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Abstract

Today systems are too complex to be developed by a single team of de-
velopers, thus specifications of subsystems need to be supplied to subcon-
tractors that work independently of each other. To avoid misunderstanding
between designer and the subcontractor, specifications must be formal al-
lowing to write specifications in a rigorous and precise manner, and it should
be possible to check whether an implementation is a valid realization of a
specification.

Throughout the thesis, we focus on systems exhibiting probabilistic be-
haviour. Probabilities are introduced in system design to model various
aspects of real-life systems such as failures or uncertainties, e.g. the risk
that a transmission of a message will fail may be estimated with a prob-
ability, and the uncertainty of a weather forecast may be represented by
assigning probabilities to the possible outcome of the weather.

We advocate and present new results on specification theories for systems
exhibiting both non-deterministic and probabilistic behavior. A specifica-
tion theory is equipped with notions covering the relation between imple-
mentation and specification (satisfaction), the relation between specifica-
tions (refinement) together with composition operators that allow combin-
ing specifications (structural composition and logical composition).

Initially, we consider Markov Chains (MCs) as a basic model for represent-
ing probabilistic implementations. We investigate Interval Markov Chains
(IMCs), as a specification theory for MCs. Whereas transitions of a given
MC are taken with a specific probability, IMCs specify an interval of allowed
probabilities. As IMCs are not closed under conjunction and parallel com-
position, we introduce the concept of Constraint Markov Chains (CMCs),
that is the first complete specification theory for MCs.

We further explore the influence of non-deterministic behaviour by mixing
CMCs and Modal Transition Systems, a well-known specification theory for
Labelled Transition Systems, and consider Probabilistic Automata (PAs),
that can be seen as extensions of MCs; in this model, state changes are
additionally guarded by actions. We present a specification theory for PAs,
namely Abstract Probabilistic Automata (APAs).

Finally, the tool APAC, that implements algorithms for CMCs and APAs,
is introduced.
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Dansk sammenfatning

I dag er systemer for komplekse til at blive udviklet af et enkelt hold af ud-
viklere, og s̊aledes er der behov for at specifikationer af delsystemer leveres
til underleverandører, der arbejder uafhængigt af hinanden. For at undg̊a
misforst̊aelser mellem designer og underleverandør, skal specifikationer være
formelle, hvilket tillader specifikationer skrevet p̊a en stringent og præcis
m̊ade, og det skal være muligt at kontrollere, om en implementation er en
gyldig realisering af en specifikation.

Igennem afhandlingen fokuserer vi p̊a systemer, der har probabilistisk adfæ
rd. Sandsynligheder bruges i systemdesign til at modellere forskellige as-
pekter af virkelige systemer s̊asom fejl eller usikkerheder, f.eks. kan risikoen
for at en transmission af en besked mislykkes estimeres med en sandsyn-
lighed, og usikkerheden p̊a en vejrudsigt kan repræsenteres ved at tildele
sandsynligheder til de mulige udfald af vejret.

Vi fremhæver og præsenterer nye resultater for specifikationsteorier for sys-
temer der har b̊ade non-deterministisk og probabilistisk adfæ rd. En speci-
fikationsteori er udstyret med begreber, der dækker forholdet mellem im-
plementation og specifikation (tilfredsstillelse), forholdet mellem specifika-
tioner (raffinering) samt sammensætningsoperatorer, som gør det muligt
at kombinere specifikationer (strukturel sammensætning og logisk sammen-
sætning).

Til at begynde med betragter vi Markov-kæder (MKer), som er en grund-
læggende model der repræsenterer probabilistiske implementationer. Vi
undersøger Interval-Markov-kæder (IMKer) som en specifikationsteori for
MKer. Hvor transitioner i en given MK tages med en specifik sandsyn-
lighed, angiver IMKer et interval af tilladte sandsynligheder. Da IMKer
ikke er lukket under logisk og parallel sammensætning, introducerer vi be-
grebet Begræ nsnings-Markov-kæder (BMKer), som er den første komplette
specifikationsteori for MKer.

Yderligere undersøger vi inflydelsen af non-deterministisk adfærd ved at
kombinere BMKer og Modale Transitionssystemer, som er en velkendt speci-
fikationsteori for Mæ rkede Transitionssystemer, og undersøger Probabilis-
tiske Automater (PAer), der kan ses som udvidelse af MKer; i denne model
er transitioner yderligere mæ rket med handlinger. Vi præsenterer en speci-
fikationsteori for PAer, Abstrakte Probabilistiske Automater (APAer).



Endelig, bliver værktøjet APAC præsenteret, som implementerer algoritmer
for BMKer og APAer.
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Introduction

1 Quantitative specification theories

An embedded system is an engineering artifact involving computation that is subject to
physical constraints [1]. The description defines mobile phones, mp3 players, washing
machines, and microwave ovens etc. as embedded systems, but also safety-critical
system such as braking systems in cars or GPS systems in planes etc. It is evident
that we are increasingly dependent on embedded systems, so we need to eliminate or
at least limit the amount and impact of errors in their building.

History reveals several examples of accidents related to bugs in embedded systems
such as the failed Ariane 5 launch [2]. Bugs leading to accidents, such as this, are
due to discrepancies that have been introduced in the process from requirements to
implementation. The requirements of an embedded system fall into two categories [1]:

• Functional requirements: These specify the functionality and features of the sys-
tem independent of how the implementation is derived.

• Extra-functional requirements: These specify performance requirements such as
resource usage, failure rates, timing, power consumption etc.

When only considering functional requirements, one can only reason about the
qualitative aspects of a system. However, in many systems, quantitative aspects are
important e.g. that an airbag in a car is inflated at most 5 ms after an impact or that
a server will consume at most 4000 kWh per year. The theme of this thesis will be
the development of suitable specification theories for systems exhibiting probabilistic
behaviour, which is a quantitative aspect.

Probabilities are introduced for several reasons. E.g. protocols such as Zigbee [3]
and Firewire [4] use randomized behaviour and therefore call for specification theories
for probabilistic systems. Also in modeling an unreliable system, probabilities may be
used to estimate failure rates [1]. Knowing the probability for loosing a message in a
transmission over an unreliable medium allows calculating the number of retransmis-
sions for delivery guaranteed with probability 0.99, say. Also, one may not be able to
avoid situations in which an undesirable event may occur, but being able to estimate
the upper bound for the probability for getting in such situations, may prove useful.

In the following, we will motivate the requirements for a specification theory.
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Implementations

Specifications

S0 S1 S2⌫ ⌫

Figure 1: Stepwise refinement

Systems design and development

More and more companies building embedded system tend to rely on outsourcing for
a number of reasons. They may want to benefit from the expertise of subcontractors,
as well as exploit lower cost economies in foreign countries.

Typically, a company specifies the design and requirements of a system and high-
level specifications for subcomponents are supplied to subcontractors that work inde-
pendently of each other. The specification formalism must be rigorous and precise in
the sense that there should be no misunderstandings between the designer and the
subcontractor. To this end, one should focus on a mathematical framework and re-
sort to formal methods in obtaining the ultimate goal for the subcontractor; that is,
given that the specification is meaningful, to construct a subcomponent/implementa-
tion that conforms with the specification. The developer must be able to check that
an implementation satisfies the specification. A well-known concept is that of stepwise
refinement : The developer is given a high-level specification and refines it in one or
more steps, until an implementation is reached, making choices in the design. If, in
each step, the refinement is valid, then the implementation that is eventually reached
will satisfy the initial specification. In each step, techniques such as model checking
could be employed to assure validity.

Consider Figure 1 that illustrates the concept of stepwise refinement. The initial
specification S0 specifies a number of implementations illustrated by a circle. From S0

a more concrete specification S1 is constructed; it is more concrete as it only allows a
subset of the implementations allowed by S0. Finally S2 is reached concretizing S1. As
it can be seen, S2 only specifies a single implementation, so we have indeed reached an
implementation.

Decomposing the high-level specification (see Figure 2) into specifications of sub-
components is a well-known principle known as component-based design. The rewards
are:

2



1 Quantitative specification theories

Decomposition S1

S3

S2

S

Figure 2: Decomposing the specification

1. Subcomponents may be implemented independently

2. Related functionalities can be grouped in a single subspecification

3. Each subspecification is less complex than the full specification

4. The separation may provide a better overview in terms of avoiding errors

But even though subcomponents may function correctly, there is a need for methods
for reasoning about global properties, based on properties of subcomponents. Also, this
reasoning is needed already at the specification level, since, e.g. for economical reasons,
correctness must be assessed before the implementation is built.

To achieve the points advocated, the challenge is to develop suitable specification
theories, encompassing the following points:

1. Satisfaction. The fundamental concept of a specification theory is satisfaction. It
defines exactly when an implementation satisfies a specification.

2. Consistency. Given the notion of satisfaction, a specification is said to be con-
sistent if it is satisfied by at least one implementation. Consistency is needed
to verify that specification are well-formed and do not contain inconsistent or
contradictory requirements.

3. Refinement. The notion of refinement is defined with respect to satisfaction i.e.
a specification S refines another specification S′, if all implementations satisfy-
ing S also satisfy S′. Refinement expresses correctness of a step-wise process,
where more coarse-grained specifications are refined into more detailed ones, as
illustrated in Figure 1.

4. Conjunction (logical composition). The conjunction operation should allow com-
bining two specifications into a single specification that represents the intersection
of sets of implementations of the two operands. This operation is important as
it provides a method for deciding whether two specifications can be satisfied si-
multaneously, which would be the case, if the conjunction is consistent. The
conjunction could be empty, if two requirements are contradictory.

5. Parallel composition (structural composition). The concept of parallel composi-
tion is needed to compose component specifications and should reflect the natural

3
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Figure 3: The two basic probabilistic models

way of fitting together a number of subsystems to build a system. The parallel
composition has to satisfy that the composition of two implementations satisfies
the composition of their specifications. This is to make sure that the parallel
composition of outsourced implementations of subcomponents will satisfy the
specification of the whole system.

Ideally, the use of computers should be facilitated to establish whether an implementa-
tion satisfies a specification, whether a specification refines another specification, etc.
This requires that establishing such relations is decidable. Even further, it is desirable
that they can be checked efficiently.

Throughout this thesis, we will focus on specification theories with implementa-
tion being the two probabilistic models, Markov Chains (MCs) [5] and Probabilistic
Automata (PAs) [6], as defined in Definitions 1 and 2, respectively.

Definition 1 (Markov Chain). A Markov Chain (MC) is a tuple C =
(P, p0, π, A, VC), where P is a set of states containing the initial state p0, A is
a finite set of atomic propositions, VC : P → 2A is a state valuation func-
tion, and π : P → Dist(P ) is a probability distribution assignment such that∑

p′∈P π(p)(p′) = 1 for all p ∈ P .

4



2 Logical and process algebraic specification theories

Model checking
procedure

M

 

Yes

No

Figure 4: Model checking

Definition 2 (Probabilistic Automaton). A Probabilistic Automaton is a tuple
N = (S,A,L,AP, V, s0), where S is the set of states containing the initial state
s0, A is a finite set of actions, L: S × A × Dist(S) → {⊥,>} is a two-valued
transition function, AP is a finite set of atomic propositions, and V : S → 2AP is
a state-labeling function.

We will begin by assuming state sets to be countable. In the thesis contribution
(Section 4 and onwards), however, we will moreover require them to be finite. Figures
3a and 3b illustrate a MC and a PA, respectively.

2 Logical and process algebraic specification theories

In this section, some logical and process algebraic views on specification theories in
relation to Markov Chains and Probabilistic Automata are presented. At the end of
the section, their forces and shortcomings will be discussed.

2.1 Logical approach

Satisfaction checking for logical specifications is known as model checking, and refers
to the process of, given a model M of a system and a logical formula ψ, to determine
whether M satisfies ψ. The discipline is illustrated in Figure 4.

The term ’model checking’ was coined by Clarke and Emerson [7]. Today, model
checking is a widely used concept and is supported by tools such as UPPAAL [8], SMV
[9], SPIN [10], and PRISM [11]. The concept of quantitative model checking [12] has
arisen to support quantitative answer to model checking e.g. that a property is satisfied
with a probability p.

Temporal logics, i.e. logics for reasoning about system behaviour over time, was pro-
posed in [13] for specifying requirements. Famous temporal logics are Linear Temporal
Logic (LTL) [13] and Computation Tree Logic (CTL) [14], both specifying state-labelled
transition systems [15]. While LTL formulas specify properties on every path from a
given state s, CTL formulas specify properties on the computation tree starting in s
using path quantifier ∃ and ∀ to distinguish whether properties should hold in some or

5
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all paths, respectively. The logics are incomparable i.e. there exists CTL formulas that
can not be expressed in LTL and vice versa.

Let us review a probabilistic extension of CTL. Other probabilistic logics are e.g.
Probabilistic Modal Logic [16] and Continuous Stochastic Logic [17].

Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic (PCTL) [18] is a probabilistic extension of CTL,
making it possible to reason about so-called soft deadlines i.e. whether a property P
holds with a certain probability at least p within t time units. Formulae are interpreted
over MCs (as defined in Definition 1 and will be treated again in Section 4.1).

The syntax of PCTL is as follows:

Definition 3 (PCTL syntax).

[state formulae] ψ ::= a | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ → ψ | [ϕ].p

[path formulae] ϕ ::= ψU≤tψ | ψU≤tψ,

where t ∈ IN ∪ {∞}, p ∈ [0, 1], a ∈ A, and . ∈ {>,≥}.

Intuitively, we say that a state s satisfies [ϕ].p if and only if ϕ holds on a path
starting at s with probability .p. We say that ψ1U

≤tψ2 if and only if ψ2 becomes true
after at most t time units and that ψ1 remains true until that point. The path formula
ψ1U

≤tψ2 weakens the former by saying that either ψ1 remains true for at least t time
units or ψ1U

≤tψ2.

Given a state s0 of a MC C = (P, p0, π, A, VC), we define a path σ as an infinite
sequence σ = s0 → s1 · · · → sn → · · · of states in P . We denote the (n+ 1)’th state in
σ as σ[n], that is, sn = σ[n], and the prefix of σ of length n + 1 is denoted by σ ↑ n,
that is, σ ↑ n = s0 → s1 · · · → sn.

Consider the probability space (X,A) where X is the set of paths starting in s0 and
A is a σ-algebra on X generated by sets {σ ∈ X|σ ↑ n = s0 → s1 → · · · → sn} ranging
over all finite paths s0 → s1 → · · · → sn. The measure µm is uniquely defined as, for
every finite path s0 → s1 → · · · → sn,

µm ({σ ∈ X|σ ↑ n = s0 → s1 → · · · → sn}) = π(s0)(s1)π(s1)(s2) · · ·π(sn−1)(sn),

with the definition that µm ({σ ∈ X|σ ↑ 0 = s0}) = 1.

Given a formula ψ, the satisfaction relation |=C between a MC C = (P, p0, π, A, VC)
and ψ is inductively given in the semantic of the logic [18] as follows.

6



2 Logical and process algebraic specification theories

p0

p1

p2

{send}

{ready}

{transmitting}

1

1

0.1

1

0.9
{receive}

{ack}
1 1

p3 p4

(a) A protocol

{receive}

1

p00

(b) A trivial implementation

Figure 5: Two protocol implementations

s |=C a ⇔ a ∈ VC(s)

s |=C ¬ψ ⇔ ¬(s |=C ψ)

s |=C ψ1 ∧ ψ2 ⇔ s |=C ψ1 ∧ s |=C ψ2

s |=C ψ1 ∨ ψ2 ⇔ s |=C ψ1 ∨ s |=C ψ2

s |=C ψ1 → ψ2 ⇔ s |=C ¬ψ1 ∨ s |=C ψ2

s |=C [ψ].p ⇔ µm({σ ∈ X|σ[0] = s ∧ σ |=′C ψ}) . p
σ |=′C ψ1U

≤tψ2 ⇔ ∃i ≤ t : σ[i] |=C ψ2 ∧ ∀0 ≤ j < i : σ[j] |=C ψ1

σ |=′C ψ1U
≤tψ2 ⇔ ∀0 ≤ j ≤ t : σ[j] |=C ψ1 ∨ σ |=′C ψ1U

≤tψ2

We say that C satisfies ψ if and only if p0 |=C ψ. The set {σ ∈ X|σ[0] = s∧σ |=′C ψ}
is measurable as it can be constructed as a countable union of elements in the σ-algebra
A [15].

Well-known CTL formulae such as AGψ and AFψ can be expressed in PCTL as[
ψ U≤∞false

]
≥1

and
[
true U≤∞ψ

]
≥1

, respectively.

Example 1. This example illustrates the satisfaction relation of PCTL. Consider the
protocol [18] illustrated in Fig. 5a. After the initial state, a message is sent over an
unreliable medium; the transmission might fail (state p2). Upon reception (state p3), an
acknowledgement is sent to the sender (state p4). We assume that acknowledgements
are not lost.

We want to specify that, after a send, a receive is reached within 5 time units with
a probability at least 0.99. This is specified in Equation (1). Following the computations
of [18], this requirement is satisfied by the MC in Fig. 5a.

ϕ =
[(

send→
[
true U≤6receive

]
≥0.99

)
U≤∞false

]
≥1

(1)

Notice that the specification is also satisfied by the implementation in Fig. 5b.

7



Introduction

2.2 Process algebraic approach

The notion of process algebras is based on the view that the behaviour of a reactive
system, often viewed as a Labelled Transition System (LTS) [19], can be seen as a set
of processes executing in parallel while communicating. A process algebra provides

• the representation of processes as terms S, T , etc.,

• essential operations [20] such as choice i.e. S + T continues as S or T , sequential
composition i.e. S;T performs S and then T , and parallel composition i.e. S | T
represents S and T running in parallel, to construct processes from existing ones,

• an operational semantics that gives the behaviour of processes as e.g. a LTS, and

• behavioral equivalences, such as bisimulation [21, 22] or probabilistic bisimulation
[16], that relates processes if they behave similarly.

A process algebra may act as a specification theory for reactive system with spec-
ifications and implementations being described in the same language. For defining
satisfaction, we say that a process S satisfies another process T if and only if S and T
are equivalent e.g. if S is (probabilistically) bisimilar T .

Some of the most prominent and well-known examples of process algebras [23] are
Calculus of Communication Systems (CCS) [24], Communicating Sequential Processes
[25], and Algebra of Communicating Processes [26]. Informally (and not exhaustive),
in CCS, a process P can be written as the process a.P1 that can perform an a-action
and become P1 i.e. a.P1

a−→ P1, the sum of process
∑

i∈I Pi, where I is an index set,
and the parallel composition P1 | P2.

The operational semantics is given as a LTS, and CCS features various notions of
equivalences, e.g. bisimulation, for conformance checking between processes. Bisimilar
processes can match each others transition reaching bisimilar processes.

Definition 4. An relation R on P is a (strong) bisimulation relation if and only if,
whenever P1RP2, then

• for all a ∈ Act, if P1
a−→ P ′1, then P2

a−→ P ′2 and P ′1RP ′2, and

• for all a ∈ Act, if P2
a−→ P ′2, then P1

a−→ P ′1 and P ′1RP ′2.

Concurrency Workbench [27] provides tool support for bisimulation checking, finding a
distinguishing formula in Hennessy-Milner logic if two processes are not bisimilar, etc.

We will now review a probabilistic extension of CCS. Other probabilistic process
algebras are e.g. Timed Probabilistic Calculus for Communicating Systems [28] and
ACP+

π [29].

Probabilistic CCS

Probabilistic CCS (PCCS) [30, 31] is a probabilistic extension of CCS. Let A be a set
of actions, let τ be a special action not in A, let Act = A ∪ {a|a ∈ A} ∪ {τ}, and let K

be a set of process names. The syntax of PCCS is as follows.
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2 Logical and process algebraic specification theories

a.
⊕

i∈I piPi
a−→ π

π(P ) =
∑

i∈I, Pi=P
pi

Pi
a−→ π

∑
i∈I Pi

a−→ π
i ∈ I

P1
a−→ π1

P1 | P2
a−→ π1 | λP2.1

P2
a−→ π2

P1 | P2
a−→ λP1.1 | π2

P1
a−→ π1 P2

a−→ π2

P1 | P2
τ−→ π1 | π2

P1
a−→ π1 P2

a−→ π2

P1 | P2
τ−→ π1 | π2

P
a−→ π

P \A a−→ π \A
a, a /∈ A

P
a−→ π f(a) = b

P [f ]
b−→ π[f ]

P
a−→ π

K
a−→ π

K
def
= P

Table 1: Operational semantics for PCCS (transitions)

Definition 5 (PCCS syntax). The collection of PCCS processes P is given by the
following grammar

P ::= a.
⊕

i∈I
piPi |

∑

i∈I
Pi | P1 | P2 | P \A | P [f ] | K,

where a ∈ Act, I is an index set, A ⊆ Act \ {τ}, f : Act→ Act is a renaming function
satisfying that f(τ) = τ and ∀a ∈ Act \ {τ}, f(a) = f(a), and K ∈ K.

The behaviour of each process name K is defined to be that of a process P ∈ P,

denoted by K
def
= P .

In PCCS, action prefixing (as seen above for CCS) is substituted with a probabilistic
choice guarded by an action,

a.
⊕

i∈I
pi · Pi,

where a is an action, and for all i ∈ I, pi ∈]0, 1], and
∑

i∈I pi = 1. This pro-
cess first performs the action a, and then becomes Pi for some i ∈ I according to
the induced probability distribution. If I = {1, . . . , n}, we write a.

⊕
i∈I pi · Pi =

a. (p1 · P1 ⊕ . . .⊕ pn · Pn). Action prefixing is obtained by letting I be a singleton i.e.
a.P1 is obtained as a.

⊕
i∈{1} pi · Pi = a.1 · P1.

The operational semantics of PCSS [30, 31] is given as a Probabilistic Automaton.
Remark that we here use a definition of a PA that does not introduce the state labeling
function as in Definition 2.

Given an expression P , we construct the PA N = (S,A,L, s0) where S are the
processes reachable from P , A = Act, s0 = P , and L is given as the transitions and
operations on distributions in Table 1 and 2 with the rule that L(s, a, π) = > if and
only if s

a−→ π.
Extending CCS, PCCS is equipped with probabilistic bisimulation [16].
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Definition 6. An equivalence relation R on P is a probabilistic bisimulation if and
only if, whenever P1RP2 and a ∈ Act, then

• if P1
a−→ π1, then P2

a−→ π2 and ∀S ∈ P/R :
∑

s∈S π1(s) =
∑

s∈S π2(s).

Example 2. The specification of Example 1 is also expressible in PCCS. However,
there will be a few differences due to the following reasons:

• PCCS only supports fixed probabilities, that is, we can not express that a property
should hold with some probability bound.

• In PCCS, the language of implementation and specifications are the same.

• PCCS does not support the concept of state valuations.

The specification in PCCS will be the process P . It is probabilistically bisimilar to
P ′, and hence, P satisfies P ′.

P
def
= initialization.1 · P1 P ′

def
= initialization.1 · P ′1

P1
def
= send.1 · P2 P ′1

def
= send.1 · P ′2

P2
def
= transmission. P ′2

def
= transmission.

(0.1 · P1 ⊕ 0.9 · P3)
(
0.1 · P ′1 ⊕ 0.4 · P ′3,1 ⊕ 0.5 · P ′3,2

)

P3
def
= receive.1 · P4 P ′3,1

def
= receive.1 · P ′4

P ′3,2
def
= receive.1 · P ′4

P4
def
= ack.1 · P1 P ′4

def
= ack.1 · P ′1

2.3 Discussion

Certain specifications seem easier to express in a process algebra than in a logic and vice
versa. While the essence of a process algebra is to reason about operational require-
ments such as the occurrence of specific actions in certain states, this can be difficult
to express in logics. Logics, on the other hand, seem superior for expressing declarative
specifications such as ”if the button is pressed, then eventually coffee will be served”.

As compositionality is a crucial property of a specification theory, probabilistic
bisimulation is a valid choice for defining satisfaction for probabilistic process algebras
as it enjoys useful properties e.g. for PCCS, it is a congruence [32]. However, with
an equivalence defining satisfaction, the set of implementations of a process algebraic
specification is always just a single equivalence class. This is not desirable, as a specifi-
cation should possibly represent a variety of implementations, that are not necessarily
equivalent. Also, refinement (Figure 1), characterized by implementation set inclusion,
will reduce to equality between sets. Conjunction is also uninteresting in this case, as
it is empty if the operands are not equivalent, and if non-empty, it will be equivalent
to both operands.

10



3 Modal Transition Systems

(π1 | π2)(P ) :=

{
π1(P1)π2(P2) if P = P1 | P2

0 else

(π \A)(P ) :=

{
π(P ′) if P = P ′ \A
0 else

(π[f ])(P ) :=

{
π(P ′) if P = P ′[f ]

0 else

Table 2: Operational semantics for PCCS (operations on distribution)

For logics, the notion of satisfaction between a formula and the underlying seman-
tic model is given through the semantic rules. This is a more meaningful notion of
satisfaction, as it allows implementations that are not necessarily equivalent. As an
example, the two MCs in Figure 5a and 5b are not probabilistically bisimilar (using
the definition of [15]), but they both satisfy the logical specification ϕ of Equation (1).
However, there will exist a PCTL formula distinguishing them.

On the other hand, logics, such as PCTL, do not possess an operator for composing
formulae in parallel. However, a natural definition, similar to that of Hennessy-Milner
Logic in [33], is the operator | with the semantics given as,

P |= ψ1|ψ2 ⇐⇒ ∃P1, P2 : P ≡ P1|P2 ∧ P1 |= ψ1 ∧ P2 |= ψ2,

for an appropriate definition of ≡. This definition, however, does not provide any
methods for ”evaluating” the symbolic representation ψ1|ψ2 i.e. constructing a formula
ψ from ψ1|ψ2 such that ∀P : P |= ψ ⇔ P |= ψ1|ψ2. We consider this as a drawback, as it
is desirable to be able to calculate the parallel composition explicitly. In [34], Modular
Markovian Logic (with semantics given as Modular Markov Processes) is presented
along with a complete axiomatization including rules for the expansion of the parallel
compositition operator. However, decidability results have not been considered.

In the following section, we will consider an extension of Labelled Transition Sys-
tems, namely Modal Transition Systems. Modal Transition Systems, as we will see,
support both parallel composition and conjunction, and features meaningful notions of
satisfaction and refinement.

3 Modal Transition Systems

The notion of a Modal Transition System (MTS) was first presented in [35] as a specifi-
cation theory for Labelled Transition Systems and the formalism possesses the desirable
properties [36] for a specification theory. MTSs position themselves between two other
specification theories for LTSs, namely, the process algebra Calculus of Communicating
Systems and Hennessy-Milner Logic (HML), in the following way:

11
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coin teacoffee

(a) A Labelled Transition System

coin teacoffee

(b) A Modal Transition System

Figure 6: A LTS and a MTS

• MTSs support parallel composition and conjunction.

• In terms of expressivity, it has been shown in [37] that every MTS can be trans-
formed into a HML formula, but the reverse does not hold, and every CCS ex-
pression can be transformed to a (trivial) MTS having the same set of implemen-
tations.

A LTS is formally defined as follows:

Definition 7. A Labelled Transition System (LTS) L over an action alphabet A is a
tuple L = (P,−→, p0), where P is a set of states, p0 the initial state, and −→⊆ P×A×P
are the transitions.

The standard representation is a directed graph, as can be seen in Figure 6a. This
transition system illustrates the behaviour of a simple coffee machine. Upon insertion
of a coin, coffee or tea can be produced.

In [35], the authors argue that the use of process algebra for specifying LTSs is too
weak, as they do not allow for underspecificed behaviour to be modelled. A MTS is a
specification theory for LTSs that allows for such underspecified behaviour.

Definition 8. A Modal Transition System (MTS) M over an action alphabet A is
a tuple M = (P,−→, 99K, p0), where P is a set of states, p0 the initial state, and
−→⊆99K⊆ P ×A× P are must and may transitions, respectively.

For an action a ∈ A and states p, p′ ∈ P , we write p
a
99K p′ and p

a−→ p′ if
(p, a, p′) ∈99K and (p, a, p′) ∈−→, respectively. If (p, a, p′) 6∈99K for any p′, we write

p 6 a99K.
By deeming transitions as either may or must transition, it is specified which tran-

sitions are required (must) and allowed (may) in an implementation. Notice that all
required transitions are also allowed. A MTS is displayed in Figure 6b.

12



3 Modal Transition Systems

Recently the notion of MTS has been extended with weight intervals on transitions
[38] to facilitate modeling of e.g. resource usage, as well as modal specification with
an explicit presentation of data [39]. Parametric Modal Transition Systems [40], with
similarities to Acceptance Specifications [41], have been introduced as extensions of
MTSs, where parameters are used to describe exclusive, conditional and persistent
choices between transitions.

3.1 Refinement

The satisfaction between LTSs and MTSs is established through the concept of modal
refinement. As a LTS is a MTS with only required transitions, i.e. −→ = 99K, modal
refinement is also defining a relationship between MTSs. As is turns out, modal refine-
ment approximates refinement by implementation set inclusion, which we from now on
will call thorough refinement. We will touch on this subject again later.

Definition 9 (Modal refinement). Let M1 = (P1,−→1, 99K1, p1
0) and M2 = (P2,−→2

, 99K2, p2
0) be MTSs over alphabet A. A relation R ⊆ P1 × P2 is a modal refinement

relation if and only if, whenever (p1, p2) ∈ R, then

1. for all a ∈ A, if p2
a−→2 p

′
2, then p1

a−→1 p
′
1 and (p′1, p

′
2) ∈ R, and

2. for all a ∈ A, if p1
a
99K1 p′1, then p2

a
99K2 p′2 and (p′1, p

′
2) ∈ R.

We say that M1 (modally) refines M2, written M1 �m M2, if and only if there exists a
modal refinement relation R ⊆ P1×P2 with (p1

0, p
2
0) ∈ R. Given a MTS M , we denote

by [[M ]], the set of LTS that refines M , that is, [[M ]] = {L | L is a LTS ∧ L �m M}.

If a transition is required in the MTS M2, it must also be required in M1, and an
allowed transition in M1 must also be allowed in M2. Informally, going from M2 to M1,
an allowed, but not required, transition in M2 can be 1) removed in M1, 2) allowed in
M1, or 3) required in M1. A required transition in M2, however, must be present in
M1. If both M1 and M2 are LTSs, then modal refinement coincides with bisimulation
as defined in Definition 4.

As an example, it is easy to see that the LTS in Figure 6a satisfies the MTS in
Figure 6b. However, for a coffee drinking customer, it may seem odd that a coin is
required, but coffee is not guaranteed. He may want to propose the MTS is Figure 7.
This MTS is a refinement of that in Figure 6b.

The papers [35, 42] also motivate MTSs by the concept of stepwise refinement;
from the initial specification of a system S0, several refined specifications are developed
before reaching an implementation I:

S0 � S1 � · · · � Sk � I. (2)

Stepwise refinement is not tied to a specific notion of refinement. Figure 1 illustrates
stepwise refinement with respect to thorough refinement.
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coin teacoffee

Figure 7: Another modal transition system

Definition 10. Let M1 = (P1,−→1, 99K1, p1
0) and M2 = (P2,−→2, 99K2, p2

0) be MTSs.
We say that M1 thoroughly refines M2, denoted M1 �th M2, if and only if [[M1]] ⊆ [[M2]].

Modal refinement approximates thorough refinement in the sense that modal refine-
ment implies thorough refinement, but the other direction only holds for deterministic
MTSs. In other words, modal refinement is sound, but not complete with respect to
thorough refinement. Recently, in [43], it was shown that thorough refinement checking
is EXPTIME-complete, while modal refinement is decidable in polynomial time.

3.2 Compositional operators

MTS support parallel composition and conjunction [41]. The former will be treated
first.

Definition 11. Let M1 = (P1,−→1, 99K1, p1
0) and M2 = (P2,−→2, 99K2, p2

0) be MTSs
over the same alphabet. The parallel composition of M1 and M2 is the MTS M1‖M2 =
(P1 × P2,−→, 99K, (p1

0, p
2
0)), that is defined as follows: for each (p1, p2) ∈ P1 × P2,

p1
a−→1 p

′
1 p2

a−→2 p
′
2

(p1, p2)
a−→ (p′1, p

′
2)

p1
a
99K1 p′1 p2

a
99K2 p′2

(p1, p2)
a
99K (p′1, p

′
2)

p1
a
99K1 p′1 p2 6

a
99K2

(p1, p2) 6 a99K
p1 6

a
99K1 p2

a
99K2 p′2

(p1, p2) 6 a99K

The parallel composition operator has the property that, given MTSs M1, M2, M3,
and M4 such that M1 �m M2 and M3 �m M4, we have that M1‖M3 �m M2‖M4.

As it is proven in [44], the conjunction may not exist for non-deterministic MTSs,

so we assume determinism, that is, for all p ∈ P and a ∈ A, |{p′ ∈ P |p a
99K p′}| ≤ 1.

We define a pseudo MTS (pMTS) to be a MTS M = (P,−→, 99K, p0) with a fresh state

⊥. The definition of conjunction is as follows. If (p, a, p′) ∈99K \ −→, we write p
a
99K?p′
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4 Probabilistic extensions of Modal Transition Systems

Definition 12. Let M1 = (P1,−→1, 99K1, p1
0) and M2 = (P2,−→2, 99K2, p2

0) be de-
terministic MTSs over the same alphabet. The conjunction of M1 and M2 is the
pMTS M1 ∧ M2 = (P1 × P2,−→, 99K, (p1

0, p
2
0)), that is defined as follows: for each

(p1, p2) ∈ P1 × P2,

p1
a−→1 p

′
1 p2

a
99K2 p′2

(p1, p2)
a−→ (p′1, p

′
2)

p1
a
99K1 p′1 p2

a−→2 p
′
2

(p1, p2)
a−→ (p′1, p

′
2)

p1
a
99K1 p′1 p2

a
99K2 p′2

(p1, p2)
a
99K (p′1, p

′
2)

p1
a
99K1?p′1 p2 6

a
99K2

(p1, p2) 6 a99K
p1 6

a
99K1 p2

a
99K2?p′2

(p1, p2) 6 a99K
p1

a−→1 p
′
1 p2 6

a
99K2 p′2

(p1, p2)
a−→ ⊥

p1 6
a
99K1 p′1 p2

a−→2 p
′
2

(p1, p2)
a−→ ⊥

In cases where M1 requires a transition on a and M2 forbids it, the conjunction will
introduce inconsistencies by introducing a must-transition to the state ⊥. Example 3
shows the use of a so-called pruning operator ρ [45], that removes these inconsistencies.
ρ may introduce new inconsistencies, so it should be applied until a fixpoint is reached.

Example 3. Consider MTSs M1 and M2 in Fig. 8a and 8b. They both specify different
coffee machines with the crucial difference that M1 requires tea when a coin is inserted
while M2 does not allow it. Fig. 8c illustrates the conjunction.

State p2 of M1∧M2 allows an inconsistency p2
tea−→ ⊥. Since the transition p1

coin
99K p2

is optional, we remove it. The results an be seen in Fig. 8d.

4 Probabilistic extensions of Modal Transition Systems

We now turn the attention to specification theories for probabilistic system by pre-
senting, in this and the following sections, Interval Markov Chains, Constraint Markov
Chains, and Abstract Probabilistic Automata. To describe the theory consistently and
intuitively, the notations may deviate from the papers included in the thesis. This
difference is purely cosmetic, and what we shortly present is equivalent to the original
theory.

4.1 Interval Markov Chains

As [46] points out, e.g. LTSs does not have the expressiveness to express how frequently
a transition occurs. To express the probabilistic behaviour of system components and
the system as a whole, probabilistic specifications theories are needed.

A requirement that coffee is produced with a 98% chance can be modelled as in
Figure 9. This is a MC as defined in Definition 1. For MCs, transitions are not labeled
with actions, but instead labeled with probabilities. We will discuss the extension with
actions in Section 4.3. As it is the tradition, and as can be seen in Figure 9, states
are labelled with atomic propositions. This is done to be able to distinguish states
from each other. In this thesis, we only consider discrete time i.e. a state change
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coin teacoffee

(a) MTS M1

coincoffee

(b) MTS M2

tea

p1

p2 ?

coincoffee

(c) M1 ∧M2

p1

(d) ρ(M1 ∧M2)

Figure 8: Conjunction followed by pruning

happens for each time step. In continuous time, the MC can reside in a state for
an exponentially distributed amount of time. A Continuous-Time MC [47] is a MC
equipped with a function E assigning to each state s a positive real number E(s). Now
the probability for a state change within the next t time units, given the present state
s, is 1 − e−E(s)t, that is, the probability of moving to state s′ within the next t time
units is π(s)(s′)

(
1− e−E(s)t

)
.

MCs are assumed to have the Markov property i.e. the probability for moving from
one state to another, does not depend on the previous transitions or in other words,
the MC is memoryless. This is a reasonable assumption for many systems. One could
claim that the weather tomorrow relies on the weather today, but also the weather of
yesterday. In such a case the Markov property is not satisfied.

Seen from the perspective of a designer, it could be the case that coffee should be
produced with a 98% chance, but also that nearly 98% would suffice i.e. a probability
in the interval [0.98− ε, 0.98 + ε] for some ε > 0. Modeling such requirements calls for
the notion of Interval Markov Chains (IMCs). In this model, the requirement of fixed
transition probabilities is lifted to allow intervals of probabilities. In the end of this
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p0

p1

p2 p3

{working}

{ready}

{coffee}

1

0.98 0.02

1

1

{tea}

Figure 9: A Markov chain

section, the relation between IMCs and MTSs will be established.
Let Intervals[0,1] be the set of all closed, half-open and open intervals included in

[0, 1].

Definition 13 (Interval Markov chain, [Paper A]). An Interval Markov Chain (IMC)
is a tuple I = (Q, q0, ϕ,A, VI), where Q is a set of states containing the initial state q0,
A is a set of atomic propositions, VI : Q→ 2A is a state valuation, and ϕ :Q→ (Q→
Intervals[0,1]), which for each q ∈ Q and q′ ∈ Q gives an interval of probabilities.

Given a state q ∈ Q and a distribution σ ∈ Dist(Q), we say that σ ∈ ϕ(q) if and only
if σ(q′) ∈ ϕ(q)(q′) for all q′ ∈ Q. Notice that MC is an IMC in which all intervals are
closed point intervals and all state valuations being singletons. For closed single point
intervals [p, p], we use the shorthand p. Figure 10 shows an IMC. The IMC specifies
that the coffee machine should deliver coffee with at least a probability 0.98.

IMCs were introduced in [46] as an extension of MTSs, and have since been used as
an abstraction for probabilistic systems [47, 48, 49]. The approach of [48], extended to
specify Continuous-Time MCs in [47], is almost similar to our approach, but they do not
investigate the compositionality of IMCs, as well as the complexity results that will be
presented later in this section. In [49], Abstract Interactive Markov Chains are defined
as a specification formalism for interactive Markov Chains that extends Continous-
Time Markov Chains with action transitions. Parallel composition is considered, but
not conjunction.

Satisfaction

For modal transition systems, modal refinement is the universal relation between MTSs
and between LTSs and MTSs. For IMCs, there are separate relations for comparing
specifications and for comparing implementations and specifications. The latter is the
notion of satisfaction.
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q0

q1

q2 q3

{working}

{ready}

{coffee}

1

[0.98, 1] [0, 1]

1

1

{tea}

Figure 10: An Interval Markov Chain

The main ingredient of satisfaction is redistribution. Let C = (P, p0, π, A, VC) be
a MC and let I = (Q, q0, ϕ,A, VI) be an IMC, and let p ∈ P and q ∈ Q. Given a
relation R ⊆ P ×Q, we intuitively say that a distribution π(p) can be redistributed to
ϕ(q), if states in P can be mapped to states in Q related by R and that the probability
distribution induced by the mapping will conform with ϕ(q).

Definition 14 (CδR). Let C = (P, p0, π, A, VC) be a MC and let I = (Q, q0, ϕ,A, VI) be
an IMC, and let p ∈ P and q ∈ Q. Given a function δ : P → (Q→ [0, 1]), and a binary
relation R ⊆ P × Q, π(p) is redistributed to ϕ(q) with respect to R and δ, denoted as
π(p) CδR ϕ(q), if and only if

1. for all p′ ∈ P , if π(p)(p′) > 0, then δ(p′) defines a distribution on Q,

2. for all q′ ∈ Q,
∑

p′∈P π(p)(p′)δ(p′)(q′) ∈ ϕ(q)(q′), and

3. if δ(p′)(q′) > 0, then p′R q′.

We write π(p) CR ϕ(q) if and only if there exists a function δ such that π(p) CδR ϕ(q).
Such δ is called a correspondence function.

An example of redistribution can be seen in Figure 11. The dashed ellipses show
the relation given by R. The correspondence function δ witnesses the redistribution by
assigning proportions to pairs of states i.e. all probability mass assigned to state p1 by
π(p′)(p1) is redistributed to q2; clearly 1 · 1

3 ∈
[

3
10 ,

2
5

]
. It holds that π(p′) CδR ϕ(q′).

Satisfaction, as defined originally in [46], is defined as follows:

Definition 15 (Satisfaction). Let C = (P, p0, π, A, VC) be a MC and let I = (Q, q0, ϕ,A,
VI) be an IMC. A relation R ⊆ P × Q is called a satisfaction relation if and only if
whenever pR q then

• their valuation sets agree: VC(p) = VI(q), and
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Figure 11: Redistribution

• there exists a correspondence function δ : P → (Q → [0, 1]) such that π(p) CδR
ϕ(q).

We say that C satisfies I, written C |= I, if and only if there exists a satisfaction
relation containing (p0, q0), and call C an implementation of I. We adopt the notation
of MTSs, and denote the set of implementations of I by [[I]].

Clearly, the MC in Figure 9 satisfies the IMC in Figure 10 as 0.98 ∈ [0.98, 1]; a valid
satisfaction relation is {(p0, q0), (p1, q1), (p2, q2), (p2, q2)}.

Notions of refinement

The standard notion of refinement, called strong refinement, is defined along the lines of
satisfaction. For a pair (p, q) in a satisfaction relation, there is exactly one distribution
π(p) that has to be redistributed. For a pair (q, s) in a strong refinement, we require
that there exists a single correspondence function such that all distributions σ ∈ ϕ1(q)
can be redistributed to ϕ2(s).

Definition 16 (Strong Refinement). Let I1 = (Q, q0, ϕ1, A, V1) and I2 = (S, s0, ϕ2, A,
V2) be two IMCs. A relation R ⊆ Q × S is called a strong refinement relation if and
only if whenever qR s, then

• their valuation sets agree: V1(q) = V2(s), and

• there exists a correspondence function δ : Q → (S → [0, 1]) such that for all
σ ∈ ϕ1(q), it holds that σ CδR ϕ2(s).
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I1 strongly refines I2, written I1 �S I2, if and only if there exists a strong refinement
relation containing (q0, s0).

In [Paper A], we also present two weaker notions of refinement:

1. Weak refinement �: instead of a single correspondence function such that all
distributions σ ∈ ϕ1(q) can be redistributed to ϕ2(s), we allow one correspondence
function to be chosen for each distribution σ ∈ ϕ1(q). Strong refinement implies
weak refinement.

2. Thorough refinement: we say that IMC I1 thoroughly refines I2 if and only if
[[I1]] ⊆ [[I2]].

Both weak and strong refinement implies thorough refinement, but as for MTS,
they are sound, but not complete with respect to thorough refinement. Analogous to
MTS, completeness is obtained for a special class of IMCs, that we call deterministic
IMCs with the following definition: An IMC I = (Q, q0, ϕ,A, V ) is deterministic if
and only if for all states q, r, s ∈ Q, if there exist a probability distribution σ ∈ ϕ(q)
such that σ(r) > 0 and a probability distribution ρ ∈ ϕ(q) such that ρ(s) > 0, then
V (r) 6= V (s). For deterministic IMCs, it is known that the three notions of refinement
coincide. In [Paper A], the problem of checking thorough refinement was shown to be
EXPTIME-complete.

Non-closure problems

Given IMCs M1 and M2, the conjunction operator ∧ should satisfy that M1 ∧M2 �
M1, M1 ∧ M2 � M2, and for all IMCs M such that M � M1 and M � M2, then
M � M1 ∧M2. This states that conjunction is the greatest lower bound with respect
to refinement, and implies that [[M1 ∧M2]] = [[M1]] ∩ [[M2]]. When considering IMCs, a
naive approach is to conjoin intervals by taking their intersection. We show that this
approach does not work.

Example 4. Consider IMCs I1 and I2 in Fig. 12a and 12b, and their conjunction
by interval intersection in Fig. 12c. The MC C (Fig. 12d) satisfies both I1 and I2

and should therefore also satisfy I1 ∧ I2. However, this is not the case, and hence,
conjunction by interval intersection does not satisfy the requirement for a conjunction
operator.

Similar examples in [Paper A] and [Paper B] show that IMCs are not closed under
conjunction and parallel composition. In [Paper C], it was shown that there are IMCs
M1 and M2 for which there exists no IMC I with [[I]] = [[M1]] ∩ [[M2]]. This is a strong
result as it abstracts away from the specific definition of the conjunction operator, and
says that no conjunction operator will give rise to an IMC in this example.

The closure problem has lead us to study the common implementation problem,
which is similar to asking whether there exists a MC satisfying the conjunction:
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Figure 12: Conjunction of IMCs

Problem (Common Implementation (CI)). Given k > 1 IMCs Ii, i = 1, . . . , k, does
there exist a MC C such that C |= Ii for all i?

Answering the question involves constructing a relation with properties that bear
a resemblance to the above definition of conjunction, but it is not necessary to con-
struct the actual conjunction. In [Paper A], we have shown that the CI problem is
EXPTIME-complete for unbounded k, and in PTIME for a constant k. This latter
results carries over to consistency checking, i.e. checking whether an IMC C has at
least one implementation can be formulated as the CI problem for k = 2 IMCs, namely
C and itself.

Relation to MTSs

Building upon an idea of [46], we present a translation in [Paper A] that transforms

a MTS M into an IMC M̂ with the property that, given a LTS L, it holds that
L �m M ⇔ [[L̂]] ⊆ [[M̂ ]]. Intuitively, a may-transition is modelled as a probabilistic
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transition with the interval [0, 1], whereas a must-transition is modeled as the interval
]0, 1]. This transformation is of great importance, since it is used for proving lower
complexity bounds for checking thorough refinement and the common implementation
problem by reductions from the same problems for MTSs [43, 50].

4.2 Constraint Markov Chains

A Constraint Markov Chain (CMCs) is an extension of an IMC that overcomes the
non-closure problems by generalizing intervals to general constraints. Also the concept
of state labeling is generalized by allowing a set of possible sets of atomic propositions
for an implementation to satisfy.

Formally, a Constraint Markov Chain is defined as follows:

Definition 17 (Constraint Markov Chain). A Constraint Markov Chain is a tuple
S = (Q, q0, ϕ,A, V ), where Q is a set of states containing the initial state q0, A is a

finite set of atomic propositions, V :Q→ 22A is a set of admissible state valuations and
ϕ :Q→ Dist(Q)→ {0, 1} is a constraint function.

A constraint ϕ(q) is simply an indicator function over Dist(Q). Given µ ∈ Dist(Q),
ϕ(q)(µ) ∈ {0, 1} specifies whether µ is allowed (1) or disallowed (0). We choose to
write constraints as predicates. Consider a CMC on state space Q = {q1, q2, q3} and
let q ∈ Q. As an example, a constraint

ϕ(q)(xq1 , xq2 , xq3) ≡ (0.1 ≤ xq1 ≤ 0.2 ∨ 0.7 ≤ xq1 ≤ 0.9) ∧
3∑

i=1

xqi = 1 (3)

translates to the set {µ ∈ Dist(Q)|0.1 ≤ µ(q1) ≤ 0.2 ∨ 0.7 ≤ µ(q1) ≤ 0.9}. Figure 13
illustrates the constraint.

In [51], Parametric Probabilistic Transition Systems are presented. In this model,
transitions are labeled with multivariate polynomials and the relation to MC is obtained
by assigning the variables of the polynomials to induce a distribution. The authors
consider the problem of finding variable assignments that satisfy certain properties,
and do not consider compositionality or notions of refinement.

Consider again the example from Section 4.1, that a designer of a coffee machine
specifies that coffee should produced with a 98% chance, but that nearly 98% also will
suffice, i.e. a probability in the interval [0.98− ε, 0.98 + ε]. The motivation for general-
izing intervals to general constraints is not as clear as generalizing fixed probabilities to
intervals. Indeed, an example of a designer specifying that coffee should be produced
with a probability 0.98 or 0.6 seems farfetched. The main motivation for introducing
CMCs lies in the closure properties.

Given a state q in a CMC, the valuation V (q) is a set of sets i.e. V (q) = {S1, . . . , Sk}
for k ≥ 1 or V (q) = ∅. For a state p in a MC C to implement q, it must take a
valuation in V (q) i.e. VC(p) ∈ V (q). Notice that V (q) = ∅ can not be implemented.
This approach is more expressive than the labeling function of e.g. [47, 48]. Here they
consider a function Vm : Q × A → B3, with B3 = {⊥, ?,>} being a complete lattice
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Figure 13: Illustrating a constraint

with the ordering ⊥ < ? < >. This function deems atomic propositions to exist (must,
>), may exist (may, ?), or not exist (must not, ⊥) in the valuation of an implementing
state of a MC.

In the state valuation V (q) = {{a}, {b}}, it is expressed that a or b should exclu-
sively hold. Vm can deem a and b as may-propositions, but this could result in that a
holds, b holds, a and b holds or a and b does not hold, where the last two options are
unwanted. Given a state q in a CMC, consider the set

RVm(q) =
{
B ∈ 2A|{a ∈ A|Vm(q, a) = >} ⊆ B ⊆ {a ∈ A|Vm(q, a) ≥?}

}
.

This is the set of possible realizations of Vm in the state q. As an example, consider
A = {a, b, c}, a state q and Vm defined as {Vm(q, a) = >, Vm(q, b) =?, Vm(q, c) = ⊥};
here RVm(q) = {{a}, {a, b}}. As shown for transitions in modal transition systems in
[41], RVm(q) is closed under intersection, union and convexity i.e. if X,Z ∈ RVm(q)
and there exists a set Y ∈ 2A such that X ⊆ Y ⊆ Z, then Z ∈ RVm(q). The state
valuations we consider in our approach, need not to be closed under these operations.

Like IMCs, CMCs feature three notions of refinement that are defined analogously.

Parallel composition and conjunction

Conjunction and parallel composition for CMCs are defined as follows.

• Conjunction: Let S1 = (Q1, q0, ϕ1, A, V1) and S2 = (Q2, s0, ϕ2, A, V2) be CMCs
and let q ∈ Q1 and s ∈ Q2. The conjunction of S1 and S2 is the CMC S1 ∧ S2 =
(Q1 ×Q2, (q0, s0), ϕ∧, A, V ), that is defined as follows:
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– We construct ϕ∧(q, s) of the product state (q, s) as

ϕ∧(q, s)(σ∧) ≡ ϕ1 (q)

(
q′ 7→

∑

s′∈S
σ∧(q′, s′)

)
∧

ϕ2 (s)


s′ 7→

∑

q′∈Q
σ∧(q′, s′)


 .

– We define V (q, s) = V1(q) ∩ V2(s).

• Parallel composition: Let S1 = (Q1, q0, ϕ1, A1, V1) and S2 = (Q2, s0, ϕ2, A2, V2)
be CMCs with A1 ∩A2 = ∅ and let q ∈ Q1 and s ∈ Q2. The parallel composition
of S1 and S2 is the CMC S1‖S2 = (Q1 ×Q2, (q0, s0), ϕ‖, A, V ), that is defined as
follows:

– We construct ϕ‖(q, s) of the product state (q, s) as

ϕ‖(q, s)(σ‖) ≡ ∃σ1 ∈ Dist(Q1) : ϕ1(q)(σ1), ∃σ2 ∈ Dist(Q2) : ϕ2(s)(σ2),

∀q′ ∈ Q, s′ ∈ S : σ‖(q
′, s′) = σ1(q′)σ2(s′).

– We define V (q, s) = V1(q) ∪ V2(s).

The conjunction treats probabilities by allowing σ∧ if its marginal distributions are
allowed in S1 and S2, respectively. Parallel composition treats probabilities by allowing
σ‖, if it can be computed as the product of distributions from S1 and S2.

Conjunction satisfies that [[S1 ∧ S2]] = [[S1]] ∩ [[S2]]. Parallel composition satisfies
that given CMCs S1, S2, S3, and S4, for which it holds that S1 � S3 and S2 � S4,
we have S1‖S2 � S3‖S4. The conjunction can introduce inconsistencies. Calculating
V1(q)∩V2(s) may yield the empty set, which means that (q, s) can not be implemented.
These so-called valuation inconsistencies must be removed, and that could in turns
create constraint-inconsistencies, that is, constraints that can not be satisfied. To this
end, we have in [Paper B] defined a pruning operator β that can remove inconsistencies.
Like pruning for MTSs, the pruning operator may introduce new inconsistencies, so it
should be applied until a fixpoint is reached. It holds for all CMCs S, that [[S]] =
[[β∗(S)]].

Example 5. Consider the CMCs in Figure 14a and 14b and their conjunction in Figure
14c. Requirements for variables to sum to 1 have been left out to avoid clutter. States
(q1, q2) and (q2, q1) have empty state valuations and are therefore inconsistent. The
constraint of state (q1, q

′
1) in β(S1 ∧ S2) (see Figure 14d) asks for the existence of a

distribution satisfying ϕ′∧(q1, q
′
1), that gives zero probability to states (q1, q2) and (q2, q1).

Such a distribution does not exist, since it requires that z1,1′ ≥ 0.5 and z1,1′ ≤ 0.25,
simultaneously. Therefore, (q1, q

′
1) in β(S1 ∧ S2) is inconsistent, and applying β again,

reaching the fixpoint, yields an empty CMC.
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Figure 14: Conjunction followed by pruning

Closure properties

As shown in Section 4.1, interval constraints do not suffice for closure under conjunction
and parallel composition. Considering general constraints gives closure for CMCs under
parallel composition and conjunction, but in [Paper B] we have studied the problem of
determining which types of constraints that ensure closure.

As it turns out, linear constraints suffice for closure under conjunction. Not surpris-
ingly, as parallel composition utilizes multiplication of variables, structurally composing
linear constraints gives rise to polynomial constraints. That is, polynomial constraints
are closed under parallel composition, but linear constraints are not.
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Notions of abstraction

The CMC formalism features two notions of abstractions. Given a CMC S the intuition
of abstraction is to obtain a CMC S′ such that S � S′. This CMC S′ may e.g. be
especially efficient in terms of computations or may hide away non-essential details.
Notice that abstraction serves the dual purpose of refinement.

• Constraint-based abstraction: The constraints of a CMC may be very complex,
and to efficiently reason about them, one can think of the smallest interval-
abstraction that contains a constraint.

Definition 18 (Constraint-based abstraction). Let S = (Q, q0, ϕ,A, V ) be a
CMC. The constraint-abstracted CMC χ(S) = (Q, q0, ϕ

′, A, V ) is defined such
that

ϕ′(q)(µ) ≡
∧

q′∈Q
µ(q′) ∈ Iqq′ ∧

∑

q′∈Q
µ(q′) = 1,

where, for all q′ ∈ Q, Iqq′ are the smallest closed intervals such that ∀µ′ ∈
Dist(Q), ϕ(q)(µ′)⇒ ∧

q′∈Q µ
′(q′) ∈ Iqq′.

Notice that, but for the valuations, the obtained CMC is in fact an IMC, and it
is also clear that S � χ(S).

• State-based abstraction: Composition of CMCs suffers from the state space explo-
sion problem. To address this problem we have defined an abstraction operator
that collapses states in the concrete state space Q to form the abstract state
space Q′. A surjection α : Q→ Q′ with the property that Q =

⋃
q′∈Q′ α

−1(q′) is
called an abstraction function. We define the abstraction of a distribution µ as
α(µ)(q′) =

∑
q∈α−1(q′) µ(q) for all q′ ∈ Q′.

Definition 19 (State-based abstraction). Let S = (Q, q0, ϕ,A, V ) be a CMC and
let α : Q→ Q′ be a state abstraction function. The CMC α(S) = (Q,α(q0), ϕ′, A,
V ′) is induced by α as follows:

ϕ′(q′)(µ′) ≡ ∃µ ∈ Dist(Q) : µ′ = α(µ) ∧
∨

q∈α−1(q′)

ϕ(q)(µ), and

V ′(q′) =
⋃

q∈α−1(q′)

V (q).

Again, it is clear that the abstraction works as intended i.e. S � α(S).

Example 6. The constraint-abstraction of ϕ(q) in Equation (3) is

ϕ′(q)(xq1 , xq2 , xq3) ≡ xq1 ∈ [0.1, 0.9] ∧ xq2 ∈ [0, 0.9] ∧ xq3 ∈ [0, 0.9] ∧
3∑

i=1

xqi = 1.

Figure 15 illustrates the abstracted constraint, obtained by ”filling out” the polygon.
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Figure 15: Abstracting a constraint

In [Paper C], we have shown that the parallel composition of two abstractions,
α1(S1)‖α2(S2), is equivalent to abstracting S1‖S2 with the cartesian product of ab-
straction functions α1 × α2. This property, phrased as ”local abstraction = global
abstraction”, shows the usefulness of state-based abstraction. A similar result holds
for constraint-based abstraction, but as χ(S1)‖χ(S2) is not in general an IMC, we only
obtain that χ(S1)‖χ(S2) � χ(S1‖S2).

4.3 Abstract Probabilistic Automata

A Probabilistic Automaton (PA) is a mixture of a LTS and a MC in the sense that the
formalism encompasses both action transitions and next-state distributions. PAs are a
widely recognized mathematical framework for the specification and analysis of systems
with non-deterministic and stochastic behavior developed by Segala and Lynch [52]. We
use the variant called a simple PA [53], and add the additional feature that states are
labelled with atomic propositions.

PAs are very similar to Markov Decision Processes [54], but supports both internal
and external non-determinism [55]. In [6, 53], PAs has been extended to Probabilistic
I/O Automata (PIOA), and have been used for verification of protocols [4] and for
analysing randomized distributed algorithms [56].

Figure 16 illustrates the running example for PAs with respect to implementations.
Notice that a MC is a PA on one action, say α, where, for each s ∈ S, there exists
exactly one triple (s, α, µ) such that L(s, a, µ) = >.

When composing PAs (and later APAs), we want to adopt a parallel composition
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Figure 16: A probabilistic automaton

operator that allows two PAs to synchronize on a set of actions, while interleaving for
the remaining actions. This synchronization paradigm, called handshaking [15, 57],
is important for concurrent systems that are not fully synchronous. Figure 17 shows
the desired result of the parallel composition of two PAs. The empty synchronization
is used, so the result is entirely interleaving. The parallel composition N1‖∅N2 uses
non-determinism on actions to represent interleaving. As one can consider a CMC
as a PA with only one action α, the parallel composition of CMCs correspond to
their parallel composition as PAs with ‖{α}, and it is clear that CMC conjunction
is fully synchronous, meaning that interleaving is not expressible, due to the lack of
non-determinism on actions.

