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Abstract—When a high-energy particle such as a proton strikes a
CPU, the impact may result in the corruption of a data register on the
CPU. Such a single-event upset (SEU), in which a random bit is flipped in
the content of a data register, can lead to critical errors in the execution of
a program. This is particularly problematic for security- or safety-critical
systems where such errors may have grave consequences. In this paper
we develop a formal semantic framework for easy formal modelling of a
large variety of SEUs in a core assembly language capturing the essential
features of the ARM assembly language.

We use this framework to formally prove the soundness of a static
analysis enforcing so-called blue/green separation in a given program.
Blue/green separation is a replication based technique for making a
program fault-tolerant with respect to data-flow SEUs; however, full
coverage requires special hardware support. We further use our semantic
framework for deriving program fragments, so-called gadgets, for partial
blue/green separation without special hardware. Finally, we illustrate how
to apply statistical model checking in our framework to model and quantify
faults that go well beyond data-flow SEUs and can provide statistics on the
level of fault-tolerance of a program. We use this to provide evidence that
our suggested program modifications significantly decrease the probability
of such errors going undetected.

I. INTRODUCTION

On May 24, 2013 the AAUSAT3 satellite1, a student-driven
cubesat project, experienced an apparent malfunction leaving the
ground station unable to communicate with the on-board electronic
power supply (EPS)2. While not an immediately critical failure, it
had the potential over time to turn the satellite into so much space
junk. After initial analysis the cause of the malfunction was attributed
to a bitflip in the memory module of the communication protocol
used between the EPS and the communication module. Eventually
the situation was resolved by “exploiting” a lack of input validation
and rebooting the EPS.

Failure due to bitflips in memory, or single-event upsets as they
are also known, are not unique to cheap, student-driven projects. Also
more elaborate projects operated by highly professional organisations
with large budgets may fall victim to the unpredictable nature of
bitflips including, e.g., NASA’s Cassini Spacecraft3 and SpaceX’s
Falcon 94. Also systems closer to earth are vulnerable to bitflips [1]. In
fact, modern processor design, with an emphasis on higher clock rates
at lower voltages, combined with an increasing number of transistors
in still smaller spaces contribute to an expected increase in fault rates
of around 8% per processor generation [2].

In this paper we continue along the lines of the pioneering work
of Perry et al. [3] and show how language-based formal methods for
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software verification, here program analysis and model checking, can
be used to reason about, improve, and even guarantee that a program
is able to detect a bitflip. The focus on formal methods enables us
to formally prove the soundness of our proposed solutions as well
as provide a framework for exploring the use of statistical model
checking [4] both to quantify the effectiveness of proposed solutions
and also to reason about more complicated fault models.

In particular we formalise the semantics of a fragment of the
ARM assembly language [5] in two variants: one with only the
standard instructions and one that includes special instructions for
explicit support of fault tolerance through the so-called “blue/green”
encoding (more details below). Based on the latter language variant, a
program analysis to ensure that the blue/green instructions are used in
the correct way is developed and formally proved correct (Section VI).
Since few real hardware platforms provide the instructions needed
for the mentioned blue/green encoding, we develop a number of so-
called gadgets that are small code snippets intended to provide the
same functionality as the special instructions, but entirely in software
(Section VII). In contrast to much of the existing work on software
fault tolerance, our formalisation allows us to formally prove the
efficacy of these gadgets, using model checking for the actual proof.

While the general blue/green approach and our gadgets are best
suited to guarantee protection against bitflips in data registers, we
show in the final part of the paper (Section VIII) how advanced
fault models that are hard to reason about, including bitflips in the
program counter and program code, can be examined by applying
statistical model checking (SMC) to our formalisation. The use of
SMC not only allows us to explore more complex fault scenarios,
it also provides a practically useful tool, that scales well to real-life
problems, for providing statistical guarantees/measures of how well
(or bad) proposed fault tolerance solutions work.

In summary, we consider the following to be the contributions of
our paper:

• An elementary formalisation of semantics and fault models for a
low-level target language (closely related to the ARM assembly
language);
• Automatable verification, through program analysis, of blue/-

green separation for bitflips in data registers;
• Development of formally verified, software-only fault tolerance

solutions, i.e., “gadgets”;
• A tool/methodology for statistical modelling of software fault

detection using SMC.

In particular, the formalisation of language, semantics, and fault
models, using only elementary and well-known techniques, represents
a minor technical contribution but, at the same time, is a significant
and non-trivial stepping stone for bringing these techniques to bear
on realistic platforms and systems.

http://www.space.aau.dk/aausat3/
http://en.wikipedia.org/wiki/AAUSAT3
http://www.space.com/9585-nasa-revive-cassini-spacecraft-saturn.html
http://aviationweek.com/blog/dragons-radiation-tolerant-design


II. BLUE/GREEN PROGRAMS: AN EXAMPLE

In this section, we show an example program that is vulnerable
to a bitflip fault and we explain and illustrate the blue/green encoding
that has been mentioned several times in the introduction.

Consider the following program snippet from a (hypothetical)
control program for a cubesat. The exact syntax and semantics of
the program will be explained in Section IV. For safety reasons the
control program includes a command to shut down the entire system
in case of emergency. The snippet shows where the control program
branches to the code implementing the shutdown protocol:

1 LDR r1, 0xFEEDFEED ; get command
2 MOV r2, 12345 ; move shutdown code to r2
3 CMP r1, r2 ; compare r1 and r2
4 BEQ "shutdown" ; jump to "shutdown" branch

First the command is retrieved from the command buffer, e.g., through
memory mapped I/O; it is then compared to the (hardwired) command
code for shutdown, here ‘12345’. If they match, control is transferred
to the actual shutdown code.

