos"/>
<xs:element name="detectingthreshold" type="intpos"/>
<xs:element name="updated−at" type="date"/>

30 </xs:all>

131

APPENDIX I. XML SCHEMA AND DTD

</xs:complexType>
</xs:element>
<xs:complexType name="date">

<xs:simpleContent>
35 <xs:extension base="xs:dateTime">

<xs:attribute name="type" type="xs:string" fixed="datetime"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

40 <xs:complexType name="intpos">
<xs:simpleContent>

<xs:extension base="xs:integer">
<xs:attribute name="type" type="xs:string" fixed="integer"/>

</xs:extension>
45 </xs:simpleContent>

</xs:complexType>
</xs:schema>
 	
Listing I.1: XML Schema describing the permitted contents of an XML document describing a
workstation.

As shown, the XML Schema is self-describing and does not require much explanation. It
defines all the elements and attributes that must be present in the XML document. Further-
more, it restricts the allowable types of the individual element values.

Listing I.2 shows the DTD dictating the contents an xml document describing a worksta-
tion must contain in order to be valid. �
<!ELEMENT workstation (created−at, id, ip, is−propagated, last−heartbeat,

movementthreshold, timeawaythreshold, detectingthreshold, updated−at)>
<!ELEMENT created−at (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT ip (#PCDATA)>

5 <!ELEMENT is−propagated (#PCDATA)>
<!ELEMENT last−heartbeat (#PCDATA)>
<!ELEMENT movementthreshold (#PCDATA)>
<!ELEMENT timeawaythreshold (#PCDATA)>
<!ELEMENT detectingthreshold (#PCDATA)>

10 <!ELEMENT updated−at (#PCDATA)>

<!ATTLIST created−at type CDATA #FIXED "datetime">
<!ATTLIST id type CDATA #FIXED "integer">
<!ATTLIST is−propagated type CDATA #FIXED "boolean">

15 <!ATTLIST last−heartbeat type CDATA #FIXED "datetime">
<!ATTLIST movementthreshold type CDATA #FIXED "integer">
<!ATTLIST timeawaythreshold type CDATA #FIXED "integer">
<!ATTLIST detectingthreshold type CDATA #FIXED "integer">
<!ATTLIST updated−at type CDATA #FIXED "datetime">
 	

Listing I.2: XML document of a location sensor configuration.

132

J
Pitfalls in Using Pure Plug-in Architecture

The pure plug-in architecture has some pitfalls, as described by Birsan [2005]. We have added
notes regarding these pitfalls and how they apply to the plug-in framework for Ruby on Rails.

Installing and Updating Because of the number of possible provided plug-ins and third-party
plug-ins it can be problematic to test every possible software configuration and compat-
ibility between the plug-ins.

A possible solution to this problem would be to use system and integration testing in
order to verify the interoperability between the plug-ins.

Security The application and underlying system must be protected from malicious code in
third-party plug-ins and malicious activity caused by bugs in the plug-ins.

One solution to this problem is to run each plug-in in a sandbox, and define precisely
the APIs between the individual plug-ins. Unfortunately, there does not, at this time,
exist a maintained library to sandbox Ruby code.

Concurrent Plug-in Version Support Plug-ins, as other software, are changed over time with
the creation of new versions. This introduces some scenarios which are problematic, such
as what to do if multiple versions of the same plug-in are added to the application, or if
two plug-ins depend on different versions of the same plug-in. This can be problematic
if the plug-in adds new elements to the user interface, resulting in multiple instances of
the same button or menu.

The Ruby on Rails plug-in architecture does not directly support the definition of ver-
sions and dependencies between plug-ins. As an alternative, one can use the gem pack-
aging system in Ruby which supports versions and dependencies between packages,
containing Ruby modules and even Ruby on Rails plug-ins. But the pitfalls mentioned
above still remain. One possible solution, adopted by the Eclipse project, is to divide
plug-ins into two groups, one adding new visual elements and functionality to the ap-
plication and one providing libraries used by other plug-ins. Different versions of the
library plug-ins may be loaded multiple times while the functionality plug-ins may only
be loaded once, where they load the newest version.