Extending PA with state labelings in 22AP
and general probability constraints fol-

lows naturally. Additionally, action transitions are labeled with modalities similarly to
MTSs.

Definition 20. An Abstract Probabilistic Automaton is a tuple N = (S,A,L,AP, V, s0),
where S is the set of states containing the initial state s0, A is a finite set of actions,
L : S×A×C(S) −→ B3 is a three-valued state-constraint function with B3 = {⊥, ?,>}
being a complete lattice with the ordering ⊥ < ? < >, AP is a finite set of atomic
propositions, and V : S → 22AP

is a state-labeling function.

As the definition specifies, a transition on an action a and a constraint ϕ is deemed
either as a must transition (>), a may transition (?), or as not allowed (⊥). We denote
by Sat(ϕ) the set of distributions satisfying ϕ.

Figure 18 illustrates an example of an APA. The constraint ϕx specifies that the
probability for getting coffee is at least 0.98.

APAs feature determinism in two kinds. An APA N = (S,A,L,AP, V, s0) is action-
deterministic if

∀s∈S, ∀a∈A : |{ϕ ∈ C(S)|L(s, a, ϕ) 6= ⊥}| ≤ 1,
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Figure 17: Parallel composition of PAs

and valuation-deterministic if ∀s∈S, ∀a∈A,∀ϕ∈C(S) with L(s, a, ϕ) 6= ⊥:

∀µ′, µ′′ ∈ Sat(ϕ), s′, s′′ ∈ S,
(
µ′(s′) > 0 ∧ µ′′(s′′) > 0 ⇒ V (s′) ∩ V (s′′) = ∅

)
.

We say that N is deterministic if it is both action-deterministic and valuation-deter-
ministic.

The notion of APA is equipped with operations known for IMCs and CMCs such
as the two presented notions of abstraction extended with handling of the modalities,
parallel composition, conjunction etc.

Refinement

To see the interplay of probabilities and modalities, the notion of weak refinement is
presented. First the notion of redistribution is defined for the notation of APAs. The
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definition is very similar to that of IMCs.

Definition 21. Let S and S′ be non-empty sets of states. Given µ ∈ Dist(S), µ′ ∈
Dist(S′), a function δ : S → (S′ → [0, 1]), and a binary relation R ⊆ S × S′, µ is
redistributed to µ′ with respect to R and δ, denoted as µ bδR µ

′, if and only if

1. for all s ∈ S, if µ(s) > 0, then δ(s) is a distribution on S′,

2. for all s′ ∈ S′, ∑s∈S µ(s) · δ(s)(s′) = µ′(s′), and

3. if δ(s)(s′) > 0, then (s, s′) ∈ R.

We write µ bR µ′ if and only if there exists a function δ such that µ bδR µ
′. Such δ is

called a correspondence function.

Having modal refinement in mind, we know that transitions must be matched in the
modal way, and that resulting states must be related. But for APAs, resulting states
are obtained by probabilities. The following definition unifies the notion of refinement
for CMCs and MTSs.

Definition 22. Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′, AP, V ′, s′0) be APAs.
R ⊆ S×S′ is a weak refinement relation if and only if, for all (s, s′) ∈ R, the following
conditions hold:

1. ∀a ∈ A.∀ϕ′ ∈ C(S′). L′(s′, a, ϕ′) = > =⇒ ∃ϕ ∈ C(S). L(s, a, ϕ) = > and ∀µ ∈
Sat(ϕ). ∃µ′∈Sat(ϕ′) with µ bR µ′,

2. ∀a ∈ A.∀ϕ ∈ C(S). L(s, a, ϕ) 6= ⊥ =⇒ ∃ϕ′ ∈ C(S′). L′(s′, a, ϕ′) 6= ⊥ and ∀µ ∈
Sat(ϕ).∃µ′∈Sat(ϕ′) with µ bR µ′, and
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3. V (s) ⊆ V ′(s′).

We say that N weakly refines N ′, denoted N � N ′, if and only if there exists a weak
refinement relation relating s0 and s′0.

Conjunction

As mentioned earlier, the conjunction of non-deterministic MTSs may not exist [44].
For APAs, it is possible to conjoin non-deterministic APAs and obtain the greatest
lower bound with respect to the so-called weak weak refinement.

Definition 23. Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′, AP, V ′, s′0) be APAs.
R ⊆ S × S′ is a weak weak refinement relation if and only if, for all (s, s′) ∈ R, the
following conditions hold:

1. ∀a ∈ A. ∀ϕ′ ∈ C(S′). L′(s′, a, ϕ′) = > =⇒ ∃ϕ ∈ C(S). L(s, a, ϕ) = > and ∀µ ∈
Sat(ϕ). ∃µ′∈Sat(ϕ′) with µ bR µ′,

2. ∀a∈A.∀ϕ∈C(S). L(s, a, ϕ) 6= ⊥ =⇒ ∀µ ∈ Sat(ϕ).∃ϕ′∈C(S′). L′(s′, a, ϕ′) 6= ⊥
and ∃µ′∈Sat(ϕ′) with µ bR µ′, and

3. V (s) ⊆ V ′(s′).

We say that N weakly weakly refines N ′, denoted N �W N ′, if and only if there exists
a weak weak refinement relation relating s0 and s′0.

Only item 2 changes in comparison to the definition of weak refinement. Given a
constraint ϕ, in weak refinement, we have to find a constraint ϕ′ such that all distri-
butions in ϕ are redistributed to distributions in ϕ′. However, weak weak refinement
allows to choose a different ϕ′ for each µ ∈ Sat(ϕ).

4.4 The tool APAC

APAC (short for APA Checker) provides tool support for the operations defined for
CMCs and APAs. The functionality is built upon the SMT solver Z3 from Microsoft
Research, that is able to perform quantifier elimination (QE) for linear arithmetic over
the reals.

The limitation to linear arithmetic as well as the heavy complexity of performing
QE are the major drawbacks. We will comment on the issues in the end of this section.

Example of use

Consider the IMC I in Figure 10 and a variant I ′ in Figure 19. The two IMCs specify
different specifications for a coffee machine and we are interested in checking whether
the specifications can be satisfied simultaneously.

As a first step we specify the IMCs in the notation of APAC. Figure 20 shows
the input file. The last line symbolizes that we want APAC to decide whether the
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q0

q1

q2 q3

{working}

{ready}

{coffee}

1

[0.96, 0.99] [0, 1]

1

1

{tea}

Figure 19: An Interval Markov Chain I ′

Figure 20: Input file

conjunction of I and I ′ is consistent (C) i.e. whether there exists a MC C such that
C |= I ∧ I ′.

The file is passed to the tool and the output is given in Figure 21. Indeed, the
conjunction is consistent.

Encoding in Z3

The tool ultimately relies on the encoding in problems solvable by Z3. As an example,
consider checking weak refinement between two CMCs. Let S1 = (Q1, q

1
0, ϕ1, A, V1)

and S2 = (Q2, q
2
0, ϕ2, A, V2) be CMCs. Assume that Q2 = {q1, . . . , q|Q2|}. Let u ∈ Q1

and v ∈ Q2. For (u, v) to be member of a weak refinement relation we first check
that V1(u) ⊆ V2(v). Next the following formula is passed to Z3. As all variables are
quantified the formula will reduce to true or false.
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Figure 21: Output

∀x∈Dist(Q1) :ϕ1(u)(x)⇒ ∃δ : Q1 → (Q2 → [0, 1]) : (4)

ϕ2(v)


 ∑

u′∈Q2

δ(u′)(q1), . . . ,
∑

u′∈Q2

δ(u′)(q|Q2|)


 ∧

∀u′ ∈ Q1 : x(u) =
∑

v′∈Q2

δ(u′)(v′)∧

∀u′ ∈ Q1, ∀v′ ∈ Q2 : δ(u′)(v′) 6= 0⇒ u′R v′.
(5)

A special multiplication-free version of weak refinement is considered, as the original
definition contains multiplication of variables. The special version of refinement is
shown in [Paper C].

The above example shows the use of Z3 when all variables are quantified. In the
case of constraint abstraction, certain variables are kept free. Let u ∈ Q1.

∀v ∈ Q1 : (0 ≤ Lv ≤ Uv ≤ 1)∧
(∀x ∈ Dist(Q1) : ϕ(u)(x)⇒ ∀v ∈ Q1 : Lv ≤ x(v) ≤ Uv)∧
∀(L′1, U ′1, . . . , L′k, U ′k) ∈ [0, 1]|Q1| :

[ ((
∀x ∈ Dist(Q1) : ϕ(u)(x)⇒ ∀v ∈ Q1 : L′v ≤ x(v) ≤ U ′v

)
∧

(
∀v ∈ Q1 : 0 ≤ L′v ≤ U ′v ≤ 1

))
⇒

(
∀v ∈ Q1 : L′v ≤ Lv ∧ Uv ≤ U ′v

) ]
.

Notice, that the Lu’s and Uu’s are not quantified, and are thus free. The formula
specifies that the Lu’s and Uu’s should contain all admissible distributions, and that
all other intervals, containing all admissible distributions, should be bigger.

Linear arithmetic

The restriction to linear arithmetic prevents us from implementing the notions of par-
allel composition and strong refinement for both CMCs and APAs as these notions rely
inherently on multiplication of variables. To still be able to reason about the parallel
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composition, we have defined the so-called linear parallel composition, that acts like
parallel composition with respect to modalities and valuations, but linearly abstracts
constraints.

There exists tools for non-linear QE (Redlog [58], QEPCAD [59]) but, quoting
[60], it is problematic that the process of non-linear QE in practice ”does not scale to
systems of more than five variables”. Since checking refinement on a small example
of two CMCs on 5 states each requires 30 quantified variables, non-linear QE is not
feasible, at the moment.
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5 Thesis summary

5 Thesis summary

Paper A – Consistency and Refinement for Interval Markov Chains

Interval Markov Chains (IMC), or Markov Chains with probability intervals in the
transition matrix, are the base of a classic specification theory for probabilistic systems
(Larsen and Jonsson, 1991). The standard semantics of IMCs assigns to a specification
the set of all Markov Chains that satisfy its interval constraints. The theory then
provides operators for deciding emptiness of conjunction and refinement (entailment)
for such specifications.

In this paper we study complexity of several problems for IMCs, that stem from
compositional modeling methodologies. In particular, we close the complexity gap
for thorough refinement of two IMCs and for deciding the existence of a common
implementation for an unbounded number of IMCs, showing that these problems are
EXPTIME-complete.

We discuss suitable notions of determinism for specifications, and show that for
deterministic IMCs the syntactic refinement operators are complete with respect to
model inclusion. Finally, we show that deciding consistency (emptiness) for an IMC
is polynomial and that existence of common implementation can be established in
polynomial time for any constant number of IMCs.

Contributions

• Describes weak refinement; a variant of the refinement relation considered by [46]

• Thorough, weak, and strong refinement coincides for deterministic Interval Markov
Chains

• Checking thorough refinement is EXPTIME-complete

• Checking the existence of a common implementation between k Interval Markov
Chains is EXPTIME-complete and in PTIME if k is fixed

• Checking consistency between two Interval Markov Chains is in PTIME

Publication history This paper has been accepted at Journal of Logic and Algebraic
Programming (JLAP). It is the journal version of the paper Decision Problems for In-
terval Markov Chains [61], that has been accepted at the 5th International Conference
on Language and Automata Theory and Applications (LATA’11). An extended ab-
stract based on the conference paper was accepted for presentation at the 22nd Nordic
Workshop on Programming Theory (NWPT’10).

Paper B – Constraint Markov Chains

Notions of specification, implementation, satisfaction, and refinement, together with
operators supporting stepwise design, constitute a specification theory. We construct
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such a theory for Markov Chains (MCs) employing a new abstraction of a Constraint
MC. Constraint MCs permit rich constraints on probability distributions and thus
generalize prior abstractions such as Interval MCs. Linear (polynomial) constraints
suffice for closure under conjunction (respectively parallel composition). This is the
first specification theory for MCs with such closure properties. We discuss its relation
to simpler operators for known languages such as probabilistic process algebra. Despite
the generality, all operators and relations are computable.

Contributions

• The notions of conjunction and parallel composition are presented. The idea of
using synchronizers, to obtain synchronized parallel composition, is introduced.

• Thorough, weak, and strong refinement coincides for deterministic Constraint
Markov Chains

• Probabilistic Automata can be translated to Constraint Markov Chains for which
weak refinement, strong refinement, and parallel composition coincides with sim-
ulation, probabilistic bisimulation, and parallel composition for the respective
Probabilistic Automata.

Publication history This paper [62] has been accepted in Theoretical Computer
Science (TCS). It is a journal version of the paper Composition Design Methodology
with Constraint Markov Chains [63], that has been accepted at the 7th International
Conference on Quantitative Evaluation of SysTems (QEST’10).

Paper C – New Results for Constraint Markov Chains

This paper studies compositional reasoning theories for stochastic systems. A specifi-
cation theory combines notions of specification and implementation with satisfaction
and refinement relations, and a set of operators that together support stepwise design.
One of the first behavioural specification theories introduced for stochastic systems is
the one of Interval Markov Chains (IMCs), which are Markov Chains whose probability
distributions are replaced by a conjunction of intervals. In this paper, we show that
IMCs are not closed under conjunction, which gives a formal proof of a conjecture made
in several recent works.

In order to leverage this problem, we suggested to work with Constraint Markov
Chains (CMCs) that is another specification theory where intervals are replaced with
general constraints. Contrary to IMCs, one can show that CMCs enjoy the good closure
properties of a specification theory. In addition, we propose aggressive abstraction
procedures for CMCs. Such abstractions can be used either to combat the state-space
explosion problem, or to simplify complex constraints. In particular, one can show
that, under some assumptions, the behavior of any CMC can be abstracted by an IMC.

Finally, we propose an algorithm for counter-example generation, in case a refine-
ment of two CMCs does not hold. We present a tool that implements our results.
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Implementing CMCs is a complex process and relies on recent advances made in deci-
sion procedures for theory of reals.

Contributions

• A formal proof that Interval Markov Chains are not closed under conjunction

• Notions of abstraction are introduced for Constraint Markov Chains

• The tool APAC is presented for Constraint Markov Chains, as well as the counter-
example generation algorithm

Publication history This paper has been accepted in Performance Evaluation (PE-
VA). It is, like paper B, a journal version of the paper Composition Design Methodology
with Constraint Markov Chains [63].

Paper D – Abstract Probabilistic Automata

Probabilistic Automata (PAs) are a widely-recognized mathematical framework for the
specification and analysis of systems with non-deterministic and stochastic behaviors.
This paper proposes Abstract Probabilistic Automata (APAs), that is a novel abstrac-
tion model for PAs. In APAs uncertainty of the non-deterministic choices is modeled
by may/must modalities on transitions while uncertainty of the stochastic behaviour
is expressed by (underspecified) stochastic constraints. We have developed a complete
abstraction theory for PAs, and also propose the first specification theory for them.
Our theory supports both satisfaction and refinement operators, together with clas-
sical stepwise design operators. In addition, we study the link between specification
theories and abstraction in avoiding the state-space explosion problem.

Contributions

• Abstract Probabilistic Automata combines techniques from Modal Transition Sys-
tems and Constraint Markov Chains

• Notions of abstraction are introduced for Abstract Probabilistic Automata

• Thorough, weak, and strong refinement coincides for deterministic Abstract Prob-
abilistic Automata, by extending the same result for Interval Markov Chains and
Constraint Markov Chains

Publication history This paper [64] has been accepted at the 12th International
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’11).
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Paper E – New Results on Abstract Probabilistic Automata

Probabilistic Automata (PAs) are a recognized framework for modeling and analysis
of nondeterministic systems with stochastic behavior. Recently, we proposed Abstract
Probabilistic Automata (APAs)—an abstraction framework for PAs. In this paper,
we discuss APAs over dissimilar alphabets, a determinisation operator, conjunction of
non-deterministic APAs, and an APA-embedding of Interface Automata. We conclude
introducing a tool for automatic manipulation of APAs.

Contributions

• A version of conjunction, allowing to combine non-deterministic Abstract Prob-
abilistic Automata, is defined. This conjunction is the greatest lower bound wrt.
the presented weak weak refinement

• A determinization algorithm is defined for Abstract Probabilistic Automata

• The notion of Abstract Probabilistic Interfaces is introduced

• The tool APAC is presented for Abstract Probabilistic Automata

Publication history This paper [65] has been accepted at the 11th International
Conference on Application of Concurrency to System Design (ACSD’11).

Paper F – APAC: a tool for reasoning about Abstract Probabilistic
Automata

We recently introduced Abstract Probabilistic Automata (APA), a new powerful ab-
straction formalism for probabilistic automata. Our theory is equipped with a series
of aggressive abstraction techniques for state-space reduction as well as a specification
theory for both logical and structural comparisons. This paper reports on the imple-
mentation of the approach in the Abstract Probabilistic Automata Checker toolset.

Contributions

• The tool APAC is presented

Publication history This paper [66] has been accepted as a tool paper at the 8th
International Conference on Quantitative Evaluation of SysTems (QEST’11).
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1 Abstract

Interval Markov Chains (IMC), or Markov Chains with probability intervals in the
transition matrix, are the base of a classic specification theory for probabilistic systems
(Larsen and Jonsson, 1991). The standard semantics of IMCs assigns to a specification
the set of all Markov Chains that satisfy its interval constraints. The theory then
provides operators for deciding emptiness of conjunction and refinement (entailment)
for such specifications.

In this paper we study complexity of several problems for IMCs, that stem from
compositional modeling methodologies. In particular, we close the complexity gap
for thorough refinement of two IMCs and for deciding the existence of a common
implementation for an unbounded number of IMCs, showing that these problems are
EXPTIME-complete.

We discuss suitable notions of determinism for specifications, and show that for
deterministic IMCs the syntactic refinement operators are complete with respect to
model inclusion. Finally, we show that deciding consistency (emptiness) for an IMC
is polynomial and that existance of common implementation can be established in
polynomial time for any constant number of IMCs.
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2 Introduction

Interval Markov Chains (IMCs for short) extend Markov Chains, by allowing to specify
intervals of possible probabilities on state transitions. IMCs have been introduced by
Larsen and Jonsson [46] as a specification formalism—a basis for a stepwise-refinement-
like modeling method, where initial designs are very abstract and underspecified, and
then they are made continuously more precise, until they are concrete. Unlike richer
specification models, such as Constraint Markov Chains [63], IMCs are difficult to use
for compositional specification due to lack of basic modeling operators. To address
this, we study complexity and algorithms for deciding consistency of conjunctive sets
of IMC specifications.

Let us consider an example. Figure 1 presents a simple specification of a user
of coffee machine. The model on the left hand side prescribes that a typical user
orders coffee with milk with probability x ∈ [0, 0.5] and black coffee with probability
y ∈ [0.2, 0.7] (customers also buy tea with probability t ∈ [0, 0.5]).

Jonsson and Larsen [46] have introduced refinement of such processes, but have not
characterized its computational complexity. Refinement allows deciding whether one
specification allows a subset of the probabilistic processes allowed by another one. We
extend the work on refinement by classifying its complexity and characterizing it using
structural coinductive algorithms in the style of simulation.

Consider the issue of combining multiple specifications of the same system. It
turns out that conjunction of IMCs cannot be expressed as an IMC itself, due to a
lack of expressiveness of intervals. We have recently shown this formally in a parallel
work [67]. Here we illustrate this with an example. The right hand side model in
Figure 1 presents a different view on the coffee service. The vendor of the machine
delivers another specification, which prescribes that the machine is serviceable only if
coffee (white or black) is ordered with some probability z ∈ [0.4, 0.8] from among other
beverages, otherwise it will run out of coffee powder too frequently, or the powder
becomes too old. A conjunction of these two models would describe usage patterns
compatible with this particular machine. Such a conjunction effectively requires that
all the interval constraints are satisfied and that z = x+y holds. However, the solution
of this constraint is not described by an interval over x and y. This can be seen by
pointing out an extremal point, which is not a solution, while all its coordinates take
part in some solution. Say x = 0 and y = 0.2 violates the interval for z, while for each

3

4

1

2

1

2

3 {{tea}}

[.4, .8]

[0, 1]

{{au lait}, {noir}}

{{tea}}

[.2, .7]

{{au lait}}
[0, .5]

[0, .5]

S1 {{noir}} S2

Figure 1: Two specifications of different aspects of a coffee service
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of these two values it is possible to select another one in such a way that z’s constraint
is also held (for example (x = 0, y = 0.4) and (x = 0.2, y = 0.2)). Thus the solution
space is not an interval over x and y. This lack of closure properties for IMCs motivates
us to address the problem of reasoning about conjunction, without constructing it —
the, so called, common implementation problem.

In this paper we provide algorithms and complexities for thorough refinement, con-
sistency, common implementation, and refinement of IMCs, in order to enable compo-
sitional modeling. We contribute the following new results:

• We define suitable notions of determinism for IMCs, and show that for determin-
istic IMCs thorough refinement (TR) coincides with two simulation-like preorders
(the weak refinement and strong refinement), for which there exist co-inductive
algorithms terminating in a polynomial number of iterations.

• In [46] a TR between IMCs is defined as an inclusion of their implementation sets.
We show that the procedure for deciding TR given in [46] can be implemented
in single exponential time. Furthermore, we provide a lower bound, concluding
that TR is EXPTIME-complete. While the reduction from TR of modal tran-
sition systems [43] used to provide this lower bound is conceptually simple, it
requires a rather involved proof of correctness, namely that it preserves sets of
implementations in a sound and complete manner.

• A polynomial procedure for checking whether an IMC is consistent (C), i.e. it
admits an implementation as a Markov Chain.

• An exponential procedure for checking whether k IMCs are consistent in the sense
that they share a Markov Chain satisfying all—a common implementation (CI).
We show that this problem is EXPTIME-complete.

• As a special case, we observe that CI is PTIME for any constant value of k. In
particular, checking whether two specifications can be simultaneously satisfied,
and synthesizing their shared implementation can be done in polynomial time.

The paper proceeds as follows. We begin by summarizing prior work on these and
related problems, and surveying application areas for Interval Markov Chains (Sec-
tion 3). In Section 4 we introduce the basic definitions. All results in subsequent
sections are new and ours. In Section 5 we discuss deciding TR and other refinement
procedures. We expand on the interplay of determinism and refinements in Section 6.
The problems of C and CI are addressed in Section 7. We conclude by discussing the
results in Section 8.

3 State of The Art

Besides IMCs, there exists many other specification formalisms for describing and an-
alyzing stochastic systems; the list includes process algebras [29, 68] or logical frame-
works [18]. A logical representation is suited for conjunction. The process algebraic
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specifications tend to be well developed for parallel composition and efficient refinement
checking. For example, it is not clear how one can synthesize a MC (an implementation)
that satisfies two Probabilistic Computation Tree Logic formulas. Similarly, conjunc-
tion is usually not defined for process algebraic specifications. In this sense, IMCs
situate themselves in the middle between logical and process algebraic models—one
can reason about their common implementation and refinement.

In mathematics, the abstraction of Markov set-chains [69] lies very close to IMCs.
The latter defines the intervals on the transition probabilities, while the former uses
matrix intervals in the transition matrix space, which allows reasoning about the ab-
straction using linear algebra. Technically, a Markov set-chain is an explicit enumera-
tion of all the implementations of an IMC. Markov set-chains have been, for instance,
used to approximate dynamics of hybrid systems [70]. Arguably, they have a different
objective and compositional reasoning operators have not been considered for them, so
far.

IMCs have served the purpose of abstraction in model checking, where a concrete
system is being soundly abstracted by a less precise system in order to prove the
properties more easily [47, 48, 71, 72]. The main issues related to model checking of
IMCs have recently been addressed in [48].

As we already stated, IMCs are not expressive enough to represent many artifacts
of compositional design. In [63], we have presented Constraint Markov Chains (CMC)
a specification model that, contrary to IMCs, is closed under composition and conjunc-
tion. While more expressive than IMCs, CMCs are not an immediate and universal
replacement for IMCs, given that complexity of decision procedures for them is much
higher. IMCs remain relevant, whenever parallel composition is not required in the
application, or when they are used as a coarse abstraction (for example) for CMCs.

For functional analysis of discrete-time non-probabilistic systems, the theory of
Modal Transition Systems (MTS) [35, 42] provides a specification formalism supporting
refinement, conjunction and parallel composition. Earlier we have obtained EXPTIME-
completeness both for the corresponding notion of CI [50] and of TR [43] for MTSs.
In [46] it is shown that IMCs properly contain MTSs, which puts our new results in a
somewhat surprising light: in the complexity theoretic sense, and as far as CI and TR
are considered, the generalization of modalities by probabilities does come for free. A
recent overview of research on (discrete) modal specifications is available in [73].

4 Background

We shall now introduce the basic definitions used throughout the paper. In the following
we will write Intervals[0,1] for the set of all closed, half-open and open intervals included
in [0, 1].

A Markov Chain (sometimes MC in short) is a tuple C = 〈P, p0, π, A, VC〉, where
P is a set of states containing the initial state p0, A is a set of atomic propositions,
VC : P → 2A is a state valuation labeling states with propositions, and π : P → Distr(P )
is a probability distribution assignment such that

∑
p′∈P π(p)(p′) = 1 for all p ∈ P .
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Figure 2: Markov Chain, Interval Markov Chain and satisfaction relation

The probability distribution assignment is the only component that is relaxed in IMCs:

Definition 1 (Interval Markov Chain). An Interval Markov Chain is a tuple I =
〈Q, q0, ϕ,A, VI〉, where Q is a finite set of states containing the initial state q0, A is
a set of atomic propositions, VI : Q → 2A is a state valuation, and ϕ : Q → (Q →
Intervals[0,1]), which for each q ∈ Q and q′ ∈ Q gives an interval of probabilities.

Instead of a distribution, as in MCs, in IMCs we have a function mapping elementary
events (target states) to intervals of probabilities. We interpret this function as a
constraint over distributions. This is expressed in our notation as follows. Given a
state q ∈ Q and a distribution σ ∈ Distr(Q), we say that σ ∈ ϕ(q) iff σ(q′) ∈ ϕ(q)(q′)
for all q′ ∈ Q. Occasionally, it is convenient to think of a Markov Chain as an IMC, in
which all probability intervals are closed point intervals.

We visualize IMCs as automata with intervals on transitions. As an example,
consider the IMC in Figure 2b. It has two outgoing transitions from the initial state
A. No arc is drawn between states if the probability is zero (or, more precisely, the
interval is [0, 0]), so in the example there is zero probability of going from state A to
A, or from B to C, etc. Otherwise, the probability distribution over successors of A
is constrained to fall into ]0.7, 1] and [0, 0.3] for B and C respectively. States B and
C have valuation β, whereas state A has valuation α, δ. Please observe that Figure 2a
presents a Markov Chain using the same convention, modulo the intervals. Remark
that our formalism does not allow “sink states”, i.e. states with no outgoing transition.
However, in order to avoid clutter in the figures, we sometimes represent states with no
outgoing transitions. They must be interpreted as states with a self-loop with a closed
point interval consisting of probability 1.

A satisfaction relation establishes compatibility of Markov Chains (implementa-
tions) and IMCs (specifications). The original definition of satisfaction between MCs
and IMCs was presented in [30, 46]. We use a slightly modified, but strictly equivalent
definition using a concept of correspondence functions:

Definition 2 (Satisfaction). Let C = 〈P, p0, π, A, VC〉 be a MC and let I = 〈Q, q0, ϕ,A,
VI〉 be an IMC. A relation R ⊆ P ×Q is called a satisfaction relation if whenever pR q
then
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• Their valuation sets agree: VC(p) = VI(q)

• There exists a correspondence function δ : P → (Q→ [0, 1]) such that

1. For all p′ ∈ P , if π(p)(p′) > 0 then δ(p′) defines a distribution on Q,

2.
∑

p′∈P π(p)(p′)δ(p′)(q′) ∈ ϕ(q)(q′) for all q′ ∈ Q, and

3. if δ(p′)(q′) > 0, then p′R q′.

We write C |= I iff there exists a satisfaction relation containing (p0, q0). C is an
implementation of I. The set of implementations of I is written [[I]]. Figure 2c presents
an example of satisfaction on states 1 and A. The correspondence function is specified
using labels on the dashed arrows i.e. the probability mass going from state 1 to 3 is
distributed to state B and C with half going to each.

We will say that a state q of an IMC is consistent if its interval constraint ϕ(q) is
satisfiable, i.e., there exists a distribution σ ∈ Distr(Q) satisfying ϕ(q). Obviously, for
a given IMC, it is sufficient that all its states are consistent in order to guarantee that
the IMC is consistent itself—there exists a Markov Chain satisfying it. We discuss the
problem of establishing consistency in a sound and complete manner in Section 7.

There are three known ways of defining refinement for IMCs: the strong refinement
(introduced as simulation in [46]), weak refinement (introduced under the name of
probabilistic simulation in [48]), and thorough refinement (introduced as refinement in
[46]). We will recall their formal definitions:

Definition 3 (Strong Refinement). Let I1 = 〈Q, q0, ϕ1, A, V1〉 and I2 = 〈S, s0, ϕ2, A,
V2〉 be two IMCs. A relation R ⊆ Q × S is called a strong refinement relation if
whenever qR s, then

• Their valuation sets agree: V1(q) = V2(s) and

• There exists a correspondence function δ : Q → (S → [0, 1]) such that for all
σ ∈ Distr(Q), if σ ∈ ϕ1(q), then

1. for each q′ ∈ Q such that σ(q′) > 0, δ(q′) is a distribution on S,

2. for all s′ ∈ S, we have
∑

q′∈Q σ(q′)δ(q′)(s′) ∈ ϕ2(s)(s′), and

3. for all q′ ∈ Q and s′ ∈ S, if δ(q′)(s′) > 0, then q′R s′.

I1 strongly refines I2, written I1 ≤S I2, iff there exists a strong refinement relation
containing (q0, s0).

A strong refinement relation requires existence of a single correspondence, which
witnesses satisfaction for any resolution of probability constraint over successors of q
and s. Figure 3a illustrates such a correspondence between states A and α of two
IMCs. The correspondence function is given by labels on the dashed lines. It is easy to
see that regardless of how the probability constraints are resolved the correspondence
function distributes the probability mass in a fashion satisfying α.
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We now recall the notion of weak refinement, first introduced in [48] under the name
of probabilistic simulation.

Definition 4 (Weak Refinement). Let I1 = 〈Q, q0, ϕ1, A, V1〉 and I2 = 〈S, s0, ϕ2, A, V2〉
be two IMCs. A relation R ⊆ Q × S is called a weak refinement relation if whenever
qR s, then

• Their valuation sets agree: V1(q) = V2(s)

• For each σ ∈ Distr(Q) such that σ ∈ ϕ1(q), there exists a correspondence function
δ : Q→ (S → [0, 1]) such that

1. For each q′ ∈ Q such that σ(q′) > 0, δ(q′) is a distribution on S,

2. for all s′ ∈ S, we have
∑

q′∈Q σ(q′)δ(q′)(s′) ∈ ϕ2(s)(s′), and

3. for all q′ ∈ Q and s′ ∈ S, if δ(q′)(s′) > 0, then q′R s′.

I1 weakly refines I2, written I1 ≤W I2, iff there exists a weak refinement relation con-
taining (q0, s0).

The weak refinement between two states requires that, for any resolution of prob-
ability constraint over successors in I1, there exists a correspondence function which
witnesses satisfaction of I2. Thus the weak refinement achieves the weakening by swap-
ping the order of quantifications. Figure 3b illustrates such a correspondence between
states A and α of another two IMCs. Here, x stands for a value in [0.2, 1] (arbitrary
choice of probability of going to state C from A). Notably, for each choice of x, there
exists p ∈ [0, 1] such that px ∈ [0, 0.6] and (1 − p)x ∈ [0.2, 0.4]. Remark that strong
refinement naturally implies weak refinement. Indeed, if there exists a single correspon-
dence function witnessing satisfaction for any resolution of the constraints, then there
exists a correspondence function for each resolution of the constraints.

Finally, we introduce the thorough refinement as defined in [46]:

Definition 5 (Thorough Refinement). IMC I1 thoroughly refines IMC I2, written
I1 ≤T I2, iff each implementation of I1 implements I2: [[I1]] ⊆ [[I2]]

Thorough refinement is the ultimate refinement relation for any specification for-
malism, as it is based on the semantics of the models.

5 Refinement Relations

We will now compare the expressiveness of the refinement relations. It is not hard to see
that both strong and weak refinements soundly approximate the thorough refinement
(since they are transitive and degrade to satisfaction if the left argument is a Markov
Chain). The converse does not hold. We will now discuss procedures to compute weak
and strong refinements, and then compare the granularity of these relations, which
will lead us to procedures for computing thorough refinement. Observe that all three
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Figure 3: Illustration of strong and weak refinement relations

refinement are decidable as they only rely on the first order theory of real numbers. In
concrete cases below the calculations can be done more efficiently due to convexity of
solution spaces for interval constraints.

Weak and Strong Refinement Consider two IMCs I1 = 〈P, o1, ϕ1, A, V1〉 and I2 =
〈Q, o2, ϕ2, A, V2〉. Informally, checking whether a given relation R ⊆ P × Q is a weak
refinement relation reduces to checking, for each pair (p, q) ∈ R, whether the following
formula is true: ∀π ∈ ϕ1(p) ∃δ : P → (Q → [0, 1]) such that πδ satisfies a system of
linear equations / inequalities. Since the set of distributions satisfying ϕ1(p) is convex,
checking such a system is exponential in the number of variables, here |P ||Q|. As a
consequence, checking whether a relation on P × Q is a weak refinement relation is
exponential in |P ||Q|. For strong refinement relations, the only difference appears in
the formula that must be checked: ∃δ : P → (Q → [0, 1]) such that ∀π ∈ ϕ1(p), we
have that πδ satisfies a system of linear equations / inequalities. Therefore, checking
whether a relation on P×Q is a strong refinement relation is also exponential in |P ||Q|.

Deciding whether weak (strong) refinement holds between I1 and I2 can be done in
the usual coinductive fashion by considering the total relation P ×Q and successively
removing all the pairs that do not satisfy the above formulae. The refinement holds
iff the relation we reach contains the pair (o1, o2). The algorithm will terminate after
at most |P ||Q| iterations. This gives an upper bound on the complexity to establish
strong and weak refinements: a polynomial number of iterations over an exponential
step. This upper bound may be loose. One could try to reuse techniques for non-
stochastic systems [74] in order to reduce the number of iterations. This is left to
future work.

Granularity In [46] an informal statement is made that the strong refinement is
strictly stronger (finer) than the thorough refinement: (≤T) ) (≤S). In [48], the
weak refinement is introduced without discussing its relations to neither the strong nor
the thorough refinement. The following theorem resolves all open issues in relations
between the three:
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Figure 4: IMCs I4 and I5 such that I4 thoroughly but not weakly refines I5

Theorem 1. The thorough refinement is strictly weaker than the weak refinement,
which is strictly weaker than the strong refinement: (≤T) ) (≤W) ) (≤S).

Proof. First, remark that weak refinement implies thorough refinement. Indeed, weak
refinement is transitive and degrades to satisfaction when its left argument is a Markov
chain. Thus it is equivalent to say that a MC M satisfies an IMC I and that M �W I.
If furthermore I �W I ′, then, by transitivity, we obtain M �W I ′, which is equivalent
to M |= I ′. As a consequence, if I �W I ′, then for all MC M such that M |= I, it
holds that M |= I ′, i.e. [[I]] ⊆ [[I ′]].

We now consider the two inequalities separately.

1. Case 1: (≤T) ) (≤W). Figure 4 proposes two IMCs I4 and I5, such that I4

thoroughly but not weakly refines I5. Indeed, let M = 〈Q, q0, π, {a, b, c, d}, VM 〉
be an implementation of I4 and R a corresponding satisfaction relation. Let
P ⊆ Q be the set of states of M satisfying B. Consider a state p ∈ P . Let
πC(p) =

∑
{q∈Q | qRC} π(p)(q) and πD(p) =

∑
{q∈Q | qRD} π(p)(q). Since pRB,

we have that πC(p) + πD(p) = 1. Let P1 ⊂ P be the set of states of M such that
πC(p) ≤ 0.5 and let P2 ⊂ P be the set of states of M such that πD(p) < 0.5.
Obviously, we have P = P1 ∪ P2 and P1 ∩ P2 = ∅. By construction, the states in
P1 will satisfy β1 and the states in P2 will satisfy β2. We now build a satisfaction
relation R′ such that, for all q ∈M , if qRA, then qRα ; if q ∈ P1, then qR′ β1

; if q ∈ P2, then qR′ β2 ; if qRC, then qR′ δ1 and qR′ δ2 ; and if qRD then
qR′ γ1 and qR′ γ2. By construction, R′ is a satisfaction relation, and M is an
implementation of I5. Thus, [[I4]] ⊆ [[I5]]. However, it is not possible to define a
weak refinement relation between I4 and I5: obviously, B can neither refine β1

nor β2.

2. Case 2: (≤W) ) (≤S). In Figure 3b, we propose two IMCs, I3 and I2 such that I3

weakly but not strongly refines I2. State A weakly refines state α: Given a value
x for the transition A → C, we can split it in order to match both transitions
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Figure 5: Solutions (in white) of the system of inequalities (1)

α
px−→ δ1 and α

(1−p)x−−−−→ δ2. Define δ(C)(δ1) = p and δ(C)(δ2) = (1− p), with

p =





0 if 0.2 ≤ x ≤ 0.4
x−0.3
x if 0.4 < x < 0.8

0.6 if 0.8 ≤ x

δ1 is a correspondence function witnessing a weak refinement relation between A
and α. Consider the following parametric inequalities, where p is the variable and
x the parameter.

xp ≤ 0.6

x(1− p) ≤ 0.4

x(1− p) ≥ 0.2

(1)

Suppose that a strong refinement relation R exists between I3 and I2. Then
the correspondence function witnessing ARα should be similar to the one given
above, where p would be a constant solution of the system of inequalities (1).
However, one can see from the solutions of this system of inequalities, which are
graphically represented in Figure 5, that there exists no value of p satisfying (1)
for all x.

Deciding Thorough Refinement As weak and strong refinements are strictly strong-
er than thorough refinement, it is interesting to investigate the complexity of deciding
TR. In [46] a procedure computing TR is given, albeit without a complexity class. We
now establish the complexity of this procedure, closing the problem:
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Theorem 2. The decision problem TR of establishing whether there exists a thorough
refinement between two given IMCs is EXPTIME-complete.

The proofs for both the upper and the lower bounds rely on a series of results that are
presented in the rest of this section.

The upper bound. The upper-bound is shown by analyzing the complexity of the
algorithm presented in [46]. For the sake of completeness, and in order to clarify several
typesetting inaccuracies of the original presentation, we quote the construction of [46]
below and subsequently analyze its complexity:

Definition 6 (Subset simulation). Let I1 = 〈Q, q0, ϕQ, A, VQ〉 and I2 = 〈P, p0, ϕP , A,
VP 〉 be IMCs. A total relation R ⊆ Q × 2P is a subset-simulation iff for each state
q ∈ Q:

1. qRT implies VQ(q) = VP (t) for all t ∈ T

2. For each probability distribution πQ ∈ ϕQ(q) and each correspondence function
δQ : Q→ (2P → [0, 1]) such that support(δQ) ⊆ R, there exists a set T such that
qRT and for each t ∈ T , there exists a probability distribution πP ∈ ϕP (t) and a
correspondence function δP : P → (2P → [0, 1]) such that

(a) if δP (t′)(T ′) > 0, then t′ ∈ T ′, and

(b) for all T ′ ∈ 2P , we have

∑

q′∈Q
πQ(q′)δQ(q′)(T ′) =

∑

p′∈P
πP (p′)δP (p′)(T ′).

Intuitively, this relation associates to every state q of I1 a sample of sets of states
(T1, . . . , Tk) of I2 that are “compatible” with q. Then, for each admissible redistribution
δ of the successor states of q, it states that there exists one of the sets Ti such that
for each of its states t′, there is a redistribution γ of the successor states of t′ that
is compatible with δ. In [46] it is shown that the existence of a subset-simulation
between two IMCs I1 and I2 is equivalent to thorough refinement between them. We
now propose an example to illustrate the subset simulation algorithm presented above.

Example 1. Consider the IMCs I4 = 〈{A,B,C,D}, A, ϕ4, {a, b, c, d}, V4〉 and I5 =
〈{α, β1, β2, δ1, δ2, γ1, γ2}, α, ϕ5, {a, b, c, d}, V5〉 given in Figure 4. They are such that I4

thoroughly but not weakly refines I5 (c.f. proof of Theorem 1). Since thorough refine-
ment holds, we can exhibit a subset simulation R ⊆ P × 2Q between I4 and I5: Let
R = {(A, {α}), (B, {β1}), (B, {β2}), (C, {δ1, δ2}), (D, {γ1, γ2})} be this subset simula-
tion. We illustrate the unfolding of R for states A and B of I4. The rest is left to the
reader.

Consider state A of I4.

1. We have AR{α}, and V4(A) = a = V5(α).
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2. The only distribution π ∈ ϕ4(A) is such that π(B) = 1. Let for example ∆1 ∈
[0, 1]4×27 be the correspondence matrix such that ∆1

B,{β1} = 1/2 and ∆1
B,{β2} =

1/2. Let {α} be the set such that AR{α}. Let ρ be the distribution on Q such
that ρ(β1) = ρ(β2) = 1/2. ρ is indeed in ϕ5(α). Let ∆2 ∈ [0, 1]7×27 be the
correspondance matrix such that ∆2

β1,{β1} = 1 and ∆2
β2,{β2} = 1. It is then obvious

that

(a) for all t and T , if ∆2
t,T > 0, then t ∈ T ;

(b) π∆1 = ρ∆2 holds.

Consider state B of I4.

1. We have BR{β1} and BR{β2}. It holds that V4(B) = b = V5(β1) = V5(β2).

2. Consider a distribution π ∈ ϕ4(B) (for example such that π(C) < 1/2). Let
∆1 be an admissible correspondance matrix. We must have ∆1

C,{δ1,δ2} = 1 and

∆1
D,{γ1,γ2} = 1. Consider {β1} the set such that BR{β1} (if π(C) > 1/2 then pick

up {β2} instead). Let ρ be the distribution such that ρ(δ1) = π(C) and ρ(γ1) =
π(D). Since π(C) < 1/2, we have ρ ∈ ϕ5(β1). Let ∆2 be a correspondance matrix
such that ∆2

δ1,{δ1,δ2} = 1 and ∆2
γ1,{γ1,γ2} = 1. It is obvious that

(a) for all t and T , if ∆2
t,T > 0, then t ∈ T ;

(b) π∆1 = ρ∆2 holds.

The rest of the unfolding is obvious, and R is thus a subset simulation.

The existence of a subset simulation between two IMCs is decided using a standard
co-inductive fixpoint calculation. The algorithm works as follows: first consider the
total relation and check whether it is a subset-simulation. Then refine it by removing
violating pairs of states, and check again until a fixpoint is reached (it becomes a subset-
simulation or it is empty). Checking whether a given relation is a subset simulation has
a single exponential complexity. Checking the second condition in the definition can be
done in single exponential time by solving polynomial constraints with fixed quantifiers
for each pair (q, T ) in the relation. There are at most |Q|2|P | such pairs, which gives a
single exponential time bound for the cost of one iteration of the fixpoint loop. There
are at most |Q|2|P | elements in the total relation and at least one is removed in an
iteration, which gives O(|Q|2|P |) as the bound on the number of iterations. Since a
polynomial of two exponentials is still an exponential, we obtain a single exponential
time for running time of this computation.

Remark 1. Summarizing, all three refinements are in EXPTIME. Still, weak refine-
ment seems easier to check than thorough. For TR the number of iterations on the state-
space of the relation is exponential while it is only polynomial for the weak refinement.
Also, the constraint solved at each iteration involves a single quantifier alternation for
the weak, and three alternations for the thorough refinement.
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The Lower Bound. The lower bound of Theorem 2 is shown by a polynomial reduc-
tion of the thorough refinement problem for modal transition systems to TR of IMCs.
The former problem is known to be EXPTIME-complete [43].

A modal transition system (an MTS in short) [42] is a tuple M = (S, s0, A,→, 99K),
where S is the set of states, s0 is the initial state, and→⊆ S×A×S are the transitions
that must be taken and 99K⊆ S × A × S are the transitions that may be taken. In
addition, it is assumed that (→) ⊆ (99K).

A modal transition system M = (S, s0, A,→, 99K) refines another modal transition
system N = (T, t0, A,→, 99K) iff there exists a refinement relation R ⊆ S×T containing
(s0, t0) such that if (s, t) ∈ R, then

1. whenever t
a→ t′ then also s

a→ s′ for some s′ ∈ S and (s′, t′) ∈ R

2. whenever s
a
99K s′ then also t

a
99K t′ for some t′ ∈ T and (s′, t′) ∈ R

A labelled transition system implements a MTS if it refines it in the above sense. Thor-
ough refinement of MTSs is defined as inclusion of implementation sets, analogously to
IMCs.

We now describe a translation of MTSs into IMCs which preserves implementations.
We assume we only work with modal transition systems that have no deadlock-states,
in the sense that each state has at least one outgoing must transition. This assumption
is needed to avoid dealing with inconsistent states in the corresponding IMC. We first
present a transformation that takes any two MTS and transforms them into MTS
without deadlocks, preserving the notion of thorough refinement between them.

Let M = 〈S, s0, A,→, 99K〉 be a MTS. Let ⊥ /∈ A be a new action variable, and q /∈ S
be a new state variable. Define a new MTS M⊥ = 〈S ∪ {q}, s0, A ∪ {⊥},→⊥, 99K⊥〉 as

follows: for all s, s′ ∈ S and a ∈ A, s
a→⊥ s′ ⇐⇒ s

a→ s′ and s
a
99K⊥ s′ ⇐⇒ s

a
99K s′.

Add the following transitions: for all s ∈ S ∪ {q}, s ⊥→⊥ q and s
⊥
99K⊥ q. In this way,

every state of M⊥ has at least one must outgoing transition. Moreover, it is trivial to
see that this transformation preserves the notion of thorough refinement. This is stated
in the following theorem:

Theorem 3. Let M and M ′ be two MTS. If ⊥ is in neither of their sets of actions,
we have [[M ]] ⊆ [[M ′]] ⇐⇒ [[M⊥]] ⊆ [[M ′⊥]].

Finally, we can safely suppose that all the MTS we consider in the rest of the section
have no deadlocks.

We now describe an implementation preserving translation of MTSs into IMCs. The
IMC M̂ corresponding to a MTS M is defined by the tuple M̂ = 〈Q, q0, A ∪ {ε}, ϕ, V 〉
where Q = S × ({ε} ∪ A), q0 = (s0, ε), for all (s, x) ∈ Q, V ((s, x)) = {x} and ϕ is
defined as follows : for all t, s ∈ S and b, a∈({ε} ∪A), ϕ((t, b))((s′, a)) = ]0, 1] if t

a→ s ;

ϕ((t, b))((s′, a)) = [0, 0] if t 6 a99K s ; and ϕ((t, b))((s′, a)) = [0, 1] otherwise. The encoding
is illustrated in Figure 6.

We first state two lemmas that will be needed to prove the main theorem of the
section: the encoding presented above reduces the problem of checking thorough re-
finement on modal transition systems to checking thorough refinement on IMCs.
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Figure 6: An example of the translation from Modal Transition Systems to IMCs

Lemma 4. Let M = (S, s0, A,→, 99K) be an MTS and I = (SI , s
I
0, A,→) be a transition

system. We have I |= M ⇒ [[Î]] ⊆ [[M̂ ]].

Proof. We first recall the definition of a satisfaction relation for MTS: Let M =
(S, s0, A,→, 99K) be an MTS and I = (SI , s

I
0, A,→) be a transition system. The imple-

mentation I satisfies the MTS M , written I |= M , iff there exists a relation R ⊆ SI×S
such that

1. sI0R s0

2. Whenever sI R s, we have

(a) For all a ∈ A, s′I ∈ SI , sI
a→ s′I in I implies that there exists s′ ∈ S such

that s
a
99K s′ in M and s′I R s′.

(b) For all a ∈ A, s′ ∈ S, s
a→ s′ in M implies that there exists s′I ∈ SI such

that sI
a→ s′I in M and s′I R s′.

Let M = (S, s0, A,→, 99K) be an MTS and I = (SI , s
I
0, A,→) be a transition system.

Let M̂ = 〈Q, q0, A∪{ε}, ϕ, V 〉 and Î = 〈QI , (sI0, ε), A∪{ε}, ϕI , VI〉 be the IMCs defined
as above.

Suppose that I |= M . By definition, there exists a satisfaction relation for MTS

R ⊆ SI × S such that sI0R s0. We show that [[Î]] ⊆ [[M̂ ]].

Let T = 〈QT , p0, π
T , VT , A〉 be an MC such that T ∈ [[Î]]. By definition, there exists

a satisfaction relation for IMCs R1 ⊆ QT ×QI such that p0R1(sI0, ε). Define the new
relation R2 ⊆ QT ×Q such that pR2(s, x) iff there exists sI ∈ SI such that pR1(sI , x)

and sI R s. We show that R2 is a satisfaction relation between T and M̂ .

Let p, s, sI , x be such that pR1(sI , x) and sI R s, i.e. pR2(s, x). If x 6= ⊥, we have

1. Since pR1(sI , x), we have VT (p) = VI((sI , x)) = {x}. Thus VT (p) = V ((s, x)) =
{x}.

2. Let δ1 ∈ Distr(QT × QI) be the probability distribution witnessing pR1(sI , x),
and let δ2 ∈ Distr(QT × Q) be the correspondence matrix such that for all p′ ∈
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QT , s
′ ∈ S and y ∈ A, if {s′I ∈ SI | s′I R s′} 6= ∅ and s

y
99K s′, then

δ2(p′, (s′, y)) =
∑

{s′I∈SI | s′I R s′}

δ1(p′, (s′I , y))

|{s′′ ∈ S | s′I R s′′ and s
y
99K s′′}|

;

Otherwise, δ2(p′, (s′, y)) = 0.

Recap that we suppose that all must transitions are also may transitions. The
definition above potentially gives a non-zero value to δ2(p′, (s′, y)) if there exists
a may (or must) transition from s to s′ in S labelled with y and if there exists a
state s′I in I such that s′I R s′.
Let p′ ∈ QT . We prove that

∑
(s′,y) δ2(p′, (s′, y)) = πT (p)(p′): By definition of δ1,

we have
∑

(s′I ,y) δ
1(p′, (s′I , y)) = πT (p)(p′).

∑

(s′,y)

δ2(p′, (s′, y)) =

∑

{(s′,y) | ∃s′I , s
′
I R s′ and s

y
99Ks′}

∑

{s′I | s
′
I R s′}

δ1(p′, (s′I , y))

|{s′′ ∈ S | s′I R s′′ and s
y
99K s′′}|

.

Clearly, for all (s′I , y) such that δ1(p′, (s′I , y)) > 0, the term

δ1(p′, (s′I , y))

|{s′′ ∈ S | s′I R s′′ and s
y
99K s′′}|

will appear exactly |{s′′ ∈ S | s′I R s′′ and s
y
99K s′′}| times in the expression above.

As a consequence,
∑

(s′,y) δ
2(p′, (s′, y)) =

∑
(s′I ,y) δ

1(p′, (s′I , y)) = πT (p)(p′).

Moreover, we show that for all (s′, y) ∈ Q, that

∑

p′∈QT

δ2(p′, (s′, y)) ∈ ϕ((s, x)(s′, y)).

By construction, ϕ((s, x)(s′, y)) is either {0}, [0, 1] or ]0, 1]. We will thus prove
that (a) if

∑
p′∈QT δ2(p′, (s′, y)) > 0, then ϕ((s, x)(s′, y)) 6= {0}; and (b) if

ϕ((s, x)(s′, y)) =]0, 1], then
∑

p′∈QT δ2(p′, (s′, y)) > 0.

(a) Suppose
∑

p′∈QT δ2(p′, (s′, y)) > 0. By definition, there must exist p′ such

that δ2(p′, (s′, y)) > 0. As a consequence, by definition of δ2, there exists a

transition s
y
99K s′ in M and ϕ((s, x), (s′, y)) 6= {0}.

(b) If ϕ((s, x)(s′, y)) =]0, 1], then there exists a transition s
y→ s′ in M . As

a consequence, by R, there exists s′I ∈ SI such that sI
y→ s′I in I and

s′I R s′. Thus ϕI((sI , x), (s′I , y)) =]0, 1]. By definition of δ1, we know that
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∑
p′∈QT δ1(p′, (s′I , y)) > 0, thus there exists p′ ∈ QT such that δ1(p′, (s′I , y)) >

0. Since s′I R s′ and s
y→ s′, we have δ2(p′, (s′, y)) > 0, thus

∑

p′′∈QT

δ2(p′′, (s′, y)) > 0.

Finally, if δ2(p′, (s′, y)) > 0, there exists s′I ∈ SI such that s′I R s′ and δ1(p′, (s′I , y))
> 0. By definition of δ1, we have p′R1(s′I , y). As a consequence, p′R2(s′, y).

R2 satisfies the axioms of a satisfaction relation for IMCs, thus T ∈ [[M̂ ]] and finally

[[Î]] ⊆ [[M̂ ]].

Lemma 5. Let M = (S, s0, A,→, 99K)be an MTS and I = (SI , s
I
0, A,→) be a transition

system. We have [[Î]] ⊆ [[M̂ ]]⇒ I |= M .

Proof. Let M = (S, s0, A,→, 99K)be an MTS and I = (SI , s
I
0, A,→) be a transition

system. Let M̂ = 〈Q, q0, A ∪ {ε}, ϕ, V 〉 and Î = 〈QI , qI0 , A ∪ {ε}, ϕI , VI〉 be the IMCs
defined as above.

Suppose that [[Î]] ⊆ [[M̂ ]]. We prove that I |= M .
Let T = 〈QT , p0, π

T , VT , A〉 be an MC such that T ∈ [[Î]]. As a consequence, there
exists two satisfaction relations for IMCs R1 ⊆ QT ×QI and R2 ⊆ QT ×Q such that
p0R1(sI0, ε) and p0R2(s0, ε). Define the new relation R ⊆ SI × S such that sI R s iff
there exists p ∈ QT and x ∈ ({ε} ∪A) such that pR1(sI , x) and pR2(s, x). We have

1. p0R1(sI0, ε) and p0R2(s0, ε). As a consequence, sI0R s0.

2. Let sI , s, p, x such that pR1(sI , x) and pR2(s, x) and let δ1 ∈ Distr(QT ×QI) and
δ2 ∈ Distr(QT ×Q) be the associated probability distributions.

(a) Let y ∈ A and s′I ∈ SI such that sI
y→ s′I in I. We prove that there exists

s′ ∈ S such that s
y
99K s′ and s′I R s′.

By definition of Î, we have ϕI((sI , x), (s′I , y)) =]0, 1]. As a consequence,∑
p′′∈QT

δ1(p′′, (s′I , y)) > 0. Thus there exists p′ inQT such that δ1(p′, (s′I , y))

> 0. By definition of δ1, we have p′R1(s′I , y), thus VT (p′) = VI((s
′
I , y)) =

{y}.
Moreover, by definition of δ1, we have

∑
(s′′I ,z)∈QI

δ1(p′, (s′′I , z)) = πT (p)(p′).

Since δ1(p′, (s′I , y)) > 0, we have πT (p)(p′) > 0.

By definition of δ2, we know that
∑

(s′′,z)∈Q δ
2(p′, (s′′, z)) = πT (p)(p′) > 0.

As a consequence, there exists (s′, z) ∈ Q such that δ2(p′, (s′, z)) > 0. By
definition of δ2,we have p′R2(s′, z) and since VT (p′) = {y}, we must have
z = y.

Consequently,
∑

p′′∈QT
δ2(p′′, (s′, y)) > 0. By definition of δ2, we know that∑

p′′∈QT
δ2(p′′, (s′, y)) ∈ ϕ((s, x), (s′, y)), thus ϕ((s, x), (s′, y)) 6= {0}, which
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means, by definition of M̂ , that there exists a transition s
y
99K s′ in M .

Moreover, there exits p′ ∈ QT such that both p′R1(s′I , y) and p′R2(s′, y),
thus s′I R s′.

(b) Let y ∈ A and s′ ∈ S such that s
y→ s′ in M . We prove that there exists

s′I ∈ SI such that sI
y→ s′I in I and s′I R s′.

By definition of M̂ , we have ϕ((s, x), (s′, y)) =]0, 1]. As a consequence,∑
p′′∈QT

δ2(p′′, (s′, y)) > 0. Thus there exists p′ in QT such that δ2(p′, (s′, y))

> 0. By definition of δ2, we have p′R2(s′, y), thus VT (p′) = V ((s′, y)) = {y}.
Moreover, by definition of δ2, we have

∑
(s′′,z)∈Q δ

2(p′, (s′′, z)) = πT (p)(p′).

Since δ2(p′, (s′, y)) > 0, we have πT (p)(p′) > 0.

By definition of δ1, we know that
∑

(s′′I ,z)∈QI
δ1(p′, (s′′I , z)) = πT (p)(p′) > 0.

As a consequence, there exists (s′I , z) ∈ QI such that δ1(p′, (s′I , z)) > 0. By
definition of δ1, we have p′R1(s′I , z) and since VT (p′) = {y}, we must have
z = y.

Consequently,
∑

p′′∈QT
δ1(p′′, (s′I , y)) > 0. By definition of δ1,we know that∑

p′′∈QT
δ1(p′′, (s′I , y)) ∈ ϕI((sI , x), (s′I , y)), thus ϕI((s, x), (s′, y)) 6= {0},

which means, by definition of Î, that there exists a transition sI
y→ s′I in

I (remember that I is a classical transition system). Moreover, there exits
p′ ∈ QT such that both p′R1(s′I , y) and p′R2(s′, y), thus s′I R s′.
Finally, R is a satisfaction relation for MTS, and I |= M

From the two lemmas stated above, we can infer the following theorem:

Theorem 6. Let M = (S, s0, A,→, 99K)be an MTS and I = (SI , s
I
0, A,→) be a transi-

tion system. We have I |= M ⇐⇒ [[Î]] ⊆ [[M̂ ]].

We now define a construction f that builds, for all implementations C of M̂ , a corre-
sponding implementation f(C) of M :

Let M = (S, s0, A,→, 99K) be a MTS. Let M̂ = 〈S× ({ε}∪A), (s0, ε), {ε}∪A,ϕ, V 〉
be the transformation of M defined as above. Let C = 〈Q, q0, A, π, V

′〉 be a MC such

that C |= M̂ for some satisfaction relation on IMCs R. Define f(C) = (Q, q0, A,→)
the Transition System such that q

a→ q′ whenever π(q, q′) > 0 and V ′(q′) = {a}. By
construction, it is trivial that (1) f(C) |= M for some satisfaction relation on MTS

R′ and (2) C |= f̂(C) for some satisfaction relation on IMCs R′′. These satisfaction
relations are defined as follows:

• qR′ s whenever there exists x ∈ {ε} ∪A such that qR(s, x) ;

• qR′′(q′, x) whenever q = q′.