Even in this short program, a bitflip in one of the data registers
or in one of the flags used for control flow can have unfortunate
consequences: if the entered command (stored in register r1) only
differs from the shutdown command by one bit, a bitflip in register
r1 could be misinterpreted as the shutdown command. Similarly, a
bitflip in register r2 immediately before the comparison operation
could again lead to the input command to be misinterpreted. Finally,
if the status flag indicating the result of the comparison instruction is
flipped immediately after the comparison, it would again lead to an
unintended shutdown.

One solution to this problem is to use blue/green encoding, an
approach where all critical values are computed by two independent
threads [6], [3], called the blue thread and the green thread respec-
tively, and only if the results computed by both threads agree, critical
actions such as storing values in the heap or branching are performed.
Converting the above program to use blue/green encoding could result
in the following program snippet:

1 LDR r1, 0xFEEDFEED ; get command
2 MOV r3, 12345 ; move shutdown code to r3
3 LDR r2, 0xFEEDFEED ; get command
4 MOV r4, 12345 ; move shutdown code to r4
5 BEQBG r1, r3, r2, r4, "shutdown"

Note that the input command is retrieved twice from the heap and two
different registers r3 and r4 are loaded with the proper command
code ‘12345’ and, finally, the special blue/green instruction ‘BEQBG’
is used to perform two atomic comparisons in parallel, one for the
blue thread and one for the green thread. In this way, a single bitflip
in a data register will either be detected and acted upon or ignored
if it does not influence the final result.

III. RELATED WORK

The effect of single-event upsets is well known [7], [8], [9], [10],
and the fault rate increases by about 8% per generation [2]. The
majority of SEUs involve a single bit flipping [7], but varies, e.g., with
processor layout and data patterns ([10] finds that a flip from 1 to 0 is
three times more likely than from 0 to 1). A number of solutions exist
using specialised hardware, e.g., radiation-hardened processors [9] or

hardware duplication 5, but these are prohibitively expensive for many
applications such as student satellites.

A tempting solution is therefore to use software-only solutions for
error detection [11], [6], [12]. Oh et al. [6] propose to use duplicated
instructions under a fault model of one a priori permanent bitflip in the
program, and to use basic block signatures [11] under a fault model of
one a priori permanent corrupted branch instruction in the program.
Both methods reduce undetected errors by an order of magnitude,
but do not eliminate them. In our fault model the bitflip can happen
at any time during execution, and is indeed transient. Nicolescu
and Velazco [13] use a C-to-C program transformation to derive a
hardened program (blue/green variables, basic block signatures, and
duplicated checks before branching) and finds that under radiation
testing the hardened program experiences more upsets (due to longer
execution time), but reduces the undetected errors by a factor of 3.2.
SWIFT [12] is an optimised method, based on [6], that succeeds in
eliminating all undetected errors arising from single bitflips in data
registers and flags in benchmarks.

While the above cited methods succeed in reducing the error
rates, the execution platform and fault models are only specified
informally, making it impossible to formally verify the absence of
a certain fault under some method, as we have done in Section VI
and VII. In [3] Perry et al. formally specify a language, fault model
and a type system to guarantee that well-typed programs are indeed
fault tolerant under the chosen fault model of corruption of a single
register. In [14] the work is extended to reason about control-flow
errors. The execution platform however has a number of features not
found in contemporary processors: duplicated blue/green PC register
to detect errors in the PC [3], and support for catching jumps to the
middle of basic blocks [14]. Meola and Walker [15] use a logic based
on separation logic to prove imperative programs correct under formal
fault models, for a while-like language. In [16] a framework using
symbolic execution and model checking is presented, which allows
to exhaustively enumerate all faults under a formal fault model on
a given program. The fault model considered is only single word
corruption, and the programs are re-written to a generic assembly
language – thus making it hard to incorporate fault models of bitflips
in instruction encoding, as considered by [6] and which we consider
in Section VIII.

IV. TINYARMS

In this section we define the syntax and formal semantics for our
target language: TinyARM. The TinyARM language is a small core
language that aims at capturing the essential features of the ARM
assembly language [5]. In particular, the instruction set contains no
conditionals, at least not in the traditional sense. Instead, individual
instructions can be executed conditionally, depending only on the
value of one or more status flags that can be modified in a number of
ways. For a more comprehensive formalisation of the ARM semantics
we refer to [17]. While TinyARM defines only a small number of core
instructions, we believe that these are representative for the kinds of
instructions found in the full ARM instruction set and a further small
step towards bridging the gap between the abstract languages used for
formalisation, e.g., the typed assembly language used in the seminal
work by Perry et al. [14], [3], and the concrete assembly languages
used in [6], [11], [12] for example.

5Such as the Hercules chip, with duplicated processors running in lockstep:
http://www.ti.com/lsds/ti/microcontroller/safety mcu/overview.page.

http://www.ti.com/lsds/ti/microcontroller/safety_mcu/overview.page


As mentioned in the introduction we will define two variants of
TinyARM sharing a common core. The first variant is the standard
language with the expected instructions and semantics. The other is
a “blue/green” variant of the language which incorporates special
instructions for branching and heap manipulation that perform extra
safety checks atomically.

Core Language. Values are taken to be 32-bit integers and we
explicitly assume that all values are encoded as binary numbers
(in a non-specified but consistent encoding): Val = B

32 where
B = {0, 1} and B

32 = [0..31] → B. The set of values
subsumes the set of heap addresses, but for presentation purposes
we introduce a separate name for these: Addr = Val. The ARM
architecture defines 16 registers: 13 general purpose registers (denoted
r0 to r12) as well as three control registers for holding the stack
pointer, the link register (used for function calls), and the program
counter respectively. The control registers can be accessed like
normal registers but this may lead to undefined results. Since we
do not model function calls in TinyARM, we omit the stack pointer
and link register and include only the program counter as control
register: DataRegister = {r0, . . . , r12}, ControlRegister = {rpc},
and Register = DataRegister ∪ ControlRegister. Both data- and
control-registers hold values: DataRegisters = DataRegister→ Val,
ControlRegisters = ControlRegister → Val, and Registers =
Register→ Val.