133

APPENDIX J. PITFALLS IN USING PURE PLUG-IN ARCHITECTURE

Scalability, Up and Down If needed, the plug-in engine must be able to scale up to large
numbers of plug-ins or scale down to small numbers whilst supporting quick start-
up times and low memory usage. As an example some Eclipse installations contain
thousands of plug-ins which depend on each other.

Each plug-in in Ruby on Rails is imported at initialisation, such that they function as
if they were all provided as a normal application without plug-ins. Thus, by using a
large amount of plug-ins, the initialization time would possible be extended, since the
plug-ins needs to be imported, but then the application runs as if no plug-ins were used.
Shifting the question regarding scalability to Ruby on Rails ability to run large web
applications with many controllers, models, ect. Unfortunately, no documentation is
available describing how Ruby on Rails reacts in this regard.

134

K
RSSI Frequency

60

80

100

120

F
re

q
u

e
n

cy

0

20

40

-19 -17 -15 -13 -11 -9 -7 -5 -3 -1

F
re

q
u

e
n

cy

RSSI (dBm)

(a) 1 meter.

60

80

100

120

F
re

q
u

e
n

cy

0

20

40

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7

F
re

q
u

e
n

cy

RSSI (dBm)

(b) 2 meters.

40

50

60

70

80

F
re

q
u

e
n

cy

0

10

20

30

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2

F
re

q
u

e
n

cy

RSSI (dBm)

(c) 3 meters.

40

50

60

70

80

F
re

q
u

e
n

cy

0

10

20

30

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

F
re

q
u

e
n

cy

RSSI (dBm)

(d) 4 meters.

50

60

70

80

90

100

F
re

q
u

e
n

cy

0

10

20

30

40

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

F
re

q
u

e
n

cy

RSSI (dBm)

(e) 5 meters.

40

50

60

70

80

90

F
re

q
u

e
n

cy

0

10

20

30

40

-16-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

F
re

q
u

e
n

cy

RSSI (dBm)

(f) 6 meters.

30

40

50

60

70

F
re

q
u

e
n

cy

0

10

20

30

-17-16-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

F
re

q
u

e
n

cy

RSSI (dBm)

(g) 7 meters.

40

50

60

70

80

90

F
re

q
u

e
n

cy

0

10

20

30

40

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2

F
re

q
u

e
n

cy

RSSI (dBm)

(h) 8 meters.

40

50

60

70

80

F
re

q
u

e
n

cy

0

10

20

30

-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4

F
re

q
u

e
n

cy

RSSI (dBm)

(i) 9 meters.

Figure K.1: Frequency of RSSI values for distances 1 to 9.

135

APPENDIX K. RSSI FREQUENCY

30

40

50

60

F
re

q
u

e
n

cy

0

10

20

-17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2

F
re

q
u

e
n

cy

RSSI (dBm)

(a) 10 meters.

40

50

60

70

80

F
re

q
u

e
n

cy
0

10

20

30

-17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6
F

re
q

u
e

n
cy

RSSI (dBm)

(b) 11 meters.

40

50

60

70

80

F
re

q
u

e
n

cy

0

10

20

30

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3

F
re

q
u

e
n

cy

RSSI (dBm)

(c) 12 meters.

40

50

60

70

80

90

F
re

q
u

e
n

cy

0

10

20

30

40

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6

F
re

q
u

e
n

cy

RSSI (dBm)

(d) 13 meters.

40

50

60

70

80

F
re

q
u

e
n

cy

0

10

20

30

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7

F
re

q
u

e
n

cy

RSSI (dBm)

(e) 14 meters.

60

80

100

120

F
re

q
u

e
n

cy

0

20

40

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3

F
re

q
u

e
n

cy

RSSI (dBm)

(f) 15 meters.

40

50

60

70

80

90

F
re

q
u

e
n

cy

0

10

20

30

40

-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

F
re

q
u

e
n

cy

RSSI (dBm)

(g) 16 meters.

40

50

60

70

80

F
re

q
u

e
n

cy

0

10

20

30

-19-18-17-16-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2

F
re

q
u

e
n

cy

RSSI (dBm)

(h) 17 meters.

