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Abstract— In a mobile service scenario, users query a server
for nearby points of interest but they may not want to disclose
their locations to the service. Intuitively, location privacy may be
obtained at the cost of query performance and query accuracy.
The challenge addressed is how to obtain the best possible per-
formance, subjected to given requirements for location privacy
and query accuracy. Existing privacy solutions that use spatial
cloaking employ complex server query processing techniques and
entail the transmission of large quantities of intermediate result.
Solutions that use transformation-based matching generally fall
short in offering competitive query processing costs when faced
with query accuracy guarantees. Our proposed framework, called
SpaceTwist, rectifies these shortcomings for k nearest neighbor
(kNN) queries. Starting with a location different from the user’s
actual location, nearest neighbors are retrieved incrementally
until the query is answered correctly by the mobile terminal.
This approach is flexible, needs no trusted middleware, and
requires only well-known incremental NN query processing on
the server. The framework also includes a server-side granular
search technique that exploits relaxed query accuracy guarantees
for obtaining better performance. The paper reports on empirical
studies that elicit key properties of SpaceTwist and suggest that
the framework offers very good performance and high privacy,
at low communication cost.

I. INTRODUCTION

The emerging mobile Internet will offer services that re-
trieve the locations and other information pertaining to so-
called points-of-interest (POIs), e.g., stores, restaurants, and
tourist attractions. Such services will rely on the k nearest
neighbor (kNN) query [1], [2] that retrieves the k POIs closest
to a user’s location q. Figure 1a shows an example with 6
POIs pi, maintained by a central server, and a user location
q. To retrieve (information about) the nearest POI, the user
sends location q to the server, in response to which the server
identifies and returns p1.

As a complication to this scenario, users may wish to
not disclose their (exact) locations to the server. Existing
approaches to preserving location privacy can be classified as
using either spatial cloaking and transformation-based match-
ing. Spatial cloaking techniques [3]–[9] enlarge an exact user
location q into a cloaked region Q′ so that it is impossible to
reconstruct q from the region Q′ at the server. To ensure that
an accurate query result can be computed, the server computes
a candidate set that includes the nearest POI for any location
in Q′. This result may then subsequently be refined by the
user’s trusted mobile client.

The case where Q′ is a rectangle [3], [4] is exemplified in
Figure 1a. Here, the server reports the POIs p1, . . . , p6. All
POIs inside Q′ must be reported since the user can be at any
location in Q′. As the server maintains a large number of POIs,
the processing of a cloaked query may incur high processing
and communication costs. In addition, the server must include
support for the specialized processing techniques needed to
process cloaked queries.
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(a) spatial cloaking (b) transformation-based matching
Fig. 1. Existing Location Privacy Solutions

With transformation-based matching [10], [11], the query is
evaluated in a transformed space, in which the points and/or
distances between points are encoded. A key drawback is that
query results may not always be accurate. One approach [11]
defines a specific Hilbert ordering with a key H, whose value
is known only by the client and a trusted entity. Not having
the key value, the server cannot decode a Hilbert value into a
point. In preparation for querying, the trusted entity transforms
each POI pi into Hilbert value H(pi) and uploads it to the
server. In Figure 1b, the Hilbert value of each cell is shown
in the top-left corner of the cell. At query time, the client q
submits its Hilbert value H(q)=2 to the server. The server then
reports the closest Hilbert value H(p2)=10 of H(q), which is
eventually decoded by the client into point p2.

This paper presents a framework, called SpaceTwist, that
aims to improve on the above approaches. POIs are retrieved
from the server incrementally [2]. The process starts with
an anchor, a location different from that of the user, and it
proceeds until an accurate query result can be reported. This
approach is capable of offering location privacy, as we will
see in Section III. The approach differs fundamentally from
previous approaches: unlike in spatial cloaking, no cloaked
region is applied, and unlike in transformation-based matching,



the query is evaluated in the original space.
In addition, our approach requires only simple query pro-

cessing on the server—namely incremental nearest neighbor
(INN) retrieval, which has been studied extensively [2] and
readily implemented on existing servers. In contrast, spatial
cloaking and transformation-based matching approaches re-
quire specialized query processing algorithms.

The framework also includes a granular search technique
that aims to exploit a tolerance for relaxing the accuracy
of query results, but with guaranteed accuracy bounds, for
reducing the communication cost and server load. However,
existing transformation-based matching solutions fall short in
offering accuracy guarantees, and spatial cloaking solutions
may incur high costs.

The paper’s contributions are as follows.
• A client-side query processing technique that retrieves

POIs from the server incrementally, supports location
privacy, and reuses existing server-side functionality.

• A study of the privacy afforded by this technique.
• A server-side granular search technique that is able to

exploit relaxed query accuracies (with guarantees) for
reducing the communication cost and server load.

• Empirical studies that suggest that the proposed tech-
niques are highly performant.

Section II reviews the related work. Section III presents the
query processing technique and analyzes its privacy protec-
tion. Section IV then covers the granular search technique.
Section V discusses the configuration of parameter values
in the SpaceTwist framework. Section VI covers the results
of extensive studies of the proposed techniques. Section VII
contains further discussion of our privacy model. Finally,
Section VIII concludes and identifies research directions.