We now switch to the main theorem, showing that the transformation M → M̂
indeed preserves thorough refinement.
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Consistency and Refinement for Interval Markov Chains

Theorem 7. Let M and M ′ be two Modal Transition Systems and M̂ and M̂ ′ be the
corresponding IMCs defined as above. We have M ≤T M

′ ⇐⇒ M̂ ≤T M̂ ′.

Proof. Let M and M ′ be two MTS, and M̂ and M̂ ′ the corresponding IMCs.

⇒ Suppose that M �T M ′, and let C be a MC such that C |= M̂ . We have by

construction f(C) |= M , thus f(C) |= M ′. By Theorem 6, we have [[f̂(C)]] ⊆
[[M̂ ′]], and we know that C |= f̂(C). As a consequence, C |= M̂ ′.

⇐ Suppose that M̂ �T M̂ ′, and let I be a TS such that I |= M . By Theorem 6,

we have [[Î]] ⊆ [[M̂ ]], thus by hypothesis [[Î]] ⊆ [[M̂ ′]]. Finaly, by Theorem 6, we
obtain that I |= M ′.

Crucially, this translation is polynomial. Thus if we had a subexponential algorithm
for TR of IMCs, we could use it to obtain a subexponential algorithm for TR of MTSs,
which is impossible [43].

6 Determinism

Humans naturally build deterministic models to represent deterministic implementa-
tions. Thus deterministic objects form an important class of specifications. It is also
known that for other specification langages, determinism allows more efficient reasoning
procedures.

In our specification formalism, deciding weak refinement is easier than deciding
thorough refinement even though both are in EXPTIME. Nevertheless, since these two
refinements do not coincide, in general, a procedure to check weak refinement cannot
be used to decide thorough refinement.

Observe that weak refinement has a syntactic definition very much like simulation
for transition systems. On the other hand, thorough refinement is a semantic concept,
just as trace inclusion for transition systems. It is well known that simulation and
trace inclusion coincide for deterministic automata. Similarly, for MTSs it is known
that TR coincides with modal refinement for deterministic objects. It is thus natural to
define deterministic IMCs and check whether thorough and weak refinements coincide
on these objects.

In our context, an IMC is deterministic if, from a given state, one cannot reach two
states that share common atomic propositions.

Definition 7 (Determinism). An IMC I = 〈Q, q0, ϕ,A, V 〉 is deterministic iff for all
states q, r, s∈Q, if there exists a distribution σ ∈ ϕ(q) such that σ(r) > 0 and σ(s) > 0,
then V (r) 6= V (s).

Weak determinism ensures that two states reachable with the same admissible dis-
tribution always have different valuations. In a semantic interpretation this means that
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Figure 7: An IMC I whose semantics cannot be captured by a deterministic IMC

there exists no implementation of I, in which two states with the same valuation can
be successors of the same source state.

One can also propose another, more syntactic definition of determinism:

Definition 8 (Strong Determinism). Let I = 〈Q, q0, ϕ,A, V 〉 be an IMC. I is strongly
deterministic iff for all states q, r, s ∈ Q, if there exist a probability distribution σ ∈ ϕ(q)
such that σ(r) > 0 and a probability distribution ρ ∈ ϕ(q) such that ρ(s) > 0, then
V (r) 6= V (s).

Strong determinism differs from the notion of determinism presented in Def. 7 in
that it requires that, from a given state q, one cannot possibly reach two states r
and s with the same set of propositions, even using two different distributions (im-
plementations). Checking weak determinism requires solving a cubic number of linear
constraints: for each state check the linear constraint of the definition—one per each
pair of successors of a state. Checking strong determinism can be done by solving only
a quadratic number of linear constraints—one per each successor of each state.

Luckily, due to the convexity of the set of admissible distributions in a state, these
two notions coincide for IMCs, so the more efficient, strong determinism can be used
in algorithms:

Theorem 8. An IMC I is deterministic iff it is strongly deterministic.

Proof. It directly follows from the definitions that strong determinism implies weak
determinism. We prove that if an IMC I is not strongly deterministic, then it is not
weakly deterministic either.

Let I = 〈Q, q0, ϕ,A, V 〉 be an IMC. If I is not strongly deterministic, then there
exist two admissible distributions on next states for q: σ and ρ ∈ ϕ(q) such that
σ(r) > 0, σ(s) = 0, ρ(r) = 0, ρ(s) > 0 and V (r) = V (s). In order to prove that I is
not weakly deterministic, we build a distribution γ that we prove correct with respect
to the interval specifications, i.e. γ ∈ ϕ(q), and such that γ(r) > 0 and γ(s) > 0.

Since σ(r) > 0, there exists a > 0 such that ϕ(q)(r) = [0, a] or [0, a[. Moreover,
since ρ(s) > 0, there exists b > 0 such that ϕ(q)(s) = [0, b] or [0, b[. Let c = Min(a, b),
and define γ(q′) = σ(q′) for all q′ /∈ {r, s}, γ(r) = σ(r) − c/2, and γ(s) = c/2. By
construction, γ ∈ ϕ(q) and we have γ(r) > 0 and γ(s) > 0. As a consequence, I is not
weakly deterministic. Finally, an IMC I is strongly deterministic iff it is also weakly
deterministic.
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It is worth mentioning that deterministic IMCs are a strict subclass of IMCs. Figure 7
shows an IMC I whose set of implementations cannot be represented by a deterministic
IMC.

We now state the main theorem of the section that shows that for deterministic
IMCs, the weak refinement, and indeed also the strong refinement, correctly capture
the thorough refinement:

Theorem 9. For deterministic IMCs I and I ′ with no inconsistent states, the following
statements are equivalent,

1. I thoroughly refines I ′,

2. I weakly refines I ′, and

3. I strongly refines I ′.

Proof. It directly follows the definitions that (3) implies (2) and (2) implies (1). We
will prove that (1) implies (2), and then that (2) implies (3).

Let I1 = 〈Q1, q1
0, ϕ1, A, V1〉 and I2 = 〈Q2, q2

0, ϕ2, A, V2〉 be two consistent and deter-
ministic IMCs such that [[I1]] ⊆ [[I2]].

First, remark that it is safe to suppose that implementations have the same set of
atomic propositions as I1 and I2.

1. Let R ⊆ Q1 ×Q2 be such that rR s iff for all MC C and state p of C, p |= r ⇒
p |= s. Since we consider pruned IMCs, there exist implementations for all states.

Consider r and s such that rR s.

(a) By definition of R, there exists a MC C and a state p of C such that p |= r
and p |= s. Thus VC(p) = V1(r) and VC(p) = V2(s). As a consequence,
V1(r) = V2(s).

(b) Consider ρ ∈ ϕ1(r) and build the MC C = 〈Q1, q1
0, π, A, VC〉 such that for

all q ∈ Q1,

• VC(q) = V1(q);

• If q 6= r, π(q) is any distribution in ϕ1(q). At least one exists because
I1 is pruned;

• π(r) = ρ.

When necessary, we will address state q of C as qC to differentiate it from
state q of I1. We will now build the correspondence function δ.

C clearly satisfies I1 with a satisfaction relation R1 = Identity, and rC |= r.
By hypothesis, we thus have rC |= s. Consider R2 the satisfaction relation
such that rC R2 s and δ2 the corresponding correspondence function. Let
δ = δ2.

(c) As a consequence,
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6 Determinism

i. By construction of δ, we have that for all q ∈ Q1, δ(q) is a probability
distribution;

ii. By definition of the satisfaction relationR2, we have that for all s′ ∈ Q2,∑
qC∈Q1 ρ(qC)δ2(qC)(s′) ∈ ϕ2(s)(s′). As a consequence, for all s′ ∈ Q2,∑
q∈Q1 ρ(q)δ(q)(s′) ∈ ϕ2(s)(s′).

2. Let r′ ∈ Q1 and s′ ∈ Q2 be such that δr′s′ 6= 0. By definition of C and δ, we have
r′C |= r′ and r′C |= s′. We want to prove that for all implementations C ′ and state
p′ in C ′, p′ |= r′ implies p′ |= s′.

Suppose that this is not the case. There exists an implementation C ′ = 〈P, o, π′, A,
V ′〉 and a state p′ of C ′ such that p′ |= r′ and p′ 6|= s′. Let R′ be the satisfaction
relation witnessing p′ |= r′.

Consider the MC Ĉ = 〈Q̂1 ∪ P̂ , q̂1
0, π̂, A, V̂ 〉. Intuitively, Q̂1 corresponds to C and

P̂ corresponds to C ′. The state r′C (called r̂′ in Ĉ) will be the link between the
two and its outgoing transitions will be the ones of p′. Define

• π̂(q̂1)(q̂2) = π(q1)(q2) if q1, q2 ∈ Q1 and q̂1 6= r̂′;

• π̂(r̂′)(q2) = 0 if q2 ∈ Q1;

• π̂(q̂1)(p̂2) = 0 if q1 ∈ Q1 and q̂1 6= r̂′ and p2 ∈ P̂ ;

• π̂(r̂′)(p̂2) = π′(p′)(p2) if p2 ∈ P ;

• π̂(p̂1)(q̂2) = 0 if p1 ∈ P and q2 ∈ Q1;

• π̂(p̂1)(p̂2) = π′(p1)(p2) if p1, p2 ∈ P ;

• V̂ (q̂) = V1(q) if q ∈ Q1;

• V̂ (p̂1) = V ′(p1) if p1 ∈ P .

We want to prove that r̂′ satisfies s′. This should imply that p′C′ also satisfies s′,
which is absurd.

Consider the relation R̂ between the states of Ĉ and the states of I1 defined as
follows :

R̂ ={(q̂1, q1′) | (q1
C , q

1′) ∈ R1 and q̂1 6= r̂′}∪
{(p̂1, q1′) | (p1, q1′) ∈ R′}∪
{(r̂′, q1′) | p′R′ q1′}

Intuitively, R̂ is equal to R1 for the states q̂1 ∈ Q̂1, except r̂′, and equal to R′
for the states p̂1 ∈ P̂ . The states related to r̂′ are the ones that were related to
p′ with R′.
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We will show that R̂ is a satisfaction relation between Ĉ and I1.

Let t, w be such that tR̂w. For all the pairs where t 6= r̂′, the conditions of the

satisfaction relation obviously still hold because they held for R1 if t ∈ Q̂1 and
for R′ otherwise. It remains to check the conditions for the pairs where t = r̂′.

Consider w such that r̂′R̂w.

(a) Since r′C and p′C′ are both implementations of r′, it is clear that V̂ (r̂′) =

V̂ (p′). As p′R′w, we know that V ′(p′) = V1(w). Thus, V̂ (r̂′) = V1(w).

(b) Consider the correspondence function δ′ : P → (Q1 → [0, 1]) given by

p′R′w. Let δ̂ : (Q̂1 ∪ P̂ ) → (Q1 → [0, 1]) be such that δ̂(p̂1) = δ′(p1)

whenever p̂1 ∈ P̂ . Obviously, this is still a probability distribution on Q1,
and it is such that

i. for all q1 ∈ Q1,

∑

t∈Q̂1∪P̂

π̂(r′)(t)δ̂(t)(q1) =
∑

p̂2∈P̂

π′(p′)(p2)δ̂(p̂2)(q1)

=
∑

p2∈P
π′(p′)(p2)δ′(p2)(q1).

By definition of δ′, this is contained in ϕ1(w)(q1).

ii. Moreover, if π̂(r̂′)(t) 6= 0 and δ̂(t)(q1) 6= 0, then tR̂q1. We only need
to consider t = p̂1 ∈ P̂ (since otherwise π̂(r̂′)(t) = 0) and q1 such that
δ̂(p̂1)(q1) 6= 0. In this case, δ′(p1)(q1) 6= 0. As δ′ is a witness of p′R′w,
it has to be that p1R′ q1, which implies, by definition of R̂, that tR̂q1.

Finally, Ĉ satisfies I1, and in particular, r̂ |= r. As rR s, it implies that r̂ |= s.

As a consequence, there exists δ′′ : (Q̂1 ∪ P̂ ) → (Q2 → [0, 1]) such that, for all
q2 ∈ Q2,

∑

t∈Q̂1∪P̂

π̂(r̂)(t)δ′′(t)(q2) ∈ ϕ2(s)(q2)

(A) Consider q2 6= s′ such that V2(q2) = V2(s′). Due to determinism of I2, and
to the fact that s′ is accessible from s, we have ϕ2(s)(q2) = {0}. Since
π̂(r̂)(r̂′) 6= 0 and π̂(r̂)(r̂′)δ′′(r̂′)(q2) is part of the sum above, we must have
δ′′(r̂′)(q2) = 0.

(B) Consider q3 such that V2(q3) 6= V2(s′) = V1(r′). It is clear that δ′′(r̂′)(q3) = 0
since δ′′ is witnessing satisfaction between Ĉ and I2.

(C) Moreover, since π̂(r̂)(r̂′) > 0, we know that δ′′(r̂′) is a probability distribu-
tion over Q2.
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According to (A) and (B), the only non-zero value in the distribution in (C) must
be δ′′(r̂′)(s′). Since δ′′ is witnessing Ĉ |= I2, this means that r̂′ |= s′.

By construction, r̂′ and p′ only differ by state names. This contradicts the as-
sumption that p′ 6|= s′. Thus r′R s′, and R is a weak refinement relation.

Finally, we have by hypothesis that [[I1]] ⊆ [[I2]], which implies that q1
0R q2

0. We thus
have (1) implies (2).

�
We now prove that (2) implies (3). The following lemma is a direct consequence

of determinism. It states that correspondence functions associated to a satisfaction
relation for a deterministic IMC are of a particular form.

Lemma 10. Let I = 〈Q, q0, ϕ,A, V 〉 be a deterministic IMC. Let C = 〈P, p0, π, A, VC〉
∈ [[I]] be a MC and let R be a satisfaction relation such that p0R q0. Let p ∈ P and
q ∈ Q be such that pR q, and let δ be the associated correspondence function. We have

∀p′ ∈ P, π(p)(p′) 6= 0⇒ |{q′ ∈ Q | δ(p′)(q′) 6= 0}| = 1. (2)

Obviously, the same holds for correspondence functions associated to refinement
relations between deterministic IMCs.

Let I1 = 〈Q1, q1
0, ϕ1, A, V1〉 and I2 = 〈Q2, q2

0, ϕ2, A, V2〉 be two deterministic IMCs
such that I1 �W I2 with a weak refinement relation R. We prove that R is in fact a
strong refinement relation.

Let p ∈ Q1 and q ∈ Q2 be such that pR q.

1. By hypothesis, V1(p) = V2(q);

2. We know that for all probability distribution σ ∈ ϕ1(p), there exists a correspon-
dence function δσ satisfying the axioms of a (weak) refinement relation. We will
build a correspondence function δ0 that will work for all σ. Let p′ ∈ Q1.

• If for all σ ∈ ϕ1(p), we have σ(p′) = 0, then let δ0(p′, q′) = 0 for all q′ ∈ Q2;

• Else, consider σ ∈ ϕ1(p) such that σ(p′) 6= 0. By hypothesis, there exists
a correspondence function δσ associated to pR q. Let δ0(p′) = δσ(p′). By
Lemma 10, there is a single q′ ∈ Q2 such that δσ(p′)(q′) 6= 0. Moreover, by
definition of δσ, we know that

∑
q′′∈Q2 δσ(p′)(q′′) = 1, thus δσ(p′)(q′) = 1.

Suppose there exists ρ 6= σ ∈ ϕ1(p) such that ρ(p′) 6= 0. Let δρ be the
associated correspondence function. As for σ, there exists a unique q′′ ∈ Q2

such that δρ(p′)(q′′) 6= 0. Moreover δρ(p′)(q′′) = 1. By definition of δσ and
δρ, we have

µ : q′′′ 7→
∑

p′′∈Q1

(σ(p′′)δσ(p′′)(q′′′)) ∈ ϕ2(q)

ν : q′′′ 7→
∑

p′′∈Q1

(ρ(p′′)δρ(p′′)(q′′′)) ∈ ϕ2(q)
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Moreover, both µ(q′) > 0 and ν(q′′) > 0. By determinism of I2, this implies
q′ = q′′.

As a consequence, we have δσ(p′) = δρ(p′), so ∀γ ∈ ϕ1(p), if γ(p′) > 0, then
δγ(p′) = δ0(p′).

Finally, consider δ0 defined as above. Let σ ∈ ϕ1(p). We have

(a) if σ(p′) > 0, then δ0(p′) = δσ(p′) is a distribution over Q2;

(b) for all q′ ∈ Q2,

∑

p′∈Q1

(σ(p′)δ0(p′)(q′)) =
∑

p′∈Q1

(σ(p′)δσ(p′)(q′))

∈ ϕ2(q)(q′) by definition of δσ;

(c) if δ0(p′)(q′) > 0, then there exists σ ∈ ϕ1(p) such that δ0(p′)(q′) =
δσ(p′q′) > 0, thus p′R q′ by definition of δσ.

Finally, R is a strong refinement relation.

7 Common Implementation and Consistency

We now turn our attention to the problem of implementation of several IMC specifi-
cations by the same probabilistic system modeled as a Markov Chain. We start with
defining the problem:

Definition 9 (Common Implementation (CI)). Given k > 1 IMCs Ii,i = 1 . . . k, does
there exist a Markov Chain C such that C |= Ii for all i?

Somewhat surprisingly we find out that, similarly to the case of TR, the CI problem
is not harder for IMCs than for modal transition systems:

Theorem 11. Deciding the existence of a CI between k IMCs is EXPTIME-complete
in general.

Lower Bound. To establish a lower bound for common implementation, we propose
a reduction from the common implementation problem for modal transition systems
(MTS). This latter problem has recently been shown to be EXPTIME-complete when
the number of MTS is not known in advance and PTIME-complete otherwise [50]. We
first propose the following theorem.

Theorem 12. Let Mi be MTSs for i = 1, . . . , k. We have

∃I∀i : I |= Mi ⇐⇒ ∃C∀i : C |= M̂i,

where I is a transition system, C is a Markov Chain and M̂i is the IMC obtained with
the transformation defined in Section 5.
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Figure 8: IMCs I6, I7, and I8

Proof. ⇒: This direction can be proven by showing that for arbitrary j ∈ {1, . . . , k},
[[Î]] ⊆ [[M̂j ]]. This is indeed the result of Theorem 6. Now pick a C ∈ [[Î]], and the result
follows.
⇐: Assume that there exists a C such that C |= M̂i for all i = 1, . . . , k. With the
transformation defined in section 5, an implementation I for all Mi for all i can be
constructed as f(C).

Upper Bound. To address the upper bound we first propose a simple construction
to check if there exists a CI for two IMCs. We start with the definition of consistency
relation that witnesses a common implementation between two IMCs.

Definition 10. Let I1 = 〈Q1, q
1
0, ϕ1, A, V1〉 and I2 = 〈Q2, q

2
0, ϕ2, A, V2〉 be IMCs. Then

R ⊆ Q1×Q2 is a consistency relation on the states of I1 and I2 iff whenever (u, v) ∈ R
then

• V1(u) = V2(v),

• there exists a ρ ∈ Distr(Q1 ×Q2) such that

1. ∀u′ ∈ Q1 :
∑

v′∈Q2
ρ(u′, v′) ∈ ϕ1(u)(u′) ∧ ∀v′ ∈ Q2 :

∑
u′∈Q1

ρ(u′, v′) ∈
ϕ2(v)(v′), and

2. ∀(u′, v′) ∈ Q1 ×Q2 st. ρ(u′, v′) > 0, then (u′, v′) ∈ R.

We illustrate the definition of a consistency relation in the following example.

Example 2. Consider the three IMCs in Figure 8. We construct a consistency relation
R for k = 3. The triple (A, 1, α) is in the relation R witnessed by the distribution
ρ that assigns 1

6 to (B, 2, β), 1
6 to (C, 2, β), 1

3 to (D, 3, γ), 1
6 to (E, 4, δ), and 1

6 to
(E, 4, ε). The triples that are given positive probability by ρ are also in the relation
each by the distribution assigning probability 1 to itself. A common implementation
C = 〈P, p0, π, A, VC〉 can be constructed as follows: P = {q|q ∈ R}, p0 = (A, 1, α),
VC(p) is inherited from I6, I7, and I8, and π(p)(p′) = ρ(p′), where ρ is the distribution
witnessing that p ∈ R.
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We now prove that the existence of a consistency relation is equivalent to the exis-
tence of a common implementation, in the case of k = 2. The above definition and the
following theorem extends to general k.

Theorem 13. Let I1 = 〈Q1, q
1
0, ϕ1, A, V1〉 and I2 = 〈Q2, q

2
0, ϕ2, A, V2〉 be IMCs. I1 and

I2 have a common implementation iff there exists a consistency relation R such that
q1

0R q2
0.

Proof. ⇒: Assume that there exists a MC C = 〈P, p0, π, A, VC〉 such that C |= I1

and C |= I2. This implies that there exists satisfaction relations R1 ⊆ P × Q1 and
R2 ⊆ P ×Q2 such that p0R1 q

1
0 and p0R2 q

2
0.

A relation R is constructed as {(q1, q2)|∃p ∈ P : pR1 q1 ∧ pR2 q2}. We now prove
that R is a consistency relation relating q1

0 and q2
0; indeed (q1

0, q
2
0) ∈ R because p0R1 q

1
0

and p0R2 q
2
0. Let (q1, q2) ∈ R and p ∈ P be such that pR1 q1 and pR2 q2.

1. By R1 and R2, V1(q1) = VC(p) = V2(q2)

2. Let δ1 and δ2 be the correspondence functions witnessing pR1 q1 and pR2 q2, and
let ρ ∈ Distr(Q1 ×Q2) be such that

ρ(q′1, q
′
2) =

∑

p′∈P st. π(p)(p′)>0

π(p)(p′)δ1(p′, q′1)δ2(p′, q′2). (3)

Since
∑

q′1∈Q1

∑
q′2∈Q2

ρ(q′1, q
′
2) = 1, ρ is indeed a distribution on Q1 ×Q2.

Let u′ ∈ Q1.
∑

v′∈Q2

ρ(u′, v′) =
∑

(v′∈Q2)

∑

(p′∈P st. π(p)(p′)>0)

π(p)(p′)δ1(p′, u′)δ2(p′, v′)

=
∑

p′∈P st. π(p)(p′)>0

π(p)(p′)δ1(p′, u′)
∑

v′∈Q2

δ2(p′, v′)

=
∑

p′∈P st. π(p)(p′)>0

π(p)(p′)δ1(p′, u′) by definition of δ2

∈ ϕ1(q1)(u′) by definition of δ1.

Similarly, for all v′ ∈ Q2,
∑

u′∈Q1
ρ(u′, v′) ∈ ϕ2(v)(v′).

3. Let q′1 ∈ Q1 and q′2 ∈ Q2 be states such that ρ(q′1, q
′
2) > 0. Then at least one term

in Eq. (3) is positive. Thus, there exists p′ such that

π(p)(p′)δ1(p′, q′1)δ2(p′, q′2) > 0.

This implies that all factors are positive, and by definition of δ1 and δ2, we have
that (p′, q′1) ∈ R1 and (p′, q′2) ∈ R2 and therefore q′1R q′2.

This proves that R is a consistency relation.
⇐: Assume that there exists a consistency relation R relating q1

0 and q2
0. We now

construct a common implementation C, such that C |= I1 and C |= I2; we prove the
former first. Let C = 〈P, p0, π, A, VC〉 be such that
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7 Common Implementation and Consistency

• P = {(q1, q2) ∈ Q1 ×Q2 | q1R q2}

• p0 = (q1
0, q

2
0)

• VC((q1, q2)) = V1(q1) = V2(q2) by definition of R

• For each (q1, q2), (q′1, q
′
2) ∈ P , π((q1, q2)(q′1, q

′
2)) = ρ(q′1, q

′
2), where ρ is the distri-

bution witnessing the membership of (q1, q2) in R.

To show satisfaction between C and I1, the relation Rs is used. It is defined as follows:
for all (u, v) ∈ P , (u, v)Rsw iff u = w. We now show that Rs is a satisfaction relation
between C and I1.

Let (u, v) ∈ P be such that (u, v)Rs u.

1. By definition of C, VC(u, v) = V1(u)

2. Let δ be the correspondence function such that: δ((u′, v′), q1) = 1 if u′ = q1 and
0 else.

(a) Let (u′, v′) ∈ P be such that π(u, v)(u′, v′) > 0. δ((u′, v′)) is a distribution
by definition.

(b) Let q1 ∈ Q1.

∑

(u′,v′)∈P

π(u, v)(u′, v′)δ((u′, v′), q1) =
∑

(q1,v′)∈P

π((u, v), (q1, v
′))

=
∑

v′∈Q2

ρ(q1, v
′)

∈ ϕ1(u)(q1) by definition of R .

(c) Let (u′, v′) ∈ P and q1 ∈ Q1 be such that δ((u′, v′), q1) > 0. Then u′ = q1

and by definition, (u′, v′)Rs q1.

Consequently, Rs is a satisfaction relation, and thus C |= I1. Analogously, it can be
shown that C |= I2. Finally C is a common implementation of I1 and I2.

As a consequence, deciding the existence of a common implementation between 2
IMCs is PTIME-complete. For the general problem of common implementation of k
IMCs, we can extend the above definition of consistency relation to the k-ary relation
in the obvious way, and the algorithm becomes exponential in the number of IMCs k,
as the size of the state space

∏k
i=1 |Qi| is exponential in k.

As a side effect we observe that, exactly like MTSs, CI becomes polynomial for any
constant value of k, i.e. when the number of components to be checked is bounded by
a constant.
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Consistency A related problem is the one of checking consistency of a single IMC
I, i.e. whether there exists a Markov chain M such that M |= I.

Definition 11 (Consistency (C)). Given an IMC I, does it hold that [[I]] 6= ∅?

It turns out that, in the complexity theoretic sense, this problem is easy:

Theorem 14. The problem C, to decide if a single IMC is consistent, is polynomial
time solveable.

Proof. Given an IMC I = 〈Q, q0, ϕ,A, V 〉, this problem can be solved by constructing
a consistency relation over Q × Q (as if searching for a common implementation of
Q with itself). Now there exists an implementation of I iff there exists a consistency
relation containing (q0, q0). Obviously, this can be checked in polynomial time.

The fact that C can be decided in polynomial time casts an interesting light on
the ability of IMCs to express inconsistency. On one hand, one can clearly specify
inconsistent states in IMCs (simply by giving intervals for successor probabilities that
cannot be satisfied by any distribution). On the other hand, this inconsistency appears
to be local. It does not induce any global constraints on implementations; it does not
affect consistency of other states. In this sense IMCs are weaker than mixed transition
systems [75]. Mixed transition systems relax the requirement of modal transition sys-
tems, not requiring that (→) ⊆ (99K). It is known that C is trivial for modal transition
systems, but EXPTIME-complete for mixed transition systems [50]. Clearly, with a
polynomial time C, IMCs cannot possibly express global behaviour inconsistencies in
the style of mixed transition systems, where the problem is much harder.

We conclude the section by observing that, given the IMC I and a consistency
relation R ⊆ Q×Q, it is possible to derive a pruned IMC I∗ = 〈Q∗, q∗0, ϕ∗, A, V ∗〉 that
contains no inconsistent states and accepts the same set of implementations as I.

The construction of I∗ is as follows: Q∗ = {q ∈ Q|(q, q) ∈ R}, q∗0 = q0, V ∗(q∗) =
V (q∗) for all q∗ ∈ Q∗, and for all q∗1, q

∗
2 ∈ Q∗, ϕ∗(q∗1)(q∗2) = ϕ(q∗1)(q∗2).

Theorem 15. Consider an IMC I and its pruned IMC I∗. It holds that [[I]] = [[I∗]].

Proof. 1. We first prove that [[I]] ⊆ [[I∗]]. Let R ⊆ Q ×Q be a consistency relation
such that (q0, q0) ∈ R, and let C = 〈P, p0, π, A, VC〉 be a MC such that C |= I
with satisfaction relation Rs. We build a satisfaction relation R′s ⊆ P ×Q∗ where
pR′ q∗ iff there exists q ∈ Q such that pRs q and q = q∗. Let p ∈ P , q ∈ Q, and
q∗ ∈ Q∗ be such that (p, q∗) ∈ R′. We now show that R′ is a satisfaction relation
between P and I∗.

• By construction, VC(p) = V ∗(q∗).

• Let δ1 ∈ Distr(P×Q) be the distribution witnessing pRs q. The distribution
δ2 ∈ Distr(P × Q∗) is chosen identical to δ1. We know that for all q′ ∈ Q
such that ¬∃σ ∈ ϕ(q′) then for all p′ ∈ P , we have that δ1(p′, q′) = 0. To
see this, assume the contrary, namely that δ1(p′, q′) 6= 0 for a p′ ∈ P and a
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Figure 9: An IMC and its pruned version

q′ ∈ Q for which ¬∃σ ∈ ϕ(q′); then p′Rs q′. By the definition af satisfaction,
q′ allows a distribution, which is a contradiction.

Since δ1 satisfies the axioms of satisfaction, then δ2 also satisfies them.

2. To show that [[I∗]] ⊆ [[I]], we use the same reasoning as above.
By mutual inclusion, [[I]] = [[I∗]].

An illustration of pruning is given in the following example.

Example 3. Consider the IMC I in Figure 9a. Building a consistency relation, we
see that (1, 1) is in the relation witnessed by the distribution assigning probability 0.8
to (2, 2) and 0.2 to (4, 4). This probability distribution ”avoids” the inconsistent state
(3, 3); this state does not admit a probability distribution. Likewise, (2, 2) and (3, 3)
are in the relation, witnessed by the distributions that gives probability 1 to (2, 2) and
(3, 3), respectively. I∗ is shown in Figure 9b.

8 Conclusion and Future Work

This paper provides new results for IMCs [46, 76, 77, 78] that is a specification formalism
for probabilistic systems. We have studied the expressiveness and complexity of three
refinement preorders for IMCs. The results are of interest as existing articles on IMCs
often use one of these preorders to compare specifications (for abstractions) [46, 47, 48].
We have established complexity bounds and decision procedures for these relations, first
introduced in [46]. Finally, we have studied the common implementation problem that
is to decide whether there exists an implementation that can match the requirements
made by two or more specifications. Our solution is constructive in the sense that it
can build such a common implementation.

Our results are robust with respect to simple variations of IMCs. For example sets
of sets of propositions can be used to label states, instead of sets of propositions. This
extends the power of the modeling formalism, which now can not only express abstrac-
tions over probability distributions, but also over possible state valuations. Similarly,
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an initial distribution, or even an interval constraint on the initial distribution, could
be used instead of the initial state in IMCs without affecting the results.

In the future we expect to see whether our complexity results can be extended to
CMCs [63]—an already mentioned generalization of IMCs, which enjoys good closure
properties. Furthermore, in order to improve efficiency of tools, it would be desirable
to investigate whether IMCs could be used as an abstraction in counter-example guided
abstraction-refinement [79] decision procedures for CMCs.

In [47, 49], Katoen et al. have proposed an extension of IMCs to the continuous
timed setting. It would be interesting to see whether our results extend to this new
model. Another interesting future work would be to extend our results to other specifi-
cation formalisms for systems that mix both stochastic and non-deterministic aspects.
Among them, one finds probabilistic automata [80] where weak/strong refinement would
be replaced by probabilistic simulation [6].

Markov set-chains allow iterative approximation of implementations with increasing
state space size. It would be interesting to investigate if these could be used to define
size-parameterized versions of our decision problems, and whether these could be solved
by iterative approximations.
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1 Abstract

Notions of specification, implementation, satisfaction, and refinement, together with
operators supporting stepwise design, constitute a specification theory. We construct
such a theory for Markov Chains (MCs) employing a new abstraction of a Constraint
MC. Constraint MCs permit rich constraints on probability distributions and thus
generalize prior abstractions such as Interval MCs. Linear (polynomial) constraints
suffice for closure under conjunction (respectively parallel composition). This is the
first specification theory for MCs with such closure properties. We discuss its relation
to simpler operators for known languages such as probabilistic process algebra. Despite
the generality, all operators and relations are computable.

2 Introduction

Compositional design [1] is a research field, which aims at development of mathematical
foundations for reasoning about components. Usually this is achieved by specifying and
analyzing the interfaces of components in order to infer global properties of a system in
an incremental way. One popular approach in this area is the work on type systems, and
in particular, on type systems for modules in the programming language community.
Another approach, in the verification area, is the work on specification theories, which
provide a modeling language for designing, evolving and advisedly reusing components
with formal guarantees. For example, a large system, or a complex communication
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protocol, can be designed step-wise—by building more and more refined models—
and analyzed piece-wise by analyzing fragments of models and reasoning about the
properties of the parallelcomposition. The hope is that this way we can combat the
size and complexity of modern systems.

For functional analysis of discrete-time non-probabilistic systems, the theory of
Modal Transition Systems (MTSs) [42, 81] provides a specification formalism support-
ing refinement as well as conjunction and parallel composition. It has been recently
applied to construct interface theories [82, 83], which are extensions of classical interface
automata proposed by de Alfaro et al. [84, 85, 86, 87, 88].

As soon as systems include randomized algorithms, probabilistic protocols, or in-
teract with physical environment, probabilistic models are required to reason about
them. This is exacerbated by requirements for fault tolerance, when systems need to
be analyzed quantitatively for the amount of failure they can tolerate, or for the delays
that may appear. As Henzinger and Sifakis [1] point out, introducing probabilities into
design theories allows assessing dependability of IT systems in the same manner as
commonly practiced in other engineering disciplines.

Generalizing the notion of MTSs to the non-functional analysis of probabilistic sys-
tems, the formalism of Interval Markov Chains (IMCs) was introduced in [46]; with
notions of satisfaction and refinement generalizing probabilistic bisimulation. Infor-
mally, IMCs extend Markov Chains by labeling transitions with intervals of allowed
probabilities rather than concrete probability values. Implementations of IMCs are
Markov Chains (MCs) whose probability distributions match the constraints induced
by the intervals. IMCs are known to be an efficient model on which refinement checking
can be performed with efficient algorithms from linear algebra. Unfortunately, as we
shall now see, the expressive power of IMCs is inadequate to support both conjunction
and parallel composition.

Consider the IMCs of Figure 1. S1 specifies a behaviour of a user of a coffee ma-
chine. It prescribes that a typical user orders coffee with milk with probability within
[0, 0.5] and orders black coffee with probability in [0.2, 0.7]. Customers also buy tea
with probability in the interval [0, 0.5]. Now the vendor of the machine delivers another
specification, S2, which prescribes that the machine is functioning only if coffee (white
or black) is ordered with probability between 0.4 and 0.8. Otherwise, the machine runs
out of coffee powder too frequently, or the powder becomes too old. A conjunction
of these two models would describe users who have use patterns compatible with this
particular machine. In the bottom part of Figure 1 we present the structure of such a
conjunction. States (2, 3), (3, 3), and (4, 2) are inconsistent and thus the corresponding
probabilities must be zero: z3 = z5 = z6 = 0. Now, attempting to express the con-
junction S1 ∧ S2 as an IMC by a simple intersection of bounds gives 0.4 ≤ z1 ≤ 0.5,
0.4≤ z2 ≤ 0.7, and z4 ≤ 0.5. However, this naive construction is too coarse: whereas
(z1, z2, z3, z4, z5, z6) = (0.5, 0.5, 0, 0, 0, 0) satisfies the constraints the resulting overall
probability of reaching a state resulting from State 2 of S2,i.e. z1+z2+z3 = 1, violates
the upper bound of 0.8 specified in S2.

Instead the conjunction should require, among others, that z1 + z2 + z3 ∈ [0.4, 0.8],
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Figure 1: IMCs showing non-closure under conjunction. Top: the two specifications of
different aspects of a coffee service. Bottom a conjunction expressed as a Markov Chain
with linear constraints over probability values.

which is not an interval constraint. This can be seen be pointing out an extremal
point, which is not a solution, while all its coordinates take part in some solution.
The bottom right part of Figure 1 lists all the needed constraints over zi necessary
to express conjunction. A similar example can show that IMCs are not closed under
parallel composition, either.

One way to approach this problem could be to work with two types of specifications:
IMCs for refinement, and with a probabilistic logic such as PCTL [18] on which a
logical conjunction is naturally defined. Such a solution is clearly not satisfactory.
Indeed, according to [89], there is no procedure to synthesize a MC (an implementation)
that satisfies two PCTL formulas in the quantitative case. It is also not possible to
structurally compose two logical PCTL formulas.

The solution promoted in this paper is to enrich the model of IMCs. More precisely,
we introduce Constraint Markov Chains (CMCs) as a foundation for component-based
design of probabilistic systems. CMCs are a further extension of IMCs allowing rich
constraints on the next-state probabilities from any state. Whereas linear constraints
suffice for closure under conjunction, polynomial constraints are necessary for closure
under parallel composition. We provide constructs for refinement, consistency check-
ing, conjunction and parallel composition of CMC specifications – all indispensable
ingredients of a compositional design methodology.

Specification Theories Let us give an overview of specification theories from the
point of view of the main operators, and how they are supposed to be used. A more
detailed methodological presentation, using the example not of probabilistic, but of
timed systems, is available in [90].
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Figure 2: A Markov Chain satisfying specification S2 of Figure 1

Consistency and Satisfaction. The fundamental notion of a specification theory is satis-
faction—a relation that binds the specifications to their realizations (implementations
or models). In our case, specifications are Constraint Markov Chains: mathematical
over-approximations of probabilistic behaviours. Implementations are concrete random
processes—Markov Chains.

We have shown two examples of IMC specifications in the top of Figure 1: one of
expectations of use (S2) and one of usage in practice (S1). Observe that these IMCs
are also CMCs. In both cases it was easy to see that the specifications are consistent,
i.e. for each of them one can derive a Markov Chain which satisfies all the interval
constraints. For IMC S2, the example of such an implementation is shown in Figure 2.
In development of probabilistic protocols, consistency means that given an abstract
specification of a protocol, it is possible to derive a concrete random process satisfying
its constraints.

It should be decidable whether a specification admits at least one implementation,
and whether a system implements a specification. In our theory, an implementation
shall not be viewed as a program in a general purpose programming language but rather
as a mathematical object that represents a set of programs sharing common control
properties.

Refinement. A refinement relation allows to explain whether a given specification S
is a proper, consistent elaboration of another more abstract specification T . If this is
the case then every implementation of S would also be admitted by T—none of such
implementations would violate any requirements of T .

In system development the refinement relation is used to express correctness of a
step-wise process, when more coarse-grained descriptions are refined into more detailed
ones, until an implementation is obvious. Dually, in verification, refinement is used
to establish that an abstract specification is refined by our concrete model. Then
the abstract specification, which is usually smaller, can be more efficiently verified for
properties preserved by refinement.

In Figure 1 specification S2 does not refine the specification S1. This is witnessed
by the Markov Chain in Figure 2, which implements S2, but not S1.

Parallel composition. A theory should provide a combination operator on specifica-
tions, reflecting the standard composition of systems by putting different components
together. In the coffee machine example such a situation could arise, if we wanted to
analyze the model of a given coffee machine (not shown here), and a given customer, to
see whether these two models are compatible. The first step of such an analysis would
include combining the two models using parallel composition. Similarly, in protocol
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development, parallel composition can be used to combine, for example, specifications
of a client and a server.

It is a common modeling scenario to use parallel composition of components, say S1

and S2, to build specifications of systems that are supposed to refine general require-
ments specified using one model, for example T . Then refinement check is performed,
S1 ‖ S2 ≤ T , to verify whether indeed a decomposition into components is correct.

Conjunction. In contrast to parallel composition, conjunction is used to combine differ-
ent specifications for the very same component. Such a need could arise, if the model
of the component consists of several separate specifications for different viewpoints, or
arising from different stakeholders. The conjunction of two specifications should thus
correspond to a specification whose implementations are all implementations of both
conjoined specifications.

In our example, we already know that not all implementations of the coffee machine
(S2) are also implementations of S1—in practical terms there exist machines that have
requirements incompatible with requirements of our users. A different question is to
ask, whether there exist any machines that are able to work with at least one of our
users. This corresponds to asking whether specification S1 ∧ S2 is consistent. It is not
hard to check that this specification, presented as a CMC in Fig. 1, can be satisfied by
a Markov Chain, as already discussed.

Incremental Design. A theory should allow incremental design (composing or conjoin-
ing specifications in any order) and independent implementability (composable specifi-
cations can always be refined separately) [91].

For example it should be possible to create specifications for communicating com-
ponents S1 and S2, and refining them independently, to say P1 and P2 respectively,
without loosing the overall refinement; so still P1 ‖ P2 ≤ S1 ‖ S2.

Detailed Results In the above summary we illustrated the main operators of a
specification theory using the IMCs of Figures 1 and 2. However, as argued earlier,
such a theory cannot be build for IMCs due to the lack of suitable closure properties. In
this paper we develop the theory for Constraint Markov Chains. Below we summarize
the most important design decisions. A less experienced reader may choose to skip this
rather technical summary during the first reading.

The notions of satisfaction and strong/weak refinements for CMCs conservatively
extend similar notions for IMCs [46, 48]. We characterize these relations in terms
of implementation set inclusion. In particular, in the main theorem, we prove that
for deterministic CMCs weak and strong refinements are complete with respect to
implementation set inclusion. In addition, we provide a construction, which for any
CMC S returns a deterministic CMC ρ(S) containing the models of S. Refinement
relations are not complete for non-deterministic CMCs, but one can show that the
weak refinement is more likely to coincide with implementation set inclusion in such a
context. We show that refinement between CMCs with polynomial constraints can be
decided in essentially single exponential time.
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In CMCs, each state is also labeled with a set of subsets of atomic propositions.
Those propositions represent properties that should be satisfied by the implementation,
the idea being that the satisfaction relation ensures that an implementation matches
at least one of the subsets. This allows the specification to make additional abstrac-
tion of the behaviors of the implementation. Hence, at the level of specification, our
model presents choices on subsets of atomic propositions. However these choices are
independent from the probabilistic ones in the sense that any CMC whose states are
labeled with a set of subsets of atomic propositions can be turned to an equivalent (in
terms of set of implementations) CMC whose states are labeled with a single subset
of atomic propositions. There, choices between the subsets of atomic propositions dis-
appear. It is thus not surprising that our notion of parallel composition is following
the widely accepted principle of separation of concerns. The idea is to separate par-
allel composition of probability distributions from synchronization on sets of atomic
propositions. This separation can be found in probabilistic specification theories that
have probabilistic automata as an underlying semantic model [6, 28, 30, 92]. In fact, we
show how probabilistic automata can be represented as CMCs, and how the traditional
notions of parallel composition on such a model can be derived in our framework. This
latter result shows that CMCs capture computational structure of known models and
operators, laying down a basis for studying shared properties of many probabilistic au-
tomata based languages. We exemplify this by showing how precongruence properties
for composition of probabilistic automata and known refinements can be obtained by
reductions to CMCs.

We also compare the expressiveness of the operation of parallel composition and the
one of conjunction. It turns out that for independent sets of valuations, composition
refines conjunction, but the opposite is not true. This result allows to isolate a class of
CMCs and CMCs operations that is closed under linear constraints. Finally, we also
show that CMCs are generally not closed under disjunction and we discuss the problem
of deciding whether a CMC is universal.

Structure of the paper The paper is structured as follows. In Section 4, we in-
troduce the concept of CMCs, satisfaction relation with respect to Markov Chains and
the problem of consistency. Refinement is discussed in Section 5 while conjunction is
presented in Section 6. Parallel composition is introduced in Section 7, where we also
compare the operation to conjunction. Disjunction and universality are discussed in
Section 8. In Section 9, we introduce deterministic CMCs and show that, for this class
of CMCs, strong and weak refinements coincide with inclusion of implementation sets.
Section 10 discusses the class of polynomial CMCs, which is the smallest class of CMCs
closed under all the compositional design operations. Section 12 concludes the paper
with related and future work.
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3 Background Definitions

In this section, we introduce concepts and definitions that will be used through the rest
of the paper.

Let A,B be sets of propositions with A ⊆ B. The restriction of W ⊆ B to A is
given by W↓A≡ W ∩ A. If T ⊆ 2B, then T↓A≡ {W↓A| W ∈ T}. For W ⊆ A define the
extension of W to B as W↑B≡ {V ⊆ B | V ↓A= W}, so the set of sets whose restriction
to A is W . Lift it to sets of sets as follows: if T ⊆ 2A, then T↑B≡ {W ⊆ B | W↓A∈ T}.

Let M,∆ ∈ [0, 1]n×k be two matrices and x ∈ [0, 1]k be a row vector. We write Mij

for the cell in ith row and jth column of M , Mp for the pth row of M , and xi for the

ith element of x. Finally, ∆ is a correspondence matrix iff 0 ≤ ∑k
j=1 ∆ij ≤ 1 for all

1 ≤ i ≤ n. We define the following operations:

1. If ∆ ∈ [0, 1]k×q and ∆′ ∈ [0, 1]k×r are two correspondence matrices, we define
∆′′ = ∆⊗∆′ by ∆′′ ∈ [0, 1]k×(qr) and ∆′′i(j,n) = ∆ij∆

′
in.

2. If ∆ ∈ [0, 1]k×q and ∆′ ∈ [0, 1]r×s are two correspondence matrices, we define
∆′′ = ∆�∆′ by ∆′′ ∈ [0, 1](kr)×(qs) and ∆′′(i,j)(n,p) = ∆in∆′jp.

We have the following lemma.

Lemma 1. 1. Let ∆ ∈ [0, 1]k×q and ∆′ ∈ [0, 1]q×r be two correspondence matrices.
The matrix ∆′′ = ∆∆′ is a correspondence matrix;

2. Let ∆ ∈ [0, 1]k×q and ∆′ ∈ [0, 1]k×r be two correspondence matrices. The matrix
∆′′ = ∆⊗∆′ is a correspondence matrix;

3. Let ∆ ∈ [0, 1]k×q and ∆′ ∈ [0, 1]r×s be two correspondence matrices. The matrix
∆′′ = ∆�∆′ is a correspondence matrix;

Proof. We first prove the upper-bound on the row-sum of each of the matrices.

1. Let 1 ≤ i ≤ k and 1 ≤ j ≤ r. We have ∆′′ij =
∑q

n=1 ∆in∆′nj . Thus,

r∑

j=1

∆′′ij =
r∑

j=1

q∑

n=1

∆in∆′nj =

q∑

n=1

r∑

j=1

∆in∆′nj

=

q∑

n=1

(∆in

r∑

j=1

∆′nj) ≤
q∑

n=1

∆in ≤ 1

2. Let 1 ≤ i ≤ k and (j, n) ∈ {1, . . . , q} × {1, . . . , r}. We have ∆′′i(j,n) = ∆ij∆
′
in.

Thus, similarly as above:

∑

(j,n)∈{1,...q}×{1,...r}

∆′′i(j,n) =

q∑

j=1

r∑

n=1

∆ij∆
′
in =

q∑

j=1

(∆ij

r∑

n=1

∆′in) ≤ 1
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3. Let (i, j) ∈ {1, . . . k} × {1, . . . r} and (n, p) ∈ {1, . . . q} × {1, . . . s}. We have
∆′′(i,j)(n,p) = ∆in∆′jp. Thus,

∑

(n,p)∈{1,...q}×{1,...s}

∆′′(i,j)(n,p) =

q∑

n=1

s∑

p=1

∆in∆′jp = (

q∑

n=1

∆in)(
s∑

p=1

∆′jp) ≤ 1

All three row-sums are non-negative, as all the matrices only contain non-negative
numbers.

4 Constraint Markov Chains

In this section, we explicitly introduce the concept of Constraint Markov Chains (CMCs).
We first begin with the definition of Markov Chains (MCs) that act as models for CMCs.

Definition 1 (Markov Chain). P = 〈{1, . . . , n}, o,M,A, V 〉 is a Markov Chain if
{1, . . . , n} is a set of states containing the initial state o, A is a set of atomic propo-
sitions, V : {1, . . . , n} → 2A is a state valuation, and M ∈ [0, 1]n×n is a probability
transition matrix:

∑n
j=1Mij =1 for i=1, . . . , n.

We now introduce Constraint Markov Chains (CMCs for short), a finite represen-
tation for a possibly infinite set of MCs. Roughly speaking, CMCs generalize MCs in
that, instead of specifying a concrete transition matrix, they only constrain probability
values in the matrix. Constraints are modeled using a characteristic function, which for
a given source state and a distribution of probabilities of leaving the state evaluates to
1 iff the distribution is permitted by the specification. Similarly, instead of a concrete
valuation function for each state, a constraint on valuations is used. Here, a valuation
is permitted iff it is contained in the set of admissible valuations of the specification.

Definition 2 (Constraint Markov Chain). A Constraint Markov Chain is a tuple S =
〈{1, . . . , k}, o, ϕ,A, V 〉, where {1, . . . , k} is a set of states containing the initial state

o, A is a set of atomic propositions, V : {1, . . . , k} → 22A is a set of admissible state
valuations and ϕ : {1, . . . , k} → [0, 1]k → {0, 1} is a constraint function such that, for
all states 1 ≤ j ≤ k, if ϕ(j)(x) = 1, then the x vector is a probability distribution:
x ∈ [0, 1]k and

∑k
i=1 xi = 1.

In the rest of the document, we consider that the last constraint,
∑k

i=1 xi = 1, is
implicit and usually dropped in the examples.
An Interval Markov Chain (IMC for short) [46] is a CMC whose constraint functions
are represented by intervals, so for all 1 ≤ i ≤ k there exist constants αi, βi such that,
for all states 1 ≤ j ≤ k, ϕ(j)(x) = 1 iff ∀1 ≤ i ≤ k, xi ∈ [αi, βi].

Example 1. Two parties, a customer and a vendor, are discussing a design of a relay
for an optical telecommunication network. The relay is designed to amplify an optical
signal transmitted over a long distance optical fiber. The relay should have several
modes of operation, modeled by four dynamically changing properties and specified by
atomic propositions a, b, c, and d:
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1 (d = 1) ∧ (a = b = c = 0)

x1

2

3 (a+ b+ c ≤ 1) ∧ (d = 0)

(a+ b+ c ≥ 2) ∧ (d = 0)

x3

1

1

x2

ϕ1(1)(x) ≡ (x2 ≥ 0.7) ∧ (x2 + x3 = 1)

(a) CMC S1, the customer spec-
ification of the optical relay

2

3

1

y3

1

1

y2

(a = 1) ∧ (d = 0)
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(d = 1) ∧ (a = b = c = 0)

ϕ2(1)(y) ≡ (y3 ≥ 0.2) ∧ (y2 + y3 = 1)

(b) CMC S2, the manufacturer
specification of the relay

Figure 3: Two CMCs specifying an optical relay from different perspectives.
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Figure 4: Two implementations (MCs) of an optical relay.

Atomic propositions in the optic relay specifications

a ber ≤ 10−9 bit error rate lower than 1 per billion bits transmitted

b br > 10Gbits/s The bit rate is higher than 10 Gbits/s.

c P < 10W Power consumption is less than 10 W.

d Standby The relay is not transmitting.

The customer presents CMC S1 (Figure 3a) specifying the admissible behaviour of
the relay from their point of view. States are labeled with formulas characterizing sets
of valuations. For instance, ”(a + b + c ≥ 2) ∧ (d = 0)” at state 2 of S1 represents
V1(2) = {{a, b}, {b, c}, {a, c}, {a, b, c}}, where a, b, c, and d range over Booleans. State
1 specifies a standby mode, where no signal is emitted and only marginal power is
consumed. State 2 is the high power mode, offering a high signal/noise ratio, and
hence a high bit-rate and low error rate, at the expense of a high power consumption.
State 3 is the low power mode, with a low power consumption, low bit-rate and high
error rate. The customer prescribes that the probability of the high power mode (state
2) is not less than 0.7. The vendor replies with CMC S2 (Figure 3b), which represents
possible relays that they can build. Because of thermal limitations, the low power mode
has a probability higher than 0.2.

A state u of S is (directly) reachable from a state i if there exists a probability
distribution x ∈ [0, 1]k with a nonzero probability xu, which satisfies ϕ(i)(x).
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Figure 5: Correspondence for initial states of P2 and S1

4.1 Satisfaction

We relate CMC specifications to MCs implementing them by extending the definition
of satisfaction presented in [46]. The main modification with regard to that definition
is the matching of valuation constraints (instead of concrete valuations) and satisfying
the full-fledged constraint functions of CMCs (instead of concrete probability distribu-
tions). Crucially, just like in [46], we abstract from syntactic structure of transitions—a
single transition in the implementation MC can contribute to satisfaction of more than
one transition in the specification by distributing its probability mass against several
transitions. Similarly, several MC transitions can contribute to satisfaction of a single
specification transition.

Definition 3 (Satisfaction Relation). Let P = 〈{1, . . . , n}, oP ,M,AP , VP 〉 be a MC
and S = 〈{1, . . . , k}, oS , ϕ,AS , VS〉 be a CMC with AS ⊆ AP . Then R ⊆ {1, . . . , n} ×
{1, . . . , k} is a satisfaction relation between states of P and S iff whenever pRu, then

1. VP (p)↓AS
∈ VS(u), and

2. there exists a correspondence matrix ∆ ∈ [0, 1]n×k such that

• for all 1 ≤ p′ ≤ n with Mpp′ 6= 0,
∑k

j=1 ∆p′j = 1;

• ϕ(u)(Mp∆) holds and

• if ∆p′u′ 6= 0, then p′Ru′.

We write P |= S iff there exists a satisfaction relation relating oP and oS , and call P
an implementation of S. The set of all implementations of S is given by [[S]] ≡ {P |
P |= S}. Rows of ∆ that correspond to reachable states of P always sum up to 1.
This is to guarantee that the entire probability mass of implementation transitions is
allocated. For unreachable states, we leave the corresponding rows in ∆ unconstrained.
P may have a richer set of atomic propositions than S, in order to facilitate abstract
modeling: this way an implementation can maintain local information using internal
variables. Algorithms to decide satisfaction are particular cases of algorithms to decide
refinement between CMCs. See the next section.

Example 2. We illustrate the concept of correspondence matrix between Specification
S1 (given in Figure 3a) and Implementation P2 (given in Figure 4b). The CMC S1 has
three outgoing transitions from state 1 but, due to constraint function in 1, the transition
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labeled with x1 cannot be taken (the constraint implies x1 = 0). The probability mass
going from State 1 to States 2 and 3 in P2 corresponds to the probability allowed by S1

from its state 1 to its state 2; The redistribution is done with the help of the matrix ∆
given in Figure 5. The ith column in ∆ describes how big a fraction of each transition
probability (for transitions leaving 1) is associated with probability xi in S1. Observe
that the constraint function ϕ1(1)(0, 0.8, 0.2) = ϕ1(1)((0, 0.7, 0.1, 0.2)∆) is satisfied.

CMC semantics follows the Markov Decision Process (MDP) tradition [76, 77]. The
MDP semantics is typically opposed to the Uncertain Markov Chain semantics, where
the probability distribution from each state is fixed a priori.

States of CMCs are labeled with set of subsets of atomic propositions. A single set
of propositions represents properties that should be satisfied by the implementation.
A set of sets models a choice of properties, with the idea being that the satisfaction
relation ensures that an implementation matches at least one of the subsets.

4.2 Consistency

We now define the notion of consistency and propose an algorithm that turns any
consistent CMC in a CMC with no inconsistent states.

A CMC S is consistent if it admits at least one implementation. We now discuss
how to decide consistency. A state u of S is valuation consistent iff V (u) 6= ∅; it is
constraint consistent iff there exists a probability distribution vector x ∈ [0, 1]k such
that ϕ(u)(x) = 1. It is easy to see that if each state of S is both valuation and con-
straint consistent, then S is also consistent. However, inconsistency of a state, called
local inconsistency, does not imply inconsistency of the specification, called global in-
consistency. Indeed, an inconsistent state could be made unreachable by forcing the
probabilities to reach it to zero. The operations presented later in this paper may intro-
duce inconsistent states, leaving a question if a resulting CMC is consistent. In order
to decide whether S is inconsistent, state inconsistencies are propagated throughout
the entire state-space using a pruning operator β that removes inconsistent states from
S. The result β(S) is a new CMC, which may still contain some inconsistent states.
We define β formally. Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 be a CMC.

• If the initial state o is locally inconsistent, then let β(S) = ∅ (meaning that it is
not well-defined, returning an empty CMC).

• If S does not contain locally inconsistent states, then β(S) = S.

• Else proceed in two steps. Let k′ < k be the number of locally consistent states.
Then define a function ν : {1, . . . , k} → {⊥, 1, . . . , k′}. All inconsistent states
are mapped to ⊥, i.e. for all 1 ≤ i ≤ k take ν(i) = ⊥ iff [(V (i) = ∅) ∨ (∀x ∈
[0, 1]k, ϕ(i)(x) = 0)]. All remaining states are mapped injectively into {1, . . . , k′}:
ν(i) 6= ⊥ =⇒ ∀j 6= i, ν(j) 6= ν(i). Then let β(S) = 〈{1, . . . , k′}, ν(o), ϕ′, A, V ′},
where V ′(i) = V (ν−1(i)) and for all 1 ≤ j ≤ k′ the constraint ϕ′(j)(y1, . . . , yk′)
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Figure 6: Illustration of the pruning algorithm.

is: ∃x1, . . . , xk such that

[
ν(q)=⊥ ⇒ xq=0

]
∧
[
∀1≤ l≤k′ : yl=xν−1(l)

]
∧
[
ϕ(ν−1(j))(x1, . . . , xk)

]

The constraint makes the inconsistent states unreachable, and then ⊥ is dropped
as a state. Note that, in practice, the new constraint can be computed in linear
time by applying substitutions (of zeros for inconsistent states probabilities) and
variable renaming.

The operator is applied iteratively, until a fixpoint is reached. S is consistent if the
resulting CMC β∗(S) is non-empty. The unique maximum fixpoint is known to exist
due to Tarski’s theorem, as β is a monotonic decreasing operator on a finite powerset
lattice ordered by set inclusion (β operates on sets of states). The following example
illustrates the pruning algorithm.

Example 3. Consider the CMC S = 〈{1, 2, 3, 4}, 1, ϕ, {a, b, c}, V 〉 given in Figure 6a.
Define ϕ as follows : ϕ(1)(x) ≡ (x3 ≤ 0.3) ∧ (x2 + x3 = 1), ϕ(3)(x′) ≡ (x′4 = 1). The
constraint of states 2 and 4 are not relevant for this example.