40

50

60

70

80

90

F
re

q
u

e
n

cy

0

10

20

30

40

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

F
re

q
u

e
n

cy

RSSI (dBm)

(i) 18 meters.

40

50

60

70

80

F
re

q
u

e
n

cy

0

10

20

30

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6

F
re

q
u

e
n

cy

RSSI (dBm)

(j) 19 meters.

40

50

60

70

80

F
re

q
u

e
n

cy

0

10

20

30

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7

F
re

q
u

e
n

cy

RSSI (dBm)

(k) 20 meters.

Figure K.2: Frequency of RSSI values for distances 10 to 20.

136

L
Usability Test Plan

The introduction read for the test users, in the usability test, is written below.[Krug, 2005, c.
9]

Usability Testing Introduction Welcome to this test session. During the tests you must re-
member that we are testing the system, not you. In order to improve the system, we
want you to think aloud and honestly let us know what you think.

Easy Clocking is a system whose purpose is to automate the process of a clocking proce-
dure in a butchery. It works by using sensors to detect butchers at specific workstations.
A web application is used to assign assignments to butchers and solve conflicts in the
gathered data from the localisation sensors.

The localisation of the butchers gives rise to conflicts in three cases. First, if the butcher
is detected at multiple workstations at the same time. Second, if a butcher has not
completed all his tasks at the specific day. Third, if a butcher has worked a task which
he should not have.

Afterwards, we asked them to solve the following tasks one by one.

• Login to the Easy Clocking system, using “manager” as username and “1234” as pass-
word.

• Solve conflicts for the 23th of November.

• Determine which conflict is present for butcher1. Butcher1 is pre-configured with a time
conflict. Try to solve the identified conflicts.

• The same test as the previous one is conducted on butcher2. Butcher2 has been pre-
configured with a conflict regarding not having visited all workstations corresponding
to his assigned tasks that particular day.

• Again, the same test as the previous one is conducted on butcher3. (Butcher3 has been
pre-configured with a conflict regarding having visited more workstations than originally
assigned.)

137

APPENDIX L. USABILITY TEST PLAN

• The conflict page is visited and the test user must tell what functionality the page
provides.

• The final test comprises a mixture of the three previous test cases to test how well a
user handles multiple types of conflicts at the same time.

138

Bibliography

Aalborg University Denmark AAU. Streamspin, 2009. http://streamspin.com/ (15. Septem-
ber 2009).

Arbejdstilsynet. Ensidigt, belastende arbejde og ensidigt genta-
gende arbejde., 2009. http://www.at.dk/REGLER/At-vejledninger-mv/
Arbejdets-udforelse/At-vejledninger-om-arbejdets-udforelse/D3-Ergonomi/
RLOIA-D32-Ensidigt-belast-og-ensid-genta.aspx?sc_lang=da (12. December 2009).

Atira. Scrum and agile methods the real world, 2009. https://intranet.cs.aau.dk/
fileadmin/user_upload/Education/Courses/2009/SOE/Slides/lecture14_atira.pdf
(15. October 2009).

Michael Barr and Anthony Massa. Programming Embedded Systems: With C and GNU
Development Tools. O’Reilly Media, Inc., 2006. ISBN 0596009836.

Dorian Birsan. On plug-ins and extensible architectures. Queue, March 2005.

David A. Black. Ruby for Rails. Manning, 2006. ISBN 1932394699.

Andrew J. Blauch and Paul D. Johnson. Structured design using flowcharts. 2001.

BluetoothSIG. Bluetooth.com | the official bluetooth® technology info site, 2009. http:
//www.bluetooth.com/ (22. September 2009).

A. Bose and Chuan Heng Foh. A practical path loss model for indoor wifi positioning en-
hancement. 2007.

Barry Burd. Ruby on rails for dummies®. John Wiley & Sons, Inc., 2007. ISBN
9780470081204.

chalermlab. Bluetooth not working, 2009. https://forum.openwrt.org/viewtopic.php?
id=19820 (19. October 2009).

Liwei Chan, Ji rung Chiang, Yi chao Chen, Chia nan Ke, Jane Hsu, and Hao hua Chu.
Collaborative localization: Enhancing wifi-based position estimation with neighborhood
links in clusters. 2006.