II. RELATED WORK

We review existing location privacy protection techniques,
which use either spatial cloaking or transformation-based
matching.

A. Spatial Cloaking

With cloaking, the user location q is enlarged into a cloaked
region Q′ that is then used for querying the server [3]–[9],
[12]. This way, q is hidden in Q′. The existing cloaking
solutions differ with respect to (i) the representation of Q′, (ii)
the architecture for cloaking, and (iii) the query processing.

Cloaked Region Representation Cloaked regions come
in two forms: they are either plain, connected regions (e.g.,
rectangles) or they are discrete and posses “multiple parts”
(e.g., sets of point locations).

Thus, some work [3]–[5], [8] represents the cloaked region
Q′ by a K-anonymous [13] rectangle, which contains the
query location q and at least K − 1 other user locations.
Figure 2a illustrates a 4-anonymous region Q′, where u1,
u2, and u3 are (4 − 1) user locations. Other work [4], [14],
[15] uses circular cloaked regions. The study of Ardagna et
al. [15] takes location positioning inaccuracy into account,
models the user location as a circular region, and develops
several geometric operators for deriving cloaked regions.
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Fig. 2. Example Cloaked Regions

The cloaked region has also been represented by a point set
containing q and a number of dummy locations (generated by
the client) [7]. In Figure 2b, q1, q2, q3 are dummy locations,
and the cloaked region is Q′ = {q, q1, q2, q3}. In another
approach, the possible locations are restricted to be vertices
in a graph (e.g., a road network), and the cloaked region (or
“obfuscation”) is represented by a set of vertices [9], [16]. The
cloaked region Q′ in Figure 2c is the set of gray vertices, one
of them being q. The approaches that represent Q′ as a set
quantify the privacy of Q′ by its cardinality.

Cloaking Architecture A simple approach to construct
a cloaked region is to do so at the client [7], [9], [16].
However, client-based cloaking does not support the use of
K-anonymous regions. This requires knowing the locations
of other users, which may be achieved by introducing a
trusted, third party, location anonymizer [3], [4] that knows
the locations of a population of users.

Given a user location q, the anonymizer is capable of
computing a plain cloaked region Q′ (e.g., a rectangle or
circle) that contains q and at least K − 1 other user locations.
However, the location anonymizer becomes a performance
bottleneck and may also be vulnerable to malicious attack.
Some users may not trust the anonymizer.

A K-anonymous region can also be derived through peer-
to-peer communication [8], [17], [18]. Users close together
form a group and set their cloaked region as a rectangle
containing them all. The drawback is that group formation
and maintenance incur communication overhead and latency.

Server Side Query Processing A discrete cloaked region
query may be processed by processing each point in the query
in turn, returning the union of results [7], [9], [16]. In this
setting, a negotiation protocol for trading between privacy and
result accuracy has also been proposed [9], [16].

The processing of plain cloaked regions is more complex.
Specialized (server-side) algorithms have been proposed for
identifying a candidate set that includes the NN for any
location in a cloaked region [3], [4]. These algorithms go
beyond well-known point NN algorithms [1], [2] and introduce
complexity. In addition, this approach is prone to high server-
side processing costs and communication cost for large num-
bers of POIs. This restricts the applicability of plain cloaked
regions.

Summary Cloaking solutions incur expensive processing
and communication cost for large number of POIs. When using
plain cloaked regions, specialized query processing algorithms
are needed, which may not be present in the available LBS



servers. Next, discrete cloaked regions lack concise representa-
tions, so sending these to the server incurs high communication
costs. To avoid the above shortcomings, our proposal avoids
the use of cloaked regions.

B. Transformation-Based Matching

Recently, transformation-based matching techniques [10],
[11] have been proposed to enable location privacy. However,
these do not offer query accuracy guarantees.

A theoretical study on a client-server protocol for deriving
the nearest neighbor of q has recently been reported [10]. Its
communication cost is asymptotic to

√
N , where N is the

number of POIs. No experimental evaluation of the communi-
cation cost and result accuracy of the protocol with real data
is available.

Another study defines a specific Hilbert ordering based on
a key H, whose value is known by only the client and a
trusted entity [11]. It is shown that without the key value,
it is impossible to decode a Hilbert value into a location
correctly. However, as exemplified in Section I, a Hilbert curve
does not completely preserve spatial proximity, so the reported
result can be far from q. To improve the accuracy, the use
of two keys H and H′ with orthogonal Hilbert curves has
been considered [11]. In Figure 1b, the numbers in the top-
left corners and bottom-right corners of the cells represent
the Hilbert values H(pi) and H′(pi) respectively, for point(s)
pi inside the cells. At query time, the user sends the values
H(q) = 2 and H′(q) = 13 to the server, which reports
the corresponding closest Hilbert values H(p2) = 10 and
H′(p1) = 11. The client subsequently decodes the received
Hilbert values into points and selects the closer point (i.e., p1)
to be its NN.