State 4 is obviously not valuation consistent. States 1, 2 and 3 are all valuations
and constraint consistent. As a consequence, the first step of the pruning algorithm will
only mark state 4 as inconsistent. Define the following function:

ν = [1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ ⊥] (1)

Then define β(S) = 〈{1, 2, 3}, 1, ϕ′, {a, b, c}, V ′〉 such that, after reduction we have
ϕ′(1)(y) ≡ (y3 ≤ 0.3) ∧ (y2 + y3 = 1), and ϕ′(3)(y′) ≡ ∃x′4, (x′4 = 0) ∧ (x′4 = 1).
β(S) is given in Figure 6b.

Obviously, state 3 of β(S) is now constraint inconsistent: ϕ′(3)(y′) is not satisfiable.
We thus apply another time the pruning operator β in order to remove state 3. This
time we obtain a consistent CMC β∗(S), given in Figure 6c.

Theorem 2. Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉} be a CMC and let β∗(S) = limn→∞ β
n(S)

be the fixpoint of β. For any MC P , we have (1) P |= S ⇐⇒ P |= β(S) and (2)
[[S]] = [[β∗(S)]].
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Proof. Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 be a CMC (with at least one inconsistent state)
and P = 〈{1, . . . , n}, oP ,M,AP , VP 〉 be a MC. Let S′ = β(S) = 〈{1, . . . , k′}, o′, ϕ′, A, V ′〉
be the result of applying the pruning algorithm to S. If β(S) is empty, then both S
and β(S) are inconsistent.

Consider a function ν for removing inconsistent states (one exists because there are
inconsistent states), such that k′ < k and for all 1 ≤ i ≤ k, ν(i) = ⊥ ⇐⇒ [(V (i) =
∅) ∨ (∀x ∈ [0, 1]k, ¬ϕ(i)(x))] and ν(i) 6= ⊥ ⇒ ∀j 6= i, ν(j) 6= ν(i). We first show that
P |= S ⇐⇒ P |= β(S).

⇒ Suppose that P |= S. Then there exists a satisfaction relationR such that oP R o.
Define the relation R′ ⊆ {1, . . . , n} × {1, . . . , k′} such that pR′ v iff there exists
u ∈ {1, . . . , k} such that pRu and ν(u) = v. It is clear that oP R′ o′. We prove
that R′ is a satisfaction relation. Let p, u, v such that pRu and ν(u) = v.

– As ν(u) 6= ⊥, we have by definition that V ′(v) = V (u), thus VP (p)↓A∈ V ′(v).

– Let ∆ ∈ [0, 1]n×k be the correspondence matrix witnessing pRu. Let ∆′ ∈
[0, 1]n×k

′
such that ∆′qw = ∆qν−1(w). It is clear that ∆′ is a correspondence

matrix. We first show that

∀u′ ∈ {1, . . . , k}, (ν(u′) = ⊥)⇒ (∀q ∈ {1, . . . , n}, ∆qu′ = 0). (2)

Let u′ ∈ {1, . . . , k} such that ν(u′) = ⊥, and suppose that there exists
q ∈ {1, . . . , n}, ∆qu′ 6= 0. As ∆ is a correspondence matrix, we have qRu′.
Thus VP (q)↓A∈ V (u′), which means that V (u′) 6= ∅, and there exists ∆′′

such that ϕ(u′)(Mq∆
′′). Thus, there exists x ∈ [0, 1]k such that ϕ(u′)(x).

As a consequence, we cannot have ν(u′) = ⊥, which is a contradiction, thus
(2).

We now prove that R′ satisfies the axioms of a satisfaction relation.

1. Let p′ ∈ {1, . . . , n} such that Mpp′ 6= 0. This implies, by definition, that∑k
j=1 ∆p′j = 1. We have

∑k′
j=1 ∆′p′j =

∑
r∈{1,...,k} | ν(r)6=⊥∆p′r. By (2),

∑
r∈{1,...,k} | ν(r) 6=⊥∆p′r =

∑k
r=1 ∆p′r = 1.

2. Let y = Mp∆
′ ∈ [0, 1]k

′
and x = Mp∆ ∈ [0, 1]1×k. We know that

ϕ(u)(x) holds. Moreover, by (2), if ν(q) = ⊥, then xq = 0, and for
all l ∈ {1, . . . , k′}, yl = xν−1(l). Clearly, this implies that ϕ′(v)(Mp∆

′)
holds.

3. Let p′, v′ ∈ {1, . . . , n}×{1, . . . , k′} such that ∆′p′v′ 6= 0. We have ∆′p′v′ =
∆p′ν−1(v′) 6= 0, thus there exists u′ ∈ {1, . . . , k} such that p′Ru′ and
ν(u′) = v′. Finally p′R′ v′.

Finally, R′ is a satisfaction relation such that oP R′ o′, thus P |= β(S).

⇐ Conversely, the reasoning is the same, except that we now build ∆ from ∆′ saying
that ∆qv = 0 if ν(v) = ⊥ and ∆qv = ∆′qν(v) otherwise.
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We have proved that β is implementations-conservative. Thus the fixpoint of β verifies
the same property (this can be concluded by mathematical induction, given that the
fixpoint is always reached in a finite number of steps).

The fixpoint of β, and thus the entire consistency check, can be computed using a
quadratic number of state consistency checks. The complexity of each check depends
on the constraint language that has been chosen.

4.3 Single Valuation Normal Form

It turns out that any CMC whose states are labeled with a set of subsets of atomic
propositions can be turned into an equivalent CMC (in terms of sets of implementations)
whose states are labeled with sets that contains a single subset of atomic propositions.
Hence, working with sets of subsets of valuations is a kind of modeling sugar that can
be removed with a transformation to the single valuation normal form. We now give
details regarding this theory.

Definition 4. We say that a CMC is in a Single Valuation Normal Form if all its
admissible valuation sets are singletons ( |V (i) |= 1 for each 1 ≤ i ≤ k).

More precisely every consistent CMC with at most one admissible valuation in the
initial state can be transformed into the normal form preserving its implementation
set.

The normalization algorithm, which is presented in Definition 5, basically separates
each state u with m possible valuations into m states u1, . . . , um, each with a single
admissible valuation. Then the constraint function is adjusted, by substituting sums of
probabilities going to the new states in place of the old probabilities targeting u. The
transformation is local and syntax based. It can be performed in polynomial time and
it only increases the size of the CMC polynomially. We will write N(S) for a result of
normalization of S.

Definition 5 (Normalization algorithm). Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 be a CMC.
The normalization of S is only defined if o is in single valuation normal form (i.e.
|V (o) |= 1) and if there exists a function N : {1, . . . , k} → 2{1,...,m} such that:

1. {1, . . . ,m} = ∪i∈{1,...,k}N(i);

2. For all 1 ≤ i 6= j ≤ k, N(i) ∩N(j) = ∅;

3. ∀1 ≤ i ≤ k, |N(i)| = |V (i)|;

Under these assumptions, the normalization of S is the CMC N(S) = 〈{1, . . . ,m}, o′, ϕ′,
A, V ′〉 such that N(o) = o′ and

1. ∀1 ≤ j ≤ m, |V ′(j)| = 1;

2. ∀1 ≤ i ≤ k, V (i) = ∪u∈N(i)V
′(u);
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Figure 7: Illustration of the normalization algorithm.

3. ∀1 ≤ i ≤ k, ∀u, v ∈ N(i), u 6= v ⇐⇒ V ′(u) 6= V ′(v);

4. ∀1 ≤ j ≤ m.ϕ′(j)(x1, . . . xm) = ϕ(N−1(j))(
∑

u∈N(1) xu, . . . ,
∑

u∈N(k) xu).

By construction, N(S) is in single valuation normal form. Moreover, if S is consistent,
then a function N satisfying the conditions specified in Definition 5 exists.

The following example illustrates the normalization algorithm.

Example 4. Consider the CMC S = 〈{1, 2, 3, 4}, 1, ϕ, {a, b, c, d, e}, V 〉 given in Fig-
ure 7a. Since states 2 and 3 have two valuation sets, S is not in single valuation
normal form. Define the following normalization function:

N =
[
1 7→ {1}, 2 7→ {2, 2′}, 3 7→ {3, 3′}, 4 7→ 4

]
(3)

The result of applying the normalization algorithm to S is the CMC N(S) = 〈{1, 2, 2′,
3, 3′, 4}, 1, ϕ′, {a, b, c, d, e}, V ′〉 given in Figure 7b. Following the algorithms, states 2
and 3 of S have been each separated into two states with a single valuation. The con-
straint function of state 1 uses y2 + y2′ and y3 + y3′ instead of x2 and x3 respectively.

We now show that normalization preserves implementations of a CMC.

Theorem 3. Let S = 〈{1, . . . k}, o, ϕ,A, V 〉 be a consistent CMC. If |V (o)| = 1, then
for all MC P , we have P |= S ⇐⇒ P |= N(S).

Proof. Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 be a consistent CMC such that |V (o)| = 1. Let
S′ = N(S) = 〈{1, . . . ,m}, o′, ϕ′, A, V ′〉 and N : {1, . . . , k} → 2{1,...,m} be the associated
function.

(⇒) Let P = 〈{1, . . . , n}, oP ,M,AP , VP 〉 be a MC such that P |= S. Let R be the
associated satisfaction relation. Let R′ ⊆ {1, . . . , n}×{1, . . . ,m} be a new relation such
that pR′ u ⇐⇒ VP (p) ∈ V ′(u) and pRN−1(u). We show that R′ is a satisfaction
relation. Let p, u such that pR′ u.
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1. By definition, we have VP (p) ∈ V ′(u).

2. We have pRN−1(u). Let ∆ ∈ [0, 1]n×k be the associated correspondence matrix.
Define ∆′ ∈ [0, 1]n×m such that ∆′q,v = ∆q,N−1(v) if Vp(q) ∈ V ′(v) and 0 else. As
every coefficient of ∆ appears once and only once in the same row of ∆′, it is
clear that ∆′ is a correspondence matrix. Moreover,

• If q is such that Mpq 6= 0, then
∑m

j=1 ∆′q,j =
∑k

i=1 ∆q,i = 1 ;

• For all 1 ≤ i ≤ k,
∑

j∈N(i)([Mp∆
′]j) = [Mp∆]i. As a consequence,

ϕ′(u)(Mp∆
′) = ϕ(N−1(u))(Mp∆)

holds.

• If q, v are such that ∆′q,v 6= 0, then ∆q,N−1(v) 6= 0 and VP (q) ∈ V ′(v), thus
qR′ v.

Finally, R′ is a satisfaction relation. It is easy to see that opR′ o′. As a consequence,
we have P |= N(S).

(⇐) Let P = 〈{1, . . . , n}, oP ,M,AP , VP 〉 be a MC such that P |= N(S). Let R be the
associated satisfaction relation. Let R′ ⊆ {1, . . . , n} × {1, . . . , k} such that pR′ u ⇐⇒
∃j ∈ N(u) s.t. pR j. We will show that R′ is a satisfaction relation. Let p, u such that
pR′ u.

1. We have VP (p) ∈ V (u) = ∪j∈N(u)V
′(j).

2. Let j ∈ N(u) such that pR j, and let ∆ ∈ [0, 1]n×m be the associated correspon-
dence matrix. Define ∆′ ∈ [0, 1]n×k such that ∆′q,v =

∑
i∈N(v) ∆q,i. It is clear that

for all q,
∑k

v=1 ∆′q,v =
∑m

r=1 ∆qr. Thus ∆′ is a correspondence matrix. Moreover,

• If q is such that Mpq 6= 0, then
∑k

i=1 ∆′q,i =
∑m

r=1 ∆q,r = 1 ;

• For all 1 ≤ i ≤ k, [Mp∆
′]i =

∑
r∈N(i)([Mp∆]r). As a consequence,

ϕ(u)(Mp∆) = ϕ′(j)(Mp∆
′)

holds.

• If q, v are such that ∆′q,v 6= 0, then there exists r ∈ N(v) such that ∆q,r 6= 0,
thus qR′ v.

Finally, R′ is a satisfaction relation. By construction oP R′ o, thus it holds that P |=
S.

It is easy to see that normalization preserves determinism.
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5 Refinement

Comparing specifications is central to stepwise design methodologies. Systematic com-
parison enables simplification of specifications (abstraction) and adding details to speci-
fications (elaboration). Usually specifications are compared using a refinement relation.
Roughly, if S1 refines S2, then any model of S1 is also a model of S2.

We will now introduce two notions of refinement for CMCs that extend two well
known refinements for IMCs [46, 48]. We not only generalize these refinements, but,
unlike [46, 48], we also characterize them in terms of implementation set inclusion—
also called thorough refinement—and computational complexity. We start with the
definition of refinements, then we propose algorithms to compute them.

5.1 Refinement Relations

The strong refinement between IMCs, by Jonsson and Larsen [46], extends to CMCs
in the following way:

Definition 6 (Strong Refinement). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 =
〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs with A2 ⊆ A1. A relation R ⊆ {1, . . . , k1}×
{1, . . . , k2} is a strong refinement relation between states of S1 and S2 iff whenever
vRu, then

1. V1(v)↓A2⊆ V2(u), and

2. there exists a correspondence matrix ∆ ∈ [0, 1]k1×k2 such that for all probability
distribution vectors x ∈ [0, 1]k1 if ϕ1(v)(x) holds, then

• for all 1 ≤ i ≤ k1, xi 6= 0 =⇒ ∑k2
j=1 ∆ij = 1;

• ϕ2(u)(x∆) holds and

• if ∆v′u′ 6= 0, then v′Ru′.

We say that S1 strongly refines S2, written S1 �S S2, iff o1R o2.

Strong refinement imposes a “fixed-in-advance” correspondence matrix ∆ regard-
less of the probability distribution satisfying the constraint function. In contrast, the
weak refinement, which generalizes the one proposed in [48] for IMCs, allows choos-
ing a different correspondence matrix for each probability distribution satisfying the
constraint:

Definition 7 (Weak Refinement). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 =
〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs with A2 ⊆ A1. The relation R ⊆ {1, . . . , k1} ×
{1, . . . , k2} is a weak refinement relation iff whenever vRu, then:

1. V1(v)↓A2⊆ V2(u) and

2. for any distribution x ∈ [0, 1]k1 satisfying ϕ1(v)(x), there exists a matrix ∆ ∈
[0, 1]k1×k2 such that
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(c) Weak refinement for initial states of S3 and S4

Figure 8: Examples of refinement and conjunction

• for all 1 ≤ i ≤ k1, xi 6= 0 =⇒ ∑k2
j=1 ∆ij = 1;

• ϕ2(u)(x∆) holds and

• if ∆v′u′ 6= 0, then v′Ru′.

CMC S1 (weakly) refines S2, written S1 � S2, iff o1R o2.

Example 5. Figure 8c illustrates a family of correspondence matrices parametrized
by γ, witnessing the weak refinement between initial states of S3 and S4 (defined in
Figures 8a–8b). The actual matrix used in proving the weak refinement depends on
the probability distribution vector z that satisfies the constraint function ϕ3 of state
(1, 1). Take γ =

0.7−z2,2
z2,3

if z2,2≤ 0.7 and γ =
0.8−z2,2
z2,3

otherwise. It is easy to see that

ϕ3((1, 1))(z) implies ϕ4(1)(z∆).

Clearly, the existence a strong refinement relation implies the existence of a weak
refinement relation, as every strong refinement is a also a weak refinement. Further-
more, both weak and strong refinements imply implementation set inclusion, as shown
by the following theorem:
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Theorem 4. Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉
be two CMCs. Assume S1 � S2, we prove that [[S1]] ⊆ [[S2]].

Proof. Since S1 � S2, there exists a weak refinement relation R ⊆ {1, . . . , k1} ×
{1, . . . , k2} such that o1R o2. Consider P = 〈{1, . . . n}, oP ,M,AP , VP 〉 such that
P |= S1. By definition there exists a satisfaction relation R′ ⊆ {1, . . . , n} × {1, . . . , k1}
such that oP R′ o1.

Consider the relation R′′ ⊆ {1, . . . , n} × {1, . . . , k2}, such that pR′′ u iff. there
exists v ∈ {1, . . . , k1} such that pR′ v and vRu. We prove that R′′ is a satisfaction
relation. First, it is clear that A2 ⊆ A1 ⊆ AP . Now, consider p, u such that pR′′ u, so
there exists v such that pR′ v and vRu. Since VP (p)↓A1∈ V1(v) and V1(v)↓A2⊆ V2(u),
we have that VP (p)↓A2∈ V2(u).

We now build a correspondence matrix ∆′′. Consider the pth row of M , Mp ∈ [0, 1]n.
Let ∆′ ∈ [0, 1]n×k1 be a correspondence matrix witnessing pR′ v. Let y = Mp∆

′ ∈
[0, 1]k1 . By Definition 3 we have ϕ1(v)(y). Let ∆ ∈ [0, 1]k1×k2 be the correspondence
matrix witnessing vRu and define ∆′′ = ∆′∆ ∈ [0, 1]n×k2 . By Lemma 1, ∆′′ is also a
correspondence matrix. We prove that ∆′′ satisfies the axioms of Definition 3.

1. Let 1 ≤ p′ ≤ n such that Mpp′ 6= 0. As a consequence,
∑k1

q=1 ∆′p′q = 1. We want

to prove that
∑k2

j=1 ∆′′p′j = 1.

k2∑

j=1

∆′′p′j =

k2∑

j=1




k1∑

q=1

∆′p′q∆qj


 =

k1∑

q=1


∆′p′q

k2∑

j=1

∆qj




Let q such that ∆′p′q 6= 0. It is then clear that yq ≥ Mpp′∆
′
p′q > 0. As ∆ is a

witness of vRu, we have, by the definition of weak refinement,
∑k2

j=1 ∆qj = 1.

Finally, this implies that
∑k2

j=1 ∆′′p′j = 1.

2. By Definition 7, since ϕ1(v)(Mp∆) holds, then ϕ2(u)(Mp∆
′′) holds.

3. Let p′, u′ such that ∆′′p′u′ 6= 0. By construction, it is clear that there exists v′ such

that ∆′p′v′ 6= 0 and ∆v′u′ 6= 0. By definition of ∆′ and ∆, this implies that p′R′ v′
and v′Ru′, thus p′R′′ u′.

From 1-3, we can conclude that R′′ is a satisfaction relation. Since oP R′′ o2, we have
P ∈ [[S2]] and [[S1]] ⊆ [[S2]].

In Section 9, we shall see that the converse holds for a particular class of CMCs.
However, this is not the case in general: strong refinement is strictly stronger than weak
refinement, which is strictly stronger than implementation set inclusion. Formally, we
have the following proposition.

Proposition 5. There exist CMCs Sa, Sb, Sc and Sd such that

• Sa weakly refines Sb, and Sa does not strongly refine Sb;
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1

2 3 4

{{A}}
x4x2

{{B}} {{C}} {{D}}

x3

ϕa(1)(x1, x2, x3, x4) ≡
(x2 + x3 ≥ 0.7) ∧ (x3 + x4 ≥ 0.2)∧
(x2 + x3 + x4 = 1)

(a) CMC Sa

2 543

1 {{A}}
y2 y5

y3 y4

{{B}} {{C}} {{C}} {{D}}
ϕb(1)(y1, y2, y3, y4, y5) ≡
(y2 + y3 ≥ 0.7) ∧ (y4 + y5 ≥ 0.2)∧
(y2 + y3 + y4 + y5 = 1)

(b) CMC Sb

Figure 9: Distinguishing weak and strong refinement. Sa weakly, but not strongly, refines
Sb. Here, and elsewhere, self-targeting loop transitions with probability 1 have been elided
(in states with no out-going arrows).

∆x =




1 0 0 0 0

0 1 0 0 0

0 0 γ (1− γ) 0

0 0 0 0 1



, ∆ =




1 0 0 0 0

0 1 0 0 0

0 0 a (1− a) 0

0 0 0 0 1




Figure 10: Correspondence matrices for Sa � Sb

• [[Sc]] ⊆ [[Sd]], and Sc does not weakly refine Sd.

Proof. • Consider the CMCs Sa and Sb given in Figures 9a and 9b, respectively.
By xa (resp. yb) we denote state x in Sa (resp. y in Sb). We first show that there
exists a weak refinement relation R such that Sa � Sb, with 1aR 1b. We then
show that there exists no strong refinement relation between Sa and Sb.

1. Let R = {(1a, 1b), (2a, 2b), (3a, 3b), (3a, 4b), (4a, 5b)}. We show that R is a
weak refinement relation. We first focus on building the correspondence
matrix for the pair (1a, 1b). Let x be a be a distribution satisfying the
constraint in 1a. Let γ = 0.7−x2

x3
if x2 ≤ 0.7 and 0.8−x2

x3
otherwise. As x

satisfies ϕa(1a), we have 0 ≤ γ ≤ 1. Consider the correspondence matrix ∆x

given in Figure 10

It is easy to see that for all valuations x satisfying ϕa(1a), ϕb(1b)(x∆x) also
holds. The correspondence matrices for the other pairs in R are trivial.
Thus R is a weak refinement relation between Sa and Sb.

2. Suppose that there exists a strong refinement relation R′ such that 1aR′ 1b.
Let ∆ be the correspondence matrix witnessing 1aR′ 1b. Since 2a, 3a and
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2

1

x3 x4

3 4

{{A}}

{{C}} {{D}}

{{B}}

1

ϕc(2)(x1, x2, x3, x4) ≡ (x3 = 1) ∨ (x4 = 1)

(a) CMC Sc

4 5

1 {{A}}

{{C}} {{D}}

1 1

2 3

y3y2

{{B}}{{B}}

ϕd(1)(y1, y2, y3, y4, y5) ≡ (y2 = 1) ∨ (y3 = 1)

(b) CMC Sd

Figure 11: Weak refinement vs model inclusion: [[Sc]] ⊆ [[Sd]] but Sc 6� Sd.

4a can all be reached from 1a with an admissible transition, the sum of the
elements in the corresponding rows in ∆ must be one. From the valuations of
the states, we obtain that ∆ is of the type given in Figure 10, with 0 ≤ a ≤ 1.

Moreover, if R′ is a strong refinement relation, then we have that for all
valuation x satisfying ϕa(1a), ϕb(1b)(x∆) also holds.

Let x1 = (0, 0.6, 0.1, 0.3) and x2 = (0, 0.8, 0.1, 0.1). Both x1 and x2 satisfy
ϕa(1a). If there exists a strong refinement, this implies that ϕb(1b)(x

1∆)
and ϕb(1b)(x

2∆) also hold. However, ϕb(1b)(x
1∆) = 1 implies that a ≥ 1

and ϕb(1b)(x
2∆) implies that a ≤ 0.

It is thus impossible to find a unique correspondence matrix working for all
the “valid” valuations of the outgoing transitions of 1a. As a consequence,
there cannot exist a strong refinement relation R′ such that 1aR′ 1b.

• Consider the CMCs Sc and Sd given in Figures 11a and 11b. It is easy to see
that Sc and Sd share the same set of implementations. However, due to the
constraints, state 2 of Sc cannot refine any state of Sd. As a consequence, Sc
cannot refine Sd.

So our refinement relations for CMCs can be ordered from finest to coarsest: the
strong refinement, the weak refinement, and the implementation set inclusion. As the
implementation set inclusion is the ultimate refinement, checking finer refinements is
used as a pragmatic syntax-driven, but sound, way of deciding it.

As we shall see in the next section, the algorithms for checking weak and strong
refinements are polynomial in the number of states, but the treatment of each state
depends on the complexity of the constraints. For the case of implementation set inclu-
sion, the algorithm is exponential in the number of states. Checking implementation
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set inclusion seems thus harder than checking weak or strong refinement. In Section 9,
we will propose a class of CMCs for which strong and weak refinements coincide with
implementation set inclusion.

5.2 Algorithms for Computing Refinements

We now discuss algorithms for checking implementation set inclusion and refinements.

We start with algorithms for checking weak and strong refinements between two
CMCs S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 with
k1, k2≤n. Checking whether a relation R ⊆ {1, . . . , k1} × {1, . . . , k2} is a strong (resp.
weak) refinement relation reduces to checking, for all (i, j) ∈ R, the validity of the
following refinement formulas: ∃∆,∀x, ϕ1(i)(x) ⇒ ϕ2(j)(x∆) ∧ ∧i′(

∑
j′ ∆i′j′ = 1) ∧∧

i′,j′(i
′Rj′ ∨∆i′j′ = 0) for the strong refinement, and ∀x, ϕ1(i)(x)⇒ ∃∆, ϕ2(j)(x∆) ∧∧

i′(
∑

j′ ∆i′j′ = 1) ∧∧i′,j′(i
′Rj′ ∨∆i′j′ = 0) for the weak refinement. Strong and weak

refinements can be decided by iterated strengthening of R with refinement formulas,
starting from R0 = {(i, j)|V1(i) ↓A2⊆ V2(j)}, until either (o1, o2) 6∈ R, in which case S1

does not strongly (resp. weakly) refine S2, or R is found to be a strong (resp. weak)
refinement.

The exact complexity of the algorithm depends on the type of constraints that
are used in the specifications. As an example, consider that all the constraints in
S1 and S2 are polynomials of degree d with less than k bound variables – we shall
see that polynomial constraints is the smallest class under which CMCs are closed.
There, deciding refinement formulas can be done by quantifier elimination. When the
number of quantifier alternations is constant, the cylindrical algebraic decomposition
algorithm [93, 94], implemented in Maple [95], performs this quantifier elimination in
time double exponential in the number of variables. Consequently, refinement can be

checked in O(n222n
2

) time.

However, considering constraints ϕ which contain only existential quantifiers, quan-
tifier alternation is either one or two for strong refinement and exactly one for weak
refinement. There are quantifier elimination algorithms that have a worst case com-
plexity of a single exponential only in the number of variables, although they are double
exponential in the number of quantifier alternations [96]. Thanks to these algorithms,
deciding whether R is a strong (resp. weak) refinement relation can be done in time
single exponential in the number of states n and k, the number of bound variables
appearing in the constraints: O(n2sP (n,k)dP (n,k)), where P is a polynomial.

We now turn to the case of implementation set inclusion. In [46], Larsen and Jonsson
proposed an algorithm for solving this problem for the case of IMCs. This algorithm
directly extends to CMCs. The main difference with the algorithms for solving weak and
strong refinements is that the algorithm for implementation set inclusion is exponential
in the number of states.

Finally, let us mention that lower-bounds for the strong and weak refinement check-
ing remain open problems. On the other hand, in [61], we have shown that implemen-
tation set inclusion is EXPTIME-hard for IMCs, hence providing a lower bound also
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for CMCs.

6 Conjunction

Conjunction combines requirements of several specifications.

Definition 8 (Conjunction). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and
S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be two CMCs. The conjunction of S1 and S2, written
S1 ∧S2, is the CMC S = 〈{1, . . . , k1}× {1, . . . , k2}, (o1, o2), ϕ,A, V 〉 with A = A1 ∪A2,
V ((u, v)) = V1(u)↑A ∩V2(v)↑A, and

ϕ((u, v))(x1,1, x1,2, . . . , x2,1, . . . , xk1,k2) ≡ ϕ1(u)(
∑k2

j=1 x1,j , . . . ,
∑k2

j=1 xk1,j)∧
ϕ2(v)(

∑k1
i=1 xi,1, . . . ,

∑k1
i=1 xi,k2).

Conjunction may introduce inconsistent states. Indeed, the intersection between the
sets of valuations of two states may be empty (see state (2, 3) in Figure 1). Conjunction
should thus normally be followed by applying the pruning operator β∗. As already
stated in the introduction, the result of conjoining two IMCs is not an IMC in general,
but a CMC whose constraint functions are systems of linear inequalities. Figure 8a
depicts a CMC S3 expressing the conjunction of IMCs S1 and S2 (see Figures 3a–3b).
The constraint z2,3 + z3,3≥0.2 in state (1, 1) cannot be expressed as an interval.

As expected, conjunction of two specifications coincides with their greatest lower
bound with respect to the weak refinement (also called shared refinement).

Theorem 6. Let S1, S2 and S3 be three CMCs. We have (a) ((S1 ∧ S2) � S1) and
((S1 ∧ S2) � S2) and (b) if (S3 � S1) and (S3 � S2), then S3 � (S1 ∧ S2).

Proof. We separately prove the two items of the theorem. Let {1, . . . , k1}, {1, . . . , k2},
and {1, . . . , k3} be the sets of states of S1, S2, and S3, respectively.

(a) Let S1 ∧ S2 = S = 〈{1, . . . , k1} × {1, . . . , k2}, o, ϕ,A, V 〉. Let R ⊆ ({1, . . . , k1} ×
{1, . . . , k2})× {1, . . . , k1} such that (u, v)Rw ⇐⇒ u = w. We will prove that R is a
strong refinement relation. Let u ∈ {1, . . . , k1} and v ∈ {1, . . . , k2}. We have (u, v)Ru.

1. By definition of S obtain V ((u, v))↓A1= (V1(u)↑A ∩V2(v)↑A)↓A1⊆ V1(u).

2. Let ∆ ∈ [0, 1](k1k2)×k1 such that ∆(i,j),i = 1 and ∆(i,j),k = 0 if k 6= i. We now
prove that it satisfies the axioms of a satisfaction relation for (u, v)Ru stated in
Definition 3:

• Then we have ∀(i, j). ∑k1
k=1 ∆(i,j),k = 1.

• If x ∈ [0, 1](k1k2) is such that ϕ((u, v))(x), it implies by definition that
ϕ1(u)(

∑k2
j=1 x1,j , . . . ,

∑k2
j=1 xk1,j) = ϕ1(u)(x∆) holds.

• If ∆(u′,v′),w′ 6= 0, we have by definition u′ = w′ and (u′, v′)Ru′.
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We conclude that R is a strong, and thus also a weak, refinement relation. Since
(o1, o2)R o1, we have S1 ∧ S2 � S1. By symmetry, we also have S1 ∧ S2 � S2.

(b) Assume S3 � S1 and S3 � S2. By definition, there exist refinement relations
R1 ⊆ {1, . . . , k3} × {1, . . . , k1} and R2 ⊆ {1, . . . , k3} × {1, . . . , k2} such that o3R1 o1

and o3R2 o2. Let S1 ∧ S2 = S = 〈{1, . . . , k1} × {1, . . . , k2}, o, ϕ,A, V 〉.
Let R ⊆ {1, . . . , k3} × ({1, . . . , k1} × {1, . . . , k2}) such that uR(v, w) ⇐⇒ uR1 v

and uR2w. We now prove that R is a weak refinement relation.

Consider u, v, w such that uR(v, w).

1. By definition, we have V3(u)↓A1⊆ V1(v) and V3(u)↓A2⊆ V2(w). As a consequence,
V3(u)↓A⊆ V ((v, w)).

2. Let x ∈ [0, 1]k3 such that ϕ3(u)(x). Consider the correspondence matrices ∆ ∈
[0, 1]k3×k1 and ∆′ ∈ [0, 1]k3×k2 given by uR1 v and uR2w for the transition vector
x. Let ∆′′ ∈ [0, 1]k3×(k1k2) be a new matrix such that ∆′′ = ∆ ⊗∆′. By Lemma
1, ∆′′ is a correspondence matrix. We now prove that it satisfies the axioms of a
refinement relation for uR(v, w):

• Let 1 ≤ i ≤ k3 such that xi 6= 0. By definition of ∆ and ∆′, we have∑k1
j=1 ∆ij = 1 and

∑k2
q=1 ∆′iq = 1, so

∑

(j,q)∈{1,...,k1}×{1,...,k2}

∆′′i(j,q) = (

k1∑

j=1

∆ij)(

k2∑

q=1

∆′iq)

= 1.

• By definitions of ∆ and ∆′, both ϕ1(v)(x∆) and ϕ2(w)(x∆′) hold. Let
x′ = x∆′′. It is clear that x∆ = (

∑k2
j=1 x

′
(1,j), . . . ,

∑k2
j=1 x

′
(k1,j)

) and x∆′ =

(
∑k1

i=1 x
′
(i,1), . . . ,

∑k1
i=1 x

′
(i,k2)). As a consequence, ϕ((v, w))(x∆′′) holds.

• Let u′, v′, w′ such that ∆′′u′(v′,w′) 6= 0. By construction, this implies ∆u′v′ 6= 0

and ∆′u′w′ 6= 0. As a consequence, u′R1 v
′ and u′R2w

′, thus u′R(v′, w′).

We conclude that R is a weak refinement relation. Since o3R(o1, o2), we have S3 �
(S1 ∧ S2).

The first consequence of the above theorem is that conjunction with another spec-
ification is a monotonic operator with respect to weak refinement. Furthermore, as it
follows from the later results of Section 9, the set of implementations of a conjunction
of two deterministic specifications S1 and S2 coincides with the intersection of imple-
mentation sets of S1 and S2 (the greatest lower bound in the lattice of implementation
sets).
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Figure 12: Parallel composition and synchronization of CMCs.

7 Separation of Concerns in Parallel Composition of Spec-
ifications

Let us now turn to parallel composition. We first remark, that in concurrency theory
it is customary to combine parallel composition with synchronization—for example in
many process algebras the same rules are used to explain how parallel processes evolve,
and how they communicate. In this work we take a different approach, separating these
two concerns— parallel composition from synchronization. The choices regarding sets
of valuations and the stochastic choices are independent from each other.

First, components are composed into a kind of product—effectively just a vector
of stochastically independent entities. Second, the product is synchronized on valua-
tions by constraining its behaviour, to model handshake communication. For example,
assume that one component should be in a state where b holds, whenever b holds in
another one. An independent product of these two components will likely contain states
where only one of the propositions is present, but not the other. Then a synchroniza-
tion operator is applied that will eliminate these states from the product, ensuring that
the two propositions b and b always co-occur.

This design has two significant advantages. First, it allows modeling very diverse
synchronization mechanisms. For CMCs synchronization goes far beyond matching
label names, like in the above example. The synchronization is specified as a part of
the model, where it can express complex propositional constraints between propositions
(for example a safety property). It can be stateful and probabilistic.

Second, as we will see, we will obtain synchronization by simply using conjunction.
This very elegantly exploits the prior results on conjunction, as the synchronization
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operator turns out to be realizable using conjunction.

Remark 1. The principle of separation of concerns is intensively used in the definition
of parallel composition for many systems that mix stochastic and non-deterministic
choices, among them many theories for probabilistic process algebra [6, 30]. Similar
principles also apply for continuous time stochastic models, in a slightly different setting
based on CTMCs [92]. In Section 11, in order to argue that such a design is reasonable,
we will show that our parallel composition covers the one of probabilistic automata [6]—
which is a widely accepted and appreciated operator.

We start by showing how systems and specifications are composed in a nonsynchro-
nizing manner, then we introduce synchronization. The non-synchronizing independent
parallel composition is largely just a product of two MCs (or CMCs):

Definition 9 (Parallel Composition of MCs). Let P1 = 〈{1, . . . , n1}, o1,M
′, A1, V1〉 and

P2 = 〈{1, . . . , n2}, o2,M
′′, A2, V2〉 be two MCs with A1∩A2 = ∅. The parallel composition

of P1 and P2 is the MC P1 ‖ P2 = 〈{1, . . . , n1} × {1, . . . , n2}, (o1, o2),M,A1 ∪ A2, V 〉,
where: M ∈ [0, 1](n1n2)×(n1n2) is such that M = M ′�M ′′ and V ((p, q)) = V1(p)∪V2(q).

For CMCs we have the following definition.

Definition 10 (Parallel Composition of CMCs). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉
and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs with A1 ∩A2 = ∅. The parallel composi-
tion of S1 and S2 is the CMC S1 ‖ S2 = 〈{1, . . . , k1}×{1, . . . , k2}, (o1, o2), ϕ,A1∪A2, V 〉,
where

ϕ((u, v))(z1,1, z1,2, . . . , z2,1, . . . , zk1,k2) ≡
∃x1, . . . , xk1 , y1, . . . , yk2 ∈ [0, 1].∀(i, j) ∈ {1, . . . , k1} × {1, . . . , k2}.

zi,j = xiyj and ϕ1(u)(x1, . . . , xk1) = ϕ2(v)(y1, . . . , yk2) = 1

Finally, V ((u, v)) = {Q1 ∪Q2 | Q1 ∈ V1(u), Q2 ∈ V2(v)}.
In the introduction we have demonstrated that IMCs are not closed under conjunc-

tion. Here, it is worth mentioning that IMCs are not closed under parallel composition,
even under the independent one. Consider IMCs S and S′ given in Figure 12a and their
parallel composition S ‖ S′ given in Figure 12b. Assume first that S ‖ S′ is an IMC.
As a variable zi,j is the product of two variables xi and yj , if S ‖ S′ is an IMC,
then one can show that the interval for zi,j is obtained by computing the products
of the bounds of the intervals over which xi and yj range. Hence, we can show that
z1,1 ∈ [0, 1/2], z1,2 ∈ [0, 1/3], z2,1 ∈ [1/6, 1], z2,2 ∈ [0, 2/3]. Let [a, b] be the interval for
the constraint zi,j , it is easy to see that there exist implementations I1 of S1 and I2

of S2 such that I1 ‖ I2 satisfies the constraint zi,j = a (resp. zi,j = b). However,
while each bound of each interval can be satisfied independently, some points in the
polytope defined by the intervals and the constraint

∑
zi,j = 1 cannot be reached. As

an example, consider z1,1 = 0, z1,2 = 1/3, z2,1 = 1/3, z2,2 = 1/3. It is clearly inside the
polytope, but one cannot find an implementation I of S ‖ S′ satisfying the constraints
given by the parallel composition. Indeed, having z1,1 = 0 implies that x1 = 0 and thus
that z1,2 = 0.
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Theorem 7. If S′1, S′2, S1, S2 are CMCs, then S′1�S1 and S′2�S2 implies S′1 ‖S′2 �
S1 ‖S2, so the weak refinement is a precongruence with respect to parallel composition.
Consequently, for any MCs P1 and P2 we have that P1 |= S1 ∧ P2 |= S2 implies P1 ‖
P2 |= S1 ‖S2.

Proof. Let

S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉,
S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉,
S′1 = 〈{1, . . . , k′1}, o′1, ϕ′1, A′1, V ′1〉,
S′2 = 〈{1, . . . , k′2}, o′2, ϕ′2, A′2, V ′2〉,
S = 〈{1, . . . , k1} × {1, . . . , k2}, (o1, o2), ϕ,A, V 〉 = S1 ‖ S2,

S′ = 〈{1, . . . , k′1} × {1, . . . , k′2}, (o′1, o′2), ϕ′, A′, V ′〉 = S′1 ‖ S′2,

be CMCs with A = A1 ∪A2 and A′ = A′1 ∪A′2. Assume that S′1 � S1 and S′2 � S2.
By definition, there exist two weak refinement relations R1 and R2 such that

o′1R1 o1 and o′2R2 o2. Define R such that (u′, v′)R(u, v) ⇐⇒ u′R1 u and v′R2 v.
Consider now such (u′, v′) and (u, v). We prove that R satisfies the axioms of a weak
refinement relation between (u′, v′) and (u, v):

1. Note that from u′R1 u (resp. v′R2 v) it follows that A′1 ⊆ A1 (resp.A′2 ⊆ A′2) and
further A′1 ∩A2 = A1 ∩A′2 = ∅. We have:

V ′((u′, v′))↓A=
{

(Q1 ∪Q2)↓A1∪A2 | Q1 ∈ V ′1(u′), Q2 ∈ V ′2(v′)
}

= {Q1↓A1 ∪Q2↓A2 | Q1 ∈ V ′1(u′), Q2 ∈ V ′2(v′)}
⊆ {Q1 ∪Q2 | Q1 ∈ V1(u), Q2 ∈ V2(v)} = V ((u, v)) .

2. Let z′ ∈ [0, 1](k
′
1k
′
2) such that ϕ′(u′, v′)(z′). We now build the correspondence

matrix ∆ witnessing (u′, v′)R(u, v). Consider the correspondence matrices ∆1 ∈
[0, 1]k

′
1×k1 and ∆2 ∈ [0, 1]k

′
2×k2 witnessing respectively u′R1 u and v′R2 v for the

transition vector z′. Define ∆ = ∆1 � ∆2 ∈ [0, 1](k
′
1k
′
2)×(k1k2). By Lemma 1,

∆ is a correspondence matrix. Moreover, since ϕ′(u′, v′)(z′) holds, there exist
x′ ∈ [0, 1]k

′
1 and y′ ∈ [0, 1]k

′
2 such that ∀i, j, z′(i,j) = x′iy

′
j and ϕ′1(u′)(x′) and

ϕ′2(v′)(y′).

• Let (u′′, v′′) ∈ {1, . . . , k′1} × {1, . . . , k′2} such that z(u′′,v′′) 6= 0. By definition

of x′ and y′, this implies that x′u′′ 6= 0 and y′v′′ 6= 0. Thus
∑k1

j=1 ∆1
u′′j = 1

and
∑k2

j=1 ∆2
v′′j = 1.

∑

(r,s)∈{1,...,k1}×{1,...,k2}

∆(u′′,v′′)(r,s) =
∑

(r,s)∈{1,...,k1}×{1,...,k2}

∆1
u′′r∆

2
v′′s

=

k1∑

r=1

k2∑

s=1

∆1
u′′r∆

2
v′′s = (

k1∑

r=1

∆1
u′′r)(

k2∑

s=1

∆2
v′′s) = 1.
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• Let z = z′∆ ∈ [0, 1](k1k2). Notice that z = (x′∆1)⊗ (y′∆2).

Let x = x′∆1 and y = y′∆2. Since u′R1 u and v′R2 v, we have ϕ1(u)(x)
and ϕ2(v)(y). Thus ϕ(u, v)(z′∆).

• Let u′′, v′′, u′′′v′′′ such that ∆(u′′,v′′)(u′′′,v′′′) 6= 0. By definition, this implies
that ∆1

u′′u′′′ 6= 0 and ∆2
v′′v′′′ 6= 0, and as a consequence (u′′, v′′)R(u′′′, v′′′).

We conclude that R is a weak refinement relation. Since (o′1, o
′
2)R(o1, o2), we have

S′ � S. The second part of the theorem follows, as satisfaction is a special case of the
refinement.

As alphabets of composed CMCs have to be disjoint, the parallel composition cannot
synchronize the components on state valuations like it is typically done for other (non-
probabilistic) models. However, synchronization can be introduced by conjoining the
parallel composition with a synchronizer—a single-state CMC whose valuation function
relates the atomic propositions of the composed CMCs.

Example 6. CMC S ‖ S′ of Figure 12b is synchronized with the synchronizer Sync
given in Figure 12c. Sync removes from S ‖ S′ all the valuations that do not satisfy
(a = d) ∧ (b = ¬c). The result is given in Figure 12d. Observe that an inconsistency
appears in State (1, 1). Indeed, there is no implementation of the two CMCs that
can synchronize in the prescribed way. In general inconsistencies like this one can be
uncovered by applying the pruning operator, which would return an empty specification.
So synchronizers enable discovery of incompatibilities between component specifications
in the same way as it is known for non-probabilistic specification models.

Synchronization is associative with respect to parallel composition, which means that
the order of synchronization and parallel composition is inessential for final functionality
of the system.

Theorem 8. Let S1, S2 and S3 be three CMCs with pairwise disjoint sets of propositions
A1, A2 and A3. Let Sync123 be a synchronizer over A1 ∪A2 ∪A3 and let Sync12 be the
same synchronizer with its set of propositions restricted to A1∪A2. The following holds
[[[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123]] = [[(S1 ‖ S2 ‖ S3) ∧ Sync123]].

Proof. We first prove the following statement. Let S1 and S2 be two CMCs with disjoint
sets of atomic propositions A1 and A2. Let Sync1 be a synchronizing vector on A1. We
have (S1 ‖ S2) ∧ Sync1 = (S1 ∧ Sync1) ‖ S2.

First, remember that synchronizers are single state CMCs, with a single transi-
tion taken with probability 1. As a consequence, computing the conjunction with a
synchronizer preserves the structure of any CMC. The only change lies in the sets of
valuations.

Let p be a state of S1 and q be a state of S2. We have (V1(p)∪V2(q))∩VSync1↑A1∪A2=
(V1(p) ∩ VSync1) ∪ V2(q). As a consequence, the valuations of (S1 ∧ Sync1) ‖ S2 are the
same as the valuations of (S1 ‖ S2) ∧ Sync1.
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By monotonicity of conjunction, we have (S1 ‖ S2) ∧ Sync12 � (S1 ‖ S2). By
Theorem 7, it is implied that [((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123 � [S1 ‖ S2 ‖
S3]∧Sync123, and finally [[[((S1 ‖ S2)∧Sync12) ‖ S3]∧Sync123]] ⊆ [[[S1 ‖ S2 ‖ S3]∧S123]].

We now prove that [S1 ‖ S2 ‖ S3]∧Sync123 � [((S1 ‖ S2)∧Sync12) ‖ S3]∧Sync123. By
monotonicity of conjunction, we have [S1 ‖ S2 ‖ S3]∧Sync123 � [S1 ‖ S2 ‖ S3]∧Sync12∧
Sync123. Moreover, by the statement proved above, we have [S1 ‖ S2 ‖ S3] ∧ Sync12 �
((S1 ‖ S2) ∧ Sync12) ‖ S3. As a consequence, we have [S1 ‖ S2 ‖ S3] ∧ Sync123 �
[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123, and thus [[[S1 ‖ S2 ‖ S3] ∧ Sync123]] ⊆ [[[((S1 ‖
S2) ∧ Sync12) ‖ S3] ∧ Sync123]].

Finally, synchronized parallel composition also supports component-based refine-
ment in the style of Theorem 7.

Theorem 9. If S′1, S′2, S1, S2 are CMCs, Sync is a synchronizer and S′1 � S1 and
S′2�S2, then (S′1 ‖S′2) ∧ Sync � (S1 ‖S2) ∧ Sync.

Consequently, a modeler can continue independent refinement of specifications under
synchronization, knowing that the original synchronized specification will not be vio-
lated. The theorem is a direct corollary of precongruence (Theorem 7) and monotonicity
of conjunction (follows from Theorem 6).

7.1 On comparing conjunction and parallel composition

We now compare conjunction and parallel composition with respect to implementation
set inclusion. We shall see that if the two operations are defined on CMCs with inde-
pendent sets of valuations, then parallel composition refines conjunction; the opposite
does not hold. We first show that parallel composition refines conjunction.

Theorem 10. Let S1 and S2 be consistent CMCs with A1 ∩ A2 = ∅. It holds that
S1 ‖S2 � S1∧S2.

Proof. Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be
CMCs. Consider their parallel composition S1 ‖ S2 = 〈{1, . . . , k1}×{1, . . . , k2}, (o1, o2),
A, V ‖〉 and their conjunction S1 ∧ S2 = 〈{1, . . . , k1} × {1, . . . , k2}, (o1, o2), ϕ∧, A, V ∧〉,
where A = A1 ∪A2. We build a refinement relation R on ({1, . . . , k1} × {1, . . . , k2})×
({1, . . . , k1} × {1, . . . , k2}) as (u, v)R(u′, v′) if and only if u = u′ and v = v′.

Let (u, v) ∈ {1, . . . , k1}× {1, . . . , k2} such that (u, v)R(u, v). We now show that R
is a refinement relation:

1. By construction, we have that V ‖((u, v)) = {Q1 ∪Q2 | Q1 ∈ V1(u), Q2 ∈ V2(v)}.
Moreover, since A1 ∩ A2 = ∅, we have that V ∧((u, v)) = V1(u)↑A ∩V2(v)↑A=
{Q1 ∪Q2 | Q1 ∈ V1(u), Q2 ∈ V2(v)}. Thus V ‖((u, v)) = V ∧((u, v)).

2. Let z = (z1,1, z1,2, . . . , zk1,k2) ∈ [0, 1]k1k2 such that ϕ‖((u, v))(z) holds. Define the
correspondence matrix ∆ ∈ [0, 1](k1k2)×(k1k2) as the matrix with ∆(u,v),(u,v) = 1 if
zu,v 6= 0 and 0 otherwise. Observe that z∆ = z.
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• Trivially, by construction, for all (i, j) ∈ {1, . . . , k1} × {1, . . . , k2} such that
zi,j 6= 0, we have that

∑
i′,j′ ∆(i,j),(i′,j′) = 1.

• We prove that ϕ∧((u, v))(z) holds: By hypothesis, ϕ‖((u, v))(z) holds. So
there exist x ∈ [0, 1]k1 and y ∈ [0, 1]k2 such that ϕ1(u)(x) holds, ϕ2(v)(y)
holds and for all i ∈ {1, . . . , k1} and j ∈ {1, . . . , k2}, we have zi,j = xiyj . As

a consequence, we have
∑k1

i=1 zi,j = yj for all j ∈ {1, . . . , k2} and
∑k2

j=1 zi,j =
xi for all i ∈ {1, . . . , k1}. Since both ϕ1(u)(x) and ϕ2(v)(y) hold, we have
that ϕ∧((u, v))(z∆) holds.

• By construction of ∆, ∆(u,v),(u′,v′) 6= 0 implies that u = u′ and v = v′, and
therefore implies (u, v)R(u′, v′).

We conclude that R is a refinement relation since (o1, o2)R(o1, o2). We have shown
that S1 ‖S2 � S1∧S2.

A direct consequence of the above theorem is that any model of the parallel com-
position is a model for the conjunction, i.e.,[[S1 ‖ S2]] ⊆ [[S1∧S2]]. We now show that
the opposite inclusion does not hold.

Theorem 11. Let S1 and S2 be consistent CMCs with A1 ∩ A2 = ∅. It holds that
[[S1∧S2]] 6⊆ [[S1 ‖S2]].

Proof. We establish the proof by providing, in Figure 13, two CMCs S1 and S2 and a
MC I, such that I |= S1 ∧ S2 and I 6|= S1 ‖ S2.

The common structure of conjunction and parallel composition is shown in Figure
13d. The constraint functions differ. According to the definitions of conjunction and
parallel composition, we have ϕ∧(1, 1)(z) ≡ z2,2 + z2,3 = z2,2 + z3,2 = 0.6∧ z3,2 + z3,3 =
z2,3 + z3,3 = 0.4 and ϕ‖(1, 1)(z) ≡ z2,2 = 0.36 ∧ z2,3 = z3,2 = 0.24 ∧ z3,3 = 0.16. I
satisfies the conjunction, but not the parallel composition, since the probability mass
0.4 of going to state 2 in I cannot be distributed to (2, 2) of S1 ‖ S2.

8 Disjunction and Universality

In this section we show that CMCs are not closed under disjunction. We then solve the
universality problem, that is the problem of deciding whether a CMC admits arbitrary
implementations.

8.1 On the Existence of a Disjunction of CMCs

In this section we discuss the problem of computing a CMC S whose models are the
union of the models accepted by two other CMCs S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉
and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉. In general, such a CMC may not exist. Indeed,
assume that S1 and S2 have disjoint initial state valuations, and that the constraint
functions of o1 and o2 do not share the same set of satisfying probability vectors.
The initial state o of any specification representing the union could take valuations
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Figure 13: Conjunction vs. parallel composition: I |= S1 ∧ S2 but I 6|= S1 ‖ S2.

admissible according to o1 and a distribution Mo according to o2 (but not o1). That is,
we can not express the link between a choice of the valuation of the initial state and a
probability distribution.

This is illustrated in Figure 14. S1 admits implementations with valuation a in the
initial state, and c afterwards. S2 admits implementations with b in the initial state,
and d afterwards. Any CMC representing the disjunction would have to admit a or b
in the initial state, like the potential candidate S3 in Figure 14c. Unfortunately, the
implementation MC I in Figure 14d satisfies S3 but it is a model of neither S1 and S2,
as it combines the initial state valuation of the former, with behaviour of the latter.

However, if S1 and S2 have the same initial state valuation, then we can explicitly
construct a CMC whose set of implementations is the union of the sets of implemen-
tations of S1 and S2. This CMC is called the disjunction of S1 and S2, and denoted
S1 ∨ S2.

Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs
such that V1(o1) = V2(o2). Then define S1∨S2 = 〈Q, 0, ϕ,A, V 〉, whereQ = {0, 1, . . . , k1,
k1 + 1, . . . , k1 + k2}, A = A1 ∪A2 and

V (i) =





V1(o) if i = 0, o = o1 = o2

V1(i) if i ∈ {1, . . . , k1}
V2(i− k1) if i ∈ {k1 + 1, . . . , k1 + k2}
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x1 x2

ϕ((1, α)) ≡
(x1 = 1 ∨ x2 = 1)

11
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{{d}}{{c}}

(c) CMC S3 such that [[S1]]∪
[[S2]] ( [[S3]]

1

1

2

1

{a}

{d}

(d)
MC I

Figure 14: CMCs not closed under disjunction: I |= S3, but I 6|= S1 and I 6|= S2.

The constraint function ϕ :Q→ [0, 1]k1+k2+1 → {0, 1} is given by:

ϕ(i)(x0, x1, . . . , xk1 , xk1+1, . . . , xk1+k2) ≡



(ϕ1(i)(x1, . . . , xk1) ∨ ϕ2(i)(xk1+1, . . . , xk1+k2)) ∧
k1+k2∑

i=0

xi = 1

if i = 0

ϕ1(i)(x1, . . . , xk1) ∧ (x0 +

k1+k2∑

i=k1+1

xi = 0) if 1 ≤ i ≤ k1

ϕ2(i)(xk1+1, . . . , xk1+k2) ∧
k1∑

i=0

xi = 0 if k1+1 ≤ i ≤ k1+k2

8.2 The Universality Problem for CMCs

Consider the problem of deciding whether a CMC S admits all models defined over a
set of atomic propositions A. This problem can be reduced to checking whether the
set of implementations of the universal CMCs UnivA representing all models over A is
included in the set of implementations of S. The CMC UnivA is defined as UnivA =
〈{1}, 1, ϕ,A, V 〉, where ϕ(1)(x) ≡ 1 and V (1) = 2A.

Theorem 12. Let UnivA = 〈{1}, 1, ϕ,A, V 〉 be the universal CMC on the set of atomic
propositions A and let I = 〈{1, . . . , n}, o,M,AI , VI〉 be any implementation such that
A ⊆ AI . We have that I |= UnivA.

Proof. Construct the relation R = {1, . . . , n} × {1}. We show that R is a satisfaction
relation: Let i ∈ {1, . . . , n} such that iR 1.

1. It is clear that VI(i)↓A∈ V (1) = 2A.

2. Consider Mi. We build a correspondence matrix ∆ ∈ [0, 1]n×1 such that ∆j1 = 1
if Mij > 0, and 0 otherwise.
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Figure 15: State-extended CMCs of Figure 14 and their disjunction.

• By construction, ∆j1 = 1 for all j such that Mij > 0.

• Since Mi∆ = 1, ϕ(1)(Mi∆) holds.

• Let i′ such that ∆i′,1 > 0. By construction of R, i′R 1.

We conclude that R is a satisfaction relation, since oR 1, and thus, I |= UnivA.

We now switch to the problem of deciding whether the union of two CMCs S1 and
S2 is universal. Despite the fact that CMCs are not closed under union, this problem
has a relatively simple solution. The idea is to create a new initial state with a fresh
atomic proposition λ /∈ A and then redistribute the entire probability mass to the
original initial state. Formally:

Definition 11. For a CMC S = 〈{1, . . . , k}, o, ϕ,A, V 〉 and an atomic proposition λ /∈
A define the state-extended CMC Sx = 〈{1, . . . , k, o′}, o′, ϕ′, A′, V ′〉, where A′ = A∪{λ},
V ′(o′) = {{λ}} and V ′(i) = V (i) for all i ∈ {1, . . . , k}. The constraint function is given
by:

ϕ′(i)(x) ≡




xo = 1 ∧ (

k∑

i=1

xi = 0) if i = o′

ϕ(i)(x1, . . . , xk) ∧ xo′ = 0 for i ∈ {1, . . . , k}.

Figure 15 gives an example. The union of the state-extended versions of S1 and
S2 can now be computed and compared to the state-extended version of UnivA. It is
obvious that all the implementations of the state-extended version of a given CMC C
are state-extended versions of implementations of C.
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9 Deterministic CMCs

Clearly, if all implementations of a specification S1 also implement a specification S2,
then the former is a strengthening of the latter. Indeed, S1 specifies implementations
that break no assumptions that can be made about implementations of S2. Thus imple-
mentation set inclusion is a desirable refinement for specifications. Unfortunately the
decision procedure for implementation set inclusion is more complex and less efficient
than the weak and (in particular) the strong refinement. We have seen that the latter
two both soundly approximate implementation set inclusion. Had that approximation
been complete, we could have a more efficient and simpler to program procedure for
implementing the implementation set inclusion.

In this section, we argue that this indeed is the case for an important subclass
of specifications: deterministic CMCs. We show that for this class strong refinement
coincides with the implementation set inclusion. Thus for deterministic CMCs more
efficient algorithms exist for establishing the latter. For this reason we will also consider
a determinization algorithm for CMCs.

A CMC S is deterministic iff for every state i, states reachable from i have pairwise
disjoint admissible valuations:

Definition 12. Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 be a CMC. S is deterministic iff for all
states i, u, v ∈ {1, . . . , k}, if there exists x ∈ [0, 1]k such that (ϕ(i)(x) ∧ (xu 6= 0)) and
y ∈ [0, 1]k such that (ϕ(i)(y) ∧ (yv 6= 0)), then we have that V (u) ∩ V (v) = ∅ or u = v.

By inspecting the constructions for conjunction and parallel composition, one can see
that both trivially preserve determinism.

In Figures 3a and 3b, both S1 and S2 are deterministic specifications. In particular
states 2 and 3, both of which can be reached from state 1 in both CMCs, have disjoint
valuation sets. On the other hand, the CMC T given in Figure 16 is non-deterministic.
Indeed, for States 2 and 3, which can both be reached from State 1, we have that
VT (2) ∩ VT (3) = {{a, c}} 6= ∅.

Deterministic CMCs are less expressive than non-deterministic ones, in the sense
that the same implementation sets sometimes cannot be expressed. Consider again the
CMC T given in Figure 16. The set of implementations of T cannot be represented by
a deterministic CMC. Any merging of States 2 and 3 in T would result in a CMC that
accepts models where one can loop on valuation {a, c} and then accept valuation {a}
with probability 1. Such a model cannot be accepted by T .

We now present a determinization algorithm that can be applied to any CMC S
in single valuation normal form (obtainable by applying the normalization algorithm
of Definition 5). This algorithm is based on a subset construction that resembles the
classical determinization for automata.

Definition 13. Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 be a consistent CMC in single valuation
normal form. If Q ⊆ {1, . . . , k} and a ∈ 2A, then define reach(Q, a) to be the maximal1

1Maximality is understood with respect to set inclusion here. It captures the fact that we want all
such states.
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1
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ϕT (1)(x1, x2, x3, x4) ≡
(x2 = 1) ∨ (x3 = 1)

x3

{{a, b, c}{a, c}} {{a}}

Figure 16: A deterministic CMC cannot express the implementation set of T .

set of states with valuation a that can be reached with a non-zero probability, using a
distribution that satisfies the constraint of at least one state of Q. Formally reach :
2{1,...,k} × 2A 7→ 2{1,...,k} and

reach(Q, a) =
⋃
{v ∈ {1, . . . , k} | V (v) = {a} and

∃u ∈ Q.∃x ∈ [0, 1]k. ϕ(u)(x) = 1 ∧ xv > 0}

We lift the notion of reachability to all possible valuations as follows:

Reach(Q) = {reach(Q, a) | a ⊆ A}

Now define the n-step reachability with

Reachn(Q) = Reachn−1(Q) ∪
⋃

Q′∈Reachn−1(Q)

Reach(Q′)

and its transitive closure as the fixpoint

Reach∗(Q) = {Q} ∪ lim
n→∞

Reachn(Q).