M. Ciurana, F. Barcelo-Arroyo, and F.Izquierdo. A ranging method with ieee 802.11 data
frames for indoor localization. Wireless Communications and Networking Conference,
2007.WCNC 2007. IEEE, March 2007.

Frank Cohen. Misunderstanding: Aren’t xpath and xquery the same thing?,
2009. http://www.datadirect.com/developer/data-integration/whitepapers/
xquery-myths/xpath-vs-xquery/index.ssp (13. November 2009).

Mike Cohn. User Stories Applied: For Agile Software Development. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2004. ISBN 0321205685.

139

http://streamspin.com/
http://www.at.dk/REGLER/At-vejledninger-mv/Arbejdets-udforelse/At-vejledninger-om-arbejdets-udforelse/D3-Ergonomi/RLOIA-D32-Ensidigt-belast-og-ensid-genta.aspx?sc_lang=da
http://www.at.dk/REGLER/At-vejledninger-mv/Arbejdets-udforelse/At-vejledninger-om-arbejdets-udforelse/D3-Ergonomi/RLOIA-D32-Ensidigt-belast-og-ensid-genta.aspx?sc_lang=da
http://www.at.dk/REGLER/At-vejledninger-mv/Arbejdets-udforelse/At-vejledninger-om-arbejdets-udforelse/D3-Ergonomi/RLOIA-D32-Ensidigt-belast-og-ensid-genta.aspx?sc_lang=da
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/SOE/Slides/lecture14_atira.pdf
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/SOE/Slides/lecture14_atira.pdf
http://www.bluetooth.com/
http://www.bluetooth.com/
https://forum.openwrt.org/viewtopic.php?id=19820
https://forum.openwrt.org/viewtopic.php?id=19820
http://www.datadirect.com/developer/data-integration/whitepapers/xquery-myths/xpath-vs-xquery/index.ssp
http://www.datadirect.com/developer/data-integration/whitepapers/xquery-myths/xpath-vs-xquery/index.ssp

BIBLIOGRAPHY

The European Commission. The european commission’s decision on ultra-wideband technolo-
gies: Frequently asked questions, 2007. http://europa.eu/rapid/pressReleasesAction.
do?reference=MEMO/07/72&format=HTML&aged=0&language=EN&guiLanguage=fr (24.
September 2009).

Alan Cooper. Inmates Are Running the Asylum. Sams, 2004. ISBN 0-672-32614-0.

Mani Srivastava David Culler, Deborah Estrin. Overview of Sensor Networks. IEEE Com-
puter, Special Issue in Sensor Networks, 2004.

Yukihiro Matsumoto David Flanagan. The Ruby Programming Language. O’Reilly, 2008.
ISBN 978-0-59-651617-8.

DD-WRT. Wl-500g premium v2, 2009. http://www.dd-wrt.com/wiki/index.php/WL500G_
Premium_v2 (13. October 2009).

Object Oriented Analysis & Design. Andreas Munk-Madsen and Lars Mathiassen and Peter
Axel Nielsen and Jan Stage. Marko, 2000. ISBN 87-7751-150-6.

Peter Dolog, Maristella Matera, Florian Daniel, and Sven Casteleyn. Engineering Web Appli-
cations. Springer, 2009. ISBN 978-3-540-92200-1.

Silke Feldmann, Kyandoghere Kyamakya, Ana Zapater, and Zighuo Lue. An in-
door bluetooth-based positioning system: concept, implementation and exper-
imental evaluation. Institute of Communications Engineering, Hanover, 2003.
http://projekte.l3s.uni-hannover.de/pub/bscw.cgi/d27118/An%20Indoor%
20Bluetooth-based%20positioning%20system%3a%20concept,%20Implementation%
20and%20experimental%20evaluation.pdf (8. Oktober 2009).

R.E. Filman, T. Elrad, S. Clarke, and Prof.dr.ir. M. Aksit. Aspect Oriented Software Devel-
opment. Addison-Wesley, Boston, 2004.