III. SPACETWIST: INCREMENTAL PROCESSING

We propose an algorithm that computes exact kNN query
results in incremental fashion and affords the user location
privacy. We assume only a simple client-server architecture,
and we assume that the server indexes the dataset P (of POIs)
by an R-tree [19] and supports incremental nearest neighbor
retrieval [2]. This way, our solution can be readily applied
to existing LBS servers. In particular, we only consider the
snapshot kNN query [3], [4] and leave continuous query [20]
for future work.

Following an overview in Section III-A, Section III-B
describes the client-side algorithm, and Section III-C analyzes
the location privacy achieved.

A. Overview

Figure 3 offers an overview of our technique. The client
specifies an anchor (a “fake” location) and iteratively requests
POIs from the server in ascending distance order [2] from
the anchor. The supply space centered at the anchor is the
part of space already explored. The demand space denotes
the space to be covered before the client is guaranteed to be
able to produce an accurate result. The client knows both the
demand space and the supply space, whereas the server knows

only the supply space. In the beginning (see Figure 3a), the
demand space is set to the domain space, and the supply space
is empty. As points are retrieved from the server, the supply
space expands. When a retrieved point p is the closest point to
the client seen so far, the results are updated, and the demand
space shrinks. When the supply space eventually covers the
demand space (see Figure 3b), it is termed final and the client
is guaranteed to produce an accurate result.
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(a) the beginning (b) the end
Fig. 3. Demand Space and Supply Space

Considering the communication cost of the above technique,
the major data flow is that consisting of data points being
sent from the server to the client. We assume that such data
points are transmitted through TCP/IP packets. In a naive
solution, each time the server retrieves a data point p, a
packet containing p is sent to the client. This yields a high
communication cost as the capacity of the packets is utilized
poorly. In practice, the server accumulates multiple points,
packs them into the same packet, and sends the packet to the
client. System parameter β denotes the number of points that
fit in a packet. Its value will be discussed in Section VI. We
measure the communication cost of our solution as the total
number of packets received by the client.

B. The SpaceTwist Client Algorithm

We proceed to present the client-side algorithm for accurate
kNN retrieval. We use the notation dist(q, p) to denote the
Euclidean distance between two points q and p.

The client (i.e., user) executes Algorithm 1 to obtain its
k nearest objects from the server (i.e., query processor). The
anchor location q′ is first sent to the server. However, the user
location q is known only by the client. Intuitively, if q and q′

are close then few objects are retrieved (i.e., low cost) but
less location privacy is achieved. Guidelines for selecting an
appropriate q′ are discussed in Section V.

A max-heap Wk, initialized with k dummy objects, main-
tains the k nearest objects (of q) seen so far. Let γ be the
maximum distance in Wk. The demand space is then the circle
with radius γ and center q. Let τ be the largest distance to q′

of any object examined so far. The supply space is then the
circle with radius τ and center q′. Next, the server is requested
to return incremental nearest neighbors (INNs) [2] of q′.

In Line 7, the client retrieves the next packet of INNs (of
q′) from the server. For each retrieved point p, τ is updated to
dist(q′, p). Next, we check whether dist(q, p) is less than γ
(i.e., whether q is closer to p than some object in Wk). If so,



Algorithm 1 Space Twist Client (for kNN query)
algorithm SpaceTwistClient(Value k, Point q, Point q′)
system parameter: packet capacity β

1: Wk ← new max-heap of pairs 〈p, dist(q, p)〉;
2: insert k pairs of 〈NULL,∞〉 into Wk;
3: γ ← the top distance of Wk; . kth best distance from q
4: τ ← 0; . furthest distance seen from q′

5: send an INN query with q′ to the server;
6: while γ + dist(q, q′) > τ do
7: S ← get the next packet of points from the server;
8: for all p ∈ S do
9: τ ← dist(q′, p); . update supply space

10: if dist(q, p) < γ then . check demand space
11: update Wk (and γ) by using p;
12: terminate the INN query at the server;
13: return Wk;

then Wk and γ are updated. According to Lemma 1, the loop
continues as long as γ + dist(q, q′) > τ . Finally, the client
returns the result set Wk after terminating the INN query at
the server.

Lemma 1: If γ +dist(q, q′) ≤ τ then the actual kth nearest
object (say, p?) of q has been retrieved.

Proof: Since p? has an upper bound distance of γ from q,
its upper bound distance from q′ is γ+dist(q, q′), according to
the triangular inequality. Based on the property of incremental
nearest neighbor retrieval [2], all objects within distance τ
from q′ have been seen. Thus, we conclude that p? has already
been retrieved.

Example Figure 4 exemplifies the algorithm, for the case
k=1 and β=1. When we discover point p1 (see Figure 4a), we
set the best result to p1 and define the demand space (light gray
area) around q as well as the supply space (dark gray area)
around q′. Next, in Figure 4b, point p2 is discovered and the
supply space expands. Since q is closer to p2 than the previous
result (i.e., p1), the best result is updated to p2 and the demand
space shrinks. Then point p3 is retrieved (see Figure 4c) and
the supply space grows. As the supply space encloses the
demand space, the algorithm terminates and returns p2 as the
nearest neighbor of q.
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Fig. 4. Query Processing Example

We observe that, based on the given parameters k, q, and q′,
the algorithm computes the exact result and terminates without
requesting unnecessary packets from the server, due to the
correctness of Lemma 1.