Observe that for all Q and for all Q′ ∈ Reach∗(Q), there exists a valuation a ∈ 2A such
that V (q) = {a} for all q ∈ Q′ (by construction).

A deterministic CMC for S is the CMC ρ(S) = 〈{Q1, . . . , Qm}, Qo′ , ϕ′, A, V ′〉, where
{Q1, . . . , Qm} = Reach∗({o}), Qo′ = {o} ∈ {Q1, . . . , Qm} by definition, and ϕ′ and V ′

are defined as follows:

• for all Qi ∈ {Q1, . . . , Qm}, let V ′(Qi) = {a} iff for all q ∈ Qi, V (qi) = {a} —
there always exists exactly one such a by construction, and

• for all Qi ∈ {Q1, . . . , Qm} and for all y ∈ [0, 1]m,

ϕ′(Qi)(y1, . . . , ym) = [∀1 ≤ j ≤ m.Qj /∈ Reach(Qi) =⇒ yj = 0] ∧
∨

q∈Qi

∃x ∈ [0, 1]k

[
ϕ(q)(x) ∧ (∀1 ≤ j ≤ m. Qj ∈ Reach(Qi)

=⇒
∑

q′∈Qj

xq′ = yj)
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Theorem 13. Let S be a CMC in single valuation normal form. It holds that S �S
ρ(S).

Proof. Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 be a CMC in single valuation normal form. Let
ρ(S) = 〈{Q1, . . . , Qm}, Qo′ , ϕ′, A, V ′〉 be a determinization of S.

Define R ⊆ {1, . . . , k}×{Q1, . . . , Qm} such that uRQi ⇐⇒ u ∈ Qi. We will show
that R is a strong refinement relation. Let u, i such that uRQi.

1. By definition, since u ∈ Qi, we have V ′(Qi) = V (u).

2. Let ∆ ∈ [0, 1]k×m such that ∆vj = 1 if Qj ∈ Reach(Qi) and v ∈ Qj , and 0
otherwise. We prove that ∆ is a correspondence matrix.

Suppose that there exist 1 ≤ v ≤ k and 1 ≤ j 6= l ≤ m such that ∆vj = ∆vl = 1.
Then we know that v ∈ Qj and v ∈ Ql, and that both Qj and Ql are in Reach(Qi).
This violates the definition of Reach(Qi) (each of its sets must be maximal). As a
consequence, for all 1 ≤ v ≤ k, we have

∑m
j=1 ∆vj ≤ 1 and ∆ is a correspondence

matrix.

• Let x ∈ [0, 1]k such that ϕ(u)(x). Let 1 ≤ v ≤ k such that xv > 0. Since
xv > 0 and u ∈ Qi, we know that Reach(Qi) 6= ∅. Moreover, there exists
1 ≤ j ≤ m such that Qj ∈ Reach(Qi) and v ∈ Qj . As a consequence,
∆vj = 1, and

∑m
l=1 ∆vl = 1.

• Let y = x∆. We prove that ϕ′(y) holds.

– Since ∆vj = 0 for all Qj /∈ Reach(Qi), we have that yj = 0 for all
Qj /∈ Reach(Qi).

– There exist q ∈ Qi, namely u, and x ∈ [0, 1]k defined above, such that
ϕ(u)(x) holds, and by definition, if Qj ∈ Reach(Qi), then for all q′ ∈ Qj ,
we have ∆q′j = 1. As a consequence, yj =

∑k
r=1 xr∆rj =

∑
q′∈Qj

xq′ .

Thus ϕ′(x∆) holds.

• If ∆vj > 0, then we have that v ∈ Qj by definition, thus vRQj .

Finally, R is a strong refinement relation, and o ∈ Qo′ = {o}, thus S strongly refines
ρ(S).

This character of determinization resembles the known determinization algorithms for
modal transition systems [97].

In Theorem 4 we have shown that weak (and thus also strong) refinement is sound
with respect to implementation set inclusion. We now state one of the main theorems
of the paper. Weak refinement is complete with respect to implementation set inclusion
for deterministic CMCs:
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Theorem 14. Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉
be two locally consistent deterministic CMCs with single admissible valuation in initial
state and A2 ⊆ A1. We have [[S1]] ⊆ [[S2]]⇒ S1 � S2.

Proof. First, since any consistent CMC with a single valuation in the initial state can
be normalized (see Thm. 3), without change of the implementation set, we assume that
S1 and S2 are actually in single valuation normal form.

Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be two
consistent and deterministic CMCs in single valuation normal form such that A2 ⊆ A1

and [[S1]] ⊆ [[S2]].
First, notice that S1 � S2 ⇐⇒ S′1 = 〈{1, . . . , k1}, o1, ϕ1, A2, V1↓A2〉 � S2. It is

thus safe to suppose that A1 = A2 = A. Similarly, if I = 〈. . . , AI , VI〉 is a MC, we have
I |= S1 ⇐⇒ I ′ = 〈. . . , A1, VI↓A〉 |= S1. As a consequence, it is also safe to suppose
that implementations have the same set of atomic propositions as S1 and S2.

In the following we will also rely on the local consistency of the two CMCs, which
implies that for every state of a CMC there exists a MC satisfying it. Thanks to
Theorem 2, local consistency is not a real limitation, as the specifications can always
be pruned without loss of implementations.

In the proof we use the following notation: given a CMC S and its state o we write
(S, o) to denote a new CMC created from S by assuming o as its initial state.

The proof is structured as a usual coinductive argument, starting with the presen-
tation of a candidate relation R and then continuing with evidence that R is indeed a
refinement relation witnessing the refinement of S2 by S1. The argument is essentially
standard until the last step, marked with a ? below, where we need to rely on the
determinism of S2 and an argument by contradiction to conclude.

Let R ⊆ {1, . . . , k1} × {1, . . . , k2} be the following binary relation on states:

R = { (v, u) | For all I. I |= (S1, v) implies I |= (S2, u) } (4)

Consider v and u such that vRu and check that conditions of Def. 3 hold:

1. By local consistency of S1 there exists a MC I = 〈{1, . . . , n}, p,M,A, V 〉 such
that I |= (S1, v), and, since vRu, then also I |= (S2, u). Thus V (p) ∈ V1(v) and
V (p) ∈ V2(u). As S1 and S2 are in single valuation normal form, V1(v) and V2(u)
are singletons, so V1(v) = V2(u).

2. Consider a probability distribution vector x ∈ [0, 1]k1 such that ϕ1(v)(x). We
want to build a correspondence matrix ∆ ∈ [0, 1]k1×k2 such that ϕ2(u)(x∆) holds.
To this end, we build another implementation MC I = 〈{1, . . . , k1}, v,M,A, V 〉
such that for all 1 ≤ w ≤ k1,

(i) V (w) is the only valuation such that V1(w) = {V (w)}; The existence of
V (w) is warranted by the normal form and local consistency of S1.

(ii) If w 6= v, the row Mw is any solution of ϕ1(w). One exists for each state w
of S1 because S1 is locally consistent.
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Figure 17: Visualization of the construction of Î for the proof of Thm. 14.

(iii) Mv = x.

When necessary, we will address state w of I as wI to differentiate it from state w
of S1. The MC I clearly satisfies (S1, v) as witnessed by the identity satisfaction
relation R1. By hypothesis, we thus have I |= (S2, u), as vRu. Let R2 be
the relation witnessing I |= (S2, u), and let ∆2 be the correspondence matrix
witnessing vI R2 u. We will now show the correspondence matrix ∆ witnessing
the weak refinement invariant for vRu. Let ∆ = ∆2.

• ∀1 ≤ i ≤ k1, xi 6= 0 ⇒ ∑k2
j=1 ∆ij = 1, because ∆ = ∆2, which is a cor-

respondence matrix witnessing satisfaction for the same probability vector
Mv = x.

• ϕ2(u)(x∆) holds for the same reason.

• It remains to show that if xv′ 6= 0 and ∆v′u′ 6= 0, then v′Ru′. This argument
occupies the remainder of the proof.

Assume v′, u′ as above. By definition of I and ∆ we have that (I, v′I) |= (S1, v
′) and?

(I, v′I) |= (S2, u
′). We want to prove not only for (I, v′I) but also for all implementations

I ′ such that I ′ |= (S1, v
′) that I ′ |= (S2, u

′). This argument proceeds ad absurdum.

Suppose this is not the case: there exists a MC I ′ = 〈{1, . . . , n}, p′,M ′, A, V ′〉 such
that I ′ |= (S1, v

′) and I ′ 6|= (S2, u
′). Let R′ be the satisfaction relation witnessing

I ′ |= (S1, v
′). We will use this implementation to construct an implementation Î of

(S1, v) which also satisfies (S2, u). Since Î will embed I ′, and S2 is deterministic, we
will be able to obtain that I ′ |= (S2, u

′), which is a contradiction. Thus I ′ cannot exist,
and indeed v′Ru′.

Below we construct Î and argue that Î |= (S1, v) and thus Î |= (S2, u). In the
last part of the proof, marked with a }, we argue that I ′ |= (S2, u

′), which leads to a
contradiction, concluding the proof.
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Let Î = 〈{1, . . . , k1, k1 + 1, . . . , k1 + n}, v, M̂ , A, V̂ 〉, where, among others, v and n are
defined above. Intuitively, the first k1 states correspond to I and the next n states to
I ′. The state v′I will be the link between the two and its outgoing transitions will be
the ones of p′, the state of I ′. The construction is illustrated in Figure 17. The left part
of the figure shows the general structure of Î, the right part shows the composition of
its transition matrix. Formally, we define the transition matrix M̂ as follows:

M̂ij =





Mij if 1 ≤ i, j ≤ k1 and i 6= v′

0 if 1 ≤ j ≤ k1 and i = v′

0 if 1 ≤ i ≤ k1 and i 6= v′, j > k1

M ′p′(j−k1) if j > k1 and i = v′

0 if i > k1 and 1 ≤ j ≤ k1

M ′(i−k1)(j−k1) if i, j > k1

Furthermore:

V̂ (i) =

{
V (i) for i ≤ k1

V ′(i− k1) for i > k1

We want to show that Î |= (S1, v) first. Consider the following relation R̂ ⊆
{1, . . . , k1 + n} × {1, . . . , k1}, between the states of Î and the states of S1:

R̂ = {(q, w) ∈ R1 | q 6= v′} ∪ {(q, w) | (q − k1)R′w} ∪ {(v′, w) | p′R′w} (5)

Intuitively, R̂ is equal to R1 for the states q ≤ k1, except v′, and equal to R′ for
the states q > k1. The states related to v′

Î
are the ones that were related to p′ with R′.

We will show that R̂ is a satisfaction relation between Î and (S1, v).
Let q, w be states of Î and S1 respectively, such that qR̂w. For all the pairs where

q 6= v′
Î
, the conditions of the satisfaction relation still hold because they held for R1 if

q ≤ k1 and for R′ otherwise (R1 ⊆ R̂ by construction, since v′
Î
R̂v′ and moreover v′ is

the only state to which v′
Î

was related in the identity relation R1). It remains to check

the conditions for the pairs where q = v′
Î
, as this is the only state with a new behaviour

with respect to I and I ′. So consider a state w of S1 such that v′
Î
R̂w.

1. Because v′I and p′I′ are both related to v′ (respectively in R1 and in R′) it is

clear that V̂ (v′
Î
) = V̂ (p′). As p′R′w, we know that V ′(p′) ∈ V1(w). Thus,

V̂ (v′
Î
) ∈ V1(w).

2. Let the correspondence matrix ∆′ witness p′R′w. Let ∆̂ ∈ [0, 1](k1+n)×k1 such
that ∆̂ij = 0 if i ≤ k1, and ∆̂ij = ∆′(i−k1)j otherwise.

• We want to show that if M̂(v′
Î
)(w′) 6= 0, then

∑k1
j=1 ∆̂w′j = 1. We know that

M̂(v′
Î
)(w′) = 0 if w′ ≤ k1. Take w′ > k1 such that M̂(v′

Î
)(w′) 6= 0. Then we
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know that M̂(v′
Î
)(w′) = M ′p′(w′−k1). Because R′ is a satisfaction relation, it

implies that
∑k1

j=1 ∆′(w′−k1)j = 1. Thus,
∑k1

j=1 ∆̂w′j =
∑k1

j=1 ∆′(w′−k1)j = 1.

• We want to show now that ϕ1(w)(M̂v′
Î
∆̂) holds. Let 1 ≤ j ≤ k1. We have:

[
M̂v′

Î
∆̂
]
j

=

k1+n∑

l=1

M̂(v′
Î
)l∆̂lj = 0 +

k1+n∑

l=k1+1

M̂(v′
Î
)l∆̂lj =

n∑

l=1

M ′p′l∆
′
lj

=
[
M ′p′∆

′]
j
.

As a consequence, M̂v′
Î
∆̂ = M ′p′∆

′. Since ∆′ is a witness of p′R′w,

ϕ1(w)(M ′p′∆
′) holds. So does ϕ1(w)(M̂v′

Î
∆̂).

• We want to show that if M̂(v′
Î
)q 6= 0 and ∆̂qw′ 6= 0, then qR̂w′. We only need

to consider q > k1 (since otherwise M̂(v′
Î
)q = 0) and w′ such that ∆̂qw′ 6= 0.

In this case, M̂(v′
Î
)q = M ′p′(q−k1) 6= 0 and ∆′(q−k1)w′ 6= 0. As ∆′ is a witness

of p′R′w, it has to be that (q− k1)R′w′, which implies, by definition of R̂,
that qR̂w′.

So we conclude that Î |= (S1, v), and thus also Î |= (S2, u) since vRu.

Finally, to reach the contradiction, we show that the above implies I ′ |= (S2, u
′).}

Since Î |= (S2, u) there exists ∆′′ ∈ [0, 1](k1+n)×k2 such that ϕ2(u)(M̂v
Î
∆′′) holds.

(A) Consider u′′ 6= u′ such that V2(u′′) = V2(u′). Due to the determinism of

S2, and to the fact that u′ is accessible from u, we have [M̂v
Î
∆′′]u′′ = 0.

Otherwise ϕ2(u) would be violated. Since M̂(v
Î
)(v′

Î
) 6= 0 and M̂(v

Î
)(v′

Î
)∆
′′
(v′

Î
)u′′

is part of [M̂v
Î
∆′′]u′′ , we must have ∆′′(v′

Î
)u′′ = 0.

(B) Consider u′′′ such that V (u′′′) 6= V (u′). It is clear that ∆′′(v′
Î
)u′′′ = 0 since ∆′′

is witnessing satisfaction between Î and S2.

(C) Moreover, we know that M̂(v
Î
)(v′

Î
) 6= 0. Thus,

∑k2
j=1 ∆′′v′

Î
j = 1.

According to (A) and (B), the only non-zero value in the sum in (C) must be
∆′′(v′

Î
)u′ . Since ∆′′ is witnessing Î |= (S2, u), we have (Î , v′

Î
) |= (S2, u

′). But v′
Î

and p′ only differ by state names, not by behaviours, so (I ′, p′) |= (S2, u
′). This

contradicts our assumption. Thus v′Ru′, and R is a weak refinement relation.

Finally, the hypothesis [[S1]] ⊆ [[S2]] implies that o1R o2 and further S1 � S2.
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9 Deterministic CMCs

Thus, weak refinement and the implementation set inclusion coincide on the class of
deterministic CMCs with at most one valuation in the initial state. Finally, Theorem
14 also holds for strong refinement, as the two refinements coincide for deterministic
CMCs. Before any formal introduction of the result, we first introduce the following
lemma that characterizes the shape of the witness matrix of the satisfaction relation
for an implementation and a CMC in normal form.

Lemma 15. Let S = 〈{1, . . . , k}, oS , ϕ,A, VS〉 be a deterministic CMC in single valua-
tion normal form. Let P = 〈{1, . . . , n}, oP ,M,A, VP 〉 ∈ [[S]] witnessed by a satisfaction
relation R. Let p ∈ {1, . . . , n} and u ∈ {1, . . . , k} such that pRu, and let ∆ be the
associated correspondence matrix. We have

∀p′ ∈ {1, . . . , n}. Mpp′ 6= 0⇒
∣∣{u′ ∈ {1, . . . , k} | ∆p′u′ 6= 0

}∣∣ = 1.

Proof. Let S = 〈{1, . . . , k}, oS , ϕ,A, VS〉 be a deterministic CMC in single valuation
normal form. Let P = 〈{1, . . . , n}, oP ,M,A, VP 〉 ∈ [[S]] witnessed by a satisfaction
relation R. Let p ∈ {1, . . . , n} and u ∈ {1, . . . , k} such that pRu, and let ∆ be the
associated correspondence matrix.

Suppose that there exist p′, u′ and u′′ such that Mpp′ > 0, ∆p′u′ > 0 and ∆p′u′′ > 0
with u′ 6= u′′. Let y = M∆ be the probabilistic transition outgoing from u according
to ∆. By construction, we have yu′ > 0 and yu′′ > 0.

Moreover, since ∆p′u′ > 0 and ∆p′u′′ > 0, it holds that p′Ru′ and p′Ru′′. Because
of the single valuation normal form of S, this implies that VS(u′) = VS(u′′) = {VP (p′)}.

Finally, there exist u, u′ and u′′ ∈ {1, . . . , k} with u′ 6= u′′ and y ∈ [0, 1]k such that
ϕ(u)(y) = 1, yu′ > 0, yu′′ > 0 and VS(u′) = VS(u′′). This breaks the assumption that
S is deterministic, which concludes the proof.

According to the lemma, in any MC implementing a deterministic CMC, the prob-
ability of going to one implementation state is never distributed to more than one
specification state. Otherwise the specification would be non-deterministic. We are
now ready to state the theorem.

Theorem 16. Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A, V2〉
be two deterministic CMCs in normal form. If there exists a weak refinement relation
R such that S1RS2, then R is also a strong refinement relation.

Proof. Let v ∈ {1, . . . , k1} and u ∈ {1, . . . , k2} such that vRu.

1. By hypothesis, V1(v) ⊆ V2(u);

2. We know that for all x ∈ [0, 1]k1 satisfying ϕ1(v), there exists a correspondence
matrix ∆x satisfying the axioms of weak refinement. We will build a correspon-
dence matrix ∆0 that will work for all x. Let p ∈ {1, . . . , k1}.

If for all x ∈ [0, 1]k1 , ϕ1(v)(x)⇒ xp = 0, then let ∆0
p = (0, . . . , 0).
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Else, consider x ∈ [0, 1]k1 such that ϕ1(v)(x) and xp 6= 0. By hypothesis, there
exists a correspondence matrix ∆x associated to vRu. Let ∆0

p = ∆x
p . By Lemma

15, there is a single u′ ∈ {1, . . . , k2} such that ∆x
pu′ 6= 0. Moreover, by definition

of ∆x, we know that
∑k2

r=1 ∆x
pr = 1, thus ∆x

pu′ = 1. So ∆0 is a correspondence
matrix.

Suppose there exists y 6= x ∈ [0, 1]k1 such that ϕ1(v)(y) and yp 6= 0. Let ∆y be the
associated correspondence matrix. As for x, there exists a unique u′′ ∈ {1, . . . , k2}
such that ∆y

pu′′ 6= 0. Moreover ∆y
pu′′ = 1. Let x′ = x∆x and y′ = y∆y. By

definition, both ϕ2(u)(x′) and ϕ2(u′)(y′) hold, x′u′ 6= 0 and y′u′′ 6= 0. As ∆x
pu′ =

∆y
pu′′ = 1, we have V2(u′) ∩ V2(u′′) 6= ∅. By hypothesis, S2 is deterministic, thus

u′ = u′′.

As a consequence, we have ∆x
p = ∆y

p, so ∀z ∈ [0, 1]k1 , (ϕ1(v)(z) ∧ (zp 6= 0)) ⇒
∆z
p = ∆0

p, and we conclude that ∆0 is uniquely defined.

Finally, consider ∆0 defined as above. Let x ∈ [0, 1]k1 such that ϕ1(v)(x):

• xi 6= 0⇒ ∆0
i = ∆x

i ⇒
∑k2

j=1 ∆0
ij = 1;

• x∆0 = x∆x, thus ϕ2(u)(x∆0) holds;

• If ∆0
v′u′ 6= 0, then there exists y ∈ [0, 1]k1 such that ϕ1(v)(y) and ∆0

v′u′ =
∆y
v′u′ , thus v′Ru′.

We conclude that R is a strong refinement relation.

Let us summarize the relations between refinements for deterministic CMCs:

[[S1]] ⊆ [[S2]] iff S1 � S2 iff S1 strongly refines S2 , (6)

if the CMCs are consistent and have at most one valuation in the initial state. The
coincidence of the semantic refinement with coinductive refinements for CMCs is analo-
gous to the case of trace inclusion refinement and simulation for deterministic transition
systems.

The above results on completeness for deterministic specifications carry over to
refinements of [46] and [48] for IMCs, which are special cases of our refinements. Com-
pleteness of these refinements was an open problem until now.

Discussion: A Weaker Notion of Determinism Our notion of determinism may
appear overly strong. Indeed, it assumes that, from a given state i, one cannot reach
two states u and v that share common sets of valuations. The assumption is made
independently of the distributions used to reach the two states, i.e., it may be the
case that there exists no distribution through which both u and v can be reached
simultaneously.

A natural way to solve the problem would be to consider a weaker version of de-
terminism. More precisely, we say that a CMC S = 〈{1, . . . , k}, o, ϕ,A, V } is weakly
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10 Polynomial CMCs

deterministic if whenever there exists x ∈ [0, 1]k and states i, u, v such that ϕ(i)(x) and
xu > 0 and xv > 0, we have V (u) ∩ V (v) = ∅. This version of determinism is strictly
weaker than the one given in Definition 12. Indeed, only states that can be reached
by the same distribution should have disjoint sets of valuations. Though this notion
seems reasonable, as mentioned, one can show that there exist two weakly deterministic
CMCs Sc and Sd such that [[Sc]] ⊆ [[Sd]] but Sc 6� Sd. Example of such CMCs are given
in the second item of Proposition 5 on page 87. Hence working with this weaker, even
if more natural, version of determinism does not close the gap between weak refinement
and implementation set inclusion.

10 Polynomial CMCs

It is not surprising that CMCs are closed under both conjunction and parallel composi-
tion. Indeed, CMCs do not make any assumptions on constraint functions, even though
there are many classes of constraints that are practically intractable. While this paper
is mainly concerned with the development of the theoretical foundations for CMCs, we
now briefly study classes of CMCs for which operations on constraints required by our
algorithms can be managed quite efficiently.

A first candidate could be linear constraints, which is the obvious generalization
of interval constraints. Unfortunately, linear constraint CMCs are not closed under
parallel composition. Indeed, as we have seen in Section 7 the parallel composition of
two linear constraints leads to a polynomial constraint. However, what is more inter-
esting is that polynomial constraints are closed under both conjunction and parallel
composition and that these operations do not increase the quantifier alternations since
they only introduce existential quantifiers. Hence, one can claim that CMCs with poly-
nomial constraints and only existential quantifiers are certainly the smallest extension
of IMCs closed under all operations.

From the algorithmic point of view, working with polynomial constraints should not
be seen as an obstacle. First, we observe that algorithms for conjunction and parallel
composition do not require any complex operations on polynomials. The refinement
algorithms (presented in Section 5.2) are polynomial in the number of states, and
each iteration requires a quantifier elimination. This procedure is known to be double
exponential in general, but there exist efficient single exponential algorithms [93, 94]
when quantifier alternations are fixed. Those algorithms are implemented in Maple [95].
The pruning operation is polynomial in the number of states, but each iteration also
requires an exponential treatment as one has to decide whether the constraints have
at least one solution. Again, such problems can be solved with efficient algorithms.
Finally, determinizing a CMC can be performed with a procedure that is similar to
the determinization procedure for finite-state automata. Such a procedure is naturally
exponential in the number of states.

Remark 2. In Section 7, it was shown that, assuming independent sets of valuations,
parallel composition is refined by conjunction. We have also observed that the conjunc-
tion or disjunction of two linear constraints remains linear, but that parallel composition
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may introduce polynomial constraints. From an implementation point of view it may
thus be more efficient to work with linear constraints only. For doing so, one can simply
approximate parallel composition with conjunction.

11 Relating CMCs to Probabilistic Automata

CMCs are a newcomer in a long series of probabilistic modeling languages and ab-
stractions for them. Throughout the paper we have indicated that many of our results
directly translate to simpler abstractions, like IMCs. We shall now further discuss this
foundational aspect of CMCs, showing how they subsume a few established notions of
refinement and parallel composition for probabilistic automata (and for process algebra
based on them).

Below we write Dist(S) for the set of all probability distributions over a finite set
S. Given two finite sets S and T and a probability distribution α ∈ Dist(S × T ),
we denote the marginal distribution over S as αs,T =

∑
t∈T αs,t, and similarly for T .

We say that ϕ is a non-deterministic distribution constraint over set I if all solutions
x of ϕ are point distributions; so ∃i. xi = 1. Write [ iS ] to denote a particular point

distribution for which [ iS ]i = 1. For example, in Figure 11 constraints ϕc(2) and ϕd(1)
are non-deterministic distribution constraints. The two point distributions satisfying
ϕc(2) are [ 3

1..4 ] and [ 4
1..4 ].

Non-deterministic distribution constraints model a non-deterministic choice of an
element from S. They will be used to encode non-determinism in CMCs.

A probabilistic automaton (PA for short) [6] is a tuple S = (S,Act,→, s1), where S is
a finite set of states, →⊆ S×Act×Dist(S) is a finite transition relation and s1 ∈S is
the initial state.

If π ∈ Dist(S) and ρ ∈ Dist(T ), then π⊗ρ denotes the unique independent product
distribution such that (π⊗ρ)st = πsρt. This is consistent with our definition of ⊗ in
Section 3, if π, ρ and π ⊗ ρ are interpreted as row vectors. Then the derived combined
transition relation of S is given by −→c ∈ S×Act×Dist(S) as follows. We say that t a−→cρ
iff ρ is a convex linear combination of vectors from ρ = {ρi | t a−→ρi}, so ρ = ρ×λ,
where λ is a distribution vector λ ∈ [0, 1]|ρ|. We interpret ρ as a matrix, where ith
column is a distribution ρi.

Consider two PA S = (S,Act,→S , s0) and T = (T,Act,→T , t0). For a binary
relation R ⊆ S × T we define a derived relation R∗ ⊆ Dist(S) × Dist(T ) such that
πR∗ρ iff there exists a distribution α ∈ Dist(S × T ) and (1) αq,T =πq for all q∈S, (2)
αS,r=ρr for all r∈T and (3) αs,t 6=0 implies sRt.

Definition 14 (Simulation [6]). A relation R ⊆ S×T is a simulation iff (s, t) ∈ R
implies that whenever s a−→π for a distribution π, then t a−→ρ for distribution ρ such
that πR∗ρ.

R is a probabilistic simulation iff (s, t)∈R implies that if s a−→π, then t a−→cρ for
some distribution ρ, and πR∗ρ.
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Figure 18: Reducing a PA to CMC. There π̂ denotes a distribution constraint, which has
a unique solution π. This is formalized below as ϕ̂(2k + i′)(x).

Let A ⊆ Act be the subset of actions on which S and T should synchronize. The
parallel composition of S and T is a PA S ‖ T = (S × T,Act,→, (s0, t0)), where → is
the largest transition relation such that (s, t) a−→π ⊗ ρ if:

a ∈ A and s a−→Sπ and t a−→Tρ, or

a /∈ A and s a−→Sπ and ρ = [ tT ], or

a /∈ A and π = [ sS ] and t a−→Tρ.

We now propose a linear encoding of PAs into CMCs, which reduces simulation
and parallel composition of PAs to refinement and parallel composition of CMCs (see
Figure 18). Let S = ({s1, . . . , sk},Act,→, s0) be a PA. And let l be the number of
reachable action-distribution pairs, so ΩS = {(a1, π1), . . . , (al, πl)} = {(a, π) | ∃s ∈
S. s a−→π}. The corresponding CMC is

Ŝ = 〈{1, . . . , 2k+l}, 1, ϕ̂,Act∪⊥, V̂ 〉 , where ⊥ /∈ Act .

Ŝ has three kinds of states. Type-1 states, 1 . . . k, correspond directly to states of
S. Distributions leaving these states model a non-deterministic choice. Type-2 states,
k+1, . . . , 2k, model a possibility that a component remains idle in a state. Type-3 states,
2k+1, . . . , 2k+l model the actual distributions of S. In the following we use i to range
over states of Type-1 (so usually 1 ≤ i ≤ k) and i′ to range over action–distribution
pairs (so usually 1 ≤ i′ ≤ l). Similarly for j.

V̂ assigns value {∅} to type-1 states and value {{⊥}} to type-2 states. For type-3
states we assign actions of transitions in S: V̂ (2k + i′) = {{ai′}} for 1 ≤ i′ ≤ l. The
distribution constraints are as follows:

ϕ̂(i)(x) iff i is type-1 and x = [ k+i
1..2k+l ] or si

ai′−−→πi′ ∧ x= [ 2k+i′
1..2k+l ] for 1≤ i′≤ l.

ϕ̂(k + i)(x) iff k+ i is type-2 and x= [ i
1..2k+l ].

ϕ̂(2k + i′)(x) iff 2k + i′ is type-3 and ∀j ∈ {1, . . . , k}. xj = πi′(sj)
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We can now relate simulation of PAs to refinement of CMCs. We say that a constraint
is a single-point constraint if it is only satisfied by a unique distribution. Observe
that all constraints in the encoding presented above are non-deterministic distribution
constraints or single-point constraints.

Lemma 17. Let ϕ and ψ be single-point constraints. If for each x ∈ [0, 1]k1 such that
ϕ(x) holds, there exists a correspondence matrix ∆x ∈ [0, 1]k1×k2 such that ψ(x∆x)
holds, then there exists a correspondence matrix ∆ ∈ [0, 1]k1×k2 such that for all x ∈
[0, 1]k1 we have that ϕ(x) =⇒ ψ(x∆).

The lemma holds trivially because there is only one distribution satisfying ϕ.

Lemma 18. Let ϕ (respectively ψ) be a non-deterministic distribution constraint over
{1, . . . , k1} (respectively {1, . . . , k2}). Then if for each distribution vector x satisfying
ϕ there exists a correspondence matrix ∆x ∈ [0, 1]k1×k2 such that ψ(x∆x) holds, then
there exists a correspondence matrix ∆ ∈ [0, 1]k1×k2 such that for all x ∈ [0, 1]k1 we
have that ϕ(x) =⇒ ψ(x∆).

Proof. Let x be such that ϕ(x) holds (thus there exists 1 ≤ i ≤ k1 such that xi = 1).
There is a finite number of such vectors. Let xi denote the one that has 1 on the ith
position. Take ∆ such that ∆i = (∆xi)i (the witness from the lemma assumption) if
xi satisfies ϕ and ∆i = 0k2 otherwise.

Now for each xi satisfying ϕ we have that xi∆ = xi∆xi and then ϕ(xi) =⇒
ψ(xi∆xi) ⇐⇒ ψ(xi∆).

Corollary 19. For any two probabilistic automata S and T we have that Ŝ strongly
refines T̂ iff Ŝ weakly refines T̂.

Lemma 20. For any two probabilistic automata S and T such that T simulates S we
have that Ŝ weakly refines T̂.

Proof. (sketch) Let R ⊆ S × T be the relation witnessing the simulation of S by T.
Consider a relation Q as follows:

Q1 = {(i, j) | i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2}, (si, tj) ∈ R}
Q2 = {(k1 + i, k2 + j) | i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2}, (si−k1 , tj−k2) ∈ R}
Q3 = {(2k1 + i′, 2k2 + j′) | i′ ∈ {1, . . . , l1}, j′ ∈ {1, . . . , l2}, (ai, πi) ∈ ΩS,

(aj , ρj) ∈ ΩT, ai = aj , (πi, ρi) ∈ R∗}
Q = Q1 ∪ Q2 ∪ Q3

It is easy to show that Q is a weak refinement. First observe that valuations always
match for pairs in Q. The valuation is empty for both S and T in Q1, it is {⊥} in Q2,
and {ai} in Q3.

For a pair in (i, j) ∈ Q1 a distribution vector x satisfying the constraint of S is
always a point distribution. If xk1+i = 1, take ∆k1+i,k2+j = 1 and zero otherwise. If
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x2k1+i′ = 1 take ∆2k1+i′,2k2+j′ = 1 and zero otherwise, where j′ is such that tj′
ai′−−→ρj′

and πi′R
∗ρj′ .

For a pair (k1 + i, k2 + j) ∈ Q2 take ∆ij = 1, and zero otherwise.
For a pair (2k1 + i′, 2k2 + j′) ∈ Q3 take ∆ such that for (i, j) ∈ {1, . . . , k1} ×

{1, . . . , k2} we have ∆ij = αij/xi, or zero if xi = 0, where α is the distribution witnessing
πi′R

∗ρj′ .

Lemma 21. For any two probabilistic automata S and T such that Ŝ strongly refines
T̂ we have that T simulates S.

Proof. (sketch) Assume that Ŝ strongly refines T̂ is witnessed by a relation R ⊆
{1, . . . , 2k1 + l1} × {1, . . . , 2k2 + l2}. Show that a relation Q = {(si, tj) ∈ S × T |
(i, j) ∈ R, i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2}} is a simulation relation.

In the crucial point of the proof consider αsitj = ∆ijπi′(si), where πi′ is a distribu-
tion being the only solution of a point constraint for state i′ ∈ {2k1, . . . , 2k2 + l1}.

Theorem 22 follows as a corollary from the above two lemmas and Corollary 19.

Theorem 22. T simulates S iff Ŝ strongly refines T̂.

The same encoding is used to characterize parallel composition of PAs using parallel
composition of CMCs.

We say that two CMCs S1 and S2 are isomorphic if there exists a bijection f :
{1, . . . , k1} → {1, . . . , k2}, such that ϕ(v) is satisfied by x ∈ [0, 1]k1 if and only if
ϕ(f(v)) is satisfied by x.

Expression S[a′1/a1; . . . ; a′n/an]a1,...,an∈Act denotes a comprehended substitution, sub-
stituting a primed version of name ai for each occurrence in ai, for all actions in Act.

Theorem 23. For two PAs S and T over the same set of actions Act and a synchro-

nizing set A ⊆ Act we have that Ŝ ‖ T is isomorphic to

((Ŝ ‖ T̂[a′/a]a∈Act∪⊥) ∧ SA) [a/(a,a′); a/(a,⊥′); a/(⊥,a′)]a∈Act ,

where SA is a synchronizer over Act ∪ ⊥×Act′ ∪ ⊥′ defined by

(∀a∈A. a⇐⇒ a′) ∧ (∀a /∈A. (a=⇒⊥′) ∧ (a′ =⇒⊥))

Proof. Let S = ({s1, . . . , sk1},Act,→S , s1), T = ({t1, . . . , tk2},Act,→T , t1), and A ⊆
Act. Consider S ‖ T = ({(s1, t1), (s1, t2), . . . , (sk1 , tk2)},Act,→, (s1, t1)) defined in the
usual way.

We now construct Ŝ ‖ T = ({1, . . . , 2k1k2 + l}, 1, ϕ̂,Act ∪ ⊥, V̂ }) in the usual way,
where l is the number of reachable action-distribution pairs.

Consider Ŝ ‖ T̂[a′/a]a∈Act∪⊥ = 〈{1, . . . , 2k1 + l1} × {1, . . . , 2k2 + l2}, (1, 1), ϕ,Act ∪
Act′ ∪⊥∪⊥′, V 〉, where l1 and l2 are the number of reachable action-distribution pairs
for S and T, respectively. Conjoining with SA allows exactly those pairs of actions that
are allowed in the parallel composition of probabilistic automata.
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Finally we apply the renaming [a/(a,a′); a/(a,⊥′); a/(⊥,a′)]a∈Act, and obtain ((Ŝ ‖
T̂[a′/a]a∈Act∪⊥) ∧ SA) [a/(a,a′); a/(a,⊥′); a/(⊥,a′)]a∈Act.

The bijection will be taken as the mapping that takes a state in Ŝ ‖ T to the equiv-
alent state in ((Ŝ ‖ T̂[a′/a]a∈Act∪⊥) ∧ SA) [a/(a,a′); a/(a,⊥′); a/(⊥,a′)]a∈Act. The bijection f
is defined, for states allowed by the parallel composition of PAs, as follows:

• i ∈ {1, . . . , k1k2} is mapped into {(1, 1), . . . , (k1, k2)} by i 7→ (((i − 1) div k2) +
1, ((i− 1) mod k2) + 1),

• i ∈ {k1k2 + 1, . . . , 2k1k2} is mapped into {(k1 + 1, k2 + 1), . . . , (2k1, 2k2)} by
i 7→ (((i− 1) div k2) + 1, ((i− 1) mod k2) + 1 + k2), and

• i ∈ {2k1k2 +1, . . . , 2k1k2 + l} is mapped injectively into {k1 +1, . . . , 2k1}×{2k2 +
1, . . . , 2k2+l2}∪{2k1+1, . . . , 2k1+l1}×{k2+1, . . . , 2k2}∪{2k1+1, . . . , 2k1+l1}×
{2k2 + 1, . . . , 2k2 + l2}. This is done such that, f(2k1k2 + p) = (2k1 + q, 2k2 + r),
if both 2k1k2 + p and (2k1 + q, 2k2 + r) are labeled with an a ∈ A and there
exists s ∈ {s1, . . . , sk1} and t ∈ {t1, . . . , tk2}, such that s a−→Sπ and t a−→Tρ and
(s, t) a−→π⊗ ρ and the constraint functions of 2k1 + q and 2k2 + r are satisfied by
π and ρ, respectively and the constraint function of 2k1k2 +p is satisfied by π⊗ρ.
Similarly, f(2k1k2 + p) = (k1 + q, 2k2 + r), if both 2k1k2 + p and (k1 + q, 2k2 + r)
are labeled with an a 6∈ A and there exists s ∈ {s1, . . . , sk1} and t ∈ {t1, . . . , tk2},
such that t a−→Tρ and π = [ s

{s1,...,sk} ] and (s, t) a−→π ⊗ ρ.

From the above, is it clear that for type-3 states i, i and f(i) will have equivalent
constraint functions. For a type-1 state i, a distribution giving probability 1 to i+k1k2

is allowed. In f(i) the same distribution is allowed, since, in the constraints of Ŝ and
T̂, distributions allowing S and T to idle, are allowed. Same argument holds for type-2
states.

It is then clear, that for a state v of Ŝ ‖ T, v and f(v) have equivalent constraint
functions.

Interestingly, the precongruence property for parallel composition of PAs is obtained
as a corollary of the above two reduction theorems and Theorem. 7.

Another, very similar, but slightly more complicated, encoding exists, for which
weak refinement coincides with probabilistic simulation. Consider a PA S = (S,Act,→
, s1), where S = {s1, . . . , sk}. Let {(s1, a1), . . . , (sl, al)} = {(s, a) | s∈S ∧ a∈Act}. The
corresponding CMC is

Š = ({1, . . . , 2k + l}, 1, ϕ̌,Act ∪ ⊥, V̌ }) ,

where ⊥ is a fresh symbol not in Act . We have three types of states (see Figure 19).
Type-1 states, {1, . . . , k}, correspond directly to states {s1, . . . , sk}—their distribution
constraints encode the non-deterministic choice of action. Type-2 states, {k+1, . . . , 2k},
represent the ability of a state to be idle. We will use them in parallel composition.
Type-3 states, {2k+1, . . . , 2k+ l}, encode choice of a probability distribution as a linear
combination of distributions allowed by the automaton.
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Figure 19: An attempt to visualize the second encoding. πa
∗ denotes a constraint express-

ing a probability vector that is a linear combination of all probability distributions labeled
by a. Below this is formalized as ϕ̌(2k + i′)(x).

The valuation functions are given by:

V̌ (i) = {∅} for 1 ≤ i ≤ k
V̌ (k + i) = {{⊥}} for 1 ≤ i ≤ k
V̌ (2k + i′) = {{ai′}} for 1 ≤ i′ ≤ l

and

ϕ̌(i)(x) is xk+i = 1 or ∃1≤ i′≤ l. x2k+i′=1 ∧ si′ = si for 1≤ i≤k (type-1)

ϕ̌(k + i)(x) is xi = 1 for 1≤ i≤k (type-2)

ϕ̌(2k + i′)(x) is ∃λ ∈ Dist(1, . . . , |π|). x = πλ for 1≤ i′≤ l (type-3),

where π = {π | sj aj−−→π}. Technically speaking π is a matrix, whose columns are
distributions π. We write |π| for the number of columns in π. Additionally x is
implicitly required to be a probability distribution over {1, . . . , 2k + l}.

Observe that Ŝ is only polynomially larger than S.

Lemma 24 (Soundness). For any two probabilistic automata S and T such that Š
weakly refines Ť, we have that T probabilistically simulates S.

Proof. Let S = (S,Act,→S , s1) and T = (T,Act,→T , t1), with S = {s1, . . . , sk1} and
T = {t1, . . . , tk2}. In the proof we write ϕ̌ to refer to the constraint function of Š, and
ρ̌ to refer to the constraint function of Ť. Also l1 and l2 are used to refer to the number
of combinations of state-actions of respectively Š and Ť. Finally qi and rj are used to
range over states in S (respectively in T ), when si and tj are bound to some concrete
value.

Let R ∈ {1, . . . , 2k1 + l1} × {1, . . . , 2k2 + l2} be a weak refinement relation between
Š and Ť, witnessing the assumption of the lemma. The proof proceeds by showing that

Q = {(si, tj) | (i, j) ∈ R ∧ 1 ≤ i ≤ k1 ∧ 1 ≤ j ≤ k2}
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is a probabilistic simulation relation between S and T.
We apply the usual coinductive proof technique. Take (si, tj) ∈ Q. Let π ∈ Dist(S)

be such that si
a−→π, and (si

′
, ai′) = (si, a).1

By construction of the encoding we know that any probability distribution x satis-
fying ϕ(i)(x) is a point distribution, and x such that x2k+i′ = 1 is possible. So consider
such a distribution x. Since (i, j) ∈ R we know that there exists a correspondence ma-
trix ∆ ∈ [0, 1](2k1+l1)×(2k2+l2) such that ψ(j)(x∆) holds. Moreover x∆ must be a point
distribution by construction of the encoding. So (x∆)2k2+j′ = 1 for some 1 ≤ j′ ≤ l2.
And, by refinement again, we get that valuation functions for 2k1 + i′ and for 2k2 + j′

both return {{a}} and that (2k1 + i′, 2k2 + j′) ∈ R.
But Ť is also constructed using the encoding, so it necessarily is that tj

a−→ρ for
some ρ ∈ Dist(T ).

Observe that ϕ(2k1+i′)(π) holds, because π is always a convex linear combination of
a set of vectors containing it. Since (2k1+i′, 2k2+j′) ∈ R, there exists a correspondence
matrix ∆′ ∈ [0, 1](2k1+l1)×(2k2+l2) such that ψ(2k2 + j′)(π∆′) holds. The latter implies
that π∆′ is a linear combination of vectors in ρ = {ρ | tj a−→ρ}.

It remains to show that πR∗(π∆′). Take αqi,qj = πi∆
′
ij . We first argue that

α ∈ Dist(S × T ). Since each row of a correspondence matrix sums up to 1, we have

that πi∆
′
ij ∈ [0, 1] for all i, j. Also

∑k1
i=1

∑k2

j=1 πi∆
′
ij =

∑k1
i=1 πi = 1.

Consider αqi,T =
∑k2

j=1 αqi,tj =
∑k2

j=1 πi∆
′
ij = πi

∑k2
j=1 ∆′ij = πi as required by

πR∗(π∆′).
Now consider αS,rj =

∑k1
i=1 αsi,rj =

∑k1
i=1 πi∆

′
ij = (π∆′)j as required by πR∗(π∆′).

Now if αqi,rj 6= 0, then ∆′ij 6= 0, which in turn with refinement of 2k2 + j′ by 2k1 + i′

implies that (i, j) ∈ R, and furthermore (si, sj) ∈ Q by construction, as required by
πR∗(π∆′). This finishes the proof.

Lemma 25 (Completeness). For any two probabilistic automata S and T such that T
probabilistically simulates S, we have that Š weakly refines Ť.

Proof. Let S = (S,Act,→S , s1) and T = (T,Act,→T , t1), with S = {s1, . . . , sk1} and
T = {t1, . . . , tk2}. Let Q ⊆ S × T be the probabilistic simulation relation between S
and T, witnessing the assumption of the lemma.

The proof proceeds by showing that a relation R ⊆ {1, . . . , 2k1+l1}×{1, . . . , 2k2+l2}
is a weak refinement relation between Š and Ť.

Take the following candidate for R:

R1 = {(i, j) | (si, tj) ∈ Q}
R2 = {(k1 + i, k2 + j) | (si, tj) ∈ Q}
R3 = {(2k1 + i′, 2k2 + j′) | (si, tj) ∈ R ∧ si = si

′ ∧ tj = tj
′}

R = R1 ∪ R2 ∪ R3

1The equality binds i′ to be the index of (si, a) on the list of state-action pairs in the encoding of
S.
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We apply the usual coinductive proof technique.
Case 1. Take (i, j) ∈ R1 and x satisfying ϕ(i)(x). We know that x can only be a

point-distribution. If xk1+i = 1, then we take ∆ such that ∆k1+i,k2+j = 1 (and ∆ is
zero for all other elements). Clearly ∆ is a correspondence matrix. Moreover x∆ is a
point distribution with 1 in the (k2 + j)th position, so ψ(j)(x∆) holds by construction
of the encoding (see first case in encoding of constraints). Also (k1 + i, k2 + j) ∈ R2

since (si, tj) ∈ Q.
If x2k1+i′ = 1, then it means that si

V̌ (i)−−−→π for some π and action V̌ (i). But then,
since (si, tj) ∈ Q, it is possible that tj

V̌ (i)−−−→cρ,for some distribution ρ. Let j′ be such
that tj = tj

′
and aj′ = V̌ (i). Take a correspondence matrix ∆ such that ∆2k1+i′,2k2+j′ =

1 (and ∆ is zero for all other elements). We have that x∆ is a point distribution with
1 in the (2k2 + j′)th position, so ψ(j)(x∆) holds by construction of encoding resulting
in j (see first case in encoding of constraints). Also (2k1 + i′, 2k2 + j′) ∈ R3 ⊆ R by
definition of R3.

Case 2. Take (k1 + i, k2 + j) ∈ R2. The argument is almost identical to the first
sub-case in Case 1. We omit it here.

Case 3. Take (2k1 + i′, 2k2 + j′) ∈ R3 and x satisfying ϕ(2k1 + i′)(x). Let si = si
′

and tj = tj
′
. By R3 we know that (si, tj) ∈ Q. By construction of the encoding

si
V̌ (2k1+i′)−−−−−−−→x and furthermore tj

V̌ (2k1+i′)−−−−−−−→cρ, where ρ = ρλ for some probability dis-
tribution λ ∈ Dist(1, . . . , |ρ|). Clearly ψ(2k2 + j′)(ρ) = 1. It remains to check that π
can be correspondence to ρ.

To this end consider a correspondence matrix ∆ such that

∆ij =

{
αsi,tj/xi if xi 6= 0 and i ≤ k1, j ≤ k2

0 otherwise

Now (x∆)j =
∑2k1+l1

i=1 xi∆ij =
∑k1

i=1 xiαsi,tj/xi =
∑k1

i=1 αsi,tj = αS,tj = ρj by xR∗ρ
(this discussion only holds for j ≤ k2, but the remaining elements are zero, which is
easy to argue for. Also somewhat sloppily we ignored the possibility of division by zero
– indeed it cannot happen since for xi = 0 we said that ∆ij is simply zero). Effectively
x∆ = ρ, so it satisfies ψ(2k2 + j′). Valuations obviously match.

Moreover if ∆ij 6= 0, then αsi,tj 6= 0 and (si, tj) ∈ Q and then (i, j) ∈ R1 ⊆ R, which
finishes the proof.

Theorem 26 is a corollary from the above two lemmas.

Theorem 26. T probabilistically simulates S iff Š weakly refines Ť.

Similarly, we obtain a precongruence with probabilistic simulation using a suitable
encoding—a good example how CMCs can be used to study properties of simpler
languages in a generic way.

12 Related Work and Concluding Remarks

We have presented CMCs—a new model for representing a possibly infinite family of
MCs. Unlike the previous attempts [46, 48], our model is closed under many design
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operations, including composition, conjunction, determinization and normalization.
We have studied these operations as well as several classical compositional reason-
ing properties, showing that, among others, the CMC specification theory is equipped
with a complete refinement relation (for deterministic specifications), which naturally
interacts with parallel composition, synchronization and conjunction. We have also
demonstrated how our framework can be used to obtain properties for less expressive
languages, by using reductions. In particular, we have exemplified this for probabilistic
automata with simulation and probabilistic simulation of Segala.

Two recent contributions [48, 49] are related to our work. Fecher et al. [48] propose
a model checking procedure for PCTL [98] and Interval Markov Chains (other proce-
dures recently appeared in [77, 78]), which is based on weak refinement. However,
our objective is not to use CMCs within a model checking procedure for probabilistic
systems, but rather to benefit from it as a specification theory.

Very recently Katoen and coauthors [49] have extended Fecher’s work to Interactive
Markov Chains, a model for performance evaluation [99, 100]. Their abstraction uses
the continuous time version of IMCs [47] augmented with may and must transitions,
very much in the spirit of [42]. Parallel composition is defined and studied for this
abstraction, however conjunction has been studied neither in [48] nor in [49].

Over the years process algebraic frameworks have been proposed for describing and
analyzing probabilistic systems based on Markov Chains (MCs) and Markov Decision
Processes [29, 68, 92]. Also a variety of probabilistic logics have been developed for
expressing properties of such systems, e.g., PCTL [18]. Both traditions support refine-
ment between specifications using various notions of probabilistic simulation [46, 48]
and, respectively, logical entailment [101]. Whereas the process algebraic approach fa-
vors parallel composition, the logical approach favors conjunction. Neither of the two
supports both conjunction and parallel composition.

In mathematics the abstraction of Markov set-chains [69] lies very close to IMCs.
It has been, for instance, used to approximate dynamics of hybrid systems [70]. The
latter defines the intervals on the transition probabilities, while the former uses matrix
intervals in the transition matrix space, which allows reasoning about the abstraction
using linear algebra. Technically a Markov set-chain is an explicit enumeration of all
the implementations of an IMC. While these works are clearly related to ours, we shall
observe that like IMCs, these models are not closed under conjunction/composition.

In controller synthesis a notion of Constrained Markov Decision Processes (CMDPs)
has been introduced. The similarity of name to CMCs is purely coincidental. In
particular CMDPs are not a generalization/abstraction of CMCs. CMDPs, as described
by Altman [102], are Markov Decision Processes annotated with several cost functions.
They are used to synthesize probabilistic schedulers that optimize one cost function
under a constraint over the other functions. Thus they are not a specification theory
or an abstraction in the same sense as CMCs are.

As a future work, it would be of interest to design, implement and evaluate efficient
algorithms for procedures outlined in this paper. We would also like to define a quotient
relation for CMCs, presumably building on results presented in [103]. The quotienting
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operation is of particular importance for component reuse [36, 41, 82, 104, 105]. One
could also investigate the applicability of our approach in model checking procedures, in
the same style as Fecher and coauthors have used IMCs for model checking PCTL [48].
Another promising direction would be to mix our results with those we recently obtained
for timed specifications [45, 106, 107], hence leading to the first theory for specification of
timed probabilistic systems [108]. We should also investigate more quantitative versions
of the refinement operation like this was done for contracts in [109]. Finally, it would be
interesting to extend our composition operation by considering products of dependent
probability distributions in the spirit of [110].
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1 Abstract

This paper studies compositional reasoning theories for stochastic systems. A specifi-
cation theory combines notions of specification and implementation with satisfaction
and refinement relations, and a set of operators that together support stepwise design.
One of the first behavioural specification theories introduced for stochastic systems is
the one of Interval Markov Chains (IMCs), which are Markov Chains whose probability
distributions are replaced by a conjunction of intervals. In this paper, we show that
IMCs are not closed under conjunction, which gives a formal proof of a conjecture made
in several recent works.

In order to leverage this problem, we suggested to work with Constraint Markov
Chains (CMCs) that is another specification theory where intervals are replaced with
general constraints. Contrary to IMCs, one can show that CMCs enjoy the good closure
properties of a specification theory. In addition, we propose aggressive abstraction
procedures for CMCs. Such abstractions can be used either to combat the state-space
explosion problem, or to simplify complex constraints. In particular, one can show
that, under some assumptions, the behavior of any CMC can be abstracted by an IMC.

Finally, we propose an algorithm for counter-example generation, in case a refine-
ment of two CMCs does not hold. We present a tool that implements our results.
Implementing CMCs is a complex process and relies on recent advances made in deci-
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sion procedures for theory of reals.

2 Introduction

Modern systems are build from multiple loosely-coupled components that interact with
each other. These components are often designed independently but following a com-
mon agreement on what the interface of each component should be. An interface
describes the coupling of components, ie. all the interaction between them. As a conse-
quence, mathematical foundations that allow to reason at the level of interfaces in order
to infer global properties of the system are an active area of research known as compo-
sitional design [1]. Within this area specification theories provide a modeling language
that allows designing, evolving and advisedly reusing components with formal guaran-
tees. In a logical interpretation, interfaces are specifications and systems/components
that implement a specification are models/implementations. There is an agreement
that a good theory should support the following requirements:

1. Consistency and Satisfaction. It should be decidable whether a specification
admits at least one implementation, and whether a system implements a specifi-
cation.

2. Refinement. Refinement of specification expresses inclusion of sets of implemen-
tations, and therefore allows to compare richness and precision of specifications.

3. Structural composition. A theory should provide a combination operator on speci-
fications, reflecting the standard composition of systems by, e.g. parallel product.

4. Logical composition/conjunction. Different aspects of systems are often specified
by different teams. The issue of dealing with multiple aspects of multiple view-
points is thus essential. It should be possible to represent several specifications
(viewpoints) for the same system, and to combine them in a logical/conjunctive
fashion.

5. Incremental Design. A theory should allow incremental design (composing/con-
joining specifications in any order) and independent implementability (compos-
able specifications can always be refined separately) [91].

For functional analysis of discrete-time non-probabilistic systems, the theory of
Modal Transition Systems (MTS) [42] provides a specification formalism supporting
refinement as well as conjunction and parallel composition. It has been recently ap-
plied to construct interface theories [82, 83], which are extensions of classical interface
automata proposed by de Alfaro et al. [84, 85, 86].

When it comes to modeling of real-time communication protocols, the functional
model of MTSs is no longer sufficient. In [106] we have proposed a suitable composi-
tional reasoning framework based on timed games, together with a user-friendly tool
supporting modeling and analysis of designs. Very recently, we have been able to use
the tool to model an actual wireless sensor system [111].
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2 Introduction

As soon as systems include randomized algorithms, probabilistic protocols, or in-
teract with physical environment, probabilistic models are required to reason about
them. This is exacerbated by requirements for fault tolerance, when systems need to
be analyzed quantitatively for the amount of failure they can tolerate, or for the delays
that may appear. As Henzinger and Sifakis [1] point out, introducing probabilities into
design theories allows assessing dependability of IT systems in the same manner as
commonly practiced in other engineering disciplines.

Generalizing the notion of MTSs to the non-functional analysis of probabilistic sys-
tems, the formalism of Interval Markov Chains (IMCs) was introduced [46]; with notions
of satisfaction and refinement generalizing probabilistic bisimulation. Informally, IMCs
extend Markov Chains by labeling transitions with intervals of allowed probabilities
rather than concrete probability values. Implementations of IMCs are Markov Chains
(MCs) whose probabilistic distributions match the constraints induced by the intervals.
IMCs are known to be an efficient model on which refinement and composition can be
performed with efficient algorithms of linear algebra. Unfortunately, as argued with
the help of several examples (see e.g., [63]), the expressive power of IMCs seems to be
inadequate to support both logical and structural composition.

In a recent work [63], we suggested to leverage the problem by enriching the model
of IMCs by replacing intervals with general constraints. Our new model, which we
call Constraint Markov Chains (CMCs) is a foundation for component-based design
of probabilistic systems. CMCs are a further extension of IMCs allowing rich con-
straints on the next-state probabilities from any state. The model comes together with
a behavioural semantic for both logical and structural composition. Whereas linear
constraints suffice for closure under conjunction, polynomial constraints are necessary
for closure under parallel composition. We also provided constructs for refinement,
consistency checking, logical and structural composition of CMC specifications – all
indispensable ingredients of a compositional design methodology.

In this paper, we propose new results for CMCs. Our contributions are summarized
hereafter.

• First, we give the first formal proof that IMCs are indeed not closed under con-
junction. This proof, which involves complex reasoning on the structure of the
conjunction, establishes CMCs as the first complete behavioural semantic based
stochastic specification theory supporting both logical and structural composi-
tion.

• Second, we consider abstraction techniques for CMCs. Our first abstraction com-
bines states and may be used to combat state-space explosion. Our second ab-
straction may simplify complex constraints by abstracting the CMC with an IMC.
Under some assumptions, one can show that such IMC is the minimal and unique
abstraction. Both abstractions are compositional, but incomparable.

• Last but not least, we propose an implementation of our specification theory. Our
new tool, which we called APAC, relies on the Z3 solver [112] to solve complex
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constraints. In addition, the tool proposes a series of new features relying on new
theoretical results. This includes the computation of a witness when refinement
does not hold. While still being a prototype, the tool has already been evaluated
on several complex CMCs.

We believe that investment in user-friendly tools is essential for successful adoption
of theoretical results in engineering practice. We consider our prototype as a stepping
stone towards a design environment, which will allow running case studies of similar
complexity and realism as we have achieved for real time systems [111].

Structure of the paper Section 3 introduces IMCs as well as the proof that the
formalism is not closed under conjunction. Section 4 introduces CMCs and summarizes
existing results obtained in [63]. Section 5 presents a series of abstraction techniques
as well as a running example. The implementation is presented in Section 6, while
Section 7 reports experiments using this implementation. Finally, Section 8 concludes
the paper and discusses related and future work.

3 Interval Markov Chains are not closed under Conjunc-
tion

We first introduce Markov Chains (MCs) which is a well-known mathematical model
for purely stochastic systems.

