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Abstract
Safe and tight worst-case execution times (WCETs) are important when scheduling hard real-time
systems. This paper presents METAMOC, a path-based, modular method, based on model checking
and static analysis, that determines safe and tight WCETs for programs running on platforms fea-
turing caching and pipelining. The method works by constructing a UPPAAL model of the program
being analysed and annotating the model with information from an inter-procedural value analysis.
The program model is then combined with a model of the hardware platform, and model checked for
the WCET. Through support for the platforms ARM7, ARM9 and ATMEL AVR 8-bit the modularity
and retargetability of the method is demonstrated, as only the pipeline needs to be remodelled. Mod-
elling the hardware is performed in a state-of-the-art graphical modeling environment. Experiments
on the Mälardalen WCET benchmark programs show that taking caching into account yields much
tighter WCETs, and that METAMOC is a fast and versatile approach for WCET analysis.

1. Introduction

Embedded software is virtually ubiquitous these days. It is used to control the proper functioning of
technical devices we routinely use and rely on in our daily life. Often embedded software is applied
in safety-critical systems — e.g. the braking system of a car or the steering gear of an airplane. Many
of these safety-critical systems are also time-critical, meaning that the calculations performed by the
tasks of an embedded system need not only be correct but must be carried out in a timely fashion.
Worst-case execution time (WCET) analysis is concerned with providing guarantees for proper timing
behaviour of system tasks by computing bounds for their execution time on given processors.

In order to allow for reliable and efficient scheduling of tasks, the scheduling algorithms need safe and
tight WCETs. Two different classes of methods are predominant (see also [11]): measurement-based
methods, where statistical information on WCETs is obtained by executing tasks on the given proces-
sor or simulator for a sample collection of input, and static methods, where static analysis (typically
abstract interpretation and integer linear programming [10]) of the task, taking the specific hardware
platform into account, allow the derivation of safe upper bounds on the execution time. The method
presented in this paper, Modular Execution Time Analysis using Model Checking (METAMOC)2,
is a static method providing safe and tight WCET bounds, but utilising real-time model checking to
establish WCETs. Figure 1 provides an overview of the prototype implementation of METAMOC.

Modern processors utilise techniques such as caching and pipelining, which increase the average
number of operations that can be executed per time unit. Since these techniques are also found in
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Figure 1. Overview of the prototype implementation of METAMOC. The top row shows required inputs. The
executable (annotated with loop bounds) is the only user input, whereas the other inputs are platform specific
models developed by specialists or hardware vendors. The output is a WCET estimate for running the executable
on the hardware platform. Rounded and rectangular boxes represent actions and objects, respectively.

many processors intended for embedded devices, such as members of the widely deployed ARM7
and ARM9 families, a modern WCET analysis method must take them into account to be useful.
The use of model checking in METAMOC provides a very modular approach for dealing with these
techniques: the model to be analysed comprises an abstract model of the program, and similarly for
the component models for the hardware platform, which include caches, pipelines and memories.
Thus, WCET analysis of a platform with a new pipeline component, say, only requires a model for
the new component.

The paper is organised as follows. Section 2 provides a brief introduction to the model checker UP-
PAAL [2] and its extensions to timed automata (TA). In Section 3 we describe the models used in
METAMOC for hardware components and programs, and in which ways they interact. The modular-
ity of the method is demonstrated through support for the platforms ARM7, ARM9 and ATMEL AVR
8-bit. Section 4 details a number of experiments, which evaluate the applicability and performance
of METAMOC. The experiments are conducted using a suite of WCET benchmark programs from
Mälardalen Real-Time Research Centre3. In Section 5 we give an overview of related work. Section 6
concludes the paper and presents possible directions for future work.

2. The UPPAAL Model Checker

UPPAAL [2] is a model checker for real-time systems which, besides the verification engine, features
a state-of-the-art graphical user interface for modelling, simulation and verification. This section
gives a brief introduction to UPPAAL models which is used as model formalism in METAMOC.