As already noted, one of the characteristics of the ARM as-
sembly language is the lack of instructions implementing traditional
conditionals. Instead most instructions include a condition field that
specifies for which values of the condition code flags a particular
instruction should be executed. On the ARM platform there are four
condition code flags, called the Negative, Zero, Carry, and oVerflow
flag respectively which we all model in TinyARM. Each flag can
be set to either 0 (false) or 1 (true): Flag = {fN , fZ , fC , fV }
and Flags = Flag → B. With the flags defined, we can now
specify the different condition codes for conditional execution:
ConditionCode = {EQ,NE, . . . ,AL}. The semantics of condition
codes, χ ∈ ConditionCode, is given by the cond -function. It is
defined such that cond(χ, (fN , fZ , fC , fV )) is true iff the relevant
flags satisfy the condition χ, e.g., cond(EQ, (fN , fZ , fC , fV )) =
(fZ = 1). The ‘AL’ condition code corresponds to unconditional
execution of the instruction. Instructions with a condition code that
does not evaluate to true during execution will be treated as a ‘NOP’.

The effect of arithmetic operations on the condition flags is
formalised through a family of functions, one for each arithmetic op-
erator ‘op’: ‘flagsop’. E.g., for the addition operator and v1, v2 ∈ Val,
flagsADD(v1, v2)(fZ) = 1 if v1+v2 = 0 (mod 232), and 0 otherwise.

The common core of our two TinyARM variations shares the
goals of the storeless basic block defined in [6]. Thus, there are
no instructions for branching or modification of the heap, these will
instead be introduced in Section IV. Note that heap loads are still part
of the common core since these do not result in observable differences
in the heap. This leaves the following instruction set for the common
core:
InstrCore ::= MOVχ x, v store value v in x

| MOVχ x, y store content of y in x
| OPχ x, y, z do “OP” on y and z, store in x
| OPSχ x, y, z like “OP” but also set flags
| CMPχ x, y compare x and y, set flags
| LDRχ x, a load x from heap address a
| LDRχ x, y load x from heap address in y

P (R(rpc)) = OPSχ x, y, z cond(χ, F )
F ′ = flagsop(R(x), R(y))

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ R(y) op R(z)], F ′〉

P (R(rpc)) = MOVχ x, y cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ R(y)], F 〉

P (R(rpc)) = CMPχ x, y cond(χ, F )
F ′ = flagsCMP(R(x), R(y))

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1, F
′〉

P (R(rpc)) = LDRχ x, y cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1[x 7→ H(R(y))], F 〉

Figure 1. Excerpt of operational semantics for ProgramCore

P (R(rpc)) = Bχ x cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H,R[rpc 7→ R(x)], F 〉

P (R(rpc)) = STRχ x, y cond(χ, F )

〈P,H,R, F 〉 =⇒ 〈P,H[R(y) 7→ R(x)], Rrpc+1, F 〉

Figure 2. Excerpt of semantics for observable actions in ProgramObs

where χ ∈ ConditionCode, x, y, z ∈ DataRegister, a ∈ Addr, and
v ∈ Val. Note that all of the above instructions are parameterised on
a condition code allowing them to be executed conditionally.

A program is then formalised simply as a map from addresses to
instructions: ProgramCore = Addr→ InstrCore and the heap memory
as a map from addresses to values: Heap = Addr → Val. We then
formalise the configurations of our structural operational semantics
for the core language as follows ConfCore = ProgramCore ×Heap×
Registers × Flags. The semantic configurations are mostly standard
for an operational semantics with the minor exception that we include
the program itself in the configurations: this allows us to formalise
the effects of bitflips in the program code itself. To the best of our
knowledge, this is the first formal semantics incorporating such a fault
model. Finally, the semantics of the core language is completed by
defining a reduction relation between semantic configurations C,C′ ∈
ConfCore: C =⇒ C′. We let ‘=⇒n’ and ‘=⇒∗’ denote a reduction
sequence of length n and the reflexive and transitive closure of ‘=⇒’
respectively and as a further notational convenience we introduce the
following notation for performing updates of a register value: for z ∈
Z define Rx+z = R[x 7→ R(x) + z]. In particular: Rrpc+1 denotes
updating the program counter to prepare for the next instruction. The
reduction rules for the core language are fairly straightforward. An
excerpt of the semantics is shown in Figure 1.

Observable Actions: Heap Store and Branching. Here we
extend the core language, as defined above, with instructions for
branching and for storing values in the heap. As discussed in
Section II, these instructions may lead to observable differences in
the heaps produced during program execution and/or differences in
the termination behaviour. Below, only the instructions that have been
added to the core language are shown:

InstrObs ::= · · · (instructions from InstrCore)
| Bχ a branch to address a (goto)
| Bχ x branch to address stored in x
| STRχ x, a store content of x at address a
| STRχ x, y store content of x at address in y



where χ ∈ ConditionCode, x, y ∈ DataRegister, and a ∈ Addr.

The notion of a program is trivially extended to cover the new
instructions: ProgramObs = Addr→ InstrObs. Similarly, the semantic
configurations only change minimally: ConfObs = ProgramObs ×
Heap × Registers × Flags. An excerpt of the semantic rules for the
observable actions are shown in Figure 2.

Blue/Green Encoded Heap Store and Branching. Finally, we
define the blue/green variant of our TinyARM language. The added
instructions that make up this variant provide explicit support for the
blue/green encoding described in [3] and are based on ideas in [6].