C. Privacy Analysis

This section studies how an adversary is able to infer the
possible locations of the user. We assume that the adversary
knows only: (i) the anchor q′ and the value k, (ii) reported
points from the server, and (iii) termination condition of
Algorithm 1. As we assume a simple client-server architecture,
the concept of K-anonymity [3], [13] is inapplicable.

In the following, we denote a possible user location by qc,
in order to distinguish it from the actual user location q. Let
m be the number of packets received by the client and let the
points received (in their retrieval order) be p1, p2, · · · , pmβ .
Since the algorithm did not terminate at the final point of the
penultimate packet received, we have:

dist(qc, q
′) +

k
min

1≤i≤(m−1)β
dist(qc, pi) > dist(q′, p(m−1)β)

(1)
where the middle term represents the kth smallest distance of
the input arguments.

Due to the packet capacity β, the adversary does not know
the specific data point (in the last packet) leading the algorithm
to terminate. Thus, the adversary only deduces:

dist(qc, q
′) +

k
min

1≤i≤mβ
dist(qc, pi) ≤ dist(q′, pmβ) (2)

Clearly, a possible user location qc must satisfy both inequal-
ities above. We define the inferred privacy region Ψ as the
set of all possible locations qc. Intuitively, the privacy value
is quantified as the average distance of a location in Ψ from
the user’s actual location q:

Γ(q, Ψ) =

∫
z∈Ψ

dist(z, q) dz∫
z∈Ψ

dz
(3)

While region Ψ can be inferred by both the user and the
adversary, only the user can derive the privacy value Γ(q, Ψ).

Since Ψ does not have closed-form expression in general,
its derivation is non-trivial. The Monte Carlo method can be
used for approximating Ψ, by randomly generating candidate
locations for qc and checking them against inequalities 1 and 2.

Exact Privacy Region Derivation Fortunately, we have
discovered a closed-form expression for Ψ for the case k = 1.
For each retrieved point pi, we can derive Vor(pi), its Voronoi
cell [21] with respect to all retrieved points. Observe that pi

is the NN of any location qc inside Vor(pi). Furthermore,
the possible location of qc is constrained by the termination
condition of the algorithm. Figure 5a depicts the final supply
space as the circle with radius dist(q′, pmβ) and center at the
anchor q′. Termination occurs when the supply space covers
the demand space:

dist(qc, q
′) + dist(qc, pi) ≤ dist(q′, pmβ) (4)

The set of locations satisfying this inequality can be ex-
pressed as an elliptical region F (q′, pi, pmβ) (shown in gray
in Figure 5a) with foci q′ and pi, where any point on the
border has its sum of distances to the foci being equal to
dist(q′, pmβ).
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Fig. 5. Inferring a Privacy Region

Similarly, we obtain F (q′, pi, p(m−1)β), the elliptical region
with pmβ replaced by p(m−1)β . Since the algorithm did not
terminate at point p(m−1)β , we exclude F (q′, pi, p(m−1)β)
from the possible region, as shown in Figure 5b.

Combining the above with the Voronoi cell Vor(pi), the
inferred privacy region is given by:

Ψ =
mβ⋃
i=1

V or(pi) ∩ (F (q′, pi, pmβ)− F (q′, pi, p(m−1)β))

Visualization of Ψ We apply the above derivation on a
dataset in order to visualize the inferred privacy region Ψ.
Figure 6 depicts the actual user location q, the anchor q′, the
retrieved points, and the region Ψ.

Figure 6a illustrates the inferred privacy region Ψ for the
case β = 4. Observe that Ψ is approximately a ring centered
at q′, with the distance dist(q, q′) to q′. As we will see in the
experimental section, the privacy value Γ(q, Ψ) obtained from
Equation 3 is at least the anchor distance dist(q, q′).

Seen pointsUser q Anchor q' ψ  

  

(a) packet capacity β = 4 (b) coarser granularity

Fig. 6. Inferred Privacy Regions, k = 1

It is worth noticing that even when dist(q, q′) is fixed,
the privacy value can be improved by performing the search
at a lower data density, as illustrated in Figure 6b. The
next section develops a search technique that supports user-
specified granularities.

IV. GRANULAR SEARCH

We develop a server-based granular search technique that
is capable of retrieving data points from the server with a
user-specified granularity. This technique enables communi-
cation cost reduction and location privacy improvement while
providing strict guarantees on the accuracies of the query

results. Section IV-A describes granular search for k = 1;
its implementation is covered in Section IV-B. Section IV-C
extends granular search to arbitrary values of k.

A. Basic Granular NN Search

Recall that the client-side algorithm requests POIs from the
server in ascending order of their distance to anchor q′. For the
example in Figure 7a, the server returns points in the order:
p1, p2, p3, p4. Although p4 is the actual NN of q, it cannot be
obtained early by the client.
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Fig. 7. Granular Search

The communication cost can be reduced by returning only a
sample of the reported POIs. A threshold ε is then introduced
for controlling the result accuracy:

Definition 1: Given a point set P , a distance threshold ε,
and a location q, a point p ∈ P is said to be an ε-relaxed kNN
of q when dist(q, p) ≤ ε+mink

p′∈P dist(q, p′), where the last
term represents the kth NN distance to q in P .