Gunter Fischer, Burkhart Dietrich, and Frank Winkler. Bluetooth indoor localization sys-
tem. Proceedings of the 1st Workshop on Positioning, Navigation and Communication
(WPNC’04), 2004.

FOA. Registration and documentation in home care (danish), 2008. http:
//www.foa.dk/Forbund/Presse/Undersoegelser/Kommune/2008/Dokumentation%20og%
20registrering%20i%20hjemmeplejen.aspx (4. December 2009).

Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002. ISBN 0321127420.

FreeWRT. Documentation/targetsystems, 2009. http://www.freewrt.org/trac/wiki/
Documentation/TargetSystems (13. October 2009).

Stuart A. Golden and Steve S. Bateman. Sensor measurements for wi-fi location with emphasis
on time-of-arrival ranging. IEEE Transactions on Mobile Computing, 6(10), October 2007.

140

http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/07/72&format=HTML&aged=0&language=EN&guiLanguage=fr
http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/07/72&format=HTML&aged=0&language=EN&guiLanguage=fr
http://www.dd-wrt.com/wiki/index.php/WL500G_Premium_v2
http://www.dd-wrt.com/wiki/index.php/WL500G_Premium_v2
http://projekte.l3s.uni-hannover.de/pub/bscw.cgi/d27118/An%20Indoor%20Bluetooth-based%20positioning%20system%3a%20concept,%20Implementation%20and%20experimental%20evaluation.pdf
http://projekte.l3s.uni-hannover.de/pub/bscw.cgi/d27118/An%20Indoor%20Bluetooth-based%20positioning%20system%3a%20concept,%20Implementation%20and%20experimental%20evaluation.pdf
http://projekte.l3s.uni-hannover.de/pub/bscw.cgi/d27118/An%20Indoor%20Bluetooth-based%20positioning%20system%3a%20concept,%20Implementation%20and%20experimental%20evaluation.pdf
http://www.foa.dk/Forbund/Presse/Undersoegelser/Kommune/2008/Dokumentation%20og%20registrering%20i%20hjemmeplejen.aspx
http://www.foa.dk/Forbund/Presse/Undersoegelser/Kommune/2008/Dokumentation%20og%20registrering%20i%20hjemmeplejen.aspx
http://www.foa.dk/Forbund/Presse/Undersoegelser/Kommune/2008/Dokumentation%20og%20registrering%20i%20hjemmeplejen.aspx
http://www.freewrt.org/trac/wiki/Documentation/TargetSystems
http://www.freewrt.org/trac/wiki/Documentation/TargetSystems

BIBLIOGRAPHY

Mike Gunderloy. Getting started with rails, 2009. http://guides.rubyonrails.org/
getting_started.html (13. November 2009).

Marko Helen, Juha Latvala, Hannu Ikonen, and Jarkko Niittylahti. Using calibration
in rssi-base location tracking system, 2009. http://www.cs.tut.fi/sgn/arg/heln/
Publications/CSCC2001_Helen.pdf (2. November 2009).

Rick Hesse. Normal probability plots. 1998.

Matti Hiltunen. Rfid reliability. January 2007.

Keith W. Ross James F. Kurose. Networking: A Top-Down Approach 4th Edition. Addison-
Wesley, 2007. ISBN 9780321497703.

James Kalbach. Designing Web Navigation. O’Reilly, 2007. ISBN 0596528108.

Jesper Kjeldskov, Mikael B. Skov, and Jan Stage. Instant data analysis: Conducting
usability evaluations in a day. http://www.cs.aau.dk/~jesper/pdf/presentations/
NordiCHI-04-Tampere-IDA.pdf (30. November 2009).

Jesper Kjeldskov, Mikael B. Skov, and Jan Stage. Does time heal?: a longitudinal study of
usability. pages 1–10, 2005.

Antti Kotanen, Marko Hännikäinen, Helena Leppäkoski, and Timo D. Hämäläinen. Experi-
ments on local positioning with bluetooth. Proceedings of the International Conference on
Information Technology: Computers and Communications, p.297, April 2003.

Steve Krug. Don’t Make Me Think: A Common Sense Approach to Web Usability, 2nd
Edition. New Riders Press, 2005. ISBN 0321344758.