Definition 1 (Markov Chain). P = 〈{1, . . . , n}, o,M,A, V 〉 is a Markov Chain if
{1, . . . , n} is a set of states containing the initial state o, A is a set of atomic propo-
sitions, V : {1, . . . , n} → 2A is a state valuation, and M ∈ [0, 1]n×n is a probability
transition matrix:

∑n
j=1Mij =1 for i=1, . . . , n.

Interval Markov Chains (IMCs) have been introduced in [46]. IMCs are a finite rep-
resentation for a possibly infinite set of Markov Chains. Roughly speaking, IMCs
generalize MCs in that, instead of specifying a concrete transition matrix, they only
constrain probability values in the matrix to remain in some intervals.

Definition 2 (Interval Markov Chain). An Interval Markov Chain is a tuple S =
〈{1, . . . , k}, o, ϕ,A, V 〉, where {1, . . . , k} is a set of states containing the initial state
o, A is a set of atomic propositions, V : {1, . . . , k} → 2A is a state valuation and
ϕ : {1, . . . , k} → [0, 1]k → {0, 1} is a constraint function defining probability intervals
for transitions. A vector x satisfies the constraint of state j, written ϕ(j)(x) = 1, iff x
is a distribution: x ∈ [0, 1]k and

∑k
i=1 xi = 1; and each of its coordinates falls inside

the corresponding interval: xi ∈ ϕ(j)(i).

Later, we often use the following notation for the constraint ϕ. For all states i:

ϕ(i)(x) ≡ (x1 ∈ Ii,1) ∧ (x2 ∈ Ii,2) ∧ . . . ∧ (xk ∈ Ii,k) ∧ (

k∑

j=1

xj = 1) (1)
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where Ii,j is the interval corresponding to the transition between states i and j.

Given two sets A1 and A2 such that A1 ⊆ A2 and a subset X ⊆ A2, the notation
X↓A1 denotes the restriction of X to A1, i.e. X ∩A1.

Definition 3 (Satisfaction Relation (IMCs)). Let P = 〈{1, . . . , n}, oP ,M,AP , VP 〉 be
an MC and S = 〈{1, . . . , k}, oS , ϕ,AS , VS〉 be an IMC with AS ⊆ AP . Then R ⊆
{1, . . . , n}×{1, . . . , k} is a satisfaction relation between states of P and S iff whenever
pRu then

1. VP (p)↓AS
= VS(u), and

2. There exists a correspondence matrix ∆ ∈ [0, 1]n×k such that

• for all 1 ≤ p′ ≤ n with Mpp′ 6= 0,
∑k

j=1 ∆p′j = 1;

• ϕ(u)(Mp∆) holds, and if ∆p′u′ > 0 then p′Ru′.

We write P |= S iff there exists a satisfaction relation relating oP and oS , and call
P an implementation of S. The set of all implementations of S is given by [[S]] ≡
{P | P |= S}.

The weak refinement relation syntactically relates IMCs S1 and S2 if (roughly) any
implementation satisfying S1 also satisfies S2:

Definition 4 (Weak Refinement). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 =
〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be IMCs with A2 ⊆ A1. The relation R ⊆ {1, . . . , k1} ×
{1, . . . , k2} is a weak refinement relation iff vRu implies:

1. V1(v)↓A2= V2(u) and

2. For any distribution x∈ [0, 1]k1 satisfying ϕ1(v)(x), there exists a correspondence
matrix ∆ ∈ [0, 1]k1×k2 such that

• for all S1 states 1 ≤ i ≤ k1 if xi 6= 0 then
∑k2

j=1 ∆ij = 1 and

• ϕ2(u)(x∆) holds and

• if ∆v′u′ > 0 then also v′Ru′.

IMC S1 (weakly) refines S2, written S1 � S2, iff o1R o2.

So far, IMCs have been used as an abstraction formalism in various stochastic model
checking algorithms [47]. We now show that IMCs are not closed under conjunction.
This means that this formalism cannot be used as a specification theory. We start by
introducing an example and then give a formal proof.

Example 1. Consider the IMCs of Figure 1. S1 specifies a behaviour of a user of a
coffee machine. It prescribes that a typical user orders coffee with milk with probability
within [0, 0.5] and orders black coffee with probability in [0.2, 0.7]. Customers also buy
tea with probability in the interval [0, 0.5]. Now the vendor of the machine delivers
another specification, S2, which prescribes that the machine is functioning only if coffee
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z3 + z4 ≤ 0.5

0.4 ≤ z1 + z2 + z3 ≤ 0.8

z3 = z5 = z6 = 0

Figure 1: IMCs showing non-closure under conjunction. Top: the two specifications of
different aspects of a coffee service. Bottom a conjunction expressed as a Markov Chain
with linear constraints over probability values.

(white or black) is ordered with probability between 0.4 and 0.8. Otherwise, the machine
runs out of coffee powder too frequently, or the powder becomes too old. A conjunction
of these two models would describe users who have use patterns compatible with this
particular machine. In the bottom part of Figure 1 we present the structure of such a
conjunction. States (2, 3), (3, 3), and (4, 2) are inconsistent and thus the corresponding
probabilities must be zero: z3 = z5 = z6 = 0. Now, attempting to express the con-
junction S1 ∧ S2 as an IMC by a simple intersection of bounds gives 0.4 ≤ z1 ≤ 0.5,
0.4≤ z2 ≤ 0.7, and z4 ≤ 0.5. However, this naive construction is too coarse: whereas
(z1, z2, z3, z4, z5, z6) = (0.5, 0.5, 0, 0, 0, 0)) satisfies the constraints the resulting overall
probability of reaching a state satisfying {{au lait}, {noir}}, i.e. z1+z2+z3 = 1, violates
the upper bound of 0.8 specified in S2.

We now propose the main result of this section:

Theorem 1. IMCs are not closed under conjunction.

Proof. Consider IMCs S1 and S2 given in Figure 2a and 2b, respectively. These IMCs
represent two requirements on a coffee machine. IMC S1 = 〈{1, 2, 3}, 1, {i, c}, ϕ1, V1〉
specifies that a good coffee machine should serve coffee at least 20% of requests (“coffee”
represented by the atomic proposition c). IMC S2 = 〈{1, 2, 3}, 1, {i, h}, ϕ2, V2〉 specifies
that a good coffee machine must serve hot drinks at most 50% of requests (“hot”
represented by the atomic proposition h).

We claim that there exists no IMC accepting the intersection of the set of mod-
els of S1 and S2. The proof is by contradiction. Suppose that such an IMC S =
〈Q, q0, {i, c, h}, ϕ, V 〉 exists. We first observe that only the intial states in S1 and S2
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Figure 2: A counter-example illustrating non-closure of IMCs under conjunction.

have the atomic proposition i in their valuation, it is safe to suppose that the only
accessible valuations in S are the empty set, {i}, {c}, {h} and {h, c}. We partition the

129



New Results for Constraint Markov Chains

set of states of S according to their valuations:

Qi = {q ∈ Q | V (q) = {i}} = {q0}
Qh = {q ∈ Q | V (q) = {h}} = {qh1 , . . . , qhnh

}
Qc = {q ∈ Q | V (q) = {c}} = {qc1, . . . , qcnc

}
Qhc = {q ∈ Q | V (q) = {h, c}} = {qhc1 , . . . , q

hc
nhc
}

Q∅ = {q ∈ Q | V (q) = ∅} = {q∅1, . . . , q∅n∅}

For all i and X ∈ {i, c, h, hc, ∅}, let ϕ(q0)(qXi ) be the interval [mX
i , U

X
i ], where both

endpoints are variables constrained as below. By construction, we know that the im-
plementation I1, given in Figure 2d, is an implementation of both S1 and S2. As a
consequence, it is also an implementation of S. We can thus deduce the following
inequalities:

nhc∑

i=1

mhc
i ≤ 0.2

nc∑

i=1

mc
i ≤ 0.2

nh∑

i=1

mh
i ≤ 0

n∅∑

i=1

m∅i ≤ 0.6 (2)

Similarly, observe that MCs I2, I3, I4 and I5 of Figures 2e, 2f, 2g, and 2h are also
implementations of both S1 and S2, which gives the following inequalities:

nhc∑

i=1

mhc
i ≤ 0,

nhc∑

i=1

Uhci ≥ 0.5

nc∑

i=1

mc
i ≤ 0,

nc∑

i=1

U ci ≥ 1 (3)

nh∑

i=1

mh
i ≤ 0,

nh∑

i=1

Uhi ≥ 0.5

n∅∑

i=1

m∅i ≤ 0,

n∅∑

i=1

U∅i ≥ 0.8 (4)

We will now show that there exists a model of S that does not satisfy S1 or S2, which
will lead to a contradition, as we have assumed that S expresses the greatest lower
bound of S1 and S2. For doing so, we will instantiate S with concrete distributions
through refinement. Consider IMC S3 = 〈Q3 = {1, 2, 3, 4, 5}, 1, {i, c, h}, ϕ3, V3〉 given
in Figure 2c. We show that S3 weakly refines S. For this, we consider the relation
R ⊆ Q3 × Q such that 1R q0, 2R q iff q ∈ Qhc, 3R q iff q ∈ Qc, 4R q iff q ∈ Qh and
5R q iff q ∈ Q∅. We show that R is indeed a weak refinement relation by providing the
correspondence matrices required to witness 1R q0. The matrices for the other states
can be obtained in a similar manner. Let x = (x1, x2, x3, x4, x5) be a transition vector
such that ϕ3(1)(x) holds. Define ∆ as follows: for all 1 ≤ i ≤ 5, if xi = 0, then for all
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q ∈ Q define ∆i,q = 0. Otherwise, define:

∆2,q = 0 for all q /∈ Qhc ∆3,q = 0 for all q /∈ Qc

∆4,q = 0 for all q /∈ Qh ∆5,q = 0 for all q /∈ Q∅

∆2,qhci
=

1

x2

(
mhc
i +

(Uhci −mhc
i )(x2 −

∑nhc
j=1m

hc
j )

∑nhc
j=1(Uhcj −mhc

j )

)

∆3,qci
=

1

x3

(
mc
i +

(U ci −mc
i )(x3 −

∑nc
j=1m

c
j )∑nc

j=1(U cj −mc
j)

)

∆4,qhi
=

1

x4

(
mh
i +

(Uhi −mh
i )(x4 −

∑nh
j=1m

h
j )

∑nh
j=1(Uhj −mh

j )

)

∆5,q∅i
=

1

x5

(
m∅i +

(U∅i −m∅i )(x5 −
∑n∅

j=1m
∅
j )

∑n∅
j=1(U∅j −m∅j )

)

By construction, we have that for all 1 ≤ i ≤ 5, if xi > 0, then
∑

q∈Q ∆i,q = 1.
Moreover, by 4 and since ϕ3(1)(x) holds, we also have that ϕ(q0)(x∆) holds. Thus ∆
is a correspondence matrix and we have that S3 � S.

Since weak refinement for IMCs implies inclusion of sets of implementations [46], we
have that all implementations of S3 are also implementations of S, and consequently
implementations of both S1 and S2. Consider now the implementation I6 given in
Figure 2i. It is obvious that I6 satisfies S3. However, the probability to reach a state
with valuation {h} or {hc} in I6 is 0.6, which means that I6 does not satisfy S2. As
a consequence, S is not a greatest lower bound for S1 and S2. This concludes the
proof.

According to the above theorem, working with intervals is not enough to capture
conjunction. A similar proof can be used to show that that intervals cannot capture
structural composition, either. In the next section, we present Constraint Markov
Chains, a new specification theory for stochastic systems where intervals are replaced
by general constraints.

4 Constraint Markov Chains

We now introduce the concept of Constraint Markov Chains that was proposed in [63].
Unlike to IMCs, CMCs have all the closure properties expected of a specification theory.

Let A,B be sets of propositions with A ⊆ B. If T ⊆ 2B, then T↓A≡ {W↓A|W ∈ T}.
For W ⊆ A define the extension of W to B as W↑B≡ {V ⊆ B | V ↓A= W}, so the set
of sets whose restriction to A is W . Lift it to sets of sets as follows: if T ⊆ 2A then
T ↑B≡ {W ⊆ B | W↓A∈ T}. Let M,∆ ∈ [0, 1]n×k be two matrices and x ∈ [0, 1]k be
a vector. We write Mij for the cell in ith row and jth column of M , Mp for the pth
row of M , and xi for the ith element of x. Finally, ∆ is a correspondence matrix iff
0 ≤∑k

j=1 ∆ij ≤ 1 for all 1 ≤ i ≤ n.
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Constraint Markov Chains (CMCs for short) are a finite representation for a pos-
sibly infinite set of MCs. Roughly speaking, CMCs generalize MCs in that, instead
of specifying a concrete transition matrix, they only constrain probability values in
the matrix. Constraints are modeled using a characteristic function, which for a given
source state and a distribution of probabilities of leaving the state evaluates to 1 iff
the distribution is permitted by the specification. Similarly, instead of a concrete val-
uation function for each state, a constraint on valuations is used. Here, a valuation is
permitted iff it is contained in the set of admissible valuations of the specification.

Definition 5 (Constraint Markov Chain). A Constraint Markov Chain is a tuple S =
〈{1, . . . , k}, o, ϕ,A, V 〉, where {1, . . . , k} is a set of states containing the initial state

o, A is a set of atomic propositions, V : {1, . . . , k} → 22A is a set of admissible state
valuations and ϕ : {1, . . . , k} → [0, 1]k → {0, 1} is a constraint function such that if
ϕ(j)(x) = 1 then the x vector is a probability distribution: x ∈ [0, 1]k and

∑k
i=1 xi = 1.

An Interval Markov Chain is in fact a CMC whose constraint functions are represented
by intervals, so for all 1 ≤ i ≤ k there exist constants αi, βi such that ϕ(j)(x) = 1 iff
∀1 ≤ i ≤ k, xi ∈ [αi, βi].

The notion of satisfaction, an extension of satisfaction for IMCs of Section 3, links
Markov Chains and Constraint Markov Chains:

Definition 6 (Satisfaction Relation). Let P = 〈{1, . . . , n}, oP ,M,AP , VP 〉 be a MC
and S = 〈{1, . . . , k}, oS , ϕ,AS , VS〉 be a CMC with AS ⊆ AP . Then R ⊆ {1, . . . , n} ×
{1, . . . , k} is a satisfaction relation between states of P and S iff whenever pRu then

1. VP (p)↓AS
∈ VS(u), and

2. There exists a correspondence matrix ∆ ∈ [0, 1]n×k such that

• for all 1 ≤ p′ ≤ n with Mpp′ 6= 0,
∑k

j=1 ∆p′j = 1;

• ϕ(u)(Mp∆) holds and

• if ∆p′u′ 6= 0 then p′Ru′.

CMC P satisfies S, written P |= S, iff oP R oS. The set of all implementations of S is
denoted by [[S]] = {P | P |= S}.

Consistency A CMC S is consistent if it admits at least one implementation. We
say that a state is inconsistent iff its set of admissible valuations is empty, or if its
constraint is unsatisfiable. Consistency of all states implies consistency of the CMC,
but a CMC having some inconsistent states may still be consistent.

It is known [62] that consistency of a CMC can be decided with a pruning algorithm.
The pruning operator β is defined as follows. We begin with the set of inconsistent
states, and propagate inconsistency backwards using a co-inductive fixed-point algo-
rithm.

Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 be a CMC.
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Figure 3: Two different steps of the pruning algorithm.

• If the initial state o is locally inconsistent, then let β(S) = ∅.

• If S does not contain locally inconsistent states, then β(S) = S.

• Otherwise, proceed in two steps. Let k′ < k be the number of locally consistent
states. Then define a function ν : {1, . . . , k} → {⊥, 1, . . . , k′}. All inconsistent
states are mapped to ⊥, i.e. for all 1 ≤ i ≤ k take ν(i) = ⊥ iff [(V (i) = ∅)∨ (∀x ∈
[0, 1]k, ϕ(i)(x) = 0)]. All remaining states are mapped injectively into {1, . . . , k′}:
ν(i) 6= ⊥ =⇒ ∀j 6= i, ν(j) 6= ν(i). Then let β(S) = 〈{1, . . . , k′}, ν(o), ϕ′, A, V ′},
where V ′(i) = V (ν−1(i)) and for all 1 ≤ j ≤ k′ the constraint ϕ′(j)(y1, . . . , yk′)
is: ∃x1, . . . , xk such that

[
ν(q)=⊥ ⇒ xq=0

]
∧
[
∀1≤ l≤k′ : yl=xν−1(l)

]
∧
[
ϕ(ν−1(j))(x1, . . . , xk)

]

The fixpoint of β preserves the set of implementations [62]: [[S]] = [[β∗(S)]].

Example 2. Figure 3 illustrates how pruning is performed for the CMC S in three
steps.

Single valuation normal form A CMC S = 〈{1, . . . , k}, o, ϕ,A, V 〉 is said to be
in single valuation normal form, if all state valuations are singletons, ie. if ∀i ∈
{1, . . . , k}, |V (i) |= 1. The single valuation normal form plays a central role in both
determinism and abstraction. As is mentioned in [62], a consistent CMC, for which the
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initial state o satisfies that |V (o) |= 1, can be transformed into a CMC in single valua-
tion normal form with the same implementation set. The process, called normalization,
is performed by the following algorithm:

Definition 7 (Normalization). Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 be a CMC. The nor-
malization of S is only defined if o is in single valuation normal form (i.e. |V (o) |= 1)
and if there exists a function N : {1, . . . , k} → 2{1,...,m} such that:

1. {1, . . . ,m} = ∪i∈{1,...,k}N(i);

2. For all 1 ≤ i 6= j ≤ k, N(i) ∩N(j) = ∅;

3. ∀1 ≤ i ≤ k, |N(i)| = |V (i)|;

Under these assumptions, the normalization of S is the CMC N(S) =
〈{1, . . . ,m}, o′, ϕ′, A, V ′〉 such that N(o) = o′ and

1. ∀1 ≤ j ≤ m, |V ′(j)| = 1;

2. ∀1 ≤ i ≤ k, V (i) = ∪u∈N(i)V
′(u);

3. ∀1 ≤ i ≤ k, ∀u, v ∈ N(i), u 6= v ⇐⇒ V ′(u) 6= V ′(v);

4. ∀1 ≤ j ≤ m.ϕ′(j)(x1, . . . xm) = ϕ(N−1(j))(
∑

u∈N(1) xu, . . . ,
∑

u∈N(k) xu).

Comparing specifications is central to stepwise design methodologies. Usually spec-
ifications are compared using a refinement relation. Roughly, if S1 refines S2, then any
model of S1 is also a model of S2. We recall two syntactic notions of refinement for
CMCs [63] that extend the refinements for IMCs [46, 48] presented above. We begin
with the strong refinement:

Definition 8 (Strong Refinement). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 =
〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs with A2 ⊆ A1. A relation R ⊆ {1, . . . , k1}×
{1, . . . , k2} is a strong refinement relation between states of S1 and S2 iff whenever
vRu then

1. V1(v)↓A2⊆ V2(u), and

2. There exists a correspondence matrix ∆ ∈ [0, 1]k1×k2 such that for all probability
distribution vectors x ∈ [0, 1]k1 if ϕ1(v)(x) holds then

• for all S1 states 1 ≤ i ≤ k1, xi 6= 0 =⇒ ∑k2
j=1 ∆ij = 1;

• ϕ2(u)(x∆) holds and

• if ∆v′u′ 6= 0 then v′Ru′.

We say that S1 strongly refines S2 iff o1R o2.
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Figure 4: A non-deterministic CMC and a deterministic CMC

Strong refinement imposes a “fixed-in-advance” correspondence matrix regardless
of the probability distribution satisfying the constraint function. In contrast, the weak
refinement allows choosing a different correspondence matrix for each probability dis-
tribution satisfying the constraint:

Definition 9 (Weak Refinement). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 =
〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs with A2 ⊆ A1. The relation R ⊆ {1, . . . , k1} ×
{1, . . . , k2} is a weak refinement relation iff vRu implies:

1. V1(v)↓A2⊆ V2(u) and

2. For any distribution x∈ [0, 1]k1 satisfying ϕ1(v)(x), there exists a correspondence
matrix ∆ ∈ [0, 1]k1×k2 such that

• for all S1 states 1 ≤ i ≤ k1, xi 6= 0 =⇒ ∑k2
j=1 ∆ij = 1;

• ϕ2(u)(x∆) holds and

• ∆v′u′ 6= 0⇒ v′Ru′.

CMC S1 (weakly) refines S2, written S1 � S2, iff o1R o2.

In [63], we have shown that strong refinement implies weak refinement that also
implies implementation set inclusion. We also showed that the reverse of those impli-
cations does not hold. The exception is for deterministic CMCs, which are introduced
hereafter.

Determinism A CMC S is deterministic iff for every state i, states reachable from i
have pairwise disjoint admissible valuations. CMCs are not closed under determiniza-
tion. More precisely, there exists a non-deterministic CMC for which there is no de-
terministic CMC accepting the same set of models. In [63], we have proposed a de-
terminization algorithm for CMCs, which computes a deterministic CMC accepting all
models of the original CMC.

Example 3. Figure 4 shows a non-deterministic and a deterministic CMC. Indeed the
only discrepancy of S2 with respect to S1 is that V2(2) = {{n}}, and this ensures that
the states reachable from state 1 of S2 has pairwise disjoint valuations.
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Theorem 2 ([63]). For deterministic CMCs, strong refinement coincides with weak
refinement and inclusion set implementation.

A good compositional theory comes together with two composition operations. The
first composition is structural and allows to combine components. The second opera-
tion, which is often called conjunction, is logical and allows to take the intersection of
a set of requirements.

Structural composition This composition mimics the classical composition on tran-
sition systems at the specification level. We first present the composition between two
MCs and then the one between CMCs.

Definition 10 (Parallel Composition of MCs). Let P1 =
〈{1, . . . , n1}, o1,M

′, A1, V1〉 and P2 = 〈{1, . . . , n2}, o2,M
′′, A2, V2〉 be two MCs with

A1∩A2 = ∅. The parallel composition of P1 and P2 is the MC P1 ‖ P2 = 〈{1, . . . , n1}×
{1, . . . , n2}, (o1, o2),M,A1 ∪A2, V 〉 where: M ∈ [0, 1](n1×n2)×(n1×n2) is such that
M(p,q)(r,s) = M ′prM

′′
qs; and V ((p, q)) = V1(p) ∪ V2(q).

Definition 11 (Parallel Composition of CMCs). Let S1 = 〈{1, . . . , k1}, o1, ϕ1,
A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs with A1 ∩ A2 = ∅. The parallel
composition of S1 and S2 is the CMC S1 ‖ S2 = 〈{1, . . . , k1}×{1, . . . , k2}, (o1, o2), ϕ,A1∪
A2, V 〉, where ϕ((u, v))(z1,1, z1,2, . . . z2,1, . . . , zk1,k2) = ∃x1, . . . , xk1 , y1, . . . , yk2 ∈ [0, 1]
such that ∀(i, j) ∈ {1, . . . , k1}×{1, . . . , k2} we have zi,j = xiyj and ϕ1(u)(x1, . . . , xk1) =
ϕ2(v)(y1, . . . , yk2) = 1; Finally, V ((u, v)) = {Q1 ∪Q2 | Q1 ∈ V1(u), Q2 ∈ V2(v)}.

By inspecting the above definition, the reader shall intuitively understand that the
composition of two IMCs1 is generally not an IMC. Examples are presented in [63], and
a formal proof can be obtained by following the proof for conjunction we introduced in
Section 3.

It is known [63], that structural composition has the property of independent im-
plementability:

Theorem 3. If S′1, S′2, S1, S2 are CMCs then S′1�S1 and S′2�S2 implies S′1 ‖S′2 �
S1 ‖S2, so the weak refinement is a precongruence with respect to parallel composition.
Consequently, for any MCs P1 and P2 we have that P1 |= S1 ∧ P2 |= S2 implies P1 ‖
P2 |= S1 ‖S2.

Observe that one cannot combine CMCs sharing atomic propositions. Indeed, this
would create a dependency between the probability distributions. In order to synchro-
nize an atomic action, one will have to combine structural composition with the logical
composition described hereafter. This reflects the principle of separation of concerns
for composition, introduced for transition systems in [113]. It is also, at large, followed
by formalisms like Interface Automata [84], which apply inconsistency elimination after
computing the composition.

1As IMCs are subsets of CMCs, the composition of two IMCs is defined as their CMC composition.
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Logical composition This operation, also called conjunction, combines require-
ments of several specifications.

Definition 12 (Conjunction). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and
S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be two CMCs. The conjunction of S1 and S2, written
S1 ∧S2, is the CMC S = 〈{1, . . . , k1}× {1, . . . , k2}, (o1, o2), ϕ,A, V 〉 with A = A1 ∪A2,
V ((u, v)) = V1(u)↑A ∩V2(v)↑A, and

ϕ((u, v))(x1,1, x1,2, . . . , x2,1, . . . , xk1,k2) ≡ ϕ1(u)(
∑k2

j=1 x1,j , . . . ,
∑k2

j=1 xk1,j)∧
ϕ2(v)(

∑k1
i=1 xi,1, . . . ,

∑k1
i=1 xi,k2).

Conjunction may introduce inconsistent states. Indeed, the intersection between the
sets of valuations of two states may be empty. Conjunction should thus normally be
followed by applying the pruning algorithm. In [63], we proved that conjunction of
two specifications coincides with their greatest lower bound with respect to the weak
refinement (also called shared refinement).

Theorem 4. Let S1, S2 and S3 be three CMCs. We have (a) ((S1 ∧ S2) � S1) and
((S1 ∧ S2) � S2) and (b) if (S3 � S1) and (S3 � S2), then S3 � (S1 ∧ S2).

The first consequence of the above theorem is that conjunction with another spec-
ification is a monotonic operator with respect to weak refinement. Furthermore, the
set of implementations of a conjunction of two specifications S1 and S2 coincides with
the intersection of implementation sets of S1 and S2 (the greatest lower bound in the
lattice of implementation sets).

Combining compositions One shall observe that logical and structural composition
can be fruitfully composed. For example, any structural composition can be followed by
a logical composition to synchronize on sets of atomic propositions. Finally, structural
composition refines logical composition, but the reverse does not hold.

Example 4. This example illustrates how synchronization on a parallel composition
of S and S′ in Fig. 5a can be achieved, by conjoining the parallel composition in
Fig. 5b with a synchronizer Sync (Fig. 5c). This particular synchronizers removes the
valuations from S ‖ S′ that do not satisfy (a = d) ∧ (b = ¬c), giving rise to the CMC
in Fig. 5d.

An inconsistency appears in state (1, 1) of (S ‖ S′) ∧ Sync meaning that this CMC
is inconsistent and there is no implementation of the two CMCs that obey the synchro-
nizer.

5 Abstraction

As any existing formal technique, CMCs may suffer from the so called state-space
explosion problem. A solution to this problem is the one of abstraction. The technique
aims at model reduction by collapsing sets of concrete states to abstract states. Here,
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z11

{{a, b, d}}

{{c}}

{{a, b, d}}

z12

z22

z21

(d) (S ‖ S′) ∧ Sync

Figure 5: Parallel composition and synchronization of CMCs.

we propose to conduct such an abstraction by partitioning the set of concrete states
into a set of smaller size. We will also propose another abstraction that permits to
replace a CMC by an IMC.

Let us introduce an example that will be used through the rest of the section.

Example 5. Consider four researchers that behave identically. In the initial state,
Researcher i writes a paper. This is represented with the atomic proposition wi. Then,
with probability 1, the researcher sends the paper to a conference, represented with
the atomic proposition si. The paper is accepted with a probability greater than 20%
(atomic proposition ai), and rejected with a probability below 80% (ri). In both cases,
the researcher goes back to writing. Researcher i is represented with the CMC Si =
〈{1, 2, 3, 4}, 1, ϕi, {wi, si, ai, ri}, Vi〉.

The model of Researcher 1 is given in Fig. 6a and Researcher 2 is specified in Fig. 6b.
Since the models are independent (their sets of atomic propositions are disjoint), we
can compute their parallel composition S12, shown in Fig. 7.

5.1 State-based Abstraction

We consider an abstraction function that works by abstracting the set of states. A
state abstraction function is a surjection α : {1, . . . , k} → {1, . . . , k′} for some k′ ≤ k,
such that {1, . . . , k} =

⋃
i′∈{1,...,k′} α

−1(i′) (totality).

The state abstraction of a distribution µ over {1, . . . , k}, denoted
α(µ) ∈ Dist({1, . . . , k′}), is defined as α(µ)(i′) = µ(α−1(i′)) =

∑
i∈α−1(i′) µ(i) for all

i′ ∈ {1, . . . , k′}.
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(a) CMC S1 represent-
ing Researcher 1.

1
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[1, 1]

[0.2, 1][0, 0.8]

[1, 1]
[1, 1]

{{w2}}

{{s2}}
{{r2}} {{a2}}

(b) CMC S2 represent-
ing Researcher 2.

Figure 6: Example of two researchers.

1, 1

2, 24, 3 3, 3

3, 44, 4

{{s1, s2}}
{{r1, a2}} {{a1, a2}}

[1, 1] [1, 1]

[1, 1][1, 1]

[1, 1]

{{r1, r2}} {{a1, r2}}

{{w1, w2}}

ϕ(2, 2)(z) ≡ ∃x, y, z1,1 = x1y1 ∧ z1,2 = x1y2 . . .
∧x1 = 0 ∧ x2 = 0 ∧ x3 ∈ [0.2, 1] ∧ x4 ∈ [0, 0.8] ∧ x3 + x4 = 1
∧y1 = 0 ∧ y2 = 0 ∧ y3 ∈ [0.2, 1] ∧ y4 ∈ [0, 0.8] ∧ y3 + y4 = 1

z4,4

z4,3 z3,3

z3,4

Figure 7: CMC S12 representing the independent parallel composition of Researchers 1
and 2.

Definition 13 (State abstraction). Let S = 〈{1, . . . , k}, oS , ϕ,AS , VS〉 be a CMC and
let α : {1, . . . , k} → {1, . . . , k′} be a state abstraction function. The CMC α(S) =
〈{1, . . . , k′}, α(oS), ϕ′, AS , V

′
S〉 is induced by α such that

ϕ′(i′)(y1, . . . , yk′) ≡ ∃x1, . . . , xk ∈ [0, 1] :

(y1, . . . , yk′) = α((x1, . . . , xk)) ∧
∨

i∈α−1(i′)

ϕ(i)(x1, . . . , xk), and

V ′S(i′) =
⋃

i∈α−1(i′)

VS(i).

The following theorem shows that the above construction is indeed an abstraction
with respect to refinement.

Theorem 5. Let S be a CMC. It holds that S � α(S).
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Proof. Let S = 〈{1, . . . , k}, oS , ϕ,AS , VS〉 be a CMC, let α : {1, . . . , k} → {1, . . . , k′} be
a state abstraction function, and let α(S) = 〈{1, . . . , k′}, α(oS), ϕ′,
AS , V

′
S〉 be the CMC induced by α.

We define a relation R ⊆ {1, . . . , k} × {1, . . . , k′} such that uR v ⇐⇒ α(u) = v.
We show that R is a weak refinement relation.

1. By definition, we have VS(u) ⊆ ⋃i∈α−1(v) VS(i) = V ′S(v).

2. Construct the matrix ∆ ∈ [0, 1]k×k
′

as ∆ii′ = 1 if α(i) = i′ and 0 otherwise. By
construction, this is a correspondence matrix. Let x ∈ [0, 1]k be such that ϕ(u)(x)
holds.

• Let i ∈ {1, . . . , k} be such that xi 6= 0. We have that α(i) = i′ for exactly

one i′ ∈ {1, . . . , k′}, so
∑k′

j=1 ∆ij = 1.

• Let i ∈ {1, . . . , k′}. The i’th entry of x∆ is computed as

[x∆]i =
k∑

j=1

xj∆ji =
∑

j:α(j)=i

xj

=
∑

j∈α−1(i)

xj ,

so α(x) = x∆. By this fact, ϕ′(v)(x∆).

• Assume that for u′ ∈ {1, . . . , k} and v′ ∈ {1, . . . , k′} that ∆u′v′ 6= 0. By
definition α(u′) = v′ and therefore u′R v′.

Finally, since oSRα(oS), we conclude that R is a weak refinement relation.

Example 6. Continuing Example 5, we consider the two researchers and their compo-
sition that are given in Figures 6 and 7, respectively. We consider the case where one
is only interested in the acceptance of at least one paper. In order to avoid state-space
explosion when composing with other CMCs, we suggest to group states that represent
the acceptance of at least one paper, i.e. States (3, 3), (3, 4) and (4, 3) in CMC S12.
This is done with the following state abstraction function:

α :





(1, 1)7→1′

(2, 2)7→2′

(3, 3)7→3′

(3, 4)7→3′

(4, 3)7→3′

(4, 4)7→4′

CMC α(S12) is given in Figure 8, where State 3′ is an abstraction for all the states
of S12 where at least 1 paper is accepted.
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1′

2′

4′

3′

{{s1, s2}}

[1, 1]

[1, 1]

[1, 1]

{{r1, r2}}

{{w1, w2}}

t4′

ϕ(2′)(t) ≡ ∃z, t1′ = z1,1 ∧ t2′ = z2,2 ∧ t4′ = z4,4 ∧ t3′ = z3,3 + z3,4 + z4,3

∧∃x, y, z1,1 = x1y1 ∧ z1,2 = x1y2 . . .
∧x1 = 0 ∧ x2 = 0 ∧ x3 ∈ [0.2, 1] ∧ x4 ∈ [0, 0.8] ∧ x3 + x4 = 1
∧y1 = 0 ∧ y2 = 0 ∧ y3 ∈ [0.2, 1] ∧ y4 ∈ [0, 0.8] ∧ y3 + y4 = 1

{{a1, a2}, {a1, r2}, {r1, a2}}t3′

Figure 8: CMC α(S12) representing the state-abstraction of CMC S12.

State-abstractions can be composed as follows: Let α1 : Q1 → Q′1 and α2 : Q2 →
Q′2 be two state abstractions, we define the composition of α1 and α2 as the state-
abstraction α1 × α2 : Q1 × Q2 → Q′1 × Q′2 such that for all q1 ∈ Q1 and q2 ∈ Q2,
(α1 × α2)(q1, q2) = (α1(q1), α2(q2)). The following theorem states that abstraction is
compositional.

Theorem 6. Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2,
A2, V2〉 be CMCs with A1 ∩ A2 = ∅, and let α1 : {1, . . . , k1} → {1, . . . , k′1} and α2 :
{1, . . . , k2} → {1, . . . , k′2} be state abstraction functions. It holds that α1(S1)‖α2(S2) =
(α1 × α2)(S1‖S2) up to isomorphism.

Proof. Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2,
A2, V2〉 be CMCs with A1 ∩ A2 = ∅, and let α1 : {1, . . . , k1} → {1, . . . , k′1} and
α2 : {1, . . . , k2} → {1, . . . , k′2} be state abstraction functions.

We build CMCs α1(S1)‖α2(S2) and (α1 × α2)(S1‖S2), and show that they are
syntactically equivalent.

• α1(S1)‖α2(S2) = 〈{1, . . . , k′1} × {1, . . . , k′2}, (α1(o1), α2(o2)), ϕ,A1 ∪A2, V 〉, with

– ϕ((i′, j′))(z) = 1 iff there exists x′ ∈ [0, 1]k
′
1 and y′ ∈ [0, 1]k

′
2 such that

z(i′′,j′′) = x′i′′y
′
j′′ for all i′′, j′′, and there exists x ∈ [0, 1]k1 and y ∈ [0, 1]k2

such that x′ = α1(x), y′ = α2(y) and there exists i ∈ α−1
1 (i′) and j ∈ α−1

2 (j′)
such that ϕ1(i)(x) = ϕ2(j)(y) = 1.

– V ((i′, j′)) = {Q1 ∪Q2 | Q1 ∈ ∪i∈α−1
1 (i′)V1(i) and Q2 ∈ ∪j∈α−1

2 (j′)V2(j)}.

• (α1 × α2)(S1‖S2) = 〈{1, . . . , k′1} × {1, . . . , k′2}, (α1(o1), α2(o2)), ϕ′, A1 ∪ A2, V
′〉,

with

– ϕ′((i′, j′))(z′) = 1 iff there exists z ∈ [0, 1]k1×k2 such that z′ = (α1 × α2)(z)
and there exists (i, j) ∈ (α1 × α2)−1((i′, j′)) such that there exists x ∈
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[0, 1]k1 and y ∈ [0, 1]k2 such that zi′′,j′′ = xi′′yj′′ for all i′′, j′′ and ϕ1(i)(x) =
ϕ2(j)(y) = 1.

– V ′((i′, j′)) = ∪(i,j)∈(α1×α2)−1((i′,j′)){Q1 ×Q2 | Q1 ∈ V1(i) and Q2 ∈ V2(j)}.

Since, by construction, (α1 × α2)−1(i′, j′) = α−1
1 (i) × α−1

2 (j), both the constraint
functions ϕ and ϕ′ and the valuation functions V and V ′ are equivalent.

5.2 From CMCs to IMCs

One of the problems of CMCs is that the constraints obtained after composition may
be too complex to be efficiently handled by tools. A solution is to abstract those
constraints with intervals. This is done by an abstraction χ that builds an IMC χ(S)
from a given CMC S. Unlike the state abstraction, the constraint abstraction does not
merge states, but it simplifies the probability constraints.

Definition 14 (Constraint abstraction). Let S = 〈{1, . . . , k}, oS , ϕ,AS , VS〉 be a CMC
and let C ⊆ {1, . . . , k}. The constraint-abstracted CMC χ(S) = 〈{1, . . . , k}, oS , ϕ′, AS ,
VS〉 is defined such that for all 1 ≤ i ≤ k and y ∈ [0, 1]k,

ϕ′(i)(y1, . . . , yk) ≡
k∧

j=1

yj ∈ Iij ∧
k∑

j=1

yj = 1,

where Ii1, . . . , I
i
k are the smallest closed intervals such that ∀x ∈ [0, 1]k, ϕ(i)(x) ⇒∧k

j=1 xj ∈ Iij.

We now show that the constraint abstraction presented above is indeed an abstrac-
tion, i.e. for all CMC S, we have S � χ(S).

Theorem 7. Let S = 〈{1, . . . , k}, oS , ϕ,AS , VS〉 be a CMC. Then S � χ(S).

Proof. We define a relation R ⊆ {1, . . . , k} × {1, . . . , k} such that uR v ⇐⇒ u = v.
Consider such u and v. We show that R is a weak refinement relation.

1. By definition, we have VS(u) ⊆ VS(v).

2. Construct the matrix ∆ ∈ [0, 1]k×k as ∆ii′ = 1 if i = i′ and 0 otherwise. Observe
that ∆ is a correspondence matrix. Let x ∈ [0, 1]k such that ϕ(u)(x).

• Let i ∈ {1, . . . , k} be such that xi 6= 0. We have that i = i′ for exactly one
i′ ∈ {1, . . . , k}, so

∑k
j=1 ∆ij = 1.

• Since ∆ is the identity matrix, it holds that x∆ = x. Let 1 ≤ i ≤ k. By
definition, whenever ϕ(u)(x) holds, we have xi ∈ Iui , and thus xi ∈ Ivi . As a
consequence, ∀1 ≤ i ≤ k, we have xi ∈ Ivi . Thus ϕ′(v)(x) holds.

• Assume that for u′ ∈ {1, . . . , k} and v′ ∈ {1, . . . , k} that ∆u′v′ 6= 0. By
definition u′ = v′ and therefore u′R v′.
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1′
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[1, 1]
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[0, 0.64] [0.36, 1]

[1, 1]

Figure 9: The constraint-abstraction χ(α(S12)) of CMC α(S12).

Finally, since oSR oS , we conclude that R is a weak refinement relation.

Example 7. Continuing our running example, we observe that the constraints of CMC
α(S) in Figure 8 are quite complex. We propose to use constraint-abstraction in order
to produce a CMC χ(α(S12)) with simpler constraints using intervals. Such CMC is
given in Figure 9. Observe that the new intervals obtained in χ(α(S12)) ensure that the
probability of having at least one paper accepted will be greater than 36%.

We now show that χ characterizes the smallest IMC in single valuation normal form
that abstracts a deterministic CMC in single valuation normal form. Observe that this
results does not hold in general for non deterministic CMCs.

Theorem 8. Let S = 〈{1, . . . , k}, oS , ϕ,AS , VS〉 be a CMC. If S is deterministic and
in single valuation normal form, then χ(S) is the smallest IMC in single valuation
normal form abstracting S, i.e. for all IMCs S′ in single valuation normal form, such
that S � S′, it holds that χ(S) � S′.

Proof. Let S = 〈{1, . . . , k}, oS , ϕ,AS , VS〉 be a CMC and let S′ = 〈{1, . . . ,m}, oS′ , ϕS′ ,
AS′ , VS′〉 be an IMC, both in single valuation normal form. Assume that S is determin-
istic and that S � S′ holds. Let R ⊆ {1, . . . , k} × {1, . . . ,m} be the weak refinement
relation witnessing this. Let χ(S) = 〈{1, . . . , k}, oS , ϕ′, AS , V ′S〉.

Define the relation R′ := R. We show that R′ is a weak refinement relation between
χ(S) and S′.

Let u ∈ {1, . . . , k} and v ∈ {1, . . . ,m} be such that uR v. Let 1 ≤ i ≤ k and Ki

be the set of states j of S′ such that iR′ j. Formally, Ki = {j ∈ {1, . . . ,m} | iR′ j}.
Observe that since S is deterministic and S′ is in single valuation normal form, we
have Ki ∩ Ki′ = ∅ for all i 6= i′ such that there exist x and y ∈ [0, 1]k such that
ϕ(u)(x) = ϕ(u)(y) = 1 and xi > 0 and yi′ > 0 (A).

Let S′ui = [lui , u
u
i ], 1 ≤ i ≤ k be the intervals associated to u in χ(S) and let

[mv
j ,M

v
j ], 1 ≤ j ≤ m be the intervals associated to v in S′.

Let 1 ≤ i ≤ k and let xl,i ∈ [0, 1]k be such that ϕ(u)(xl,i) holds and xl,ii = lui . Such an
xl,i exists because of the definition of χ(S). Since uR v, there exists a correspondence
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matrix ∆l,i such that ϕS′(v)(xl,i∆l,i) holds. As a consequence, we have that

∀j /∈ Ki, ∆l,i
i,j = 0 (5)

∀i′ 6= i,∀j ∈ Ki, ∆l,i
i′j = 0 (6)

By R, we have that for all 1 ≤ i′ ≤ k,
∑

1≤j≤m x
l,i
i′ ∆

l,i
i′,j = xl,ii′ . In particular,

for i′ = i, we have that
∑

1≤j≤m x
l,i
i ∆l,i

i,j = xl,ii = lui . Thus, by (5), we have that
∑

j∈Ki
xl,ii ∆l,i

i,j = lui .

Moreover, since ϕS′(x
l,i∆l,i) holds, we have that for all 1 ≤ j ≤ m, [xl,i∆l,i]j ≥

mv
j . Thus,

∑
1≤i′≤k x

l,i
i′ ∆

l,i
i′,j ≥ mv

j . By (6), we thus obtain that for all j ∈ Ki,∑
1≤i′≤k x

l,i
i′ ∆

l,i
i′,j = xi∆

l,i
i,j ≥ mv

j . As a consequence, we have

lui ≥
∑

j∈Ki

mv
j .

Similarly, we obtain that for all 1 ≤ i ≤ k,
∑

j∈Ki

mv
j ≤ lui and uui ≤

∑

j∈Ki

Mv
j .

We now show that R′ is a weak refinement relation. Let u ∈ {1, . . . , k} and v ∈
{1, . . . ,m} be such that uR′ v.

1. Since uR v, we have that VS(u) ⊆ VS(v). By definition of χ(S), we thus have
V ′S(u) ⊆ VS(v).

2. Let x ∈ [0, 1]k be such that ϕ′(u)(x) holds, i.e. ∀1 ≤ i ≤ k, lui ≤ xi ≤ uui . We
define a correspondence matrix ∆′ as follows: for all 1 ≤ i ≤ k such that xi = 0,
let ∆′i,j = 0 for all j. Otherwise, define

∆′i,j =





1
xi

(
mv
j +

(Mv
j −mv

j )(xi−
∑

j′∈Ki
mv

j′ )∑
j′∈Ki

(Mv
j′−m

v
j′ )

)
if j ∈ Ki

0 otherwise

By definition, we have that whenever xi > 0,
∑m

j=1 ∆′i,j = 1. Let 1 ≤ j ≤ m. By

the observation (A) above, there exists at most one 1 ≤ ij ≤ k such that xij > 0
and j ∈ Ki. Consider y = x∆′. If there is no ij such that xij > 0, then it holds
that mv

j = 0 and mv
j ≤ yj ≤Mv

j .

Otherwise, by definition,

yj =

k∑

i=1

xi∆
′
i,j = xij∆

′
ij ,j = mv

j +
(Mv

j −mv
j )(xij −

∑
j′∈K

ij
mv
j′)∑

j′∈K
ij

(Mv
j′ −mv

j′)
.

Since
∑

j′∈K
ij
mv
j′ ≤ lu

ij
≤ xij , we have yj ≥ mv

j . Similarly, since xij ≤ uu
ij
≤∑

j′∈K
ij
Mv
j′ , we have yj ≤Mv

j .

As a consequence, ϕS′(v)(y) holds.
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(d) A MC I such that I |= χ(S) and
I 6|= S′.

Figure 10: A counter-example for Thm. 8 in the non-deterministic case

3. Finally, whenever ∆′i,j > 0, we have j ∈ Ki and as a consequence, iR′ j.

Since oSR oS′ , we have oSR′ oS′ and we conclude that R′ is a weak refinement
relation.

The above theorem holds for the case where CMC S is both deterministic and in sin-
gle valuation normal form. Otherwise χ(S) may not be the smallest IMC abstracting S.
Consider applying χ to the nondeterministic CMC S = 〈{1, 2, 3, 4, 5}, 1, ϕ, {a, b, c}, V 〉
given in Figure 10a. The result is the IMC χ(S) given in Figure 10b. Consider now
IMC S′, given in Figure 10c. S′ abstracts S by merging states 2 and 3 into a single
state 2′. It is easy to see that S � S′. However, χ(S) is not a refinement for S′. Indeed,
MC I, given in Figure 10d, is an implementation of χ(S) but not an implementation
of S′. As a consequence, χ(S) is not the smallest IMC abstracting S.

Contrary to state abstraction, constraint abstraction is not fully compositional.
This is not surprising as the composition of two Interval Markov Chains is not an
Interval Markov Chain. Formally:

Proposition 9. Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2,
ϕ2, A2, V2〉 be two CMCs with A1 ∩A2 = ∅. We have χ(S1) ‖ χ(S2) � χ(S1 ‖ S2).
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Proof. Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be
two CMCs with A1 ∩ A2 = ∅. Let S1 ‖ S2 = 〈{1, . . . , k1} × {1, . . . , k2}, (o1, o2),
ϕ‖, A1∪A2, V‖〉 be their parallel composition, and let ϕχ1 , ϕχ2 , ϕχ‖ and ϕχ denote respec-

tively the constraints of χ(S1), χ(S2), χ(S1 ‖ S2) and χ(S1) ‖ χ(S2). By construction,
it holds that (χ(S1) ‖ χ(S2)) and χ(S1 ‖ S2) have the exact same state-space, initial
states, atomic propositions and valuations. We now show that whatever solution of ϕχ

is a solution of ϕχ‖ .

Let (Iii′)i′∈{1,...,k1} be the intervals associated to state i in χ(S1). Similarly, let

(J jj′)j′∈{1,...,k2} and (L
(i,j)
(i′,j′))(i′,j′)∈{1,...,k1}×{1,...,k2} be the intervals associated respectively

to state j in χ(S2) and to state (i, j) in χ(S1 ‖ S2). Additionally, let Iii′ = [mI,i
i′ ,M

I,i
i′ ],

let J jj′ = [mJ,j
j′ ,M

J,j
j′ ] and let L

(i,j)
(i′,j′) = [m

L,(i,j)
(i′,j′) ,M

L,(i,j)
(i′,j′) ].

Consider two states i ∈ {1, . . . , k1} and j ∈ {1, . . . , k2}. By contradiction, we show that
for all transition vectors x ∈ [0, 1]k1 and y ∈ [0, 1]k2 such that ϕχ1 (i)(x) = ϕχ2 (y) = 1, it
holds that ϕχ‖ ((i, j))(z) = 1, with z ∈ [0, 1]k1×k2 such that z(i′,j′) = xi′yj′ .

Suppose that there exists x ∈ [0, 1]k1 and y ∈ [0, 1]k2 such that ϕχ1 (i)(x) = ϕχ2 (y) = 1
and ϕχ‖ ((i, j))(z) 6= 1, with z ∈ [0, 1]k1×k2 such that z(i′,j′) = xi′yj′ . As a consequence,

there must exist states i′ ∈ {1, . . . , k1} and j′ ∈ {1, . . . , k2} such that xi′yj′ /∈ L(i,j)
(i′,j′),

thus either xi′yj′ > M
L,(i,j)
(i′,j′) , or xi′yj′ < m

L,(i,j)
(i′,j′) .

Suppose that the former holds (the second case being similar). By the minimality
and convexity of Iii′ and J jj′ , for all constant ε > 0, there must exist x′ ∈ [0, 1]k1 and

y′ ∈ [0, 1]k2 such that ϕ1(i)(x′) = ϕ2(j)(y′) = 1 and (xi′ − x′i′) < ε and (yj′ − y′j′) <

ε. Consider ε =
(xi′yj′−M

L,(i,j)

(i′,j′) )

2 . It then holds that x′i′y
′
j′ > M

L,(i,j)
(i′,j′) . However, by

hypothesis, we have that the transition vector z′ ∈ [0, 1]k1×k2 such that z′(i′,j′) = x′i′y
′
j′

satisfies ϕ‖((i, j)). This contradicts the definition of L
(i,j)
(i′,j′).

As a consequence, we have that for all transition vectors x ∈ [0, 1]k1 and y ∈ [0, 1]k2

such that ϕχ1 (i)(x) = ϕχ2 (y) = 1, it holds that ϕχ‖ ((i, j))(z) = 1, with z ∈ [0, 1]k1×k2

such that z(i′,j′) = xi′yj′ . Thus the identity relation is a refinement relation between
(χ(S1) ‖ χ(S2)) and χ(S1 ‖ S2).

State abstraction and constraint abstraction cannot be compared. Consider CMC
S given in Figures 11a. Consider the state abstraction α grouping states 2 and 3 of
S. The result of applying this abstraction to S, α(S) is given in Figure 11b. The
constraint abstraction of S, χ(S), is given in Figure 11c. It is obvious that there is no
refinement relation between α(S) and χ(S). State 2′ of α(S) cannot refine states 2 or
3 of χ(S) as they disagree on valuations. On the other hand, state 1 of χ(S) cannot
refine state 1 of α(S) due to its constraints.

Example 8. Figure 12 summarizes the composition/abstraction process computing a
single CMC with interval constraints abstracting the composition of 4 independent re-
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x1
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x2 x3

{{i}}

{{a}}{{b}}
ϕ(1)(x) ≡ (x1 = 1) ∨ (x2 + x3 = 1)

(a) A CMC S.

1

2′

{{i}}

ϕ′(1)(y) ≡ (y1 = 1) ∨ (y2′ = 1)

{{a}{b}}

y2′

y1

(b) State abstraction α(S) of CMC
S

[0, 1]

1

32

[0, 1] [0, 1]

{{i}}

{{a}}{{b}}

(c) Constraint abstraction χ(S) of
CMC S

Figure 11: The two abstractions produce incomparable results

searchers. Observe that, without abstraction, the resulting CMC would have approxi-
mately 44 states.

6 Implementation of The APAC Tool

APAC is an implementation of the specification theory based on CMCs. APAC can
also handle the more recent formalism of Abstract Probabilistic Automata [64] that is
a specification theory for probabilistic automata [6].

6.1 APAC: introduction and functionality

The APAC tool is implemented in C# using the Z3 [112] SMT solver developed in Mi-
crosoft Research. We exploit the quantifier elimination algorithms for linear arithmetics
over real numbers implemented in Z3. Furthermore, we use the ANTLR Parser Gener-
ator for parsing the input files, as well as functionality for storing abstract syntax trees
for constraints. The tool is freely available at http://www.cs.aau.dk/~mikkelp/apac,
including documentation.
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Figure 12: Composition-abstraction process for the composition of 4 researchers.

The input given to APAC is a text file containing one or more definitions of CMCs
followed by a statement specifying the operations to be evaluated:

Name: S1;

AP:(l,m,n,o);

state 1:((l)): x[1]=0.0 && x[2]+x[3] >=7/10 && x[3]+x[4] >=2/10;

state 2:((m)): x[2]=1.0;

state 3:((n)): x[3]=1.0;

state 4:((o)): x[4]=1.0;

Name: S2;

AP:(l,m,n,o);

state 1:((l)): x[1]=0.0 && x[2]+x[3] >=7/10 && x[4]+x[5] >=2/10;

state 2:((m)): x[2]=1.0;

state 3:((n)): x[3]=1.0;

state 4:((n)): x[4]=1.0;

state 5:((o)): x[5]=1.0;

check: S1 wref S2; show S1; D(S1);

The above example defines CMCs S1 and S2 and, in the final line, requests checking
existence of a weak refinement relation between S1 and S2. Then S1 should be printed
to the console, and we check whether S1 is deterministic.
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All interaction with APAC is done through such statements. Table 3 defines the
syntax of the available operators. Variables not mentioned in constraints are free. For
example, in state 2 of S1, variables x[1], x[3], and x[4] are free. In this case, they are
effectively forced to equal zero, since all variables in the same probability distribution
need to sum up to 1.

The <set definition> (see Table 3) defines how the state space is partitioned for
the purpose of a state abstraction. For instance, for a CMC S1 with states {1, 2, 3, 4, 5},
one valid set definition is (1,2)(3,4,5), which leads to the result of the abstraction
having 2 states; one state corresponding to the grouping of 1 and 2, and one for the
grouping of 3, 4, and 5, respectively.

6.2 Algorithms in APAC

In the following we discuss the encoding of some operators in Z3. All the operations
that are not discussed here can be easily implemented by following their definitions;
with an exception for structural composition. This operation involves multiplication
and cannot be handled with Z3.

Refinement We first present a different, but equivalent, definition of weak refine-
ment. This is needed as the classical definition of weak refinement involves multiplica-
tion, which is not allowed by Z3.

Definition 15 (Weak Refinement). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 =
〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs with A2 ⊆ A1. The relation R ⊆ {1, . . . , k1} ×
{1, . . . , k2} is a weak refinement relation iff vRu implies:

1. V1(v)↓A2⊆ V2(u) and

2. For any distribution x ∈ [0, 1]k1 satisfying ϕ1(v)(x), there exists a matrix ∆ ∈
[0, 1]k1×k2 such that

• For all S1 states 1 ≤ i ≤ k1, xi =
∑k2

j=1 ∆ij;

• ϕ2(u)
(∑k1

j=1 ∆i1, . . . ,
∑k1

j=1 ∆ik2

)
holds and

• ∆v′u′ 6= 0⇒ v′Ru′.

CMC S1 (weakly) refines S2, written S1 � S2, iff o1R o2.

The computations proceeds by a coinductive iteration until a fixpoint is reached. See
Algorithm 1. The outer loop continues as long as changes in the relation are performed
(line 5). In each iteration the remaining pairs are considered, and a pair is removed if
it violates the requirement on valuations or the requirement on redistribution.

The requirement on valuations in line 3 is handled without using Z3. In lines 8–
11 we deliver to Z3 an encoding of the correspondence condition for the probability
distributions in the definitions of weak refinement. Since the corresponding formula is
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a sentence (has no free variables), the quantifier elimination algorithm will evaluate the
formula to a value of true or false.

If it turns out that the refinement between S1 and S2 does not hold, and S1 and S2

are deterministic, consistent, and are in single valuation normal form, APAC provides
a counterexample. The counterexample is a Markov chain P such that P |= S1 and
P 6|= S2. Since under these conditions S1 6� S2 is equivalent to [[S1]] 6⊆ [[S2]], such a
Markov chain is guaranteed to exists.

The algorithm for the counterexample generation relies on the following lemma,
which is a direct consequence of determinism and single valuation normal form [62]:

Lemma 10 ([62]). Let S = 〈{1, . . . , k}, o, ϕ,A, V 〉 and S′ = 〈{1, . . . , k′}, o′, ϕ′, A′, V ′〉
be deterministic CMCs in single valuation normal form such that S 6� S′. Let (i, j) ∈
{1, . . . , k}×{1, . . . , k′}. For all i′ ∈ {1, . . . , k}, there exists at most one j′ ∈ {1, . . . , k′}
such that V (i′) = V ′(j′) and there exists a distribution y ∈ [0, 1]k

′
such that ϕ′(j)(y)

and yj′ > 0.

In what follows, we use succ(i,j)(i
′) to define the unique state j′ introduced in the

previous lemma, if it exists, and ⊥ otherwise. During refinement checking, the tool
monitors, for each pair (i, j) if

1. (i, j) was removed from R because of a disagreement on sets of valuations,

2. (i, j) was removed from R because of a non-redistributable distribution π,

Algorithm 1: Checking Weak Refinement

Input : CMCs S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and
S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs with A2 ⊆ A1

Output: A weak refinement relation R that may contain (o1, o2)
1 R = {1, . . . , k1} × {1, . . . , k2};
2 foreach (i, j) ∈ R do
3 if V1(i)↓A2 6⊆ V2(j) then
4 remove (i, j) from R;

5 repeat
6 changed = false;
7 foreach (i, j) ∈ R do
8 if ¬(∀x∈ [0, 1]k1 :ϕ1(i)(x)⇒ ∃∆∈ [0, 1]k1×k2 :

9 ϕ2(j)
(∑k1

i=1 ∆i1, . . . ,
∑k1

i=1 ∆ik2

)
∧

10 ∀1 ≤ i′ ≤ k1 : xi =
∑k2

j′=1 ∆i′j′∧
11 ∀1 ≤ i′ ≤ k1,∀1 ≤ j′ ≤ k1 : ∆i′j′ 6= 0⇒ i′R j′) then
12 changed = true;
13 remove (i, j) from R;

14 until not changed;
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3. or (i, j) is still in the relation.

Let P = 〈Q, o,M,A, V 〉 be defined with

• Q = {1, . . . , k1} × ({1, . . . , k2} ∪ {⊥}),

• o = (o1, o2),

• For all (i, j) ∈ Q, V (i, j) = v for the unique v ∈ V1(i), and

• For all (i, j) ∈ Q, M is defined as follows:

For all i ∈ {1, . . . , k1}, let the distribution M(i,⊥) (a vector describing probabilities of
going from (i,⊥) to all the other states of Q) be defined as a distribution % such
that there exists π ∈ [0, 1]k1 , ϕ1(i)(π), and for all i′ ∈ {1, . . . , k1}, %((i′,⊥)) =
π(i′), and for all j′ ∈ {1, . . . , k2}, j′ 6= ⊥, %((i′, j′)) = 0.