In the following, the x and y registers are “green” registers, while
the x′ and y′ registers are “blue” registers. The content of blue and
green registers should be computed separately and yield the same
result. This comparison and execution of the instruction is assumed
to be performed atomically and free of bitflips. In Section VII we show
how (the effect of) some of these instructions can be implemented
without hardware support. The instructions making up the blue/green
TinyARM variant are as follows:

InstrBG ::= · · · (instr. from InstrCore)
| BBG x,x

′ branch to address in x
| BEQBG x, y,x

′, y′, a atomic cmp. and branch
| STRBG x,x

′, a store content of x at a
| STRBG x, y,x

′, y′ store content of x at y

where x, x′, y, y′ ∈ DataRegister and a ∈ Addr. Again the notion
of a program is trivially extended to cover the new instructions:
ProgramBG = Addr → InstrBG. If the comparison of a blue and
a green register fails in one of the added instructions, the entire
computation fails. This is reflected in the semantic configurations
by adding an explicit fail-state: ConfBG = (ProgramBG × Heap ×
Registers×Flags)+ {FAIL}. Since we focus on fault-detection, and
not fault-recovery, we simply model failure as a terminal state in the
semantics. Figure 3 shows the semantic rules for the added blue/green
instructions. For brevity, we tacitly assume that the last rule, the “fail
rule”, is only invoked if none of the preceding rules for blue/green
instructions can be used for a specific instruction.

In the case of the BEQBG instruction two copies of two values
are compared. They must all four be equal for the equality condition
to be satisfied. Inequality however is often preserved by bitflips. We
exploit logical masking to safely ignore an error that does not change
the outcome of the branch [12]. Only if one pair of x/y values (say,
the blue pair) is mutually equal and the other is not, the computation
fails.

V. FAULT MODELS AND FAULT TOLERANCE

The occurrence of faults during program execution is modelled
explicitly as special semantic rules defining the so-called fault model.
This simplifies both formalisation and later analysis. In order to track
the faults that occur during execution, the semantic “error rules”
are annotated with the kind of fault (see below for details) that has
occurred: C =⇒φ C

′ where φ ∈ F denotes the fault that has occurred
and F is the set of faults that are possible in the given fault model,
formally defined below.

Figure 4 shows the semantic formalisation of several fault types
well-known from the literature. The first two error rules, DSEU
and CSEU, are concerned with a single-event upset (SEU) in a
processor register. This type of fault is divided over two rules since
the consequences of bitflips in data and control registers differ widely.

P (R(rpc)) = BBG x,x
′ R(x) = R(x′)

〈P,H,R, F 〉 =⇒ 〈P,H,R[rpc 7→ R(x)], F 〉

P (R(rpc)) = BEQBG x, y,x
′, y′, a

R(x) = R(y) = R(x′) = R(y′)

〈P,H,R, F 〉 =⇒ 〈P,H,R[rpc 7→ a], F 〉

P (R(rpc)) = BEQBG x, y,x
′, y′, a

R(x) 6= R(y) R(x′) 6= R(y′)

〈P,H,R, F 〉 =⇒ 〈P,H,Rrpc+1, F 〉

P (R(rpc)) = STRBG x, y,x
′, y′

R(x) = R(x′) R(y) = R(y′)

〈P,H,R, F 〉 =⇒ 〈P,H[R(y) 7→ R(x)], Rrpc+1, F 〉

P (R(rpc)) = instr instr ∈ InstrBG

〈P,H,R, F 〉 =⇒ FAIL

Figure 3. Semantics for the blue/green instructions in ProgramBG

v = R(x) v′ ≡1 v x ∈ DataRegister

〈P,H,R, F 〉 =⇒DSEU 〈P,H,R[x 7→ v′], F 〉
(DSEU)

v = R(x) v′ ≡1 v x ∈ ControlRegister

〈P,H,R, F 〉 =⇒CSEU 〈P,H,R[x 7→ v′], F 〉
(CSEU)

F ′ = F [f 7→ F (f)]

〈P,H,R, F 〉 =⇒FSEU 〈P,H,R, F ′〉
(FSEU)

P (R(rpc)) = instr encode(instr) ≡1 encode(instr ′)
P ′ = P [R(rpc) 7→ instr ′]

〈P ′, H,R, F 〉 =⇒ 〈P ′, H ′, R′, F ′〉
〈P,H,R, F 〉 =⇒SIC 〈P,H ′, R′, F ′〉

(SIC)

Figure 4. Fault semantics

We formalise when two values, or rather their respective binary
encodings, differ by only one bit; essentially corresponding to the
Hamming distance used in [6]. For b1, b2 ∈ B32 define b1 ≡1 b2 iff
∃i : ∀j : b1(j) 6= b2(j) ⇐⇒ j = i. This can obviously be extended
to differences in any number of bits. The FSEU rule deals with a
SEU in a condition flag. Let F ∈ Flags and f ∈ Flag and define
F (f) = 1−F (f). We further assume the existence of a function that
maps instructions to their binary encoding encode : Instr → B

32.
The single-instruction corruption (SIC) fault considers a SEU in the
encoding of an instruction. Since we generally assume that memory
is protected, the bitflip happens in the currently executing instruction
and the program text remains unchanged. This and the CSEU type
of fault are treated using statistical model-checking in Section VIII.

Similar to the “ordinary” semantics, we let ‘=⇒n
φ’ and ‘=⇒∗φ’

denote reduction sequences of length n and the reflexive and transitive
closure of ‘=⇒’ with a single fault step of the form C =⇒φ C′

somewhere in the sequence. In this case, we call φ the fault trace of
the semantic reduction sequence.

A fault model can now be formalised simply as the set of fault
traces that can occur:

Definition 1 (Fault Model). A fault model, F consists of the set of
possible fault traces: F = {φi}i.

Various authors study “the SEU fault model”, among others [3],



[6], [12]. While their definitions vary we define it to mean one
bitflip in either a general purpose register or in one of the condition
flags, but not in the register holding the program counter. For ease
of reference we define the formal SEU and SIC fault models here:
FSEU = {DSEU, FSEU} and FSIC = {SIC}.