Craig Larman. Agile and Iterative Development: A Manager’s Guide. Addison Wesley, 2003.
ISBN 0-13-111155-8.

Yiu Cho Lau Lionel M. Ni, Yunhao Liu and Abhishek Patil. Landmarc: Indoor location
sensing using active rfid. Online Document, 2004. www.cs.ust.hk/~liu/Landmarc.pdf.

A. Malekpour, T. C. Ling, and W. C. Lim. Location determination using radio frequency
rssi and deterministic algorithm. Communication Networks and Services Research, Annual
Conference on, 0:488–495, 2008. doi: http://doi.ieeecomputersociety.org/10.1109/CNSR.
2008.32.

Ajay Malik. RTLS For Dummies. Wiley Publishing, Inc., 2009. ISBN 978-0-470-39868-5.

Guoqiang Mao, Brian D. O. Anderson, and Barış Fidan. Path loss exponent estimation
for wireless sensor network localization. Comput. Netw., 51(10):2467–2483, 2007. ISSN
1389-1286. doi: http://dx.doi.org/10.1016/j.comnet.2006.11.007.

mitEDB. mitedb. http://mitedb.dk/shop (1. October 2009).

141

http://guides.rubyonrails.org/getting_started.html
http://guides.rubyonrails.org/getting_started.html
http://www.cs.tut.fi/sgn/arg/heln/Publications/CSCC2001_Helen.pdf
http://www.cs.tut.fi/sgn/arg/heln/Publications/CSCC2001_Helen.pdf
http://www.cs.aau.dk/~jesper/pdf/presentations/NordiCHI-04-Tampere-IDA.pdf
http://www.cs.aau.dk/~jesper/pdf/presentations/NordiCHI-04-Tampere-IDA.pdf
www.cs.ust.hk/~liu/Landmarc.pdf
http://mitedb.dk/shop

BIBLIOGRAPHY

Anders Møller and Michael Schwartzbach. An Introducion to XML and Web Technologies.
Addison-Wesley, 2006. ISBN 9780321269669.

Netcraft. Web server survey archives - netcraft, 2009. http://news.netcraft.com/
archives/web_server_survey.html (3. November 2009).

NetworkWorkingGroup. Optimized link state routing protocol - rfc 3626, 2009. http://www.
ietf.org/rfc/rfc3626.txt (2. November 2009).

Jakob Nielsen. Why you only need to test with 5 users, 2000. http://www.useit.com/
alertbox/20000319.html (30. November 2009).

Oleg. Bluetooth support in oleg’s firmware?, 2009. http://wl500g.info/archive/index.
php/t-5148.html (19. October 2009).

Open-Wrt. Openwrt buildroot - usage and documentation, 2006. http://downloads.
openwrt.org/docs/buildroot-documentation.html (20. October 2009).

OpenPCD-Shop. Openpcd shop. https://shop.openpcd.de (1. October 2009).

OpenWRT. oldwiki:olsrmeshhowto - openwrt wiki, 2009a. http://wiki.openwrt.org/
oldwiki/olsrmeshhowto (26. October 2009).

OpenWRT. Hardware-asus, 2009b. http://oldwiki.openwrt.org/Hardware(2f)Asus.html
(13. October 2009).

Charalampos Papamanthou, Franco P. Preparata, and Roberto Tamassia. Algorithms for
location estimation based on rssi sampling. pages 72–86, 2008. doi: http://dx.doi.org/10.
1007/978-3-540-92862-1_7.

polarcloud. Tomato faq, 2009. http://www.polarcloud.com/tomatofaq#what_will_this_
run_on (13. October 2009).

Jennifer Preece, Yvonne Rogers, and Helen Sharp. Interaction Design, beyond human-
computer interaction. John Wiley & Sons, 2002. ISBN 0-471-49278-7.

Theodore S. Rappaport. Wireless Communications: Principles and Practice (2nd Edition).
Prentice Hall PTR, 2 edition, January 2002. ISBN 0130422320.

Erik T. Ray. Learning XML, 2nd Edition. O’Reilly, 2003. ISBN 0-596-00420-6.

RFID-specialisten. Rfid. http://www.rfid-specialisten.dk (1. October 2009).