For all (i, j) in case 1 above, the vector M(i,j) is defined as a distribution % such that

there exists π ∈ [0, 1]k1 , ϕ1(i)(π), and for all i′ ∈ {1, . . . , k1}, %((i′,⊥)) = π(i′),
and for all j′ ∈ {1, . . . , k2}, j′ 6= ⊥, %((i′, j′)) = 0.

For all (i, j) in case 2 above, there exists a distribution π ∈ [0, 1]k1 that can not
be redistributed. M(i,j) is then defined as the distribution % such that for all
i′ ∈ {1, . . . , k1} and j′ ∈ ({1, . . . , k2} ∪ {⊥}),

%((i′, j′)) =

{
π(i′) if succ(i,j)(i

′) = j′ (possibly ⊥)

0 otherwise.

For all (i, j) in case 3 above, M(i,j) is defined as a distribution % such that there exists

π ∈ [0, 1]k1 such that ϕ1(i)(π), and for all i′ ∈ {1, . . . , k1} and j′ ∈ ({1, . . . , k2} ∪
{⊥}),

%((i′, j′)) =

{
π(i′) if succ(i,j)(i

′) = j′ (j′ could be ⊥)

0 otherwise.

Example 9. Consider CMCs S1 and S2 given in Fig. 13a and Fig. 13b, respectively.
These CMCs are consistent, in single valuation normal form, and deterministic. More-
over, S1 6� S2 with R = {(2, 2′), (4, 4′), (5, 5′)} being the relation after termination of the
fixpoint loop of the weak refinement algorithm. The above witness generation algorithm
computes the MC P in Fig. 13c.

We now show that the above procedure indeed computes a witness for the absence
of weak refinement.

Theorem 11. Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2,
ϕ2, A2, V2〉 be consistent, deterministic CMCs in single valuation normal form, such that
S1 6� S2 and A2 ⊆ A1. For the MC P = 〈{1, . . . , k1} × ({1, . . . , k2} ∪ {⊥}), o,M,A, V 〉
generated by the above algorithm, it holds that P ∈ [[S1]] and P 6∈ [[S2]].
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Figure 13: Counterexample generation for refinement checking
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Proof. We prove the two claims separately.

P ∈ [[S1]] : This is evident using the satisfaction relation,

R = {((i, j), k) ⊆ ({1, . . . , k1} × ({1, . . . , k2} ∪ {⊥}))× {1, . . . , k1} | i = k}.

It is clear that (o, o1) ∈ R, since o = (o1, o2).

P 6∈ [[S2]] :

We prove by contradiction that P 6|= S2. Suppose that there exists a satisfaction
relation RS ⊆ ({1, . . . , k1}× ({1, . . . , k2}∪ {⊥}))×{1, . . . , k2} such that P |= S2.
Let R ⊆ {1, . . . , k1} × {1, . . . , k2} be the relation such that iR j iff. (i, j)RS j.
By definition, we have (o1, o2)RS o2, thus o1R o2. By hypothesis, we know that
S1 6� S2, so R cannot be a refinement relation between S1 and S2. Since o1R o2,
there must exist i ∈ {1, . . . , k1} and j ∈ {1, . . . , k2} such that iR j and the
conditions for a refinement relation between i and j are broken.

Recall that R is a refinement relation if iR j implies:

1. V1(i)↓A2⊆ V2(j) and

2. for any distribution π∈ [0, 1]k1 satisfying ϕ1(i)(π), there exists a correspon-
dence matrix ∆ ∈ [0, 1]k1×k2 such that

• for all S1 states 1 ≤ i′ ≤ k1, πi′ 6= 0 =⇒ ∑k2
j′=1 ∆i′j′ = 1;

• ϕ2(j)(π∆) holds and
• ∆i′j′ 6= 0⇒ i′R j′.

By definition of P , we have that V ((i, j)) ∈ V1(i) and |V1(i)| = 1. By RS , we
have that V ((i, j))↓A2∈ V2(j). Thus, since S2 is in single valuation normal form,
we have V1(i)↓A2= V2(j).

As a consequence, the second condition must not hold. Thus, there must exist
a vector π ∈ [0, 1]k1 such that ϕ1(i)(π) = 1 and for all correspondence matrices
∆ ∈ [0, 1]k1×k2 , at least one of the following conditions is broken:

(a) for all S1 states 1 ≤ i′ ≤ k1, πi′ 6= 0 =⇒ ∑k2
j′=1 ∆i′j′ = 1;

(b) ϕ2(j)(π∆) holds and

(c) ∆i′j′ 6= 0⇒ i′R j′.

We show that there exists a correspondence matrix ∆ such that all three condi-
tions hold, which leads to a contradiction and concludes the proof.

Since there must exist such a π we have by construction of P that M(i,j) = % such
that

%((i′, j′)) =

{
π(i′) if succ(i,j)(i

′) = j′

0 otherwise,

and %((i′,⊥)) = π(i′) if succ(i,j)(i
′) = ⊥.
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Moreover, by RS , there exists a correspondence matrix ∆S such that ϕ2(j)(%∆S)
= 1 and ∆S

(i′,j′),l′ > 0⇒ (i′, j′)RS l′.
By definition of the function succ(i,j), if there exists i′ ∈ {1, . . . , k1} such that

%(i′,⊥) > 0, then there is no state l′ ∈ {1, . . . , k2} such that [%∆S ]l′ > 0 and
V ((i′,⊥))↓A2∈ V2(l′). This breaks the definition of a satisfaction relation. Thus
for all i′, we have that %(i′,⊥) = 0.

Let ∆ ∈ [0, 1]k1×k2 be the correspondence matrix such that ∆i′,j′ = ∆S
(i′,j′),j′

if succ(i,j)(i
′) = j′ and 0 otherwise. Since %(i′,⊥) = 0 for all i′, we have that∑

1≤l′≤k2 ∆i′,l′

=
∑

1≤l′≤k2 ∆S
(i′,j′),l′ (∆S

(i′,j′),l′ must be 0 whenever l′ 6= succ(i,j)(i
′)). As a con-

sequence, whenever π(i′) > 0, we have
∑

1≤l′≤k2 ∆i′,l′ = 1 because of RS . Thus
condition (a) holds.

Moreover, by construction, we have that for all l ∈ {1, . . . , k2},

[π∆]l =
∑

1≤i′≤k1

π(i′)∆i′,l

=
∑

i′ | succ(i,j)(i′)=l

%(i′, l)∆S
(i′,l),l

=
∑

(i′,j′)∈{1,...,k1}×({1,...,k2}∪{⊥})

%(i′, j′)∆S
(i′,j′),l

= [%∆S ]l

Thus π∆ = %∆S and ϕ2(j)(π∆) = 1. As a consequence, condition (b) holds.

Finally, let i′ ∈ {1, . . . , k1} and j′ ∈ {1, . . . , k2} be states such that ∆i′,j′ > 0.
By construction, ∆i′,j′ = ∆S

(i′,j′),j′ , thus ∆S
(i′,j′),j′ > 0, and we obtain by RS that

(i′, j′)RS j′. As a consequence, i′R j′ and condition (c) holds.

Checking Determinism First we construct values vi′j′ for (i′, j′) ∈ {1, . . . , k1} ×
{1, . . . , k2} and i′ 6= j′, such that

∀i′, j′ : i′ 6= j′ ∧ V1(i′) ∩ V1(j′) 6= ∅ ⇒ vi′j′ = 0 ∧ (7)

∀i′, j′ : i′ 6= j′ ∧ V1(i′) ∩ V1(j′) = ∅ ⇒ vi′j′ = 1. (8)

The equation passed to Z3 is given hereafter:

∀x, y∈ [0, 1]k1 : ϕ1(i)(x) ∧ ϕ1(i)(y)⇒ (9)

∀(i′, j′) ∈ {1, . . . , k1} × {1, . . . , k2}, i′ 6= j′∃vi′j′ : (10)

the values satisfy Eq. (7)–(8) ∧
∀i′, j′ :

[
i′ 6= j′ ∧ xi′ > 0 ∧ yj′ > 0

]
⇒ vi′j′ = 1.
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Computing The Constraint Abstraction We first remark that the state abstrac-
tion can be implemented by directly following definition, without relying on Z3. We
thus do not discuss this part of the implementation. Rather, we focus on constraint
abstraction that we introduced in Section 5.2. Let S = 〈{1, . . . , k}, o,ϕ,A, V 〉 be a
deterministic CMC in single valuation normal form. The tool is capable of computing
the constraint abstraction, χ(S) = 〈{1, . . . , k}, o, ϕ′, A, V 〉 for S. In order to compute
ϕ′(i), the tool has to compute the lower lj and upper uj bounds of the interval labeling
each transition to a successor state j ∈ {1, . . . , k}. This is done by passing the following
equation to Z3:

∀1 ≤ j ≤ k : (0 ≤ lj ≤ uj ≤ 1)∧
(
∀x ∈ [0, 1]k : ϕ(i)(x)⇒ ∀1 ≤ j ≤ k : lj ≤ xj ≤ uj

)
∧

∀(l′1, u′1, . . . , l′k, u′k) ∈ [0, 1]k :
[ ((
∀x ∈ [0, 1]k : ϕ(i)(x)⇒ ∀1 ≤ j ≤ k : l′j ≤ xj ≤ u′j

)
∧

(∀1 ≤ j ≤ k : 0 ≤ lj ≤ uj ≤ 1))⇒
(
∀1 ≤ j ≤ k : l′j ≤ lj ∧ uj ≤ u′j

) ]
.

Notice that the lj ’s and uj ’s are not quantified, and are thus free. Using the above
equations, unique values for lj and uj can be computed. This is done by using the
model generation functionality and quantifier elimination, both provided by Z3. The
constraint ϕ′(i) is thus defined to be

ϕ′(i)(x) ≡
k∧

j=1

xj ∈ [lj , uj ] ∧
k∑

j=1

xj = 1. (11)

7 Experiments

We performed experiments on randomly generated CMCs. For generating those CMCs,
we first define simple and elaborated constraints for any state i. Given i, we define the
transitions to the successor states i + 1 and i + 2 as follows (transitions to successors
that are not mentioned are unconstrained)

• simple:

– xi+1 ≥ 7/10 ∧ xi+2 ≤ 3/10,

– xi+1 = 7/10 ∧ xi+2 = 3/10, and

– xi+1 = 1.0

• more elaborate:

– xi+1 ≥ 3/10 ∧ xi+1 ≤ 4/10,
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– true, and

– xi+1 = 1.0 ∨ (xi+1 ≥ 7/10 ∧ xi+2 ≤ 3/10)

Given a number of states, and whether or not we are interested in simple or more
elaborate constraints, we generate an atomic proposition alphabet A on 5–10 members
each, state valuations consisting of up to 0–4 members of 2A, and a random choice
between constraint designs for each transition.

Tables 4, 5, 6, 7, and 8 illustrate the execution times for different operations. The
tests are performed on an Intel Core 2 Duo 2.2 GHz with 4 GB RAM running Windows
7 x64, using version 2.18 of the Z3 API. Three execution times are reported, as the
experiment was repeated three times, with different randomly generated instances. A
question mark (?) means that the specific random input file did not stop executing
within 5 minutes.

Regarding abstraction, we made a test of abstraction from a CMC with 500 states
to CMCs with 5, 50, and 100 states, respectively. Given a number a of abstract states,
we define the state abstraction function αa as follows:

αa :





{
1, . . . , 500

a

}
7→ 1{

500
a + 1, . . . , 500·2

a

}
7→ 2

. . .{
500(a−1)

a + 1, . . . , 500·a
a

}
7→ a

As one can see in Table 6, computation time increases linearly with precision (i.e.,
with the number of states of the abstraction). Finally, Table 7 proposes some results
for abstraction by IMCs.

8 Related Work and Concluding Remarks

In [63], we have presented CMCs—a new model for representing a possibly infinite fam-
ily of MCs. Unlike the previous attempts [46, 48], our model is closed under many design
operations, including composition and conjunction. We have studied these operations
as well as several classical compositional reasoning properties, showing that, among
others, the CMC specification theory is equipped with a complete refinement relation
(for deterministic specifications), which naturally interacts with parallel composition,
synchronization and conjunction. We have also demonstrated how our framework can
be used to obtain properties for less expressive languages, by using reductions.

This paper proposes new results for CMCs: (1) the first proof that IMCs are not
closed under conjunction, which establish CMCs as a leading behavioural specification
for stochastic systems, (2) a series of abstraction techniques to ease the computation
process, and (3) the first tool for CMCs. Our tool relies on an encoding of all the
operations within the formalism of the Z3 solver.

Two recent contributions [48, 49] are related to our work. Fecher et al. [48] propose a
model checking procedure for PCTL [98] and Interval Markov Chains (other procedures
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recently appear in [77, 78]), which is based on weak refinement. However, our objective
is not to use CMCs within a model checking procedure for probabilistic systems, but
rather as a specification theory.

Recently Katoen and coauthors [49] have extended Fecher’s work to Interactive
Markov Chains, a model for performance evaluation [99, 100]. Their abstraction uses
the continuous time version of IMCs [47] augmented with may and must transitions,
very much in the spirit of [42].

Over the years process algebraic frameworks have been proposed for describing and
analyzing probabilistic systems based on Markov Chains (MCs) and Markov Decision
Processes [29, 68, 92]. Also a variety of probabilistic logics have been developed for
expressing properties of such systems, e.g., PCTL [18]. Both traditions support refine-
ment between specifications using various notions of probabilistic simulation [46, 48]
and, respectively, logical entailment [101]. Whereas the process algebraic approach
favors structural composition (parallel composition), the logical approach favors logi-
cal composition (conjunction). Neither of the two supports both structural and logical
composition.

Future work As a future work, we would also like to define a quotient relation for
CMCs, presumably building on results presented in [103]. The quotienting operation is
of particular importance for component reuse. One could also investigate applicability
of our approach in model checking procedures, in the same style as Fecher and coauthors
have used IMCs for model checking PCTL [48] or by extending the stochastic version of
Hennessy-Milner logic [16]. Finally, it would be interesting to extend our composition
operation by considering products of dependent probability distributions in the spirit of
[110]. Of course, before doing so, our first objective is to improve our implementation.
Our very first step will be to consider other solvers such as the computer algebra system
Maple [114] in order to perform composition automatically. We shall also implement
heuristics to reduce computation time [115].
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Table 3: Operators implemented in the tool

Code Meaning

S1 wref S2 Decide if S1 weakly refines S2

show S1 Print S1 to the console

D(S1) Decide if S1 is deterministic

beta*(S1) The pruned version of S1

N(S1) The normalized version of S1

S1 and S2 The conjunction of S1 and S2

C(S1) Decide if S1 is consistent

alpha(S1,<set definition>) The state abstraction of S1

chi(S1) The constraint abstraction of S1

Table 4: Weak refinement

CMC 1 CMC 2

states simple states simple time

10 yes 10 yes 6/297/8718 ms

10 no 10 yes 6/1760/3897 ms

10 yes 10 no 40/135/14967 ms

10 no 10 no 1201/7459/? ms

15 yes 15 yes 59467/?/? ms

CMC

states simple time

10 yes 42/51/56 ms

10 no 42/46/308 ms

15 yes 162/2360/2364 ms

15 no 317/2314/2348 ms

Table 5: Determinism
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CMC

states abtract states simple time

500 5 yes 1981/2936/5533 ms

500 5 no 1924/2608/5900 ms

500 50 yes 11521/11556/11575 ms

500 50 no 11152/11281/11350 ms

500 100 yes 25192/26217/26625 ms

500 100 no 26031/26234/26444 ms

Table 6: State abstraction

CMC

states simple time

3 yes 160/214/236 ms

3 no 184/192/193 ms

5 yes 414/423/979 ms

5 no 718/735/831 ms

Table 7: Constraint abstraction

CMC

states simple time

10 yes 173/181/196 ms

10 no 31/46/87 ms

15 yes 187/511/1871 ms

15 no 83/110/119 ms

Table 8: Consistency
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1 Abstract

Probabilistic Automata (PAs) are a widely-recognized mathematical framework for the
specification and analysis of systems with non-deterministic and stochastic behaviors.
This paper proposes Abstract Probabilistic Automata (APAs), that is a novel abstrac-
tion model for PAs. In APAs uncertainty of the non-deterministic choices is modeled
by may/must modalities on transitions while uncertainty of the stochastic behaviour
is expressed by (underspecified) stochastic constraints. We have developed a complete
abstraction theory for PAs, and also propose the first specification theory for them.
Our theory supports both satisfaction and refinement operators, together with clas-
sical stepwise design operators. In addition, we study the link between specification
theories and abstraction in avoiding the state-space explosion problem.
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2 Introduction

Probabilistic Automata (PAs) constitute a mathematical framework for the specifica-
tion and analysis of non-deterministic probabilistic systems. They have been developed
by Segala [52] to model and analyze asynchronous, concurrent systems with discrete
probabilistic choice in a formal and precise way. PAs are akin to Markov decision pro-
cesses (MDPs). A detailed comparison with models such as MDPs, as well as generative
and reactive probabilistic transition systems is given in [116]. PAs are recognized as
an adequate formalism for randomized distributed algorithms and fault tolerant sys-
tems. They are used as semantic model for formalisms such as probabilistic process
algebra [117] and a probabilistic variant of Harel’s statecharts [118]. An input-output
version of PAs is the basis of PIOA and variants thereof [119, 120]. PAs have been
enriched with notions such as weak and strong (bi)simulations [52], decision algorithms
for these notions [121] and a statistical testing theory [122]. This paper brings two new
contributions to the field of probabilistic automata: the theories of abstraction and of
specification.

Abstraction is pivotal to combating the state explosion problem in the modeling
and verification of realistic systems such as randomized distributed algorithms. It aims
at model reduction by collapsing sets of concrete states to abstract states, e.g., by
partitioning the concrete state space. This paper presents a three-valued abstraction of
PAs. The main design principle of our model, named Abstract Probabilistic Automata
(APAs), is to abstract sets of distributions by constraint functions. This generalizes
earlier work on interval-based abstraction of probabilistic systems [46, 47, 48]. To
abstract from action transitions, we introduce may and must modalities in the spirit
of modal transition systems [35]. If all states in a partition p have a must-transition on
action a to some state in partition p′, the abstraction yields a must-transition between
p and p′. If some of the p-states have no such transition while others do, it gives rise to
a may-transition between p and p′. Our model shall be viewed as a combination of both
Modal Automata [42] and Constraint Markov Chains (CMC) [63] that are abstractions
for transition systems and Markov Chains, respectively.

We also propose the first specification theory for PAs, equipped with all essential
ingredients of a compositional design methodology: a satisfaction relation (to decide
whether a PA is an implementation of an APA), a consistency check (to decide whether
the specification admits an implementation), a refinement (to compare specifications
in terms of inclusion of sets of implementations), logical composition (to compute the
intersection of sets of implementations), and structural composition (to combine spec-
ifications). Our framework also supports incremental design [91]. To the best of our
knowledge, the theory of APAs is the first specification theory for PAs in where both
logical and structural compositions can be computed within the same framework.

Our notions of refinement and satisfaction are, as usual, characterized in terms of
inclusion of sets of implementations. One of our main theorems shows that for the class
of deterministic APAs, refinement coincides with inclusion of sets of implementations.
This latter result is obtained by a reduction from APAs to CMCs, for which a similar
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result holds. Hence, APAs can also be viewed as a specification theory for Markov
Chains (MCs). The model is as expressive as CMCs, and hence more expressive than
other theories for stochastic systems such as Interval Markov Chains [46, 48, 61].

Our last contribution is to propose an abstraction-based methodology that allows
to simplify the behavior of APAs with respect to the refinement relation – such an
operation is crucial to avoid state-space explosion. We show that our abstraction pre-
serves weak refinement, and that weak refinement is a pre-congruence with respect to
parallel composition. These results provide the key ingredients to allow compositional
abstraction of PAs.

Organisation of the paper. In Section 3, we introduce the concepts of APAs and
a satisfaction relation with respect to PAs. We also propose a methodology to de-
cide whether an APA is consistent. Refinement relations and abstraction of APAs are
discussed in Section 4. Other compositional reasoning operators such as conjunction
and composition as well as their relation with abstraction are presented in Section 5.
Section 6 discusses the relation between CMCs and APAs and proposes a class of de-
terministic APAs for which strong and weak refinements coincide with inclusion of sets
of implementations. Finally, Section 7 concludes the paper and proposes directions for
future research. Due to space limitation, proofs and larger examples are given in a long
version of this paper [123].

3 Specifications and Implementations

We now introduce the main models of the paper: first Probabilistic Automata, and then
the new abstraction—Abstract Probabilistic Automata.

Implementations. A PA [52] resembles a non-deterministic automaton, but its tran-
sitions target probability distributions over states instead of single states. Hence, PAs
can be seen as a combination of Markov Chains and non-deterministic automata or as
Markov Decision Processes allowing non-determinism.

Definition 1. (Probabilistic automata) A probabilistic automaton is a tuple (S,A,
L,AP, V, s0), where:

• S is a finite set of states with initial state s0 ∈ S,

• A is a finite set of actions,

• L: S ×A×Dist(S)→ B2 is a two-valued transition function,

• AP is a finite set of valuations, and

• V : S → 2AP is a state-labeling function.
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to space limitation, proofs and larger examples are given in a long version of this
paper [?].

2 Specifications and Implementations

We now introduce the main models of the paper: first Probabilistic Automata,
and then the new abstraction—Abstract Probabilistic Automata.

Implementations. A PA [?] resembles a non-deterministic automaton, but its
transitions target probability distributions over states instead of single states.
Hence, PAs can be seen as a combination of Markov Chains and non-deterministic
automata or as Markov Decision Processes allowing non-determinism.

Definition 1. (Probabilistic automata) A probabilistic automaton is a tuple
(S,A, L,AP, V, s0), where:

– S is a finite set of states with initial state s0 ∈ S,
– A is a finite set of actions,
– L: S ×A×Dist(S) → B2 is a two-valued transition function,
– AP is a finite set of valuations, and
– V : S → 2AP is a state-labeling function.

s0

{p}

s2

{o} {m,n}

s1

a, 9/10

a, 1/10

a, 7/10

a, 3/10 c, 1

c, 1

s3

{m,n, o}

b, 6/10

b, 4/10 c, 1

Fig. 1: An example PA

Here B2 = {⊥,⊤}, with ⊥ < ⊤. L(s, a, µ) iden-
tifies the transition of the automaton: ⊤ indi-
cates its presence and ⊥ indicates its absence.
We write s

a→ µ meaning L(s, a, µ) = ⊤. In the
rest of the paper, we assume that PAs are finitely
branching, i.e., for any state s, the number of
pairs (a, µ) such that s

a→ µ is finite. The la-
beling function V indicates the propositions (or
properties) that are valid in a state. A Markov
Chain (MC) is a PA, where, for each s ∈ S,
there exists exactly one triple (s, a, µ) such that
L(s, a, µ) = ⊤.

Example 1. Figure ?? presents a PA with L(s0, a, µ) = ⊤, where µ(s0) = 3/10
and µ(s2) = 7/10. We adopt a notational convention that represents L(s0, a, µ) =
⊤ by a set of arrows with tails located close to each other on the boundary of
s0, and heads targeting the states in the support of µ.
In state s0, a non-deterministic choice takes places on action a between the

distributions µ and µ′ with µ′(s0) = 1/10 and µ′(s1) = 9/10.

Specifications. A Constraint Markov Chain (CMC) [?] is a MC equipped with
a constraint on the next-state probabilities from any state. Roughly speaking,
an implementation for a CMC is thus a MC, whose next-state probability dis-
tribution satisfies the constraint associated with each state. Let Sat(ϕ) denote

3

Figure 1: An example PA

Here B2 = {⊥,>}, with ⊥ < >. L(s, a, µ) identifies the transition of the automaton: >
indicates its presence and ⊥ indicates its absence. We write s

a→ µ meaning L(s, a, µ) =
>. In the rest of the paper, we assume that PAs are finitely branching, i.e., for any
state s, the number of pairs (a, µ) such that s

a→ µ is finite. The labeling function V
indicates the propositions (or properties) that are valid in a state. A Markov Chain
(MC) is a PA, where, for each s ∈ S, there exists exactly one triple (s, a, µ) such that
L(s, a, µ) = >.

Example 1. Figure 1 presents a PA with L(s0, a, µ) = >, where µ(s0) = 3/10 and
µ(s2) = 7/10. We adopt a notational convention that represents L(s0, a, µ) = > by a
set of arrows with tails located close to each other on the boundary of s0, and heads
targeting the states in the support of µ.

In state s0, a non-deterministic choice takes places on action a between the distri-
butions µ and µ′ with µ′(s0) = 1/10 and µ′(s1) = 9/10.

Specifications. A Constraint Markov Chain (CMC) [63] is a MC equipped with a
constraint on the next-state probabilities from any state. Roughly speaking, an imple-
mentation for a CMC is thus a MC, whose next-state probability distribution satisfies
the constraint associated with each state. Let Sat(ϕ) denote the set of distributions
that satisfy constraint function ϕ, and C(S) the set of constraint functions defined on
state space S.

A Modal Automaton [35, 124] is an automaton whose transitions are typed with
may and must modalities. Informally, a must transition is available in every model of
the specification, while a may transition needs not be.

An Abstract Probabilistic Automaton (APA) is an abstraction that represents a pos-
sibly infinite set of PAs. APAs combine Modal Automata and CMCs – the abstractions
for labelled transition systems and Markov Chains, respectively.

Definition 2. An abstract PA is a tuple (S,A,L,AP, V, s0) such that:
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the set of distributions that satisfy constraint function ϕ, and C(S) the set of
constraint functions defined on state space S.
A Modal Automaton [?,?] is an automaton whose transitions are typed with

may and must modalities. Informally, a must transition is available in every
model of the specification, while a may transition needs not be.
An Abstract Probabilistic Automaton (APA) is an abstraction that represents

a possibly infinite set of PAs. APAs combine Modal Automata and CMCs – the
abstractions for labelled transition systems and Markov Chains, respectively.

Definition 2. An abstract PA is a tuple (S,A, L,AP, V, s0) such that:

– S, A, AP and s0 are defined as before

– L : S ×A× C(S) −→ B3 is a three-valued state-constraint function, and

– V : S −→ 22AP

maps a state onto a set of admissible valuations.

Here, B3 = {⊥, ?,⊤} denotes a complete lattice with the following ordering
⊥ < ? < ⊤ and meet (⊓) and join (⊔) operators. A CMC is thus an APA, where
for each s ∈ S, there exists exactly one triple (s, a, ϕ) such that L(s, a, µ) = ⊤,
while an Interval Markov Chain (IMC) [?] is a CMC whose constraints are dis-
junctions of intervals. The labeling L(s, a, ϕ) identifies the “type” of the con-
straint function ϕ ∈ C(S): ⊤, ? and ⊥ indicate a must, a may and the absence
of a constraint function, respectively. We could have limited ourselves to con-
straints denoting unions of intervals of probability values. However, as we shall
soon see, polynomial constraints are needed to support both conjunction and
parallel composition. Like for CMCs, states of an APA are labeled with a set
of subsets of atomic propositions. A single set of propositions represents prop-
erties that should be satisfied by an implementation state. A powerset models a
disjunctive choice of properties. Later, we shall see that any APA whose states
are labelled with a set of subsets of atomic propositions can be turned into an
equivalent (in the sense of implementations set) APA whose states are labeled
with a set that contains only a single subset of AP .

s0

{{p}}

s2

{{o}} {{m,n} , {o, n}}

s1

a, x1,⊤

a, x0,⊤

a, y2, ?
a, y0, ? c, 1,⊤

c, 1,⊤

s3

{{m,n, o}}

b, z3, ?
b, z0, ?

c, 1,⊤

ϕx ≡ x1 ≥ 0.9 ∧ x0 + x1 = 1

ϕy ≡ y2 ≤ 0.8 ∧ y0 + y2 = 1

ϕz ≡ z3 ≥ 0.5 ∧ z0 + z3 = 1

Fig. 2: An example APA

Finally, observe that a PA is an APA in
which every transition (s, a, µ) is represented by
a must-transition (s, a, ϕ) with Sat(ϕ) = {µ},
and each state-label consists of a single set of
propositions.

Example 2. Consider the APA N given in Fig-
ure ??. State s0 has three outgoing transitions: a
must a-transition (s0, a, ϕx), a may a-transition
(s0, a, ϕy), and a may b-transition (s0, b, ϕz).
Due to the constraint, each of these transitions
can cover several transitions in a concrete imple-
mentation PA. As an example, the a-transition
(s0, a, (1/10, 9/10, 0, 0)) of the PA given in Figure
?? is satisfying the must a-transition (s0, a, ϕx).
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Figure 2: An example APA

• S, A, AP and s0 are defined as before

• L : S ×A× C(S) −→ B3 is a three-valued state-constraint function, and

• V : S −→ 22AP
maps a state onto a set of admissible valuations.

Here, B3 = {⊥, ?,>} denotes a complete lattice with the following ordering ⊥ <
? < > and meet (u) and join (t) operators. A CMC is thus an APA, where for each
s ∈ S, there exists exactly one triple (s, a, ϕ) such that L(s, a, µ) = >, while an Interval
Markov Chain (IMC) [46] is a CMC whose constraints are disjunctions of intervals. The
labeling L(s, a, ϕ) identifies the “type” of the constraint function ϕ ∈ C(S): >, ? and
⊥ indicate a must, a may and the absence of a constraint function, respectively. We
could have limited ourselves to constraints denoting unions of intervals of probability
values. However, as we shall soon see, polynomial constraints are needed to support both
conjunction and parallel composition. Like for CMCs, states of an APA are labeled
with a set of subsets of atomic propositions. A single set of propositions represents
properties that should be satisfied by an implementation state. A powerset models a
disjunctive choice of properties. Later, we shall see that any APA whose states are
labelled with a set of subsets of atomic propositions can be turned into an equivalent
(in the sense of implementations set) APA whose states are labeled with a set that
contains only a single subset of AP .

Finally, observe that a PA is an APA in which every transition (s, a, µ) is represented
by a must-transition (s, a, ϕ) with Sat(ϕ) = {µ}, and each state-label consists of a single
set of propositions.

Example 2. Consider the APA N given in Figure 2. State s0 has three outgoing
transitions: a must a-transition (s0, a, ϕx), a may a-transition (s0, a, ϕy), and a may
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b-transition (s0, b, ϕz). Due to the constraint, each of these transitions can cover sev-
eral transitions in a concrete implementation PA. As an example, the a-transition
(s0, a, (1/10, 9/10, 0, 0)) of the PA given in Figure 1 is satisfying the must a-transition
(s0, a, ϕx).

In the rest of the paper we distinguish deterministic APAs. The distinction will
be of particular importance when comparing APAs in Section 4.1. In APAs, the non-
determinism can arise due to sets of valuations in states, or due to actions that label
transitions:

Definition 3 (Deterministic APA). An APA N = (S,A,L,AP, V, s0) is

• action-deterministic, if ∀s∈S.∀a∈A. |{ϕ ∈ C(S) | L(s, a, ϕ) 6= ⊥}| ≤ 1.

• valuation-deterministic, if ∀s∈S.∀a∈A.∀ϕ∈C(S) with L(s, a, ϕ) 6= ⊥:

∀µ′, µ′′ ∈ Sat(ϕ), s′, s′′ ∈ S,
(
µ′(s′) > 0 ∧ µ′′(s′′) > 0 ⇒ V (s′) ∩ V (s′′) = ∅

)
.

N is deterministic iff it is both action-deterministic and valuation-deterministic.

Satisfaction. We relate APA specifications to PAs implementing them, by extending
the definitions of satisfaction introduced in [46]. We start with the following definition
that relates distributions between set of states. We use Dist(S) to denote a set of
probability distributions on the finite set S in the usual way.

Definition 4. (bδR) Let S and S′ be non-empty sets of states. Given µ ∈ Dist(S),
µ′ ∈ Dist(S′), a function δ : S → (S′→ [0, 1]), and a binary relation R ⊆ S × S′, µ is
simulated by µ′ with respect to R and δ, denoted as µ bδR µ

′, iff

1. for all s ∈ S, if µ(s) > 0, then δ(s) is a distribution on S′,

2. for all s′ ∈ S′, ∑s∈S µ(s) · δ(s)(s′) = µ′(s′), and

3. if δ(s)(s′) > 0, then (s, s′) ∈ R.

In the rest of the paper, we write µ bR µ′ iff there exists a function δ such that µ bδR µ
′.

Such δ is called a correspondence function.

We are now ready to define the satisfaction relation between PAs and APAs.

Definition 5. (Satisfaction relation) Let P = (S,A,L,AP, V, s0) be a PA and N =
(S′, A, L′, AP, V ′, s′0) be an APA. R ⊆ S × S′ is a satisfaction relation iff, for any
(s, s′) ∈ R, the following conditions hold:

1. ∀a ∈ A,∀ϕ′ ∈ C(S′) : L′(s′, a, ϕ′) = > =⇒ ∃µ ∈ Dist(S) : L(s, a, µ) = > and
∃µ′ ∈ Sat(ϕ′) such that µ bR µ′,
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2. ∀a ∈ A, ∀µ ∈ Dist(S) : L(s, a, µ) = > =⇒ ∃ϕ′ ∈ C(S′) : L′(s′, a, ϕ′) 6= ⊥ and
∃µ′ ∈ Sat(ϕ′) such that µ bR µ′, and

3. V (s) ∈ V ′(s′).

We say that P satisfies N , denoted P |= N , iff there exists a satisfaction relation
relating s0 and s′0. If P |= N , P is called an implementation of N .

Thus, a PA P is an implementation of an APA N iff any must-transition of N is
matched by a must-transition of P that agrees on the probability distributions specified
by the constraint, and reversely, P does not contain must-transitions that do not have
a corresponding (may- or must-) transition in N . The set of all implementations of N
is given by JNK = {P | P |= N}.
Example 3. The relation R = {(s0, s0), (s1, s1), (s2, s2), (s3, s3)} is a satisfaction rela-
tion between the PA P given in Figure 1 and the APA N of Figure 2.

Consistency. An APA N is consistent iff it admits at least one implementation. We
say that a state s is consistent if V (s) 6= ∅ and L(s, a, ϕ) => =⇒ Sat(ϕ) 6= ∅. An
APA is locally consistent if all its states are consistent. It is easy to see that a locally
consistent APA is also consistent, i.e. has at least one implementation. However,
inconsistency of a state does not imply inconsistency of the specification. In order
to decide whether a specification is consistent, we proceed as usual and propagate
inconsistent states with the help of a pruning operator β that filters out distributions
leading to inconsistent states. This operator is applied until a fixed point is reached,
i.e., until the specification does not contain inconsistent states (it is locally consistent).
See [123] for details.

Theorem 1. For any APA N , it holds: JNK = Jβ(N)K.

As the set of states of N is finite, the fixed point computation will always terminate.
By the above theorem, we have that JNK = Jβ∗(N)K.

4 Abstraction and Refinement

In this section we introduce Refinement that allows to compare APAs. We also propose
an abstraction-based methodology that permits to simplify the behavior of APAs with
respect to the refinement relation.

4.1 Refinement

A refinement compares APAs with respect to their sets of implementations. More
precisely, if APA N refines APA N ′, then the set of implementations of N should
be included in the one of N ′. The ultimate refinement relation that can be defined
between APAs is thus Thorough Refinement that exactly corresponds to inclusion of
sets of implementations.
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Definition 6. (Thorough refinement) Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A,
L′, AP, V ′, s′0) be APAs. We say that N thoroughly refines N ′, denoted N �T N ′, iff
JNK ⊆ JN ′K.

For most specification theories, it is known that deciding thorough refinement is
computationally intensive (see for example [43]). For many models such as Modal au-
tomata or CMCs, one can partially avoid the problem by working with a syntactical
notion of refinement. This definition, which is typically strictly stronger than thorough
refinement, is easier to check. The difference between syntactic and semantic refine-
ments resembles the difference between simulations and trace inclusion for transition
systems.

We consider two syntactical refinements. These relations extend two well known re-
finement relations for CMCs and IMCs by combining them with the refinement defined
on modal automata. We start with the strong refinement.

Definition 7. (Strong refinement) Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′,
AP, V ′, s′0) be APAs. R ⊆ S × S′ is a strong refinement relation iff, for all (s, s′) ∈ R,
the following conditions hold:

1. ∀a∈A.∀ϕ′∈C(S′). L′(s′, a, ϕ′)=> =⇒ ∃ϕ∈C(S). L(s, a, ϕ) = > and there exists
a correspondence function δ : S → (S′ → [0, 1]) such that ∀µ ∈ Sat(ϕ).∃µ′ ∈
Sat(ϕ′) with µ bδR µ

′,

2. ∀a ∈ A.∀ϕ ∈ C(S). L(s, a, ϕ) 6= ⊥ =⇒ ∃ϕ′ ∈ C(S′). L′(s′, a, ϕ′) 6= ⊥ and there
exists a correspondence function δ : S → (S′ → [0, 1]) such that ∀µ∈Sat(ϕ). ∃µ′∈
Sat(ϕ′) with µ bδR µ

′, and

3. V (s) ⊆ V ′(s′).

We say that N strongly refines N ′, denoted N �S N ′, iff there exists a strong refinement
relation relating s0 and s′0.

Observe that strong refinement imposes a “fixed-in-advance” δ in the simulation
relation between distributions. This assumption is lifted with the definition of weak
refinement:

Definition 8. (Weak refinement) Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′,
AP, V ′, s′0) be APAs. R ⊆ S × S′ is a weak refinement relation iff, for all (s, s′) ∈ R,
the following conditions hold:

1. ∀a ∈ A.∀ϕ′ ∈ C(S′). L′(s′, a, ϕ′) = > =⇒ ∃ϕ ∈ C(S). L(s, a, ϕ) = > and ∀µ ∈
Sat(ϕ).∃µ′∈Sat(ϕ′) with µ bR µ′,

2. ∀a ∈ A. ∀ϕ ∈ C(S). L(s, a, ϕ) 6= ⊥ =⇒ ∃ϕ′ ∈ C(S′). L′(s′, a, ϕ′) 6= ⊥ and ∀µ ∈
Sat(ϕ).∃µ′∈Sat(ϕ′) with µ bR µ′, and

3. V (s) ⊆ V ′(s′).
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Figure 3: APAs N1 and N2 such that N1 � N2, but not N1 �S N2.

We say that N weakly refines N ′, denoted N � N ′, iff there exists a weak refinement
relation relating s0 and s′0.

It is easy to see that the above definitions are combinations of the definitions of
strong and weak refinement of CMCs with the modal refinement of Modal Automata.
Hence algorithms for checking weak and strong refinements for APAs can be obtained
by combining existing fixed-point algorithms for CMCs [62] and Modal Automata [42].
For the class of polynomial-constraint APAs, the upper bound for deciding weak/strong
refinement is thus exponential in the number of states and doubly-exponential in the
size of the constraints [62]. Both strong and weak refinement imply inclusion of sets of
implementations. However, the converse is not true. The following theorem classifies
the refinement relations.

Theorem 2. Thorough refinement is strictly finer than weak refinement, and weak
refinement is strictly finer than strong refinement.

Proof. We present a sketch of the proof and refer to [123] for details. By definition, we
have that �S implies �. By observing the definition of satisfaction relation, one can
easily deduce that �S and � imply �T . Consider now the APAs N1 and N2 given in
Figure 3. It is easy to see that N1 � N2. However, we have that N1 6�S N2. Informally,
one can see that State s′3 and State s′4 of N2 both correspond to State s3 of N1. Thus,
the probability mass x3 of going to state s3 in N1 has to be distributed on s′3 and
s′4 in order to match probabilities y3 and y4. The latter shall be achieved with the
correspondence function δ that defines the refinement relation. The crucial point is
that this correspondence function will depend on the exact value of x3, thus δ cannot
be precomputed and we have that �, but not �S holds.

Similarly, � does not imply �T . Consider the APAs N3 and N4 given in Figure 4.
It is easy to see that �T holds between N3 and N4. However, State s2 of N3 cannot
refine State s′2 or s′3. Indeed, State s2 has more implementations than s′2 and s′3 taken
separately.

We have just seen that thorough refinement is strictly finer than strong and weak
refinement. In Section 6, we will propose a class of deterministic APAs on which the
three relations coincide.
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b, x4, ?

s1

{{l}}

{{m}}
a, 1, ?

s2

{{n}}
s3 s4

{{o}}

b, x3, ?

ϕx ≡ (x3 = 1 ∧ x4 = 0)∨
(x3 = 0 ∧ x4 = 1)

(a) N3

b, 1, ?

{{m}}
s′2

{{m}}
s′3

s′5 {{o}}{{n}}
s′4

{{l}}
s′1

a, y3, ?a, y2, ?

b, 1, ?

ϕy ≡ (y2 = 1 ∧ y3 = 0)∧
(y2 = 0 ∧ y3 = 1)

(b) N4

Figure 4: APAs N3 and N4

4.2 Abstraction

This section covers the abstraction of APA. The rationale is to partition the state space,
i.e., group (disjoint) sets of states by a single abstract state. Let N and M be APA with
state space S and S′, respectively. An abstraction function α : S → S′ is a surjection.
The inverse of abstraction function α is the concretization function γ : S′ → 2S . The
state α(s) denotes the abstract counterpart of state s while γ(s′) represents the set of
all (concrete) states that are represented by the abstract state s′. Abstraction is lifted
to distributions as follows. The abstraction of µ ∈ Dist(S), denoted α(µ) ∈ Dist(S′),
is uniquely defined by α(µ)(s′) = µ(γ(s′)) for all s′ ∈ S′.

Abstraction is lifted to sets of states, or sets of distributions in a pointwise manner.
It follows that ϕ′ = α(ϕ) iff Sat(ϕ′) = α(Sat(ϕ)). The abstraction of the product of
constraint functions ϕ and ϕ′ is given as α(ϕ · ϕ′) = α(ϕ) · α(ϕ′). These ingredients
provide the basis to define the abstraction of an APA.

Definition 9. (Abstraction) Given APA N = (S,A,L,AP, V, s0), the abstraction
function α : S → S′ induces the APA α(N) = (S′, A, L′, AP, V ′, α(s0)), where for all
a ∈ A, s′ ∈ S′ and ϕ′ ∈ C(S′):

L′(s′, a, ϕ′) =





>
if ∀s ∈ γ(s′) : ∃ϕ ∈ C(S) : L(s, a, ϕ) = >, and

Sat(ϕ′) = α(
⋃

(s,ϕ)∈γ(s′)×C(S):L(s,a,ϕ)=>
Sat(ϕ))

(a)

?
if ∃s ∈ γ(s′) : ∃ϕ ∈ C(S) : L(s, a, ϕ) 6= ⊥, and

Sat(ϕ′) = α(
⋃

(s,ϕ)∈γ(s′)×C(S):L(s,a,ϕ)6=⊥
Sat(ϕ))

(b)

⊥ otherwise (c)

and V ′(s′) =
⋃
∀s∈γ(s′)

V (s)

Item (a) asserts that if there are must transitions (s, a, ϕ) from all states s ∈ γ(s′),
then the must transition (s′, a, ϕ′) represents the total behavior. Item (b) asserts that
a may a-transition emanating from s′ represents the total behaviour of all transitions
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Fig. 5: The APA N (left) is abstracted by the APA N ′ (right), i.e. N ′ = α(N)

the product of constraint functions ϕ and ϕ′ is given as α(ϕ ·ϕ′) = α(ϕ) ·α(ϕ′).
These ingredients provide the basis to define the abstraction of an APA.

Definition 9. (Abstraction) Given APA N = (S,A, L,AP, V, s0), the ab-
straction function α : S → S′ induces the APA α(N) = (S′, A, L′, AP, V ′, α(s0)),
where for all a ∈ A, s′ ∈ S′ and ϕ′ ∈ C(S′):

L′(s′, a, ϕ′) =





⊤
if ∀s ∈ γ(s′) : ∃ϕ ∈ C(S) : L(s, a, ϕ) = ⊤, and
Sat(ϕ′) = α(

⋃
(s,ϕ)∈γ(s′)×C(S):L(s,a,ϕ)=⊤

Sat(ϕ)) (a)

?
if ∃s ∈ γ(s′) : ∃ϕ ∈ C(S) : L(s, a, ϕ) 6= ⊥, and
Sat(ϕ′) = α(

⋃
(s,ϕ)∈γ(s′)×C(S):L(s,a,ϕ) 6=⊥

Sat(ϕ)) (b)

⊥ otherwise (c)

and V ′(s′) =
⋃

∀s∈γ(s′)
V (s)

Item (a) asserts that if there are must transitions (s, a, ϕ) from all states s ∈
γ(s′), then the must transition (s′, a, ϕ′) represents the total behavior. Item (b)
asserts that a may a-transition emanating from s′ represents the total behaviour
of all transitions (s, a, ϕ) for s ∈ γ(s′), if not all states in γ(s′) have a must
a-transition, and there is a a-transition on modality different from ⊥. Item (c)
asserts that if no state in γ(s′) has an a-transition, then s′ also does not have
an a-transition.
The result of abstracting APA N is the APA α(N) that is able to mimic all

behaviours of N , but possibly exhibits more behaviour.

Lemma 1. For any APA N , α(N) is an APA.

Example 4. Consider the APA N = (S,A, L,AP, V, s0) and N
′ = (S′, A, L′, AP,

V ′, s′
0) depicted in Fig. ??. Let the abstraction function α : S → S′ be given by

α(s0) = s′
0, α(s1) = s′

12 = α(s2), α(s3) = s′
3 and α(s4) = s′

4. Both states s1 and

9

Figure 5: The APA N (left) is abstracted by the APA N ′ (right), i.e. N ′ = α(N)

(s, a, ϕ) for s ∈ γ(s′), if not all states in γ(s′) have a must a-transition, and there is a
a-transition on modality different from ⊥. Item (c) asserts that if no state in γ(s′) has
an a-transition, then s′ also does not have an a-transition.

The result of abstracting APA N is the APA α(N) that is able to mimic all be-
haviours of N , but possibly exhibits more behaviour.

Lemma 3. For any APA N , α(N) is an APA.

Example 4. Consider the APA N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′, AP,
V ′, s′0) depicted in Fig. 5. Let the abstraction function α : S → S′ be given by α(s0) =
s′0, α(s1) = s′12 = α(s2), α(s3) = s′3 and α(s4) = s′4. Both states s1 and s2 in N have
a must a-transition. These are abstracted in N ′ by a single must a-transition satisfied
by distributions in the union of satisfaction sets of ϕx and ϕy.

Observe that the abstract version of an APA is always weaker in term of refinement
than the original APA.

Theorem 4. For any APA N and abstraction function α, N � α(N).

5 Compositional Reasoning

APAs can serve as a specification theory for systems with both non-deterministic and
stochastic behaviors. Any good specification theory shall be equiped with a conjunction
operation that allows to combine multiple requirements into a single specification, and a
composition operation that allows specifications to be combined structurally. Studying
these two operations for APAs is the subject of this section.

5.1 Conjunction

Conjunction, also called logical composition, allows combining two specifications into
a single specification, that has the conjunctive behavior of the two operands. More
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precisely, conjunction allows to compute the intersection of sets of implementations. In
this paper, conjunction will be defined for action-deterministic APAs with the same ac-
tion alphabet. The generalization to non-deterministic APAs with dissimilar alphabets,
which is already known to be complex for the case of Modal Automata [82], is post-
poned for future work. The conjunction operation is a mix between the corresponding
operation for modal automata and CMCs.

Definition 10 (Conjunction). Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A,
L′, AP, V ′, s′0) be action-deterministic APAs sharing actions sets and atomic propo-
sitions sets. The conjunction of N and N ′ is the APA N ∧N ′ = (S × S′, A, L̃, AP, Ṽ ,
(s0, s

′
0)) such that

• L̃ is defined as follows. For all a ∈ A and (s, s′) ∈ S × S′,

– If there exists ϕ ∈ C(S) such that L(s, a, ϕ) = > and for all ϕ′ ∈ C(S′), we
have L′(s′, a, ϕ′) = ⊥, or if there exists ϕ′ ∈ C(S′) such that L′(s′, a, ϕ′) = >
and for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥, then L̃((s, s′), a, false) = >.

– Else, if either for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥ or for all ϕ′ ∈ C(S′),
we have L′(s′, a, ϕ′) = ⊥, then for all ϕ̃ ∈ C(S × S′), L̃((s, s′), a, ϕ̃) = ⊥.

– Otherwise, for all ϕ ∈ C(S) and ϕ′ ∈ C(S′) such that L(s, a, ϕ) 6= ⊥ and
L′(s′, a, ϕ′) 6= ⊥, define L̃((s, s′), a, ϕ̃) = L(s, a, ϕ) t L′(s′, a, ϕ′) with ϕ̃ the
new constraint in C(S × S′) such that µ̃ ∈ Sat(ϕ̃) iff

∗ the distribution µ : t→∑
t′∈S′ µ̃((t, t′)) is in Sat(ϕ), and

∗ the distribution µ′ : t′ →∑
t∈S µ̃((t, t′)) is in Sat(ϕ′).

– Finally, for all other ϕ̃′ ∈ C(S × S′), let L̃((s, s′), a, ϕ̃′) = ⊥.

• Ṽ ((s, s′)) = V (s) ∩ V ′(s′).

Observe that the conjunction of two action-deterministic APAs is an action-deterministic
APA. The conjunction operation may introduce inconsistent states. Hence, any con-
junction operation has to be followed by a pruning operation. Finally, observe that
the conjunction of two APAs with interval constraints is not necessarily an APA with
interval constraints, but could be an APA whose constraints are systems of linear in-
equalities (see [123] for an example).

The following theorem states that the pruned conjunction of two action-deterministic
APAs matches their greatest lower bound with respect to refinement.

Theorem 5. Let N , N ′, and N ′′ be action-deterministic consistent APAs. It holds
that β∗(N ∧N ′) � N and, if N ′′ � N and N ′′ � N ′, then N ′′ � β∗(N ∧N ′).

5.2 Parallel composition

We now propose a composition operation that allows to combine two APAs. We then
show how composition and abstraction can collaborate to avoid state-space explosion.
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In our theory, the composition operation is parametrized with a set of synchroniza-
tion actions. This set allows to specify on which actions the two specifications should
collaborate and on which actions they can behave individually. The composition of two
must transitions is a must transition, but composing a must with a may leads to a may
transition.

Definition 11 (Parallel composition of APAs). Let N = (S,A,L,AP, V, s0) and N ′ =
(S′, A′, L′, AP ′, V ′, s′0) be APAs and assume AP ∩ AP ′ = ∅. The parallel composition
of N and N ′ w.r.t. synchronization set Ā ⊆ A ∩ A′, written as N‖ĀN ′, is given as
N‖ĀN ′ = (S × S′, A ∪A′, L̃, AP ∪AP ′, Ṽ , (s0, s

′
0)) where

• L̃ is defined as follows:

– For all (s, s′) ∈ S×S′, a ∈ Ā, if there exists ϕ ∈ C(S) and ϕ′ ∈ C(S′), such
that L(s, a, ϕ) 6= ⊥ and L′(s′, a, ϕ′) 6= ⊥, define L̃((s, s′), a, ϕ̃) = L(s, a, ϕ)u
L′(s′, a, ϕ′) with ϕ̃ the new constraint in C(S × S′) such that µ̃ ∈ Sat(ϕ̃) iff
there exists µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′) such that µ̃(u, v) = µ(u) · µ′(v) for
all u ∈ S and v ∈ S′.
If either for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥, or ∀ϕ′ ∈ C(S′), we have
L′(s′, a, ϕ′) = ⊥ then for all ϕ̃ ∈ C(S × S′), L̃((s, s′), a, ϕ̃) = ⊥.

– For all (s, s′) ∈ S×S′, a ∈ A\Ā, and for all ϕ ∈ C(S), define L̃((s, s′), a, ϕ̃) =
L(s, a, ϕ) with ϕ̃ the new constraint in C(S × S′) such that µ̃ ∈ Sat(ϕ̃) iff
for all u ∈ S and v 6= s′, µ̃(u, v) = 0 and the distribution µ : t 7→ µ̃(t, s′) is
in Sat(ϕ).

– For all (s, s′) ∈ S×S′, a ∈ A′\Ā, and for all ϕ′ ∈ C(S′), define L̃((s, s′), a, ϕ̃′)
= L′(s′, a, ϕ′) with ϕ̃′ the new constraint in C(S×S′) such that µ̃′ ∈ Sat(ϕ̃′)
iff for all u 6= s and v ∈ S′, µ̃′(u, v) = 0 and the distribution µ′ : t′ 7→ µ̃′(s, t′)
is in Sat(ϕ′).

• Ṽ is defined as follows: for all (s, s′) ∈ S × S′, Ṽ ((s, s′)) = {B̃ = B ∪ B′ | B ∈
V (s) and B′ ∈ V ′(s′)}.

Contrary to the conjunction operation, Composition is defined for both dissimilar
alphabets and non-deterministic APAs. Since PAs are a restriction of APAs, their
compositions is defined in the same way. By inspecting Definition 11, one can see that
the composition of two APAs whose constraints are systems of linear inequalities (or
polynomial constraints) may lead to an APA whose constraints are polynomial. One
can also see that the conjunction of two APAs with polynomial constraints is an APA
with polynomial constraints. The class of polynomial constraints APAs is closed under
all compositional design operations.

The following theorem characterizes the relation between parallel composition and
weak refinement.

Theorem 6. Given a synchronization set Ā, the parallel composition operator ‖Ā de-
fined above is a precongruence with respect to weak refinement.
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The fact that abstraction preserves weak refinement (cf. Theorem 4), and that
weak refinement is a pre-congruence w.r.t. parallel composition, enables us to apply
abstraction in a component-wise manner. That is to say, rather than first generat-
ing (the typically large PA) M‖ĀN , and then applying abstraction, it allows for first
applying abstraction, yielding α1(M) and α2(N), respectively, and then constructing
α1(M)‖Āα2(N). Possibly a further abstraction of α1(M)‖Āα2(N) can be employed.
The next theorem shows that component-wise abstraction is as powerful as applying
the combination of the “local” abstractions to the entire model.

Theorem 7. Let M and N be APA, Ā a synchronization set, and α1, α2 be abstraction
functions, then:

α1(M) ‖Ā α2(N) = (α1 × α2)(M ‖ĀN) up to isomorphism

The above theorem helps avoiding state-space explosion when combining systems
by allowing for abstraction as soon as possible.

6 Completeness and Relation with CMCs

In this section, we propose a class of APAs on which thorough and strong refinements
coincide. For doing so, we will compare the expressiveness power of APAs and CMCs,
showing that APAs can also act as a specification theory for MCs. We now introduce
an important definition that will be used through the rest of the section.

Definition 12. We say that an APA N = (S,A,L,AP, V, s0) is in a single valuation
normal form iff all its admissible valuations sets are singletons, i.e. for all s ∈ S, we
have |V (s)| = 1.

It is worth mentioning that any APA with a single valuation in the initial state can
be turned into an APA in single valuation normal form that accepts the same set of
implementations (see [123] for such a transformation that preserves determinism).

Some results on CMCs. We recap the definitions of MCs and CMCs. Informally,
a MC is a PA with a single probability distribution per state.

Definition 13 (Markov Chain). P = 〈Q, q0, π, A, V 〉 is a Markov Chain if Q is a set
of states containing the initial state q0, A is a set of atomic propositions, V :Q → 2A

is a state valuation, and π : Q → (Q → [0, 1]) is a probability transition function:∑
q′∈Q π(q)(q′)=1 for all q ∈ Q.

We now formally introduce CMC, our abstraction theory for MCs.

Definition 14 (Constraint Markov Chain). A Constraint Markov Chain is a tuple
C = 〈Q, q0, ψ,AP, V 〉 where Q is a finite set of states, q0 ∈ Q is the initial state,
ψ : Q→ (Dist(Q)→ {0, 1}) is a constraint function, AP is a set of atomic propositions

and V : Q→ 22AP
is a state labeling function.

For each state q ∈ Q, the constraint function ψ is such that, for all distribution π
on Q, ψ(q)(π) = 1 iff the distribution π is allowed in state q.

174



6 Completeness and Relation with CMCs

We say that a CMC C is deterministic iff for all states q, q′, q′′ ∈ Q, if there exists
π′ ∈ Dist(Q) such that (ψ(q)(π′)∧(π′(q′) 6= 0)) and π′′ ∈ Dist(Q) such that (ψ(q)(π′′)∧
(π′′(q′′) 6= 0)), then we have that V (q′) ∩ V (q′′) = ∅. Single valuation normal form of
CMCs is defined similarly as for APAs. The satisfaction relation between MCs and
CMCs as well as the notions of weak and strong refinements are also defined similarly
as for APAs. We will use the following result.

Theorem 8 ([63]). For deterministic CMCs in single valuation normal form, strong
refinement coincides with thorough and weak refinement.

On the relation between CMCs and APAs. We now show that APAs can act
as a specification theory for MCs. For doing so, we propose a satisfaction relation
between MCs and APAs. Our definition is in two steps. First we show how to use PAs
as a specification theory for MCs. Then, we use the existing relation between PAs and
APAs to conclude.

Definition 15. Let P = (S,A,L,AP, V, s0) be a PA with A ∩ AP = ∅. Let M =
〈Q, q0, π, AM , VM 〉 be a bipartite Markov chain such that (1) Q = QN ∪ QD, with
QN ∩ QD = ∅, for all q, q′ ∈ QN , π(q, q′) = 0 and for all q, q′ ∈ QD, π(q)(q′) = 0, (2)
q0 ∈ QD, and (3) AM = A ∪ AP . Let R ⊆ QD × S. R is a satisfaction relation iff
whenever qR s, we have

1. VM (q) = V (s).

2. For all action a ∈ A and distribution µ over S such that L(s, a, µ) = >, there
exists q′ ∈ QN such that V (q′) = V (s) ∪ {a}, π(q)(q′) > 0, and π(q′) bR µ.

3. For all state q′ ∈ QN such that π(q, q′) > 0, there exists an action a ∈ A and a
distribution µ over S such that V (q′) = V (s)∪ {a}, L(s, a, µ) = >, and π(q′) bR
µ.

We say that M satisfies P iff there exists a satisfaction relation R such that q0R s0.

The satisfaction relation between MCs and APAs follows directly. We say that a
MC M satisfies an APA N , which we write M |=MC N , iff there exists a PA P such
that M satisfies P and P satisfies N .

Expressivity Completeness. In the previous section, we have proposed a satisfac-
tion relation for MCs with respect to APAs. We now propose the following theorem
that relates the expressive power of CMCs and APAs.

Theorem 9. Let N = (S,A,L,AP, V, s0) be a deterministic APA in single valuation
normal form and such that AP ∩A = ∅. There exists a deterministic CMC N̂ in single
valuation normal form such that for all MC M , M |=MC N ⇐⇒ M |= N̂ .
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We have just shown that for all APA N , there exists a CMC N̂ such that [[N ]]MC =
[[N̂ ]]. The reverse of the theorem also holds up to a syntactical transformation that
preserves sets of implementations (see [123] for details). This result together with
Theorem 8 leads to the following important result.