A. Fault Tolerance

Having defined what it means for a fault to occur in a program
run, we now turn to formalising what it means for a program to be
fault tolerant. Here, we follow the same approach as [3] and define
a program to be fault tolerant, with respect to a given fault trace φ,
if it is able to either detect that an error has occurred and fail in a
controlled manner or else continue working and yield the same or
equivalent results. In anticipation of later sections, we parameterise
our notion of fault tolerance on the equivalence (≡) used to determine
if the results are similar “enough” and extend the definition to fault
models:

Definition 2 (φ/≡-tolerant). Let φ be a fault trace and P ∈
ProgramBG with C = 〈P,H,R, F 〉 ∈ ConfBG such that C =⇒n C′

for some n, then P is φ/≡-tolerant if and only if one of the following
holds: (1) if C =⇒n+1

φ C′′ then C′ ≡ C′′; or (2) ∃m : m ≤ n such
that C =⇒m

φ FAIL.

Definition 3 (F /≡-tolerant). Let F = {φi}i be a fault model and
P ∈ ProgramBG, then P is F /≡-tolerant if and only if it is φi/≡-
tolerant for every fault trace in {φi}i.

One obvious choice of equivalence is that of equality, i.e.,
F /=-tolerance. However, as we shall see in the next section, requiring
equality is unnecessarily strict. Intuitively it should be enough to
require that only the registers that are actually needed to produce
the end result are identical.

VI. VERIFIED BLUE/GREEN SEPARATION

In this section we show how the formalisation of language
semantics and fault models in the previous sections can be used to
develop, and formally prove correct, a static analysis that guarantees
proper blue/green separation in a blue/green-program (defined in
Section IV). We further show that this is sufficient to make the
program FSEU-tolerant (see Section V-A).

The basic idea in our analysis is to assign a colour to every
data-register, either blue or green, and then to track the “colour
dependency” of all registers and flags at every program point, i.e.,
track what colour of registers the content of a given register depends
on. This information can then be used to verify that a register of a
given colour only depends on other registers of the same colour and
therefore be completely independent of registers of the other colour
irrespective of any bitflips in those registers.

A. Flow Logic Specification

For the analysis, we use the specification-oriented Flow Logic
approach of Nielson and Nielson [18] which sets forth judgements
for an acceptable analysis result. The essential idea in our analysis is
to track the colour of the registers that has influenced the value of a
given register (or flag) for every program point. Thus, abstract values
are taken from the following complete lattice: V̂al = (P({B,G}),⊆).

As an excerpt, we present the Flow Logic judgement for the
‘OPS’-instruction, where R̂ : PC → DataRegister → V̂al and

F̂ : PC → V̂al are the analysis results for the register and flag
valuations, respectively:

(R̂, F̂ ) |= pc : OPSχ x, y, z

iff R̂(pc)(y) ∪ R̂(pc)(z) ⊆ R̂(pc+ 1)(x)

R̂(pc)(y) ∪ R̂(pc)(z) ⊆ F̂ (pc+ 1)

χ 6= AL =⇒ F̂ (pc) ⊆ R̂(pc+ 1)(x)

χ 6= AL =⇒ F̂ (pc) ⊆ F̂ (pc+ 1)

R̂(pc) ⊆{x} R̂(pc+ 1)

The judgement models the semantics closely: first, (in the first line),
the colour of the result register, x, depends (at the next program
point pc + 1) on the colours of the operand registers y and z (at
the current program point pc). Similarly (in the second line), the
condition flags at the next program point depend on the colours of
the operand registers at the current program point (the five lines
in the condition are joined by an implicit conjunction). The third
line handles conditional execution: if the condition code indicates
conditional execution (anything but the ‘AL’ condition code), then the
colours that have influenced the flags at the current program point
also, potentially, influence the content of result register at the next
program point. The fourth line does the same, only for the condition
flags. Finally (in the fifth line), all the abstract values of all the
registers that are not modified by this instruction are copied to the
next program point. The judgement describes subset relations rather
than equality because, in the case of jumps, several judgements can
impose requirements on the values at a single program point.

Based on the blue/green information flow analysis, we now define
the notion of static blue/green separation that can be used to statically
guarantee that a program implements proper separation between the
blue and the green threads of computation, which will be used below
to show that a properly separated blue/green program is also fault
tolerant with respect to the SEU-fault model:

Definition 4 (Static B/G Separation). Let P ∈ ProgramBG such that
(R̂, F̂ ) |= P , then P is said to be statically B/G separated (with
respect to (R̂, F̂ )) if and only if for all pc ∈ dom(P ) it holds that
F̂ (pc) ⊂ {B,G} and ∀r ∈ DataRegister : R̂(pc)(r) ⊂ {B,G}.

While the specification of our blue/green information flow analy-
sis seems rather abstract, it is straightforward to convert the formulae
of the specification, e.g., into Datalog [19] and use a corresponding
solver to obtain an implementation of our analysis.

B. Formal Properties

We now formally establish the correctness of our analysis. This is
done through a series of technical lemmas of which we only include a
few of the most important for illustration purposes. We define R1 ≡B
R2 to mean equality on the set of blue registers and R1 ≡G R2 to
mean equality on the set of green registers.

Lemma 1. Let P ∈ ProgramCore with m = |P |, (R̂, F̂ ) |=
P and let P be statically B/G separated (wrt. (R̂, F̂ )), then
if 〈P,H,R1, F 〉 =⇒m 〈P,H,R′1, F ′1〉 and 〈P,H,R2, F 〉 =⇒m

〈P,H,R′2, F ′2〉 it holds that R1 ≡B R2 =⇒ R′1 ≡B R′2 ∧ (F ′1 =
F ′2 ∨ F̂ (m) ⊇ {G}) and symmetrically for R1 ≡G R2.