Bonnie Rind. The power of the persona, 2007. http://www.pragmaticmarketing.com/
publications/magazine/5/4/vol5iss4.pdf (2. Oktober 2009).

Kay Romer and Friedemann Mattern. The Design Space of Wireless Sensor Networks. Insti-
tute for Pervasive Computing, ETH Zurich, 2004.

142

http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.useit.com/alertbox/20000319.html
http://www.useit.com/alertbox/20000319.html
http://wl500g.info/archive/index.php/t-5148.html
http://wl500g.info/archive/index.php/t-5148.html
http://downloads.openwrt.org/docs/buildroot-documentation.html
http://downloads.openwrt.org/docs/buildroot-documentation.html
https://shop.openpcd.de
http://wiki.openwrt.org/oldwiki/olsrmeshhowto
http://wiki.openwrt.org/oldwiki/olsrmeshhowto
http://oldwiki.openwrt.org/Hardware(2f)Asus.html
http://www.polarcloud.com/tomatofaq#what_will_this_run_on
http://www.polarcloud.com/tomatofaq#what_will_this_run_on
http://www.rfid-specialisten.dk
http://www.pragmaticmarketing.com/publications/magazine/5/4/vol5iss4.pdf
http://www.pragmaticmarketing.com/publications/magazine/5/4/vol5iss4.pdf

BIBLIOGRAPHY

Veronica Falcao Roy Want, Andy Hopper and Jonathan Gibbons. The active badge location
system. Online Document, 1992. www.cs.ust.hk/~liu/Landmarc.pdf.

Wiki RubyOnRails. Authentication and authorization in ruby on rails, 2009. http://wiki.
rubyonrails.org/howtos/authentication-authorization (19. Oktober 2009).

Deborah Rumsey. Statistics for Dummies. Wiley Publishing, Inc., 2003. ISBN 978-
0764554230.

Jeff Sharkey. Coding for life – battery life, that is, May 2009. http://dl.google.com/io/
2009/pres/W_0300_CodingforLife-BatteryLifeThatIs.pdf (1. October 2009).

Mikael B. Skov. Understanding and conceptualizing interaction, 2009. https://intranet.
cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/DIEB/Lektion02.pdf
(25. November 2009).

Ian Sommerville. Software Engineering, Sixth Edition. Addison-Wesley, 2001. ISBN 978-
0201398151.

Tom Stafford and Matt Webb. Mind Hacks: Tips & Tools for Using Your Brain. O’Reilly,
2004. ISBN 0596007795.

John C. Stein. Indoor radio wlan performance, part ii: Range performance in a dense office
environment. Online Document, 2000. http://www.sparcotech.com/WLANs-in-offices.
pdf.

Jeffrey Stylos. Plug-in architectures, 2009. Lecture on Plug-in Architectures, http:
//www.cs.cmu.edu/~bam/uicourse/830fall04/JeffStylosPlug-inArchitectures.ppt
(17. November 2009).

Shashank Tadakamadla. Indoor local positioning system for zigbee, based on rssi. 2006.

Kiran Thapa and Steven Case. An indoor positioning service for bluetooth ad hoc networks.
In MISC 2003: The 36th Annual Midwest Instruction and Computing Symposium, Duluth,
MN, USA, April 2003.

Jonathan Thatcher, Tom Coughlin, Jim Handy, and Neal Ekker. Nand flash solid state storage
for the enterprise, April 2009. Whitepaper from SSI Group http://www.snia.org/forums/
sssi/knowledge/education/SSSI_NAND_Reliability_White_Paper.pdf (30. November
2009).

Dave Thomas, David Hansson, Leon Breedt, Mike Clark, James Duncan Davidson, Justin
Gehtland, and Andreas Schwarz. Agile Web Development with Rails Second Edition. Prag-
matic Bookshelf, 2006. ISBN 0977616630.

Jr. Thomas A. Ryan and Brian L. Joiner. Normal probability plots and tests for normality.
1976.