The idea behind granular search is to impose a grid on
the domain space, as shown in Figure 7b. The server then
iteratively retrieves incremental nearest neighbors of anchor
q′, except that it disregards points in a grid cell from which
a point has already been reported. To ensure that the query
result is an ε-relaxed NN of q, it suffices to set the cell extent
λ to ε/

√
2:

Lemma 2: Consider a regular grid with cell extent of λ. Let
p? be the actual NN of q and p′ be the retrieved NN of q. It
holds that dist(q, p′) ≤ dist(q, p?) +

√
2 · λ.

Proof: In case p? has been retrieved, the inequality holds
trivially (by setting p′ to p?).

Otherwise, p? has not been retrieved. Thus, a point p′′

in the cell of p? must have been retrieved. The maximum
possible distance between p and p′′ is the diagonal length of
the cell, i.e.,

√
2 ·λ. From the triangular inequality, we obtain

dist(q, p′′) ≤ dist(q, p?)+dist(p?, p
′′) ≤ dist(q, p?)+

√
2 ·λ.

Since p′ is the retrieved NN of q, we have dist(q, p′) ≤
dist(q, p′′), completing the proof.

Continuing with the example in Figure 7b, the server first
sends point p1 to the client. Since p2 and p3 fall in the cell of
p1, they are disregarded. Finally, p4 is reported to the client.
In this example, the communication cost drops from 4 POIs
to 2 POIs.

B. Implementation of Granular Search

We proceed to consider the implementation of the above
method. If the error bound ε is given in advance, then it is



possible to pre-select a data point from each (non-empty) cell
and index those points by another (small) R-tree, which is then
used at query time. This pre-computation approach becomes
impractical when different users use different values for ε and
may choose these values at run time.

In the context of data streams, efficient main-memory data
structures for maintaining relaxed results for NN queries with
fixed error bounds have been proposed [22]. We are unable to
use these because (i) we deal with large, disk-based point sets,
and (ii) they require the error bound to be known in advance.

Algorithm 2 shows our granular incremental NN algorithm,
which takes the user-specified error bound ε as input. A
conceptual grid with cell extent λ (= ε/

√
2) is imposed on

the returned points during runtime. The algorithm also takes
an R-tree R (the data points) and an anchor q′ as arguments.
The notation mindist(q′, e) (maxdist(q′, e)) represents the
minimum (maximum) possible distance between q′ and an R-
tree entry e [1], [2]. Next, Cλ(p) denotes the cell containing
point p.

The algorithm applies INN search [2] around anchor q′,
with two modifications: (i) a set V is employed (Line 3) for
tracking the grid cells of the reported points (Line 12), and
(ii) only qualifying entries that are not covered by the union
of cells in V are further processed (Line 9).

Algorithm 2 Granular Incremental NN
algorithm GranularINN(R-Tree R, Point q′, Value ε)

1: λ← ε/
√

2;
2: H ← new min-heap (mindist to q′ as key);
3: V ← new set; . cells of reported points
4: for all entries e ∈ R.root do
5: insert 〈e,mindist(q′, e)〉 into H;
6: while H is not empty do
7: deheap 〈e,mindist(q′, e)〉 from H;
8: remove each cell c from V satisfying

maxdist(q′, c) < mindist(q′, e);
9: if e is not covered by the union of cells in V then

10: if e is a point p then
11: report p to the client;
12: V ← V ∪ {Cλ(p)};
13: else
14: read the child node CN ′ pointed to by e;
15: for all entries e′ ∈ CN ′ do
16: insert 〈e′,mindist(q′, e′)〉 into H;

Memory Usage Optimization The memory usage of the
algorithm can be reduced, as some cells c ∈ V can be removed
early without affecting the correctness. The basic idea is that
if c does not intersect any entry in heap H , it can be removed
safely from V . However, this checking is computationally
expensive, requiring search of all of H .

We thus propose a lazy approach for eliminating unnec-
essary cells from V . The min-heap has the property that
any entry/point discovered later will be at least the last
deheaped distance mindist(q′, e) away from q′ [2]. Therefore,

if a cell c has a distance maxdist(q′, c) that is smaller
than the deheaped distance mindist(q′, e), c cannot intersect
with points/entries found in the future. The condition is easy
to check as mindist(q′, e) is already known. In the above
algorithm, this checking is implemented in Line 8 in order to
eliminate unnecessary cells from V and reduce the memory
usage.