Lemma 2. Let P ∈ ProgramBG, φ ∈ FSEU such that 〈P,H,R, F 〉
=⇒ 〈P ′, H ′, R′, F ′〉, 〈P,H,R, F 〉 =⇒φ C

′′, (R̂, F̂ ) |= P , and P
is statically B/G separated (wrt. (R̂, F̂ )). Then either C′′ = FAIL

or C′′ = 〈P ′, H ′′, R′′, F ′′〉 with H ′ = H ′′ and R′ ≡B/G R′′ and
F ′ = F ′′.
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Figure 5. Model of the robust assert gadget

By splitting a blue/green program into basic blocks, consisting
only of core instructions and ending with a blue/green instruction
(similar to the storeless basic blocks of [6]), and using the above
lemmas on these basic blocks, the following Theorem can be proved
by induction in the length of the reduction, establishing the SEU-
tolerance of a blue/green program that is statically B/G separated:

Theorem 1. Let P ∈ ProgramBG and (R̂, F̂ ) |= P such that P is
statically B/G separated (wrt. (R̂, F̂ )), then P is SEU-tolerant.

VII. GADGETS

Since the blue/green instructions require special hardware support
we introduce gadgets instead. Gadgets are small blocks of core
language instructions that fulfill certain functions and detect if an
error occurs during their own execution. We start by considering a
gadget that is used as a building block for the gadgets that realise the
functions of the special blue/green instructions.

A. Robust Assert

The first gadget robustly asserts that two data registers contain
the same value. By “robust” we mean that if an error occurs while
the gadget is executing, the error is guaranteed to be detected. The
gadget consists of four core language instructions, and falling through
the gadget signifies that the assertion held:

1 SUBS rD, rX, rY ; rD = rX - rY, fZ
= (rD == 0)

2 BNE "fail" ; fail if fZ == 0
3 CMP rD, #0 ; fZ = (rD == 0)
4 BNE "fail" ; fail if fZ == 0
5 ... ; success

Lemma 3. Under FSEU, line 5 (success) is reached only if rX and
rY contain the same value when line 1 is executed.

Lemma 4. Under F∅, line 5 is reached if and only if rX and rY
contain the same value when line 1 is executed.

These lemmas are verified by model checking as explained in the
next section.

B. Model Checking Gadgets

We model the gadgets in the UPPAAL model checker [20] as
follows: Registers are global variables, and two automata are used for
the gadget and the bitflip, respectively. For the robust assert gadget,
these two automata are shown in Figures 5 and 6, described below.
The registers are modelled after these considerations: Two identical

values contained in two registers will always become unequal if one
of their bits is flipped. For two different values, two situations are
possible: With a Hamming distance of one, a bitflip may or may
not render the two values equal. With a Hamming distance greater
than one, no flip will make them equal. This implies that we only

DSEUFlyingFSEU

Missed

rX = rX ^ b

rD = rD ^ b

rY = rY ^ b

fZ = !fZ b : bit

b : bit

b : bit

Figure 6. Proton model

need enough detail to model Hamming distances of 0, 1, and >1.
Two bits are sufficient for this so we model the registers as 2-bit
values. The Zero condition flag is currently the only relevant flag and
it is represented by a boolean variable. The initial location, marked by
circle, of the gadget automaton in Figure 5 is also committed (marked
by a ‘C’) meaning that it must be left immediately, specifically before
a bitflip occurs. The initial location leads to the first instruction of
the gadget. The select statement on the edge in effect describes a
transition for each possible assignment of values to the registers
such that the model checking considers all scenarios wrt. Hamming
distances.

The model has a location for each program point and an edge
for each possible control flow. On the edges the register values are
updated as each instruction prescribes. The edge executing the first
instruction of the gadget also records the state of equality between the
two registers. The two outgoing edges from each conditional branch
are guarded by the branch condition and its negation.

The initial location of the proton automaton in Figure 6 has
an outgoing edge for each bit that can be flipped. Each edge
leads to a terminal location such that the proton may cause at
most one bitflip. The interleaving implied by the parallel compo-
sition of the two automata and the exhaustive exploration done
by the model checker lead to every possible bitflip being tested,
including the proton striking before the execution of the first
line of the gadget. The query A[] (Gadget.Success imply
eq_in_line_1), verifies Lemma 3. Lemma 4 is verified by
the query A[] ((eq_in_line_1 and Proton.Missed and
deadlock) imply Gadget.Success) and Lemma 3.

Model checking these queries takes less than a second, and the
gadget can now be used any number of times in a program. Scalability
is thus not an issue.

C. Blue/Green Branch

We now introduce the blue/green branch gadget, the goal of
which is to replace the BEQBG x, y,x

′, y′, a instruction. It is a
three-way branching gadget that jumps to a hardcoded destination
if the argument registers contain the same value at the beginning
of the execution of the gadget. If the values differ consistently (the
blue/green copies are identical), control falls through as in a standard
conditional branch instruction. On any inconsistency it jumps to the
“fail” location.

1 SUBS rD, rX, rY
2 BNE "NEQ_bias"
3 EQ_bias:
4 CMP rD, #0
5 BNE "fail"
6 SUBS rD, rX’, rY’
7 BNE "fail"
8 CMP rD, #0
9 BNE "fail"

10 B "equals"
11 NEQ_bias:
12 CMP rD, #0
13 BEQ "fail"
14 SUBS rD, rX’, rY’
15 BEQ "fail"
16 CMP rD, #0
17 BEQ "fail"
18 ... ; success



The gadget chooses a “bias” based on the comparison between rX
and rY and confirms that registers rX’ and rY’ compare in the same
way. Each of the three comparisons are also checked for consistency
wrt. the duplicated information written to register rD using the
technique from the robust assert gadget.

Theorem 2. Under FSEU:

• Line 10 is reached only if rX = rY = rX′ = rY′ in line 1,

• Line 18 is reached only if rX 6= rY ∧ rX′ 6= rY′ in line 1.

Theorem 3. Under F∅:

• Line 10 is reached if and only if rX = rY = rX′ = rY′ in line 1,

• Line 18 is reached if and only if rX 6= rY∧ rX′ 6= rY′ in line 1.