Systems in UPPAAL are modelled using an extension of timed automata (TA), which can be thought
of as a finite automaton with a number of free-running clocks. Properties to be verified for the systems
are formulated in a logic inspired by timed computation tree logic (TCTL). Besides standard TCTL
UPPAAL also provides a special sup property, for finding the supremum of a clock. For example,

3http://www.mrtc.mdh.se/projects/wcet/home.html
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the property “sup: cyclecounter” causes UPPAAL to determine an upper bound for the clock
cyclecounter. For an introduction to TA model checking and TCTL see [1]. Rather than limiting
a system to a single TA, UPPAAL uses a network of TA (NTA). Moreover, the TA are extended with
a number of features to ease modelling. Binary synchronisation channels enable a TA having an edge
labelled name! to synchronise with another TA having an edge labelled name?, i.e. they follow the
edges together in one transition. If several pairs are possible, a pair is chosen non-deterministically.
Urgent channels dictate that synchronisations must be carried out immediately when they are possible,
i.e. a time delay must not occur. Another case where a time delay must not occur is when one or more
of the TA are in a location marked as committed. Priorities can be assigned to TA, such that a
transition in a TA is enabled only if no transitions in any higher priority TA are enabled.

3. Modelling Hardware Components and Programs

It is evident from Figure 1 that METAMOC is centered around a number of models. In this section
we explain the ideas behind the models and how they fit together. Starting in the upper left corner
of Figure 1, the method takes as input an executable annotated with loop bounds. The executable is
disassembled using the tools objdump and Dissy4, and the resulting assembly code is given as input to
a generator and a value analysis. The generator creates a control flow graph (CFG) from the assembly
code, in the form of a UPPAAL model, which is annotated with results from the value analysis.
Besides the executable, the method takes as input a pipeline model, a main memory model and some
cache specifications. The specifications are given as input to another generator, which creates cache
models. Finally, the four models are combined and model checked, resulting in a WCET estimate for
running the executable on the hardware platform. The CFG generator, the value analysis interface, the
cache generator and the combine tool have been written for prototype implementation by the authors
of this paper and are released as open source.

We use a prototype implementation of METAMOC for the ARM920T processor5 as a continuing
example in this section. The ARM920T processor is a member of the ARM9 family, which fea-
tures an ARM9TDMI processor core6, separate instruction and data caches, a memory management
unit (MMU), and a bus interface for connecting main memory. We have modelled the core, the caches
and a simple main memory. The core implements the ARM architecture v4T and contains a five stage
pipeline with the stages fetch, decode, execute, memory and writeback. The communication between
components in the modelled ARM920T is illustrated in Figure 2. In order to demonstrate the modular-
ity of the method, we have utilised the ARM920T implementation to rapidly create implementations
for the processors ARM7 and ATMEL AVR 8-bit. This process is detailed in Section 3.4.

In the following, a program is understood as a low-level machine executable representation, which
has been disassembled to human readable assembly. The WCET of a program depends heavily on
the hardware platform it is executed on, which explains why it is necessary to do the analysis at the
lowest level; it is only at this level that enough information is present to determine the exact behaviour
of the hardware platform.

4http://www.gnu.org/software/binutils/ and http://code.google.com/p/dissy/
5http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf
6http://infocenter.arm.com/help/topic/com.arm.doc.ddi0180a/DDI0180.pdf
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Figure 3. Sketch of the UPPAAL model for the pipeline in the ARM9TDMI processor core.

3.1. Modelling Pipelines

A pipeline is the part of a processor responsible for the execution of instructions. A pipeline works
by dividing the execution of an instruction into a number of parallel stages, in order to increase the
average pace of execution. The five stages found in the ARM9TDMI processor core are illustrated in
Figure 2. The fetch stage fetches instructions from main memory through the instruction cache. The
decode stage determine the instruction type and the involved registers, and prepares the needed values
for the execute stage. The execute stage performs the actual arithmetic or logical computation. The
memory stage performs access to main memory, through the data cache. Finally, the writeback stage
writes computed values back into the registers. Each instruction flows through all stages, staying at
least one cycle in each stage. The actual UPPAAL model for the decode stage is shown in Figure 4.

The parallel nature of a pipeline matches the parallel nature of a UPPAAL model. Figure 3 shows a
sketch of the UPPAAL model for the pipeline. The model contains an automaton for each stage in
the pipeline. Progress in the model is forced by declaring all the synchronisation channels as urgent,
and time is bounded using a committed location in the writeback automaton. The non-determinism
arising from the automata combinations is limited using priorities. The simulation ensures that a safe
overapproximation of the execution time is found: e.g. since branch instructions are first evaluated in
the execute stage in actual hardware, prior to entering the pipeline in METAMOC, special handling is
required. While the hardware flushes the fetch and decode stages in case of a non-sequential branch,
the fetch automaton in METAMOC performs two additional fetches in order to affect the instruction
cache correctly.