Example Figure 8b illustrates the use of granular NN search
on the example in Figure 8a. The root node of R-tree contains
the three entries e1, e2, e3, each of which points to a leaf
node. Each cell is marked by a bold label ci. The algorithm
first examines the root the R-tree and inserts entries e1, e2, e3

into heap H . Next, e1 is deheaped and its child entries p1,
p2, p3 are inserted into H . Then, p1 is found and reported,
and its corresponding cell c3 is added to V . Next, p2 is found
and reported, and its cell c1 is inserted into V . When point p3

is deheaped, it is discarded because it falls in a cell (i.e., c1)
in V . Similarly, entry e2 is discarded, as it is covered by the
union of cells c1 and c3 in V . After that, e3 is deheaped and
its child entries p6, p7 are inserted into H . Cell c1 (and c3)
is removed from V , as it cannot intersect any point or entry
encountered in the future. The algorithm continues until H
becomes empty or it is terminated by the client.
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Operation Heap H Cell list V
Expand root e1, e2, e3 ∅
Expand e1 p1, p2, p3, e2, e3 ∅
Report p1 p2, p3, e2, e3 c3

Report p2 p3, e2, e3 c3, c1

Discard p3 e2, e3 c3, c1

Discard e2 e3 c3, c1

Expand e3 p6, p7 ∅
Report p6 p7 c6

Discard p7 ∅ c6

(a) locations of points (b) execution steps
Fig. 8. Granular INN Example

C. Granular kNN Search

We observe that Lemma 2 is applicable to kNN search as
well. The basic idea is to keep k points in each cell and discard
any other points in the cell. To accomplish this, Algorithm 2 is
modified as follows. First, each cell c ∈ V is associated with
a counter cnt(c). Second, in Line 12, we check whether the
cell Cλ(p) already exists in V . If so, we increment its counter;
otherwise, we insert the cell (with counter value 1) into V .
Third, in Line 9, we only consider the cells with a counter
value of k.

V. PARAMETER SELECTION

This section presents detailed guidelines for the user to set
the parameters in our algorithms: (i) the error bound ε, and
(ii) the anchor q′.

It is natural to set the error bound ε = vmax · ∆tmax,
according to the maximum speed vmax of the user and the
maximum time delay ∆tmax acceptable by the user. For



instance, a typical value for ∆tmax may be 5 minutes and the
value of vmax depends on the user’s transportation method
(e.g., walking, cycling, driving).

Next, the first step in choosing an appropriate anchor q′ is
to decide on an anchor distance dist(q, q′). In a second step,
the anchor q′ is set to a random location at distance dist(q, q′)
from q.

A simple guideline for the first step is based on the privacy
requirement of the user—the privacy value Γ is at least
dist(q, q′), as we will see in the experimental section.

An alternative guideline is based on the budget for the
communication cost. Assume that N data points (on the
server) are distributed uniformly in the square 2D space with
extent U . Recall from Section IV that, the extent of a grid
cell equals λ = ε/

√
2 and at most k points are returned from

each grid cell. Thus, the maximum number of points received
by the client is at most Nε = min{N, 2k · (U/ε)2}. The kNN
distance RkNN is then estimated as [23]:

RkNN = U ·
√

k

π ·Nε
(5)

As shown in Figure 3b, the demand space (supply space) is
a circular region centered at query point q (anchor q′). Assume
that the client applies the algorithm in Section III-B with the
default termination condition. Let m be the number of packets
retrieved from the server and β be packet capacity. In this
case, the final demand space covers k points and its radius
is estimated as RkNN. The final supply space contains mβ
points and its radius is estimated as RkNN+dist(q, q′). Under
a uniform data distribution, both the demand space and the
supply space have the same density of points, and thus we
have:

dist(q, q′) =
U√

π ·Nε

· (
√

mβ −
√

k) (6)

VI. EMPIRICAL EVALUATION

In this section, we denote our solution by GST (Gran-
ular SpaceTwist) to emphasize that both the client-side al-
gorithm and the server-side granular search algorithm are
used. We compare with the transformation-based approach in
Section VI-A and the spatial cloaking approach in Section VI-
B. Section VI-C studies the performance of GST with respect
to various parameters.

The studies utilize (randomly generated) uniform (UI)
datasets and two real datasets: SC1 (Schools) with 172,188
points, and TG2 (Tiger Census Blocks) with 556,696 points.
The coordinates of points in each dataset are normalized to
the square 2D space with extent 10,000 meters. At the server,
each dataset is indexed by an R-tree with a 1K byte page
size. Table I summarizes the parameters (with default values
in bold) used in the experiments. In each experiment, we use a
workload with 100 uniformly random generated query points
and measure the average value of the following performance
metrics:

1U.S. Board on Geographic Names, http://geonames.usgs.gov/
index.html.

2R-tree portal, http://www.rtreeportal.org/.

• Communication cost, in numbers of TCP/IP packets3.
• Measured result error, defined as the result kNN distance

minus the actual kNN distance.
• Privacy value of the inferred privacy region (Equation 3).

Parameter Values
Error bound (meter), ε 0, 50, 100, 200, 500, 1000

Anchor distance (meter), dist(q, q′) 50, 100, 200, 500, 1000
Number of required results, k 1, 2, 4, 8, 16

Data size (million), N 0.1, 0.2, 0.5, 1, 2

TABLE I
PARAMETER VALUES

A. Comparing with Transformation-Based Matching

We compare with the following solutions: (i) SHB [11],
which finds k nearest neighbors along a Hilbert curve, (ii)
DHB [11], which performs search along two orthogonal
Hilbert curves. As in the literature [11], the level of the
Hilbert curve used is fixed to 12 for both SHB and DHB.
The previous theoretical transformation-based study [10] does
not cover implementation details and is not tested here.