Note that the condition rX 6= rY ∧ rX′ 6= rY′ does not require
the blue/green values to be consistent (rX = rX′ ∧ rY = rY′). As
discussed in Section IV, logical masking allows us to safely ignore
an error that does not affect the behaviour of the program.

VIII. QUANTIFYING RISK WITH SMC

For some fault models it is very challenging to give guarantees
using only software, simply because they cause the software to lose
control of the execution: consider the fault models CSEU (a bitflip in a
control register, such as the program counter), and SIC (a bitflip in the
encoding of the instruction being executed) from Figure 4. Under such
fault models we would still like to quantify the risk of a bitflip causing
faulty execution, in order to reason about the relative effectiveness of
the proposed fault tolerance solutions, such as blue/green programs.

We propose to use the simulation-based statistical model checking
(SMC) [4] to model the program and fault model, and simulate the
impact faults can have on the execution. The use of SMC enables
formal modelling of faults and exact impact; because the entire system
state can be altered, faults can be injected precisely compared to
physical experiments where the fault model is not under precise
control. In addition SMC is faster than a cycle-accurate simulator,
as the model time can be accelerated, or slowed down, arbitrarily as
needed.

We have developed a toolchain for extracting an UPPAAL
automata model from an ARM binary. The UPPAAL model is
subsequently analysed using the UPPAAL SMC tool [4].

The extracted models have the following components: (1) A
copy of the program and registers that are vulnerable to bitflips,
called P1; (2) a copy of the program and registers not affected
by bitflips, called P2; this copy is used to check whether the
observable behaviours of P1 and P2 are equivalent; (3) a component
modelling and observing the main memory, with which P1 and P2

interact, called MemoryObserver. This component monitors whether
the observable behaviour of P1 is different from that of P2, in terms
of termination or stores. We exploit the fact that memory content
will be the same for both copies of the program, as long the same
observable behaviour is seen, to only have one copy of main memory;
(4) a Proton component interacting with P1 according to the fault
model. The program models P1 and P2 are generated automatically
from ARM binaries, and include the semantics of the instructions of
the program.

The observer is always in one of four states: (1) Running
meaning that up to this point no observably different behaviour

has occurred. (2) Terminated meaning that both programs have
terminated. (3) Unsafe meaning that P1 behaved observably different
from P2. (4) Fault detected meaning that P1 detected a fault, and
aborted execution; explicitly by detection using blue/green encoding
or implicitly by causing a processor exception (executing an illegal
instruction, accessing unmapped memory, etc.).

In general the probability of a bitflip should be uniformly dis-
tributed over the entire runtime of the program; the probability of
a proton hitting should be the same for any moment in time. This
poses a slight problem in the modelling because the runtime of the
program is a priori not known. Therefore the following phases are
used for any trace: (1) The input for the program is chosen non-
deterministically, from a uniform distribution. (2) P2 is run using this
input, and recording the execution time, exectime. (3) The Proton
component chooses a time instance to strike, uniformly from the
range [0, exectime]. (4) P1 and P2 are run in parallel on the same
input, while being observed by MemoryObserver. (5) At some point
during execution Proton strikes, possibly altering P1’s execution. This
implements the fault model that exactly one bitflip occurs, during any
trace.

The statistical model checker runs a specified number of these
traces for a specified maximal number of steps, while recording the
status of each trace, thus giving a probability of the observer being
in a certain state at the end of the run. Table I gives the probabilities
calculated for a real-ARM version of the example program from
Section II, with 50000 traces simulated for each scenario, for a
maximum of 3000 cycles. The still-running traces are caused by a
bitflip altering the control-flow of the program and in reality could
either terminate or be unsafe at some point in the future execution.
Incrementing the number of steps simulated can possibly reduce the
number of still-running traces, but in our experience the ratio does
not change by doing this.

The exact numbers vary with a number of factors: If many
registers are not used by the concrete program (or only used sparingly)
many bitflips will be logically masked because the values in the
registers are never read – as can be observed partially by the
basic program terminating successfully more often as it uses less
registers. For a real processor the probability of a bitflip is not the
same for all bits [8], [10], which our fault model does not take
into account6. Therefore the exact numerical values are of little
interest – however comparing the numbers for different programs with
identical observable behaviour in the absence of bitflips can compare
different programs’ susceptibility to bitflips causing malfunctions. As
an example, the risk for a program can be compared to the risk
of the same program under blue/green encoding: as Table I shows,
blue/green encoding eliminates all unsafe traces under the DSEU and
FSEU fault models – as expected from Theorems 2 and 3.

A. Risk under Aggressive Fault Models: CSEU and SIC

SMC allows us to model the very aggressive fault models of
bitflips in a control register, or even bitflips in the encoding of an
instruction. Bitflips in the PC register (CSEU) are modelled by control
jumping to an unexpected location of the program P1, or by jumping
to a special crash location if the bitflip would result in jumping outside
the program memory.

6But if real probabilities are known these could easily be incorporated into
the model



For modelling the behaviour of a bitflip in the encoding of
an instruction (SIC) the possible mutants for each instruction are
generated, and included in the model for P1. We have used the ARM
instruction set encoding, as parsed by the GNU Objdump utility. As
an example, a mov r3, 28 instruction can be bitflipped into a orr
r3, r0, 28 instruction, significantly altering the semantics of the
instruction. A bitflip typically alters the instruction opcode, alters the
destination or source registers, or alters constants in the instruction.

Our results show that blue/green encoding does not eliminate all
unsafe behaviour under the CSEU and SIC fault models. However,
Table I clearly shows that blue/green encoding reduces the risk of
unsafe behaviour under these very aggressive fault models by an order
of magnitude.

Table I. RISK ANALYSIS USING SMC OF THE PROGRAM FROM
SECTION II. BG INDICATES THE PROGRAM WAS MODIFIED USING

BLUE/GREEN ENCODING AND THE GADGETS FROM SECTION VII. THE
FAULT MODELS REFER TO FIGURE 4.