Another example is pipeline stalls, which is handled in the decode automaton. The automaton initially
delays for one cycle. Then, if the current instruction depends on data being loaded by the memory
stage or data being shifted or sign extended by the writeback stage, it stalls until the data is ready.
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Figure 4. UPPAAL model for the decode stage in the ARM9TDMI pipeline, with x being a local clock.

Consider the instructions:

LDR R0, [R1] /* Load R0 with the word pointed to by R1 */

ADD R2, R0, R1 /* Store the sum of R0 and R1 in R2 */

The sum cannot be computed before the value of R0 is available, and the second instruction must
therefore stay in the decode stage until the load has finished in the memory stage. The possibilities
for pipeline stalls are documented by four examples in the reference manual for the core. The pipeline
model in METAMOC handles all four examples cycle-accurately.

To further validate our pipeline model, we have used it to calculate the number of cycles for executing
some small, single-path programs from the Mälardalen WCET benchmarks, and compared these cycle
counts to results from the ARMulator emulator7, assuming only cache hits. The cycle counts are
comparable (with our estimates erring on the safe side), e.g.: fibcall gives 407 vs. 415. It should
be noted that ARMulator does not give any definite guarantees regarding cycle-accuracy8, which
means the cycle counts can only be used for approximate comparisons.

An important property of the ARM920T processor is that it is free of “timing anomalies”, as its
pipeline is in-order [3]. If a processor has timing anomalies, it means that the local worst-case might
not lead to the global worst-case. For instance, a cache hit rather than a cache miss might lead to a
longer overall execution time. The absence of timing anomalies makes it convenient to find overap-
proximations, as the local worst-case can be used. Alternatively, if presented with a processor with
timing anomalies, additional non-determinism in the model might be used to try all local possibilities.

3.2. Modelling Caches

Another feature for improving the average execution pace is caching. The basis of caching is the
principles of locality. Caches improve the pace greatly, since main memory access might take 33
cycles while a cache access typically only requires a single cycle. A cache is divided into sets, where
each block from main memory can reside in precisely one of these sets. Each set is divided into lines,
also called “ways”. A memory block can be stored in any of the lines, in the set it can be cached in.
When memory access occurs, eviction of a line in a cache set might be required, and a replacement

7http://infocenter.arm.com/help/topic/com.arm.doc.dui0058d/DUI0058.pdf
8http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4106.html
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Figure 5. Sketches of the UPPAAL models for the functions main and foo.

policy is used to determine which line to evict.

The ARM920T processor has separate instruction and data caches. Both are 16 KB, 64 way asso-
ciative, have eight words (i.e. 32 bytes) per line, support the write-through and write-back write
policies, and support the pseudo-random and round-robin replacement policies. We only consider the
round-robin policy, as it is the most predictable. The set for a byte at address x is determined by
(x & ((ns−1)� log2(ls)))� log2(ls), where ns is the number of sets, ls is the line size in bytes, &,
� and� are bitwise and and shift operators. This expression, slightly modified, is part of the cache
models.

In order to add caching to the pipeline model, each cache is modelled as a UPPAAL model, sim-
ulating a cache hit by delaying for one cycle and a cache miss by synchronising with the UPPAAL
model for main memory, which delays the appropriate number of cycles. The cache model has to keep
track of which memory blocks are currently in the cache. It does so by storing an array of 512 ad-
dresses. Cache hits are determined using this array, and the cache replacement policy is implemented
as functions.

3.3. Modelling Programs

The program is modelled as a data-insensitive CFG of the program, that communicates with the first
stage of the pipeline. Figure 5 shows a simplified example of a program with two functions: main
and foo. All programs have a main function, which is where the execution starts. Function calls are
simulated by transferring control to the function automaton and transferring control back to the call-
site when the function returns. This is illustrated in Figure 5 by synchronisation over the channels
fooCall and fooReturn. Loops are handled using loop counter variables that ensure a loop
back-edge can only be taken the specified number of times.

In order to reduce the amount of non-determinism in the program model it is determinised using a
simple rule: executing more code increases the execution time. Concretely, this transforms loops to
be taken the maximum number of times, and not allow forward branches to be taken if execution will
eventually always flow to the destination.