Table II compares the result error of SHB, DHB, and GST
for different values of k. For uniform data (UI), the Hilbert
transformation approach (SHB and DHB) is quite accurate.
Since DHB employs two Hilbert curves, it is more accurate
than SHB. The accuracy of GST remains acceptable, being
much better than the specified error bound (ε = 200).

UI, N=0.5M SC TG
k SHB DHB GST SHB DHB GST SHB DHB GST
1 7.1 2.2 51.3 1269.3 753.7 2.5 1013.9 405.8 16.1
2 9.3 4.0 49.0 1634.3 736.2 2.6 1154.6 548.7 16.7
4 13.2 6.0 47.6 1878.5 810.9 2.6 1182.3 596.5 17.0
8 19.0 7.3 42.0 2075.6 864.5 2.6 1196.2 599.7 16.3

16 27.0 10.3 36.3 2039.6 985.7 2.6 1199.6 603.2 14.5

TABLE II
RESULT ERROR VERSUS k

For the real-world datasets (SC and TG), both SHB and
DHB compute results with poor accuracy because the Hilbert
curve does not completely preserve spatial proximity. In con-
trast, GST benefits from the skew in the data to achieve the
best accuracies. This is so because data points in the same
grid cell (as illustrated in Figure 7b) are likely to fall in the
same cluster and the distances between them are significantly
lower than the worst case distance bound (i.e., the diagonal
grid cell distance). GST is more accurate on SC than on TG
because SC is more skewed.

Regarding the communication cost, DHB has to transfer 2·k
Hilbert values (which fit in a single packet for k from 1 to
16) from the server to the client, across all data distributions.

3The packet capacity β is set to (576-40)/8=67, since a 2D data point takes
8 bytes, a packet has a 40-byte header, and the typical value of a Maximum
Transmission Unit (MTU) over a network is 576 bytes.



As we will see in Section VI-C, GST has comparable com-
munication cost for k from 1 to 16. On the SC (TG) dataset,
GST additionally incurs as few as 1 (3) packet(s) for much
more accurate results than those obtained by DHB. On the UI
dataset, the total communication cost of GST is bounded by
5 packets.

In summary, GST is robust and achieves stable result errors
across different data distributions. Since the accuracies of SHB
and DHB are unacceptable for the real-world data, we exclude
them from subsequent experiments.

B. Comparing with Spatial Cloaking

Having confirmed the high result accuracy of GST, we
continue to compare GST with the spatial cloaking approach.
In keeping with the simple client-server architecture (assumed
in our problem setting), we focus on client-based cloaking
techniques and disregard techniques that require trusted third-
party components or peer-to-peer functionality. For compari-
son purposes, we implement a prototype cloaking technique,
called CLK, that generates the cloaked region as a (randomly
generated) square region that contains the exact user location
q. The region has an extent of 2 · dist(q, q′), making its span
comparable to the inferred privacy region of GST. The query
processing algorithm of [4] is applied on the server to evaluate
the cloaked query.

Table IIIa shows the communication cost as a function of
dist(q, q′), for the two real datasets. As we will see in the next
subsection, the value dist(q, q′) roughly reflects the privacy
value. At high dist(q, q′) values, GST incurs much lower
communication costs than CLK does. In other words, GST
affords high privacy at low communication cost.

SC TG
dist(q, q′) CLK GST CLK GST

50 1.3 1.0 1.9 1.0
100 2.0 1.0 4.6 1.0
200 6.2 1.0 15.0 1.0
500 33.5 1.1 72.8 1.3
1000 107.0 1.4 282.0 2.6

N UI
(million) CLK GST

0.1 3.0 1.0
0.2 5.1 1.0
0.5 12.2 1.0
1 23.9 1.0
2 47.5 1.0

(a) vs. dist(q, q′), on real datasets (b) vs. N , on UI datasets

TABLE III
IMPACT ON COMMUNICATION COST

Table IIIb compares the communication cost with respect
to the data size N using the synthetic UI datasets. Due to the
granular search, the cost of GST is independent of N , while
the cost of CLK is proportional to the data size.

In terms of result accuracy, CLK always provides exact
results (i.e., ε = 0). The result accuracy of GST is guaranteed
by a user-specified error bound ε. In addition, experimental
results in Section VI-C suggest that the measured result error
of GST is significantly lower than ε and acceptably low for a
wide range of ε values.

From the above experiments, we conclude that CLK does
not scale well with the data size and the extent of the cloaked
region. Thus, we focus on GST in the sequel.

C. Performance Properties of GST

We proceed to investigate the scalability of GST with
respect to different parameters, using the two real datasets as
well as a synthetic UI dataset of 500,000 points.

Figure 9 depicts the performance of GST when varying the
error bound ε. As a reference for comparison, the curve for
the anchor distance dist(q, q′) is included in Figure 9c. As ε
increases, each grid cell has a larger extent, and fewer points
are retrieved, which yields a lower communication cost. But
the result error and the privacy value also increase. Since real
datasets are skewed, the average error is much smaller than
the specified error bound ε. At ε = 0, granular search is not
applied, and exact results are reported. Even for this case, the
communication cost and privacy value are both acceptable.