Theorem 10. For deterministic APAs with single valuations in the initial state, strong
refinement coincides with thorough and weak refinement.

7 Conclusion

This paper presents a novel abstraction for PAs and proposes the first specification
theory for them. In addition, the paper also studies the relation between abstraction
and compositional design in combating the state-space explosion problem.

There are various directions for future research. The first of them being to imple-
ment and evaluate our results. This would require to design efficient algorithms for the
compositional design operators. Also, it would be of interest to embed our abstraction
procedure in a CEGAR model checking algorithm. Another interesting direction would
be to design an algorithm to decide thorough refinement and characterize the complex-
ity of this operation. Finally, one should also consider a continuous-timed extension of
our model inspired by [49].
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1 Abstract

Probabilistic Automata (PAs) are a recognized framework for modeling and analysis
of nondeterministic systems with stochastic behavior. Recently, we proposed Abstract
Probabilistic Automata (APAs)—an abstraction framework for PAs. In this paper,
we discuss APAs over dissimilar alphabets, a determinisation operator, conjunction of
non-deterministic APAs, and an APA-embedding of Interface Automata. We conclude
introducing a tool for automatic manipulation of APAs.

2 Introduction

Probabilistic Automata (PAs), proposed by Segala [52], are a mathematical framework
for rigorous specification and analysis of non-deterministic probabilistic systems, or
more precisely systems that combine concurrent behaviour with discrete probabilistic
choice. PAs are akin to Markov decision processes (MDPs). A detailed comparison with
models such as MDPs, as well as generative and reactive probabilistic transition systems
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is given in [116]. PAs are recognized as an adequate formalism for various applications
including randomized distributed algorithms and fault tolerant systems [117, 118, 119,
120, 122].

Recently [64], we have proposed Abstract Probabilistic Automata (APAs), that is
a compact abstraction formalism for sets of PAs. The model is a marriage between
our new abstract model for Markov chains [63] and modal automata, an abstraction for
non-deterministic systems promoted by [42] and [41]. In an APA, non-deterministic
behaviors are typed with may and must modalities. The must modalities identify
those behaviors that must be present in any implementation, while the may modalities
refer to those behaviors that are allowed to be omitted in an implementation. In
APAs, probability distributions that govern the successor states are replaced by set of
distributions, each of them representing a possible implementation of the abstraction.

One of the major contributions of [64] was to develop the first specification theory
for PAs. This includes a satisfaction relation (to decide whether a PA is an implemen-
tation of an APA), a consistency check (to decide whether the specification admits an
implementation), a refinement (to compare specifications in terms of inclusion of sets
of implementations), logical composition (to compute the intersection of sets of imple-
mentations), and structural composition (to combine specifications). Our framework
also supports incremental design [91]. In addition, we have proposed an abstraction
mechanism that allows to simplify the design in an aggressive manner.

While the theory is already quite complete, some fundamental aspects have to be
improved in order to make it attractive from a design point of view. First, our theory
assumes that non-stochastic behaviors of the components are defined over the same
alphabets. In various contexts this assumption is unrealistic. Indeed, one should be
able to combine the existing design with new components whose ports and variables
are not yet specified [36].

Second, the conjunction operation has only been defined for those systems whose
non-stochastic behaviors are described in a deterministic manner. Again, from the
practical point of view, one should be capable of handling non-determinism inherent to
transition systems and concurrency.

Third, the existing composition operator for APAs assumes closed system compo-
sition, inhibiting reasoning about open systems. Support for open systems, enables
incremental modeling and allows reasoning not only about stochastic components, but
also about the requirements for their usage (environment).

The aim of this paper is to propose solutions to the above mentioned problems.
Our contributions are described below.

• We extend the theory of APAs to support specifications over dissimilar alphabets.
The principle is similar to what has been proposed for modal automata in [42].
Unfortunately due to interweaving of probabilistic and non-deterministic choices,
proofs of correctness of [42] could not be reused.

• We show that the definition of conjunction proposed in [64] is too strong for non-
deterministic APAs. We propose a more general construction that corresponds to
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the greatest lower bound with respect to a new refinement relation, more precise
than refinements introduced before [64].

This result is of additional theoretical interest. In [44] we have shown that such
greatest lower bound generally does not exist for modal automata. Nevertheless
it was possible to introduce it for APAs, which contain modal automata. The new
construction works for modal automata encoded as APAs, because it potentially
produces an APA which is not an encoding of any modal automaton.

• We present a determinization algorithm that given an APA whose non-stochastic
behaviors are non-deterministic, computes its deterministic abstraction. We also
show that there are APAs for which there exists no deterministic APAs accepting
the same set of models (so determinization must be lossy). This lossiness of
the abstraction further motivates the need for the weaker conjunction operator
mentioned above.

• We propose a translation of APAs to Abstract Probabilistic Interfaces (API) that
is a stochastic extension of the classical game-based interface automata proposed
by de Alfaro et al. APIs are similar to the stochastic I/O automata of Lynch
except that they encompass a game-based semantics that allows for an optimistic
composition. Given two APIs, one can compute the environment in where they
can work together in a proper manner.

• We introduce the APAC tool, in which the APA theory has been implemented.
APAC relies on the SMT solver Z3 [112] for checking relations between the prob-
ability distributions of the components. To the best of our knowledge, this is
the first implementation of a theory that proposes both logical and structural
compositions for Probabilistic Automata.

3 Background

We now briefly introduce the specification theory of Abstract Probabilistic Automata
as presented in [64]. We begin with the notion of a probabilistic automaton [52]. Let
Dist(S) denote a set of all discrete probability distributions over a finite set S, and let
B2 = {>,⊥}. Then:

Definition 1. A probabilistic automaton (PA) is a tuple (S,A,L,AP, V, s0), where S
is a finite set of states with the initial state s0 ∈ S, A is a finite set of actions, L:
S×A×Dist(S)→ B2 is a (two-valued transition) function, AP is a finite set of atomic
propositions and V : S → 2AP is a state-labeling function.

For a state s, an action a and a probability distribution µ, the value of L(s, a, µ)
symbolizes the presence (>) or absence (⊥) of a transition from s under action a to
a distribution µ specifying possible successor states. In practice L may be a partial
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Figure 1: Examples of a PA (top) and of an APA (bottom)

function—if a value of L is unspecified for a given combination of arguments, then it
behaves as if it was specified to be ⊥.

Example 1. The top of Figure 1 shows a PA P over the singleton set of actions A =
{a} and atomic propositions AP = {l,m, n, o}. In the figure, >-transitions are drawn
explicitly, and ⊥-transitions are elided. For example, in P there is one a-transition
from s1 to the distribution [0, 0.2, 0.5, 0.3].

An abstract probabilistic automaton relaxes the above definition to allow describ-
ing multiple probabilistic automata (including their probability distributions) within
a single abstraction. Let C(S) denote a set of all constraints over discrete probability
distributions over a finite set S; so that each element ϕ ∈ C(S) describes a set of distri-
butions: Sat(ϕ) ⊆ Dist(S). In this paper we do not fix the language of constraints used
to generate C(S). Instead, we just require that C(S) is closed under usual Boolean
connectives, that it includes equalities over summations and multiplications of prob-
ability values, and that it allows for existential quantification of variables. Also let
B3 = {>, ?,⊥}. Then:

Definition 2. An Abstract Probabilistic Automaton (APA) is a tuple (S,A,L,AP, V,
s0), where S is a finite set of states, s0 ∈ S, A is a finite set of actions, and AP is a
finite set of atomic propositions. L : S×A×C(S)→ B3 is a three-valued distribution-

constraint function, and V : S → 22AP
maps each state in S to a set of admissible

labelings.

APAs play the role of specifications in our framework. An APA transition abstracts
transitions of a certain unknown PA, called its implementation. Given a state s, an
action a, and a constraint ϕ, the value of L(s, a, ϕ) gives the modality of the transition.
More precisely the value > means that transitions under a must exist in the PA to
every distribution in Sat(ϕ); ? means that these transitions are permitted to exist; ⊥
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means that such transitions must not exist. Again L may be partial. In practice, as
will be seen in later definitions, a lack of value for given argument is equivalent to the
⊥ value, so we will sometimes avoid defining ⊥-value rules in constructions to avoid
clutter, and occasionally will say that something applies if L takes the value of ⊥,
meaning that it is either taking this value or it is undefined. The function V labels
each state with a subset of the powerset of AP, which models a disjunctive choice of
possible combinations of atomic propositions.

We occasionally write Must(s) for the set of all actions a such that there exists ϕ,
so that L(s, a, ϕ) = >, and write May(s) for the set of all actions b such that there
exists ψ, so that L(s, b, ψ) = ?.

Example 2. An example of an APA N , with the same signature as the PA P , is
shown in the bottom of Figure 1. Again we follow a graphical convention of eliding
⊥-transitions. Must (>) and may (?) transitions are shown explicitly with modalities
appended to the action label. Here, in the APA N , there is one allowed a-transition
from N to a constraint ϕx (specified under the automaton).

A PA is essentially an APA in which every transition L(s, a, µ) = m is represented
by the same modality transition L(s, a, ϕ) = m with Sat(ϕ) = {µ}, and each state-label
consists of a single set of propositions.

As already mentioned, we relate APA specifications to PAs implementing them, by
extending the definitions of satisfaction introduced in [46]. We begin by relating dis-
tributions between sets of states [64]:

Definition 3. Let S and S′ be non-empty sets, and µ, µ′ be distributions; µ ∈ Dist(S)
and µ′ ∈ Dist(S′). We say that µ is simulated by µ′ with respect to a relation R ⊆ S×S′
and a correspondance function δ : S → (S′→ [0, 1]) iff

1. For all s ∈ S, δ(s) is a distribution on S′ if µ(s) > 0

2. For all s′ ∈ S′, ∑s∈S µ(s) · δ(s)(s′) = µ′(s′),

3. Whenever δ(s)(s′) > 0 then (s, s′) ∈ R.

We write µ bδR µ′ meaning that µ is simulated by µ′ with respect to R and δ, and we
write µ bR µ′ iff there exists a function δ such that µ bδR µ

′.

Now, the following definition, originating in [64], formally establishes the roles of
PAs and APAs as implementations and specifications respectively. For a PA P satisfy-
ing an APA N we require that any must-transition of N is matched by a must-transition
of P agreeing with the distributions specified by the constraint, and any must-transition
of P is matched by a may- or must-transition in N .
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Definition 4. Let P = (S,A,L,AP, V, s0) be a PA and N = (S′, A, L′,AP, V ′, s′0) be
an APA. A binary relation R ⊆ S×S′ is a satisfaction relation iff, for any (s, s′) ∈ R,
the following conditions hold:

1. Whenever L′(s′, a, ϕ′) = > for some a∈A, ϕ′∈C(S′)
then also L(s, a, µ) = > for some distribution µ such that µ bR µ′ and µ′ ∈
Sat(ϕ′).

2. Whenever L(s, a, µ) => for some a∈A, µ∈Dist(S)
then L(s′, a, ϕ′) is defined with L′(s′, a, ϕ′) 6= ⊥ for some ϕ′ ∈ C(S′) and µ′ ∈
Sat(ϕ′) such that µ bR µ′.

3. V (s) ∈ V ′(s′).

We say that P satisfies N , denoted P |= N , iff there exists a satisfaction relation
relating s0 and s′0. If P |= N , then P is called an implementation of (specification) N .

Example 3. The relation R = {(s1s
′
1), (s2s

′
2), (s3s

′
3), (s4s

′
4), (s4s

′
5)} is a satisfaction

relation between P and N of Fig. 1. It is easy to see that all pairs in R \ {(s1, s
′
1)}

fulfill the definition, as they have no outgoing transitions and the labelings of states
inP respect the labeling constraints ofN .

So consider (s1, s
′
1). Condition 2 is satisfied vacuously. Take µ′ = [0, 0.2, 0.5, 0.15,

0.15] ∈ Sat(ϕx). Let µ = [0, 0.2, 0.5, 0.3] be the distribution of the only a-transition
of P . We are showing that condition 1 above is satisfied, i.e. that µ bR µ′. This is
witnessed by the following correspondance function: δ(s2, s

′
2) = δ(s3, s

′
3) = 1, δ(s4, s

′
4) =

δ(s5, s
′
5) = 0.5, and δ(si, s

′
j) = 0 for all remaining pairs of states. �

We denote the set of all implementations of N by JNK = {P | P |= N}. An APA N is
said to be consistent iff JNK 6= ∅. A state s of an APA is called consistent if and only if
V (s) 6= ∅ and (L(s, a, ϕ) = > =⇒ Sat(ϕ) 6= ∅). If all states of N are consistent then
N is consistent, but not necessarily the other way around.

In [64], a pruning operator β is defined that filters out distributions leading to
inconsistent states, making these states unreachable. After a single application of β
to an APA N , it holds that JNK = Jβ(N)K. Pruning itself may introduce inconsistent
states, so we apply β until a fixpoint is reached, which is guaranteed to happen after a
finite number of steps.

We say that an APA N thoroughly refines another APA M iff JNK ⊆ JMK. Such notion
of refinement, although theoretically satisfying, is not easy to establish algorithmically.
For this reason [64] introduces a more syntactic refinement, called a weak refinement:

Definition 5. Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′,AP, V ′, s′0) be APAs.
A binary relation R ⊆ S × S′ is a weak refinement relation iff, for all (s, s′) ∈ R, the
following conditions hold:
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1. Whenever L′(s′, a, ϕ′) = > for some action a ∈ A and distribution constraint
ϕ′∈C(S′) then L(s, a, ϕ) = > for some distribution constraint ϕ∈C(S) such that
∀µ∈Sat(ϕ).∃µ′∈Sat(ϕ′). µ bR µ′

2. Whenever L(s, a, ϕ) 6= ⊥ for some a∈A and ϕ∈C(S) then L′(s′, a, ϕ′) 6= ⊥ for
some constraint ϕ′∈C(S′) such that ∀µ∈Sat(ϕ). ∃µ′∈Sat(ϕ′). µ bR µ′

3. V (s) ⊆ V ′(s′).
We say that N weakly refines N ′, denoted N � N ′, iff there exists a weak refinement
relation relating s0 and s′0.

The correspondence function δ is not fixed in advance, and can be chosen for each
µ and µ′ separately so that µ bδR µ′. The weak refinement is sound with respect
to the thorough refinement: if N � N ′ then JNK ⊆ JN ′K [64]. It is known that the
two refinements coincide for deterministic APAs if the initial state admits exactly one
labeling: (|V (s0) |= 1) [64].

Definition 6. An APA N = (S,A,L,AP, V, s0) is deterministic if it satisfies the fol-
lowing two conditions:

[action-determinism] An action determines the successor: ∀s ∈ S.∀a ∈ A.|{ϕ ∈ C(S) |
L(s, a, ϕ) 6=⊥}|≤1.

[labeling-determinism] Labels discern possible successor states: ∀s∈S.∀a∈A.∀ϕ∈C(S)
if L(s, a, ϕ) 6= ⊥ then:

∀µ′, µ′′ ∈ Sat(ϕ), s′, s′′ ∈ S.(
µ′(s′) > 0 ∧ µ′′(s′′) > 0 ⇒ V (s′) ∩ V (s′′) = ∅

)
.

Example 4. The APA N in Fig. 1 is action-deterministic, but not labeling-deter-
ministic. The distributions µ′ = [0, 0.4, 0.4, 0.1, 0.1], µ′′ = [0, 0.5, 0.2, 0.3, 0) are both
in Sat(ϕx) and give positive probability to s′3 and s′4, respectively, while their labeling
constraints intersect on {{n}}.

To conclude this section, we present the definition of parallel composition, which is
known to be a precongruence with respect to weak refinement [64].

Definition 7. Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A′, L′,AP′, V ′, s′0) be APAs
with AP∩AP′ = ∅. The parallel composition of N‖ĀN ′ with respect to a synchronization
set Ā ⊆ A ∩A′ is given as N‖ĀN ′ = (S × S′, A ∪A′, L̃,AP ∪AP′, Ṽ , (s0, s

′
0)) and

1. For each a ∈ Ā
∃ϕ.L(s, a, ϕ) 6= ⊥ ∀ϕ′. L′(s′, a, ϕ′) 6= ⊥
L̃((s, s′), a, ϕ̃) = L(s, a, ϕ) u L′(s′, a, ϕ′)

(1)

∀ϕ.L(s, a, ϕ) = ⊥ ∨ ∀ϕ′. L(s′, a, ϕ′) = ⊥
∀ϕ̃′.L̃((s, s′), a, ϕ̃′) = ⊥

(2)
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where ϕ̃ ∈ C(S × S′) is so that µ̃ ∈ Sat(ϕ̃) iff there exists µ ∈ Sat(ϕ) and
µ′ ∈ Sat(ϕ′) such that µ̃(u, v) = µ(u) · µ′(v) for all u ∈ S and v ∈ S′.

2. For each a ∈ A \A′:

Sat(ϕ̃) = {µ̃ | µ̃(·, s′)∈Sat(ϕ), µ̃(u, v)=0 for v 6= s′}
L̃((s, s′), a, ϕ̃) = L(s, a, ϕ)

3. And symmetrically for each a ∈ A′ \A:

Sat(ϕ̃′) = {µ̃′ | µ̃′(s, ·)∈Sat(ϕ′), µ̃′(u, v)=0 for u 6= s}
L̃((s, s′), a, ϕ̃′) = L′(s′, a, ϕ′)

4. Ṽ ((s, s′)) = {B∪B′ | B∈V (s) and B′∈V ′(s′)}.

4 Extensions of Alphabets

So far, the specification theory of APAs has required that all specifications share same
alphabets of actions and labels. We are now going to lift this restriction, by introducing
the alphabet extension mechanism. Just like for modal transition systems [35], for
which there exist two ways of extending signatures [36], for APAs it is also necessary
to choose the modality of transitions for new actions introduced, depending on the
operation being applied to the result.

The weak extension is used when conjoining specifications with different signatures.
This extension adds may loop transitions for all new actions and extends the sets of
atomic propositions in a classical way:

Definition 8. Let N = (S,A,L,AP, V, s0) be an APA, and let A′ and AP′ be sets of
actions and atomic propositions such that A⊆A′ and AP⊆AP′. Let the weak extension
of N to (A′,AP′) be the APA N⇑(A′,AP′) = (S,A′, L′,AP′, V ′, s0) such that for all
states s ∈ S:

• L′(s, a, ϕ) = L(s, a, ϕ) if a ∈ A,

• L′(s, a, ϕ) = ? if a ∈ A′\A and ϕ only admits a single point distribution µ such
that µ(s) = 1.

• V ′(s) = {B ⊆ AP′ | B ∩AP ∈ V (s)}.

A different extension, the strong one, is used in parallel composition. This extension
adds must self-loops for all new actions and extends the sets of atomic propositions in
a classical way. See [123] for a formal definition.
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Figure 2: Illustration that conjunction using Definition 9 is not a greatest lower bound.

These different notions of extension give rise to different notions of satisfaction and
refinement between structures with dissimilar sets of actions. Satisfaction (or refine-
ment) between structures with different sets of actions is defined as the satisfaction
(respectively refinement) between the structures after extension to a union of signa-
tures.

5 Conjunction

5.1 Incompleteness of Conjunction

A conjunction operator combines two specifications into a single one, ideally describing
the intersection of their implementation sets (so JN ∧ MK = JNK ∩ JMK). In [64],
conjunction was only defined for action-deterministic APAs with identical alphabets.
In this paper, we first show that construction is incorrect for non-deterministic APAs.
Then we generalize it to the non-deterministic case with dissimilar alphabets. Let’s
recall the definition given in [64]:

Definition 9. Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′,AP, V ′, s′0) be action-
deterministic APAs. Their conjunction is the APA N∧N ′ = (S×S′, A, L̃,AP, Ṽ , (s0, s

′
0))

where Ṽ ((s, s′)) = V (s) ∩ V ′(s′) and L̃ is defined as follows. Given an action a ∈ A
and a state (s, s′) ∈ S×S′:
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∃ϕ.L(s, a, ϕ) = > ∀ϕ′. L′(s′, a, ϕ′) = ⊥
L̃((s, s′), a, false) = >

(3)

∀ϕ.L(s, a, ϕ) = ⊥ ∃ϕ′. L′(s′, a, ϕ′) = >
L̃((s, s′), a, false) = >

(4)

∀ϕ.L(s, a, ϕ) 6= > ∀ϕ′. L′(s′, a, ϕ′) = ⊥
L̃((s, s′), a, ) = ⊥

(5)

∀ϕ.L(s, a, ϕ) = ⊥ ∀ϕ′. L′(s′, a, ϕ′) 6= >
L̃((s, s′), a, ) = ⊥

(6)

L(s, a, ϕ) 6= ⊥ L′(s′, a, ϕ′) 6= ⊥
L̃((s, s′), a, ϕ̃) = L(s, a, ϕ) t L′(s′, a, ϕ′)

(7)

where ϕ̃ ∈ C(S × S′) such that µ̃ ∈ Sat(ϕ̃) iff both distribution µ : t→
∑

t′∈S′
µ̃((t, t′)) is

in Sat(ϕ) and distribution µ′ : t′ →
∑

t∈S
µ̃((t, t′)) is in Sat(ϕ′).

In [64] it is shown that this construction captures the greatest lower-bound with
respect to weak refinement, i.e. For N , N ′, and N ′′ action-deterministic consistent
APAs over the same action alphabet we have that:

• β∗(N ∧N ′) � N and β∗(N ∧N ′) � N ′

• If N ′′ � N and N ′′ � N ′ then N ′′ � β∗(N ∧N ′).

At the same time this construction is inadequate for non-deterministic APAs. Com-
bining one must-transition with several may-transitions using the same action is prob-
lematic. We show that the conjunction of non-deterministic APAs, using the definition
above, is not a lower bound with respect to neither thorough refinement nor weak
refinement.

Lemma 1. The construction of Def. 9 is strictly stronger than the greatest lower bound
of the thorough refinement and of the weak refinement for non-deterministic APAs, in
the following sense:

1. There exists a PA I, and APAs N and N ′ such that I |= N and I |= N ′ but not
I |= N ∧N ′.

2. There exists an APA M , such that M � N and M � N ′ but not M � N ∧N ′.
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Proof. Figure 2 presents two APAs N = ({1, 2}, {a}, L, {ε, α, β}, V, 1) and N ′ = ({A,B,
C}, {a}, L′, {ε, α, β}, V ′, A) together with their conjunction N∧N ′, constructed accord-
ing to Definition 9. The rightmost part of the figure shows a PA I = ({s1, s2}, {a},
LI , {ε, α, β}, VI , s1), which shows that the conjunction is too strong with respect to
the thorough refinement. It holds that I |= N and I |= N ′, but I 6|= (N ∧ N ′). The
conjunction of N and N ′ has two must transitions, and the one leading to (2, C) is not
fulfilled by I.

For the second part of the theorem it is sufficient to interpret I as the APA M and
the argument follows.

For dissimilar alphabets, conjunction can be treated separately from alphabet ex-
tension. One first computes the (weak) alphabet extensions for both APAs, and then
compute conjunction using the above definition 9. Formally:

Definition 10. Let N1 =(S1,A1, L1,AP1, V,s1), N2 =(S2,A2, L2,AP2, V2, s2) be action-
deterministic APAs. Their conjunction is the APA N1 ∧N2 =[N1⇑α] ∧ [N2⇑α], with
α=(A1 ∪A2,AP ∪AP′) and ∧ defined as above.

Considering the above definition for APAs with dissimilar action sets, the following
theorem trivially holds.

Theorem 2. Let N1, N2, and N3 be action-deterministic consistent APAs over action
alphabets A1, A2, A3 and atomic proposition sets AP1, AP2 and AP3 respectively. Let
αij =(Ai ∪Aj ,APi ∪APj), and α123 = (

⋃3
i=1 Ai,

⋃3
i=1 APi). Then:

1. β∗(N1⇑α12 ∧N2⇑α12) � N1⇑α12

2. If N3⇑α123 � N1⇑α123 and N3⇑α123 � N2⇑α123 then N3⇑α123 � β∗(N1⇑α12 ∧
N2⇑α12)⇑α123

5.2 Weak weak Refinement

The weak refinement (Def. 5), along with the so called strong refinement [64], had
been introduced for Constraint Markov Chains in [63], as syntax directed sound char-
acterizations of thorough refinement. They were then generalized to APAs in [64] in a
“natural” way.

As we see from Lemma 1 the conjunction construction of [64] is too strong with
respect to the weak refinement for non-deterministic systems. In order to address this
problem, one can (potentially) either weaken the construction or strenghten the refine-
ment. There are issues with any of the solutions. First, strengthening the refinement
makes it even more strong with respect to thorough refinement (so it becomes less pre-
cise which is undesirable), and moreover the known strong refinement [64] still violates
Lemma 1 (i.e. it is too coarse).

Second, the natural weakening of the construction gives a resulting conjunction
APA that is too weak with respect to the weak refinement.
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Instead of fine tuning the construction, which could become very complicated, we
decided to explore another possibility: namely propose a weaker and more precise
refinement, the weak weak refinement, which is designed with APAs (and not CMCs)
in mind. The weak weak refinement approximates thorough refinement even better
than weak refinement, and it has a naturally characterized greatest lower bound.

In the weak refinement, cf. Def. 5, the correspondence function is established for two
constraints: for each solution of one, there must be a correspondance to some solution
of the other constraints. Weak weak refinement weakens this condition by allowing to
choose, for each solution of the first constraint, both a different correspondence function
and a different constraint (transition) to which it will be linked:

Definition 11. Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A′, L′,AP′, V ′, s′0) be APAs
with AP = AP′ and A = A′. A relation R ⊆ S×S′ is a weak weak refinement relation,
iff for all (s, s′) ∈ R, the following conditions hold:

1. ∀a ∈ A′. ∀ϕ′ ∈ C(S′). L′(s′, a, ϕ′) = > =⇒ ∃ϕ ∈ C(S). L(s, a, ϕ) = > and ∀µ ∈
Sat(ϕ).∃µ′ ∈ Sat(ϕ′) such that µ bR µ′,

2. ∀a ∈ A.∀ϕ ∈ C(S). L(s, a, ϕ) 6= ⊥ =⇒ ∀µ ∈ Sat(ϕ).∃ϕ′ ∈ C(S′). L′(s′, a, ϕ′) 6= ⊥
and ∃µ′ ∈ Sat(ϕ′) such that µ bR µ′, and

3. V (s) ⊆ V ′(s′).
We say that N1 weakly weakly refines N2, denoted N1 �W N2, iff there exists a

weak weak refinement relation relating s0 and s′0.

It follows directly that weak weak refinement is weaker than weak refinement and
thus strong refinement. For action-deterministic APAs, weak weak refinement is equiv-
alent to weak refinement.

5.3 Conjunction of Non-deterministic APAs

We thus propose the following definition for conjunction of possibly non-deterministic
APAs.

Definition 12. Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′,AP, V ′, s′0) be APAs
sharing action and proposition sets. Their conjunction N ? N ′ is the APA (S×S′,
A ∪A′, L̃,AP ∪AP′, Ṽ , (s0, s

′
0)) where Ṽ ((s, s′)) = V (s) ∩ V ′(s′) and

a ∈ (Must(s′)\May(s)) ∪ (Must(s)\May(s′))

L̃((s, s′), a, false) = >
, (8)

a ∈ (May(s)\May(s′)) ∪ (May(s′)\May(s))

L̃((s, s′), a, ϕ̃) = ⊥
, (9)

a∈May(s)∩May(s′) L(s, a, ϕ) 6=⊥ L′(s′, a, ϕ′) 6=⊥
L̃((s, s′), a, ϕ̃) = ?

, (10)
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ϕ′′z = (z(2,B) = 1) ∨ (z(2,c) = 1)
ϕ′′x = (x(2,B) = 1)

ϕ′′y = (y(2,C) = 1)

1, A

2, C2, B {{α}}

a>a?

N ?N ′ {{ε}}

a?

y2,C

{{β}}

x2,B

z(2,C)z(2,B)

Figure 3: APA N ?N ′ obtained using Definition 12

where ϕ̃ ∈ C(S × S′) such that µ̃ ∈ Sat(ϕ̃) iff both distribution µ : t→
∑

t′∈S′
µ̃((t, t′)) is

in Sat(ϕ) and distribution µ′ : t′ →
∑

t∈S
µ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s) L(s, a, ϕ) = >
L̃((s, s′), a, ϕ̃>) = >

, (11)

where ϕ̃> ∈ C(S×S′) such that µ̃ ∈ Sat(ϕ̃) iff both the distribution µ : t→
∑

t′∈S′
µ̃((t, t′))

is in Sat(ϕ), and there exists ϕ′ ∈ C(S′) with L′(s′, a, ϕ′) 6= ⊥ and the distribution

µ′ : t′ →
∑

t∈S
µ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s′) L′(s′, a′, ϕ′) = >
L̃((s, s′), a, ϕ̃′>) = >

, (12)

where ϕ̃> ∈ C(S × S′) is such that µ̃ ∈ Sat(ϕ̃) iff both there exists ϕ ∈ C(S) such

that L(s, a, ϕ) 6= ⊥ and the distribution µ : t →
∑

t′∈S′
µ̃((t, t′)) is in Sat(ϕ), and the

distribution µ′ : t′ →∑
t∈S µ̃((t, t′)) is in Sat(ϕ′).

The apparent complexity of the new definition concurs our experience from speci-
fication theories for discrete systems. For example, in [82] the notion of conjunction is
presented for nondeterministic Modal Automata, resulting in a similar sophistication
for resolving nondeterminism (modal automata do not contain the probabilistic part).

Example 5. Following the example of Fig. 2, we build the conjunction of APAs N and
N ′ using Definition 12. The APA N ?N ′ is given in Figure 3. Clearly, the PA I given
in Figure 2 is an implementation of N ?N ′.

We now give the main result of the section: as expected, the conjunction operator,
given in Definition 12 matches the greatest lower bound of the weak weak refinement.
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Theorem 3. Let N1, N2, and N3 be consistent APAs sharing action and atomic propo-
sition sets. It holds that

• β∗(N1 ?N2) �W N1 and β∗(N1 ?N2) �W N2.

• If N3�W N1 and N3�W N2 then N3�W β∗(N1 ?N2).

As expected, the new conjunction is weaker than the old one, thus it gives a more
precise result:

Theorem 4. Let N1 and N2 be APAs. It holds that N1 ∧N2 � N1 ?N2.

Although the new notion of conjunction introduces some syntactic redundancy with
the new must transitions, it agrees with the notion given in Definition 9 when consid-
ering action-deterministic APAs.

Theorem 5. Let N1 and N2 be action-deterministic APAs. We have N1 ? N2 �
N1 ∧N2.

It follows from Theorems 4 and 5 that [[N1∧N2]] = [[N1?N2]] for any two action-
deterministic APAs N1 and N2.

Finally, just like in the case of action-deterministic APAs, non-deterministic APAs
with dissimilar alphabets can be handled by first equalizing their action and atomic
proposition sets using weak extension.

6 Determinism

In the previous section we have seen that the use of non-determinism changes expressive-
ness of APAs with respect to the known conjunction operator. In fact, non-deterministic
APAs are generally more expressive than deterministic ones. Fig. 4 presents a non-
deterministic APA, whose set of implementations cannot be specified by a single de-
terministic APA. States 2 and 3 have overlapping labeling constraints (so state 1 has
nondeterministic behaviour). We cannot put these states on two separate a-transitions
as this introduces action nondeterminism. We cannot merge them either, as their sub-
sequent evolutions are different (and for the same reason we cannot factor {α, γ} to a
separate state).

Nevertheless use of deterministic abstractions of non-deterministic behaviours is
an interesting alternative to relying on more complex refinements and more complex
operators. Below, we present a determinization algorithm that can be applied to any
APA N , producing a deterministic APA ρ(N), such that: N � ρ(N).

Our algorithm is based on subset construction and it ressembles the determinization
procedure for modal transition systems described in [97].

Let N = (S,A,L,AP, V, s0) be a (consistent) APA in single valuation normal form
(i.e. for all states s the set V (s) is a singleton). Given a set of states Q ⊆ S, an action
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2

3

4

1
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x2

a>1
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ϕx

{{α, γ}, {α, β, γ}}
a>1

a>

ϕx ≡ (x2 = 1) ∨ (x3 = 1)

{{α, γ}{β, γ}}

Figure 4: A (labeling) nondeterministic APA whose set of implementations cannot be
obtained with a deterministic APA.

a ∈ A and a valuation α ∈ AP we define 1-step reachability Reach(Q, a, α) to be the
maximal set of states with valuation α that can be reached with a non zero probability
using a distribution π satisfying a constraint ϕ such that L(q, a, ϕ) 6= ⊥ for some q ∈ Q.
Formally, Reach : 2S × 2A × 2AP → 2S and:

Reach(Q, a, α) =
⋃
{s ∈ S | V (s) = α and ∃q ∈ Q.

∃ϕ ∈ C(S).∃µ ∈ Sat(ϕ). L(q, a, ϕ) 6= ⊥ and µ(s) > 0}

We lift this definition to all possible labelings as follows:

Reach(Q, a) = {Reach(Q, a, α) | α ⊆ AP}

Now define the n-step reachability as

Reachn(Q, a) = Reachn−1(Q, a) ∪
⋃

Q′∈Reachn−1(Q,a)

Reach(Q′, a)

where Reach0(Q, a)={Q} and denote its fixpoint as:

Reach∗(Q, a) =
∞⋃

n=0

Reachn(Q, a).

Now, by construction, the following properties hold:

• For all Q⊆S and a ∈ A, for all Q′, Q′′ ∈ Reach(Q, a), if Q′ 6= Q′′ then Q′∩Q′′ = ∅,
and

• For all Q ⊆ S, a ∈ A and Q′ ∈ Reach∗(Q, a), there exists α ⊆ AP such that
∀q′ ∈ Q′, we have V (q′) = α.

We will now use the notion of reachability in our determinisation construction. As
already said, the algorithm works for APAs in the single valuation normal form. In [64]
we show how every APA can be normalized without changing its semantics.
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Definition 13. Let N = (S,A,L,AP, V, s0) be a consistent APA in single valuation
normal form. A deterministic APA for N is the APA ρ(N) = (S′, A, L′,AP, V ′, {s0})
such that

• S′ =
⋃

a∈A
Reach∗({s0}, a)

• V ′ is such that V ′(Q) = α iff ∀q′∈Q.V (Q) = α. There always exists exactly one
such α by construction

• L′ is defined as follows: Let Q ∈ S′ and a ∈ A.

– If, for all q ∈ Q, we have that ∀ϕ ∈ C(S), L(q, a, ϕ) = ⊥, then define
L′(Q, a, ϕ′) = ⊥ for all ϕ′ ∈ C(S′).

– Else, define ϕ′ ∈ C(S′) such that µ′ ∈ Sat(ϕ′) iff (1) ∀Q′ /∈ Reach(Q, a), we
have µ′(Q′) = 0, and (2) there exists q ∈ Q, ϕ ∈ C(S) and µ ∈ Sat(ϕ) such
that L(q, a, ϕ) 6= ⊥ and ∀Q′ ∈ Reach(Q, a), µ′(Q′) =

∑
q′∈Q′ µ(q′). Then

define

L′(Q, a, ϕ′) =





> if
∀q ∈ Q,∃ϕ ∈ C(S) :

L(q, a, ϕ) = >
? else

By construction, ρ(N) is action- and labeling-deterministic. As expected, deter-
minization is an abstraction. This is formalized in the following theorem.

Theorem 6. Let N be an APA in single valuation normal form. Then N � ρ(N).

7 Composition and Games

So far APAs largely rely on the composition operation defined for modal transition
systems. While, this operation mimics the classical composition between transition
systems, it does not allow to reason about open systems, when some transitions are not
in system’s control. In a series of work [84, 91], de Alfaro and Henzinger proposed an
approach based on game theory for doing so. More precisely, they introduced Interface
Automata, or input/output automata [125] with a game semantic. When composing
two such interfaces, the algorithm identifies bad states in where one of the components
can send an output that cannot be catched by the other one. Then, it computes the set
of states for which there is a possibility to avoid the set of bad states. Such strategies
correspond to the environments in where the components can work together.

In [82, 124], we have proposed a game semantic to modal automata by labeling
may and must with input and output. In this section, we extend this setup to APAs.
This extension leads to the first theory for stochastic interface automata—an optimistic
extension of stochastic I/O automata [56].
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7.1 Abstract Probabilistic Interfaces

We begin by introducing profiles as presented in [82].

Definition 14. Given an alphabet of actions A, we define a profile as a function
π : A→{i, o}. We define Ai={a∈A | π(a) = i} and Ao={a∈A | π(a) =o}, and write
π=(Ai, Ao).

Definition 15. Let π1 = (Ai1, A
o
1) and π2 = (Ai2, A

o
2) be profiles. We define the follow-

ing operations:

• Refinement: We say that π1 refines π2, denoted π1 �p π2, if and only if A1 ⊇ A2

and π1(a) = π2(a) for all a ∈ A2

• Composition: If Ao1 ∩ Ao2 = ∅, the composition of π1 and π2, denoted π1 ⊗ π2, is
defined as the profile π1 ⊗ π2 = (Ai, Ao) over A1 ∪ A2, where Ao = Ao1 ∪ Ao2 and
Ai = (Ai1 ∪Ai2) \Ao.

• Conjunction: If π1(a) = π2(a) for all a ∈ A1 ∩A2, the conjunction of π1 and π2,
denoted π1∧π2, is defined as Ao = Ao1∪Ao2 and Ai = Ai1∪Ai2, where A = A1∪A2.

Lemma 7. Let π1 = (Ai1, A
o
1) and π2 = (Ai2, A

o
2) be profiles. If π1(a) = π2(a) for all

a ∈ A1 ∩A2, then

1. π1 ∧ π2 �p π1 and π1 ∧ π2 �p π2, and

2. whenever π �p π1 and π �p π2 then π �p π1 ∧ π2.

We are now ready to define Abstract Probabilistic Interfaces, that are APAs whose
transitions are labeled by profiles.

Definition 16. Given an APA N with action set A and a profile π : A → {i, o}, we
call N = (N, π) an abstract probabilistic interface.

Given an APA N , we use AN and APN to denote the action and atomic proposition
set of N , respectively.

Let I be a PA. Given a profile πI : AI → {i, o} and an API (N, π), if AI ⊇ AN and
API ⊇ APN , we say that I = (I, πI) satisfies (N, π), denoted I |= (N, π), if and only
if I |= N ⇑ (AI ,API) and πI �p π. We also say that I is called an implementation of
(N, π).

Likewise, let (N ′, π′) be an API. If AN ⊇AN ′ and APN ⊇APN ′ , we say that (N, π)
refines an (N ′, π′), denoted (N, π) � (N ′, π′) iff N � N ′ ⇑ (AN ,APN ) and π �p π′.

Following the presentation in [124] it is possible to express an arbitrary inteface
automaton as an abstract probabilistic automaton. We refer to [123] for the translation.
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ϕ ≡ (x1 = 0 ∧ x2 ≤ 0.5 ∧ x3 ≥ 0.8 ∧ x2 + x3 = 1)

x3

Figure 5: N1
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ϕ ≡ (y2 = 0 ∧ y1 ≥ 0.7 ∧ y3 ≤ 0.4 ∧ y1 + y3 = 1)

{{l2}} {{l2}} {{l2}}

a?i y3
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Figure 6: N2

7.2 Parallel Composition of Abstract Probabilistic Interfaces

We now define an optimistic composition for APIs. We start with the definition of
product of two APIs.

Definition 17. Given two APIs N1 = (N1, π1) and N2 = (N2, π2) with AP1∩AP2 = ∅,
we define the product of N1 = (N1, π1) and N2 = (N2, π2) as N1⊗N2 = (N1‖A1∩A2N2, π1

⊗ π2).

For two APIs N1 and N2 define the set of bad states badN1⊗N2 as the set of pairs
(s1, s2) ∈ S1 × S2 satisfying one of the two following conditions:

1. There exists a ∈ Ao1 ∩ Ai2 and ϕ1 ∈ C(S1) such that L1(s1, a, ϕ1) ≥ ? and for all
ϕ2 ∈ C(S2), L2(s2, a, ϕ2) 6= >, or

2. There exists a ∈ Ao2 ∩ Ai1 and ϕ2 ∈ C(S2) such that L2(s2, a, ϕ2) ≥ ? and for all
ϕ1 ∈ C(S1), L1(s1, a, ϕ1) 6= >.

Basically, a state of the product is a bad if one of the operands can send an action that
the other operand may avoid to catch.

Example 6. Consider the APIs N1 and N2 given in Fig. 5 and Fig. 6. Their profiles
are specified by attaching o and i letters to transition labels. The API N1⊗N2 is given
in Fig. 7. Observe that (s1, s

′
2) ∈ badN1⊗N2. Indeed, the action a is an output action

of N1 and an input action of N2. However, while there is a may-transition from s1 on
a, there is no must-transition on a from s′2.

We now propose an algorithm that computes the set of states from where there is a
way to reach the set of bad states. Given an API N = (N, π) on state set S and action
set A, the function pre of a set S′ ⊆ S, pre1(S′) is defined as

pre1(S′) = {s ∈ S | ∃a ∈ Ao. ∃ϕ ∈ C(S). ∃µ ∈ Sat(ϕ).L(s, a, ϕ) ≥ ? ∧ µ(S′) > 0}
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Figure 7: N1 ⊗N2

We say that pre0(S′) = S′, for k ≥ 0, prek+1(S′) = pre1(prek(S′)), and pre(S′) =⋃
k≥0 pre

k(S′).

Definition 18. We say that APIs N1 = (N1, π1) and N2 = (N2, π2) are compatible, if
(s1

0, s
2
0) 6∈ pre(badN1⊗N2).

After computing N1⊗N2 and pre(badN1⊗N2), the product is relaxed. For each state
s∈S and each action a∈A perform the following: if it is possible to reach one of the
states in pre(badN1⊗N2) with non-zero probability after issuing a then redefine s to have
only a may-transition on a, with the constraint containing only a distribution giving
probability 1 to a fresh state smay not in S that allows everything but does not require
anything.

Definition 19. Given two compatible APIs N1 = (N1, π1) and N2 = (N2, π2), we define
the composition of N1 and N2, denoted as N1‖N2, as the API obtained by substituting L
and V in N1⊗N2 by L′, a copy of L that is manipulated in the following way, and V ′, an
extension of V : For all (s1, s2) ∈ S1×S2 and for all a ∈ A, if (s1, s2) 6∈ pre(badN1⊗N2)
and there exists ϕ ∈ C(S) and µ ∈ Sat(ϕ) such that

L((s1, s2), a, ϕ) ≥ ? ∧ µ(pre(badN1⊗N2)) > 0

then let L′((s1, s2), a, ϕ) = ⊥ and L′((s1, s2), a, ϕ′) = L((s1, s2), a, ϕ), where Sat(ϕ′) =
{µ′} and µ′(smay) = 1.

The new state smay, not in S1×S2, is defined as, for all a ∈ A, L′(smay, a, ϕ
′′) = ?,

where ϕ′′ ∈ C(S) is such that Sat(ϕ′′) = {µ′′} and µ′′(smay) = 1. The function V ′ is
defined as V ′(s1, s2) = V (s1, s2) for all (s1, s2) ∈ S1 × S2 and V ′(smay) = 2AP .

Example 7. Returning to Example 6, the parallel composition of N1 and N2 is obtained
as the API in Fig. 8. The profile of the composition is π1⊗ π2 = [a 7→ o, b 7→ o, c 7→ i].

Since (s1, s
′
2) is a bad state it becomes unreachable (and thus most of other state

pairs become unreachable). Instead a transition to the universal state smay is inserted,
modeling the fact that after receiving c the system becomes unpredictable.
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Figure 8: N1‖N2

Our composition for APIs satisfies classical theorems of independent implementabil-
ity.

Lemma 8. Given two compatible APIs N1 and N2, it holds that N1 ⊗N2 � N1‖N2.

Theorem 9. Given two compatible APIs N1 and N2, and two implementations I1 and
I2, such that I1 |= N1 and I2 |= N2, then I1 ⊗ I2 |= N1‖N2.

8 Implementation

Some of the operations introduced in this paper have been implemented in a new
tool, written in C# 4.0, called APAC.1 To the best of our knowledge, this is the
first implementation effort for stochastic interfaces. Presently the tool relies on the Z3
solver [112] for solving constraints. The tool implements the following operations: weak
refinement checking, weak weak refinement checking, determinism checking, pruning
(β∗), alphabet extensions, and conjunction.

Example 8. We present the input format of the tool in an example. We will be
checking weak refinement between two APAs. The following code example will result in
the definition of two models N1 and N2. The last line specifies that weak refinement
will be checked. Notice, that we require states to be named with the natural numbers
where 1 is the initial state.

Name: N1;

A:(a,b);

AP:(l,m,n,o);

state 1:((l)): a? -> x[1] = 0.0 && x[2] + x[3] >= 7/10 && x[3] + x[4] >=

2/10;

state 2:((m)): b? -> x[1] = 0.0 && x[2] = 0.0 && (x[3] = 1.0 || x[4] =

1.0);

state 3:((n)): b? -> x[3] = 1.0;

state 4:((o)): b? -> x[4] = 1.0;

Name: N2;

A:(a,b);

AP:(l,m,n,o);

state 1:((l)): a? -> x[1] = 0.0 && x[2]+x[3] >= 7/10 && x[4] + x[5] >=

2/10;

1The tool can be found on www.cs.aau.dk/~mikkelp/apac
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state 2:((m)): b? -> x[3] <= 1.0 && x[4] <= 1.0 && x[5] <= 1.0 && x[1] =

0.0 && x[2] = 0.0;

state 3:((n)): b? -> x[4] = 1.0;

state 4:((n)): b? -> x[3] = 1.0;

state 5:((o)): b? -> x[5] = 1.0;

check: N1 wref N2;

It takes 179 milliseconds on a typical laptop before APAC reports that {(1, 1), (2, 2),
(3, 3), (3, 4), (4, 5)} is a weak refinement relation.

At the moment APAC does not support parallel composition. This is because its
definition requires use of multiplication, which is not supported by Z3. The situation
could have been the same for refinement, but we have been able to use a different
encoding. The idea is to let the correspondence functions give the actual value redis-
tributed, and not the proportions. Still, this trick cannot be used for strong refinement,
as defined in [64]. At the moment we do not know, whether strong refinement can be
checked relying solely on solving linear arithmetic constraints.

We discuss the weak refinement in somewhat more details. The algorithm is im-
plemented as a coinductive fixpoint iteration. Starting from the full relation, violating
pairs are removed until a fixpoint is reached. Given a pair of states (s, s′) ∈ R and con-
straints ϕ and ϕ′, the pseudo-formula, Eq. (13), is passed to Z3. We invoke quantifier
elimination, and since all variables are quantified, quantifier elimination will evaluate
the formula to true or false.

∀x : ϕ(x)⇒ ∃δ : S → (S′ → [0, 1]) : (13)

ϕ′

(
t 7→

∑

s∈S
δ(s)(t)

)
∧

∀s ∈ S : xs =
∑

s′∈S′
δ(s)(s′) ∧

∀(s, s′) :
[
(s, s′) /∈ R∨V (s) 6⊆ V ′(s′)

]

⇒ δ(s)(s′) = 0 ∧
∀(s, s′) :

[
(s, s′) ∈ R∧V (s) ⊆ V ′(s′)

]

⇒ 0 ≤ δ(s)(s′) ≤ 1

Notice that, if a pair of states has conflicting labeling, we set the correspondence
function to 0 for this pair. The tool can also synthesize a witness in case the refinement
does not hold.

In order to evaluate the performance of the tool, we generate ”random” APAs and
measure the time for performing operations on these. Given a number of states and
whether or not we are interested in simple or more elaborate constraints, we generate
an APA with an action alphabet A and an atomic proposition alphabet AP on 5–10
members each, state valuations consisting of up to 0–4 members of 2AP , 1–3 outgoing
transitions for each state on random action and modality, and a random choice between
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APA 1 APA 2

states simple states simple time

10 yes 10 yes 10/20/72 ms

10 no 10 no 10/41/1121 ms

10 no 10 yes 20/1046/? ms

10 yes 10 no 18/94/4079 ms

15 yes 15 yes 125/140/? ms

Table 9: Weak refinement

constraint designs for each transition. Given a state i there are three simple constraints
and three more eleborate constraints:

• simple:

– xi+1 ≥ 7/10 ∧ xi+2 ≤ 3/10,

– xi+1 = 7/10 ∧ xi+2 = 3/10, and

– xi+1 = 1.0

• more elaborate:

– xi+1 ≥ 3/10 ∧ xi+1 ≤ 4/10,

– true, and

– xi+1 = 1.0 ∨ (xi+1 ≥ 7/10 ∧ xi+2 ≤ 3/10)

The tests, that are summarized in Table 9, are performed on an x64 Intel Core 2 Duo
2.2 GHz with 4 GB RAM running Windows 7, using version 2.16 of the Z3 API. The
first line of the table gives execution times for three random input files (three times
are reported, as the experiment was repeated three times, with different randomly
generated instances). In each input file, weak refinement is checked on two random
APAs on each 10 states with simple constraints.

This procedure is repeated for each line in the table. A question mark (?) means
that the specific random input file does not stop executing within 5 minutes.

The above results are still preliminary and we hope to reduce the computation time
by adapting classical heuristics for fixed-point computations [74].

9 Conclusion

In [64], we have introduced the first complete specification theory for PAs with a com-
parison operator and both logical and structural composition. In this paper, we have
strengthened those results by extending the power of the operators as well as the ex-
pressiveness of the model. The results have been implemented in APAC, a prototype
tool that has been evaluated on several case studies.
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9 Conclusion

There are many directions for future research. First, one should pursue the de-
velopment of APAC by adding the composition operators. Heuristics should also be
implemented. Among them, one naturally thinks of the work by Henzinger et al.[74]
that could be adapted to reduce the number of steps in the fixed-point algorithm for
refinement. Another suggestion would be to adapt bisimulation quotient [126] in order
to minimize the size of the APAs.

Another direction is to develop a generalized model checking procedure for APAs.
We postulate that this could be done by extending results obtained for Hennessy-
Milner logic and modal automata [42]. Finally, we are also considering to mix the
results on APAs with those we obtained on timed interfaces. This would lead to the
first specification theory for timed systems [106] with a stochastic semantics.
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1 Abstract

We recently introduced Abstract Probabilistic Automata (APA), a new powerful ab-
straction formalism for probabilistic automata. Our theory is equipped with a series
of aggressive abstraction techniques for state-space reduction as well as a specification
theory for both logical and structural comparisons. This paper reports on the imple-
mentation of the approach in the Abstract Probabilistic Automata Checker toolset.

2 Context

Probabilistic Automata (PA) [6] is a formalism for modeling systems that exhibit
stochastic and non-deterministic behaviour, e.g., randomized distributed algorithms
and fault tolerant systems. In each state, a PA resolves a non-deterministic choice
and then moves to the successor state according to some probability distribution. Re-
cently [64, 65], we proposed Abstract Probabilistic Automata (APA), a new powerful
abstraction formalism for PAs equipped with (1) a series of aggressive abstraction tech-
niques for state-space reduction, and (2) a specification theory for component-based
design in the spirit of [84]. This short paper reports on the Abstract Probabilistic Au-
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tomata Checker toolset (APAC), an implementation of the APAs theory (and hence of
the first interface theory for stochastic systems), based on the SMT-solver Z3 [112]. The
tool, tutorials and a manual can be found at http://www.cs.aau.dk/~mikkelp/apac.

The APA model. Syntactically, an APA is a PA whose transitions are equipped
with may and must modalities [42], and whose probability distributions are replaced
by constraints like in Constraint Markov Chains (CMC) [63]. Semantically, an APA
represents a possibly infinite set of PAs that are its implementations. Each state is
also equipped with a set of atomic propositions used to define additional hypotheses on
the implementations. The must modality requires that the transition has to be present
in any implementation, while the may modality permits its absence. In addition, any
distribution associated to the transition must satisfy the constraint specified by the
APA. Consider APA N2 of Fig. 1b. Three transitions leave the state s′1: an a-must-
transition to constraint ϕ′, an a-may-transition to a constraint assigning probability 1
to s′5, and a b-may-transition going with probability 1 to s′1. Any implementation of
N2 has an a-transition targeting a distribution satisfying ϕ′; the other transitions are
optional.

Abstraction. We propose two notions of abstraction. The first one is classical and
aims at reducing the state-space of the system by lumping equivalence classes. The
second one is used to abstract a constraint ϕ by the smallest intervals in which all
satisfying distributions can be embedded.

Specification Theory. The APA model also serves as a specification theory for
stochastic systems. This is used to decompose the design and hence reduce its com-
plexity. We propose a structural composition that allows to combine components and
a logical composition that allows to combine requirements (take intersection of sets of
implementations). These operations unite those defined on modal automata [42] and
CMCs [63]. For example, in order to structurally compose two APAs, we combine
transitions labeled by the same letter. The combination of a may with a must or a
may transition transition leads to a may transition. Constraints are combined in a
product-like manner. Given constraints ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2), their product
ϕ1ϕ2 is defined such that for all distribution µ satisfying ϕ1ϕ2, written µ ∈ Sat(ϕ1ϕ2),
there exists µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) such that µ(s1, s2) = µ1(s1)µ2(s2) for all
(s1, s2) ∈ S1 × S2.

Refinement. Refinement compares APAs and hence also sets of implementations.
Intuitively, if N1 refines N2, then any must (resp. may) of N2 (resp. N1) should be
matched in N1 (resp. N2) in an alternating simulation manner. Moreover, the matching
has to agree on the constraints as illustrated hereafter. Consider the two APAs in Fig. 1
with state space S and S′, respectively. R = {(s1, s

′
1), (s2, s

′
2), (s3, s

′
3), (s3, s

′
4), (s4, s

′
5)}

is a refinement relation. Indeed, the a-must-transition from s′1 is matched by a must-
transition in s1, and the b-must-transition from s1 is matched in s′1, and ϕ and ϕ′

agree. Indeed, for all distributions µ that satisfy ϕ, the probability mass given to
successor states by µ can be redistributed to equal a distribution µ′ satisfying ϕ′. Let
δ : S → (S′ → [0, 1]) be given as (s1, s

′
1) 7→ 1, (s2, s

′
2) 7→ 1, (s3, s

′
3) 7→ γ, (s3, s

′
4) 7→ 1−γ,

(s4, s
′
5) 7→ 1, and 0 else, where γ = 0.7−µ(s2)

µ(s3) , if µ(s2) ≤ 0.7, and γ = 0.8−µ(s2)
µ(s3) else. For
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3 The APAC Tool

all distributions µ that satisfies ϕ, µδ will satisfy ϕ′, and for all pairs (s, s′) such that
δ(s)(s′) > 0, sR s′. Details can be found in [64, 65].

s1

s2 s3

{{l}}

s4

a, x3,>
a, x2,> a, x4,>

{{m}} {{n}} {{o}}

b, 1,>

ϕ ≡ (x2 + x3 ≥ 0.7)∧
(x3 + x4 ≥ 0.2)∧

(x2 + x3 + x4 = 1)

(a) N1

{{l}}
s′1

s′2 s′3 s′4 s′5

a, x5,>a, x2,>

a, x4,>a, x3,>

{{m}} {{n}} {{n}} {{o}}

a, 1, ?b, 1, ?

ϕ′ ≡ (x2 + x3 ≥ 0.7)∧
(x4 + x5 ≥ 0.2)∧

(x2 + x3 + x4 + x5 = 1)

(b) N2

Figure 1: APAs N1 and N2.

3 The APAC Tool

Input Language. APAC provides a simple intuitive textual language for specifying
APAs and operations on them. The language follows the graphical description of APAs.
For example, the two APAs of Fig. 1 can be described as shown in Fig. 2. Each state
is declared using the state keyword followed by a non-zero integer. Transitions are
declared by their modalities (! for must and ? for may) followed by the keyword→ and
the constraint on the distribution on the successor states. For example, x[2] +x[3]≥0.7
imposes that the probability mass assigned to states 2 and 3 is greater than 0.7.

APAC, itself implemented in C#, parses the input language and builds internal
representations for the corresponding APAs. Then, operations are applied to create new
APAs. All the operations are reduced to suitable constraint manipulations in Z3 [112],
an efficient SMT solver supporting quantifier elimination. For instance, in order to
check refinement we perform quantifier elimination in the formula ∀µ∈Sat(ϕ),∃δ, ∃µ′∈
Sat(ϕ′) : µδ = µ′. As all variables are quantified, the procedure will evaluate the
formula to true or false. If refinement does not hold, then APAC can generate a
counter example.

Due to limitations of Z3, APAC only handles linear constraints. Fortunately, lin-
earity of constraints is known to be preserved by all the operations in our theory,
except structural composition. We solve this problem by using a linear abstraction
of the constraints. Given constraints ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2), their combi-
nation ϕ is defined such that for all µ ∈ Sat(ϕ),

∑
s1∈S1

µ(s1, s2) ∈ Sat(ϕ2) and∑
s2∈S2

µ(s1, s2) ∈ Sat(ϕ1). Also in other areas, such as control theory, non-linear
systems have to be abstracted by linear ones for efficiency reasons.

APAC supports generalized model checking of a disjunction-free extension of Hen-
nessy-Milner logic [127] over APAs. For example, the formula [a]≥0.2{{n}} specifies that
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Figure 2: Invoking refinement checking

Table 10: State abstraction

states abstract states time

500 5 9509 ms

500 10 16213 ms

500 50 62727 ms

500 100 96399 ms

for all a-may-transitions leading to constraint ϕ, it holds that all satisfying distributions
of ϕ give probability of at least 0.2 to states with valuations being subset of {{n}}.
Obviously N1 does not satisfy this formula. The full definition and input grammar of
the logic can be found at http://www.cs.aau.dk/~mikkelp/apac. The logic is sound
and complete i.e. an APA N satisfies a formula ϕ if and only if all implementations of
N satisfy ϕ.

4 Results and conclusion

APAC is clearly a research tool, still undergoing heavy development. While not yet
mature enough to handle industrial case studies, it already is the first ever implementa-
tion of a compositional specification theory for stochastic systems. Already now APAC
is able to decide refinement of large-size case studies. Not surprisingly, the running
time of quantifier elimination increases using an increasing number of quantified vari-
ables. In Table 10, we see that time increases linearly with the precision of the state
abstraction. More details are available on the APAC website.

In the future we intend to improve the efficiency of APAC by implementing heuris-
tics such as bisimulation reduction for APAs. We also plan to implement a graphical
user interface. Here the main challenge is identifying a simple and easy to manipulate
representation for transitions encompassing multiple arrows related with a probability
distribution constraint.

APAC is a part of a broader effort to develop and apply specification theories
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4 Results and conclusion

to industrial problems [128]. Recently, we have achieved success with the ECDAR
toolset [129] and modeling of real time systems. It is of interest to merge ECDAR and
APAC, but this requires developing a new specification theory first.
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