The program CFG is annotated with the memory addresses accessed, determined statically using a
value analysis. We have implemented a precise inter-procedural constant-propagation value analysis
using weighted push-down systems (WPDSs) [7] and loop unrolling. For brevity reasons we will omit
the details on the value analysis.
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3.4. Support for ARM7 and ATMEL AVR 8-bit

Inspired by the WCET Tool Challenge 20089 we have implemented METAMOC for the ARM7TDMI
processor core10. The core has the three pipeline stages fetch, decode and execute. The execute
stage covers the actions performed by the execute, memory and writeback stages in the ARM9TDMI.
Since the ARM9TDMI model could be reused extensively, and since both cores implement the v4T
architecture, we were able to create the ARM7TDMI model in less than a man-week.

To show that other popular embedded processors can be supported as well, we have implemented
support for the ATMEL AVR 8-bit instruction set. It took about one man-week to implement the
support, and only required adding a new pipeline, creating support in Dissy for the AVR architecture
and sligthly generalising the CFG generator.

4. Experiments

To evaluate the applicability and performance of our method, we evaluate it on a number of WCET
benchmark programs from the Mälardalen Real-Time Research Centre. We compile the programs
using a cross-compiling GNU C Compiler (GCC)11. The model generation is done on a 2 GHz Intel
Core 2 Duo processor with 4 GB of RAM, and the model checking is done on a Dell PowerEdge 2950
with two 2.5 GHz Intel Quad Core Xeon processors and 32 GB of RAM.

We have manually annotated all loops in the programs with loop bounds. In addition we have pro-
moted a few local variables to the global scope to sidestep GCC’s translation of large local arrays into
data segments with specialised initialiser code. We have discarded programs that either use floating
point operations, do dynamic jumps (writes to the program counter), or do not compile. GCC inserts
software floating point routines, which we could analyse given an estimation of the routines’ loop
bounds — these are hard to estimate though, without thorough manual analysis. This resulted in 21
programs12 for the ARM architecture and 19 programs for the AVR architecture13.

METAMOC has many parameters that can be adjusted for different trade-offs between precision,
memory and analysis time: the compiler optimisation level, the amount of heuristic determinisation
and manual annotation of the models, the level of hardware detail modelled and model checker options
(specifically state space reduction techniques). To demonstrate the modularity of the method we have
tested three different ARM9 configurations in order of increasing precision, while also increasing
the analysis time: with no caches (always assuming that main memory is accessed), with only an
instruction cache, and with both an instruction cache and a data cache. Our value analysis is only
used when the data cache is enabled. The improvements gained by using more precise models can be
seen in Figure 6a, while the increase in analysis time can be seen in Figure 6b. We have omitted the
benchmarks for the ARM7 architecture as the results are very similar to the ARM9 results.

Our applicability results are presented in Table 1, together with the analysis times in Figure 6b. For

9http://www.mrtc.mdh.se/projects/WCC08/
10http://infocenter.arm.com/help/topic/com.arm.doc.ddi0210c/DDI0210B.pdf
11For ARM: GCC 4.1.2, with the options -O2 -g -fno-builtin -fomit-frame-pointer. For AVR: GCC

4.3.3, with the options -O2 -g -fno-builtin -fno-inline -fomit-frame-pointer -mmcu=avr5
12adpcm, bs, bsort100, cnt, compress, crc, edn, expint, fac, fdct, fibcall, fir, insertsort, janne complex, jfdctint, matmult,

ndes, ns, nsichneu, prime, ud.
13The same as for the ARM, except bsort100 and nsichneu, which failed compiling due to being too large for the AVR.
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ARM9, 21 benchmarks
Analysable without caches 21
Analysable with instruction cache 20
Unanalysable, state space explosion 1
Analysable with data and instruction cache 20
Unanalysable, state space explosion 1
Manual modification of e.g. data cache size 4

ATMEL AVR 8-bit, 19 benchmarks
Analysable 16
Unanalysable, state space explosion 3

Table 1. How many programs were analysable, and reasons for failure.
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Figure 6. (a) Improvement in WCET estimate by precisely modelling the different caches on the ARM9. The
average improvement in WCET estimate is 71.6% by modelling the instruction cache, and 81.3% by modelling
both caches. (b) Analysis times for the different configurations in minutes. The average succesful analysis times
are, respectively: 52.46 secs., 83.61 secs., 44.8 secs. and 265.75 secs.

the ARM9 we are able to provide WCETs for all 21 benchmarks. The adpcm program results in
state space explosion when enabling any caches. When both caches are enabled, we manually have
to modify the models for four of the benchmarks: compress has a small syntactical error due to deep
loop nesting; and for bsort100, matmult and ndes the number of data cache lines modelled concretely
must be reduced from 512 to 128, 64 and 32 (which amounts to editing a constant in the model editor,
due to the modular design). Without this manual modification, UPPAAL runs into its 4 GB memory
limit and quits.