Observe that GST indeed achieves both low communication
cost and low result error for a broad range of ε values
(between 50 and 500). At ε = 50, the communication cost
is only slightly more than two packets. For the other end (i.e.,
ε = 500), the measured error is acceptably low and stays
within 25% of the bound ε.

Figure 10 shows the performance of GST as a function of
the anchor distance dist(q, q′). The communication cost and
result error increase when dist(q, q′) increases. However, even
for large dist(q, q′), the communication cost and result error
are quite low. Note also that the location privacy afforded the
GST is very good, as the privacy value is several times greater
than the anchor distance dist(q, q′). It is worth noticing that
the more the skew, the lower the result error and the higher
the privacy value become.

Figure 11 shows the performance of GST with respect to
the number of required results k. The communication cost
is directly proportional to k, but it remains low for typical
values of k. The result error is fairly insensitive to k, but
benefits from skew in the data. When k increases, the kNN
distance (the middle term in Equation 2) increases much faster
than the final supply space radius (the rightmost term). Thus,
the inferred privacy region Ψ becomes smaller and the privacy
value decreases. Nevertheless, for high values of k, the privacy
value is still much larger than the specified anchor distance.

Finally, we study the performance of GST with respect to
the dataset size N using synthetic UI datasets. Figure 12 plots
the results. Since the error bound ε is fixed, the communication
cost, result error, and privacy are insensitive to N . Thus, GST
scales well with the dataset size.

VII. DISCUSSION OF OUR PRIVACY MODEL

Comparison with K-anonymity Location K-
anonymity [3], [13] is an oft-used model for specifying
the location privacy required by a user. A K-anonymous
region (say, Q′) is safe in the sense that the user’s location
q cannot be distinguished from those of K − 1 other users
in Q′, even if the adversary is able to somehow determine
the exact locations of all users. However, current works on
location K-anonymity require either a location anonymizer
[3], [4] or peer users [8], [17], [18].
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Fig. 9. Performance Vs. Error Bound ε, dist(q, q′) = 200, k = 1
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However, even with these demands for additional system resources from third parties (e.g., location anonymizer, peer



users), the privacy afforded a user may be questionable. In
particular, when the K − 1 other locations are very close to
the user’s location, Q′ is very small.

Our privacy model does not require the knowledge of
all users’ locations. It is applicable in simple client-server
architectures, with no need for any third-party services. Our
privacy model is not as strong as K-anonymity in the sense
that when the adversary knows all user locations, it may be
possible to determine the actual query user location from the
inferred privacy region Ψ (derived in Section III-C).

Hence, K-anonymity solutions and our solution work in
different settings and offer different kinds of privacy guar-
antees. We thus advocate our solution as a practical, readily
deployable solution for client-server architectures.

Shape of Privacy Region The inferred privacy region Ψ
may have an irregular shape, as shown in Figure 6a: within
region Ψ, there may be a “clump” in the neighborhood of the
actual user location q. This may give hints to the adversary
for performing an informed guess of the user’s location. This
problem can be alleviated by using a large packet size β.
This way, the precise termination point of our technique
is concealed among β points in the final packet. Another
possibility is to perform the search with a coarser granularity,
as in Figure 6b. Additional studies of these aspects are in order.

Extension for Advanced Constraints and Preferences
Our definition of privacy value (see Equation 3) is built on the
basic assumption that each location in the inferred region Ψ
has the same probability of being the actual user location. It is
an interesting topic to enrich our privacy model with complex
features: (i) spatial domain constraints (e.g., excluding low
density regions such as forests and lakes from the space) and
(ii) user preferences (e.g., a user requires low privacy at work
and high privacy when visiting a clinic).

VIII. CONCLUSION AND RESEARCH DIRECTIONS

This paper concerns the efficient support for location privacy
protection for location-based service users. Existing location
privacy solutions either incur high server load, require special-
ized server implementations, or produce results without useful
guarantees on the accuracy bounds of the query results.

Motivated by this, the paper proposes a novel and effec-
tive framework, called SpaceTwist, that consists of a client-
side incremental nearest neighbor algorithm and a server-side
granular search technique that supports user-defined (relaxed)
query accuracies. SpaceTwist offers systematic support for
managing the trade-offs among location privacy, query per-
formance, and query accuracy in mobile services. Empirical
studies with real-world datasets demonstrate that SpaceTwist
is capable of providing high degrees of location privacy as
well as very accurate results at low communication cost.

Several promising research directions exist. First, it is
relevant to extend the cost model (in Section V) to cover
real data distributions, as the current model assumes uniform
data and may not accurately reflect the distributions found
in real-world data. Second, our proposal considers snapshot
k nearest neighbor queries. It is of interest to extend them

to support also continuous queries [20]. Third, it is possible
to apply SpaceTwist to queries over data in road networks,
as its correctness (by Lemma 1) only requires the triangular
inequality to hold, which is the case for road network distance.
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