Fault BG Running Terminated Unsafe Fault
DSEU, No 0% 96.35% 3.64% 0%
FSEU Yes 0% 90.39% 0% 9.61%

+CSEU No 0.10% 90.87% 3.55% 5.47%
Yes 0.18% 85.30% 0.046% 14.48%

+SIC No 0.34% 87.86% 5.09% 6.72%
Yes 0.20% 82.84% 0.11% 16.84%

The modelling of the processor hardware is at present very simple:
the hardware is modelled as a one-stage pipeline, with no caches and
a memory access time of 1 cycle. However, note that many bitflips
that occur in, e.g., a pipelined processor are equivalent to a bitflip
before or after execution of an instruction, and thus the simple model
will be accurate enough. We especially note that: If each bit of the
instruction encoding is read in exactly one pipeline stage, any bitflip
during pipelined execution is equivalent to a bitflip before or after
execution of the instruction.

IX. CONCLUSION

We have formalised TinyARM, an assembly language close to
the ARM language, and several fault models based on bitflips of
varying degree of potency: data, flags, control registers or instruction
encoding. We have formalised a blue/green variant of TinyARM
which includes instructions that facilitate the blue/green encoding
but that are not part of the ARM language, and specified a program
analysis for verifying proper blue/green separation. Furthermore we
have developed a number of gadgets that allow the transformation
of a blue/green TinyARM program to a program using only core
(Tiny)ARM instructions, while still preserving fault tolerance against
bitflips in data registers and flags.

Finally, we have used statistical model checking to model and
quantify the effects of fault models for which absolute guarantees are
hard to provide (bitflips in control registers and instruction encoding).
Our experiments indicate that the usage of blue/green gadgets can
reduce the risk of unsafe execution by several orders of magnitude
under the most aggressive fault models.

Future work is to extend our approach in several directions,
including fault recovery, gadgets for majority voting, and more
detailed modelling of the underlying hardware.

REFERENCES

[1] E. Normand, “Single event upset at ground level,” IEEE Transactions
on Nuclear Science, vol. 43, no. 6, pp. 2742–2750, 1996.

[2] S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, Nov. 2005.

[3] F. Perry, L. W. Mackey, G. A. Reis, J. Ligatti, D. I. August, and
D. Walker, “Fault-tolerant typed assembly language,” in Proc. of Pro-
gramming Language Design and Implementation (PLDI). ACM, Jun.
2007, pp. 42–53.

[4] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and Z. Wang,
“Time for statistical model checking of real-time systems,” in Proc.
of Computer Aided Verification (CAV), ser. Lecture Notes in Computer
Science, vol. 6806. Springer Verlag, 2011, pp. 349–355.

[5] ARM Architecture Reference Manual, ARM Ltd., Jul. 2005, issue I.
[6] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by

duplicated instructions in super-scalar processors,” IEEE Transactions
on Reliability, vol. 51, no. 1, pp. 63–75, 2002.

[7] C. I. Underwood, R. Ecoffet, S. Duzeffier, and D. Faguere, “Observa-
tions of single-event upset and multiple-bit upset in non-hardened high-
density SRAMs in the TOPEX/Poseidon orbit,” in Radiation Effects
Data IEEE Workshop, 1993, pp. 85–92.

[8] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
Effects of Transient Faults on a High-Performance Processor Pipeline,”
in Proc. of Dependable Systems and Networks (DSN), 2004, pp. 61–71.

[9] F. Wang and V. D. Agrawal, “Single Event Upset: An Embedded
Tutorial,” in Proc. of VLSI Design (VLSID), 2008, p. 429.

[10] G. M. Swift, F. F. Fannanesh, S. M. Guertin, F. Irom, and D. G.
Millward, “Single-event upset in the PowerPC750 microprocessor,”
Nuclear Science, IEEE Transactions on, vol. 48, no. 6, pp. 1822–1827,
2001.

[11] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE Transactions on Reliability, vol. 51, no. 1,
pp. 111–122, 2002.

[12] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software implemented fault tolerance,” in Proc. of Symposium
on Code Generation and Optimization (CGO), Mar. 2005, pp. 243–254.

[13] B. Nicolescu and R. Velazco, “Detecting Soft Errors by a Purely
Software Approach: Method, Tools and Experimental Results,” in Proc.
of Design, Automation & Test in Europe (DATE), 2003, pp. 20 057–
20 063.

[14] F. Perry and D. Walker, “Reasoning about control flow in the presence
of transient faults,” in Proc. of Static Analysis Symposium (SAS), ser.
Lecture Notes in Computer Science, vol. 5079. Springer Verlag, 2008,
pp. 332–346.

[15] M. L. Meola and D. Walker, “Faulty logic: reasoning about fault tolerant
programs,” in Proc. of Programming Languages and Systems (ESOP).
Springer Verlag, 2010, pp. 468–487.

[16] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. K. Iyer, “Sym-
PLFIED: Symbolic program-level fault injection and error detection
framework,” in Proc. of Dependable Systems and Networks (DSN),
2008, pp. 472–481.

[17] J. Alglave, A. C. J. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell,
and F. Z. Nardelli, “The semantics of POWER and ARM multiproces-
sor machine code,” in Proc. of Workshop on Declarative Aspects of
Multicore Programming (DAMP). ACM, Jan. 2009, pp. 13–24.

[18] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Springer Verlag, 1999.

[19] A. Y. Halevy, I. S. Mumick, Y. Sagiv, and O. Shmueli, “Static analysis
in datalog extensions,” J. ACM, vol. 48, no. 5, pp. 971–1012, Sep. 2001.

[20] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” In-
ternational Journal on Software Tools for Technology Transfer (STTT),
vol. 1, no. 1, pp. 134–152, 1997.