More AVR benchmarks suffer from state space explosion than ARM benchmarks, primarily due to
the ARM architecture having support for conditional execution of all instructions, thus reducing the
number of distinct paths through the program.

The analysis times are all within 40 mins., with the average across all configurations and benchmarks
being 111.65 secs. Details of the benchmarking are available at the METAMOC website, including
the actual WCET estimates and UPPAAL models generated.

5. Related Work

Using model checking for determining worst-case execution times (WCETs) is a debated approach.
In [10] it is claimed that model checking is not suitable for WCET analyses, however, in [6] it is
shown that model checking can actually improve WCET estimates under the influence of caching on
a simple processor. In this paper we show that model checking can be used for WCET analysis on a
real-world, modern processor — and with good results and performance. A further advantage of our
approach is the great modularity with which the model is constructed; it encourages reuse and easy
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retargeting to new processors.

A WCET analysis is often separated in the following four analyses: value, cache, pipeline and path
analysis. In [5] it is claimed that it is impossible to make the four analyses as separate, modular
analyses and at the same time get sufficient precision. The method of this paper is separated in
modular elements with clean interfaces.

Cache analyses can generally be sorted into abstract and concrete cache analyses. The common model
for abstract cache analyses is presented in [4] and has the advantage of being space efficient, with a
trade-off in the loss of precision.

The pipeline analysis typically uses an abstract model of the pipeline to take its impact on the ex-
ecution into account [4]. The pipeline analysis should be able to handle unknown memory values.
They might lead to non-determinism, as it might be impossible to deduce a reasonable overapprox-
imation. For this reason, abstract pipeline states are traditionally represented as a set of concrete
pipeline states [8]. Recent work has looked into using binary decision diagrams (BDDs) to represent
abstract pipeline states [12]. The work presented in this paper is conceptually similar but the standard
reduction techniques of the model checker is used.

For the path analysis, implicit path enumeration technique (IPET) and integer linear programming
(ILP) have been combined in several tools [11, p. 42]. In [9], a path-based method is presented and
has been implemented as an alternative to IPET in the SWEET tool. The method is more effective
than previous path based methods. Furthermore, path based methods explore a path explicitly which,
in contrast to IPET, could make debugging and infeasible path pruning easier. The path analysis
presented in this paper is a simple exploration of the CFG of the program, with pruning of paths
which cannot lead to the worst-case behaviour, but no pruning of infeasible paths.

6. Conclusion and Future Work

The optimisation features of modern processors, such as caching and pipelining, makes it difficult
to determine safe and tight WCETs. Our method, METAMOC, is a very modular and easily retar-
getable approach for determining WCETs for programs running on hardware platforms featuring e.g.
caching and pipelining. In order to evaluate the method, a prototype implementation has been made
for the ARM9 architecture, a typical processor for embedded systems. To show the modularity of
the approach the initial prototype has been extended with support for the ARM7 and ATMEL AVR
architectures.

The prototype has been benchmarked to test its performance and general applicability. The experi-
ments additionally show that much tighter WCET estimates are found when taking instruction caching
is into account: up to 96% tighter estimates, and 71.6% on average. Also considering the data cache
increases the average to 81.3%. When taking both caches into account, the average analysis time is
just under five minutes. For the ARM9 and ARM7 architecture WCET estimates are given for all
benchmarks, but requiring manual tweaking in four cases. For the ATMEL AVR three programs are
unanalysable due to the model checker running out of memory.

Future work includes improving the model checker technology. We speculate that our models will
parallelise very efficiently, as paths seem to be quite independent (especially when including caches).
Distributing the model checking across more hosts will allow us to use much more memory, thereby
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allowing the analysis of much larger programs. Exploiting the structure of our models, to summarise
the effects of long deterministic chains into single steps should also help. Seeing that abstract caches
seem to give a good trade-off between precision and performance, adding support for abstract caches
would be interesting. Finally, instead of being data-insensitive, we would like to incorporate some
form of flow facts into the program model. We already support this in some form, by allowing the
user to manually annotate the program model, but it would be more beneficial if some flow facts were
deduced automatically.
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