143

www.cs.ust.hk/~liu/Landmarc.pdf
http://wiki.rubyonrails.org/howtos/authentication-authorization
http://wiki.rubyonrails.org/howtos/authentication-authorization
http://dl.google.com/io/2009/pres/W_0300_CodingforLife-BatteryLifeThatIs.pdf
http://dl.google.com/io/2009/pres/W_0300_CodingforLife-BatteryLifeThatIs.pdf
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/DIEB/Lektion02.pdf
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2009/DIEB/Lektion02.pdf
http://www.sparcotech.com/WLANs-in-offices.pdf
http://www.sparcotech.com/WLANs-in-offices.pdf
http://www.cs.cmu.edu/~bam/uicourse/830fall04/JeffStylosPlug-inArchitectures.ppt
http://www.cs.cmu.edu/~bam/uicourse/830fall04/JeffStylosPlug-inArchitectures.ppt
http://www.snia.org/forums/sssi/knowledge/education/SSSI_NAND_Reliability_White_Paper.pdf
http://www.snia.org/forums/sssi/knowledge/education/SSSI_NAND_Reliability_White_Paper.pdf

BIBLIOGRAPHY

TIOBE-Software. Tiobe programming community index for september 2009, 2009. http:
//www.tiobe.com/index.php/content/paperinfo/tpci/index.html (1. Oktober 2009).

Hans van Vliet. Software Engineering: Principles and Practice. John Wiley & Sons, June
2008. ISBN 978-0-470-03146-9.

Bill Venners. The philosophy of ruby, 2003. http://www.artima.com/intv/ruby4.html (28.
September 2009).

W3C. Why validate?, 2009. http://validator.w3.org/docs/why.html (30. November
2009).

Eric W. Weisstein. Correlation coefficient. http://mathworld.wolfram.com/
CorrelationCoefficient.html (10. December 2009).

Xirrus. High performance wi-fi networks, March 2007. www.xirrus.com/library/pdf/
Xirrus_High_Performance_Wi-Fi_Networks.pdf (1. October 2009).

144

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.artima.com/intv/ruby4.html
http://validator.w3.org/docs/why.html
http://mathworld.wolfram.com/CorrelationCoefficient.html
http://mathworld.wolfram.com/CorrelationCoefficient.html
www.xirrus.com/library/pdf/Xirrus_High_Performance_Wi-Fi_Networks.pdf
www.xirrus.com/library/pdf/Xirrus_High_Performance_Wi-Fi_Networks.pdf

	Introduction
	Learning Goals
	Scenario Without Easy Clocking
	Scenario With Easy Clocking
	Actors
	Report Overview

	Development Method
	Selection of Development Method
	Scrum in Detail
	Employing Scrum

	Requirements
	Functional Requirements
	Non-Functional Requirements

	I Analysis
	Localisation Technologies
	Localisation Concept
	Technologies
	Selection of Technology

	Extensible Architecture using Plug-ins
	Plug-in Methods

	Usability
	Gestalt Theory
	Design Principles
	Conceptual Model
	Interaction Styles

	II Design
	Technical Platform
	Location Sensor
	Web Application
	Overview

	System Architecture
	Communication Protocols
	Location Sensor
	Web Application

	Location Sensor Design
	Clocking Process
	Configuration Consistency Process

	Web Application Design
	Navigation Design
	Data Design
	Workflow Design
	Presentation Design

	III Implementation
	Location Sensor Implementation
	Employee Monitor Loop
	Configuration Consistency Loop

	Web Application Implementation
	Scaffolding
	Authentication and Authorisation
	Conflict Handling

	Testing
	Test Methods
	Automated Acceptance Tests
	Usability Testing
	HTML Validation
	Memory Consumption
	Ranging Technique Test

	IV Conclusion
	Conclusion
	Discussion

	V Appendices
	Appendix Pregame
	Appendix First Sprint
	Appendix Third Sprint
	Appendix Technology Evaluation Criteria
	Appendix Quality Factor Definitions
	Appendix Persona
	Butcher
	Manager
	Easy Clocking consultant

	Appendix Role Models
	Appendix Configuration of a Location Sensor
	Appendix XML Schema and DTD
	Appendix Pitfalls in Using Pure Plug-in Architecture
	Appendix RSSI Frequency
	Appendix Usability Test Plan

	Bibliography

