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Abstract

Modelling with objects at a concrete level is
attractive as a supplement to modelling with
classes. The former is known as dynamic mod-
elling and the latter as static modelling. This
paper s about a language for describing dy-
namic models. The language is defined at an
abstract level, thus allowing us to concentrate
on the underlying conceptual issues rather than
more superficial ones such as diagrammatic no-
tations. Qur dynamic modelling is supported by
a set of tools called DYNAMO. In this paper we
concentrate mainly on the concepts of the ab-
stract modelling language, but we do also touch
on the DYNAMO tools.

1 Introduction

In the area of object-oriented design we gener-
ally distinguish between two kinds of models,
static and dynamic models. Static models are
oriented towards classes and class relationships.

In general, static models emphasize the struc-
tural properties of a design. Dynamic models
deal with objects and object relationships. Dy-
namic models emphasize the process and tem-
poral properties of a design.

In this paper we will first discuss a number of
issues related to dynamic models, which moti-
vates our approach. In section 3 we describe
the concepts of a particular dynamic modelling
language. To make our discussion more con-
crete we also give an example of a dynamic
model. In section 4 we briefly discuss the DY-
NAMO tools for construction and exploration
of dynamic models. In section 5 we discuss
possible extensions of the modelling language
together with future work. Finally, in section
6 we give an overview of similar work.

2 Starting point and motiva-
tion

Several kinds of dynamic model diagrams are
known from the OOD literature [Booch, 1994,
Rumbaugh et al., 1991, Jacobson et al., 1992].
Using UML (version 1.0) terminology [Ratio-
nal Software Coorporation, 1997], sequence di-
agrams show the interaction among a set of
objects in temporal order. Collaboration di-
agrams show the interaction among a set of



objects as a graph. Both sequence diagrams
and collaboration diagrams deal with scenar-
108, i.e., “a particular series of interaction
among objects in a single execution of a sys-
tem” [Rational Software Coorporation, 1995].
In the rest of this paper we will call UML-like
sequence diagrams for interaction diagrams.

In the work described in this paper we stick to
a scenario-based design approach. As a limi-
tation of the current work, we deal exclusively
with uni-sequential scenarios.

Scenario-based models are different from state
machine models. State machines are dynamic
models in the sense that they deal with the
evolution of object state as a function of events
in the object environment. State machines are
clearly rooted at a deeper semantical level than
scenarios-based models. However, state ma-
chine models really focus on the behavior of an
arbitrary instance of a class. It takes a num-
ber of state machines to specify the mutual in-
teraction among a set of objects. Thus, state
machine models give a fragmented understand-
ing of the overall behavior of an object system.
This is in contrast to scenarios, which convey
a more holistic description of the interaction
among the objects.

Although an obvious duality exist between
static and dynamic model concepts, we often
encounter design situations where static mod-
els are inadequate for expressing some central
aspects of a design. This is typically the case if
the patterns of object interactions play a more
important role for the design than the static
relations among classes, attributes and meth-
ods. In such situations it is common to sup-
plement the static model with one or more dy-
namic models. However, the approach recom-
mended in the present work is more radical.
Our starting point is the following hypothesis:

Programmers think in terms of ob-
jects, object relations, and object in-
teractions during the creative phases
of the design process.

As a consequence of this we find that it is nat-
ural to formulate dynamic models before static
models in order to capture the intended design
at a concrete and tangible level.

Despite the emphasis on dynamic models early
in the design process, static models are still im-
portant. A static model can be seen as an ab-
straction of a dynamic model. In DYNAMO we
make considerable efforts to infer aspects of a
static model from a dynamic model. We touch
on that later in the paper (see section 4), but
for a more complete discussion please consult
[Normark, 1997a).

Here it is also relevant to point out the similar-
ity between our approach and use case driven
object-oriented design. The purpose of use
cases is to capture the requirements to a sys-
tem. According to Jacobson et al. a use case is
a behaviorally related sequence of transactions
in a dialogue between an “actor” and a “sys-
tem” [Jacobson et al., 1992]. A scenario can be
thought of as a implementing part of a use case
[Graham, 1996].

During the object-oriented design phase the
diagrammatic means of expression dominates.
One reason is undoubtedly that diagrams pro-
vide a general overview at some relatively high
level of abstraction. This is in contrast to the
programming phase where the textual linguis-
tic means of expression dominate, not least be-
cause of the many details that must be dealt
with at this level of the development process.
In general, the means of expression play a cru-
cial role for the human perception of a model.
However, in the present work we de-emphasize
the means of expression in the starting point.
Instead we develop an abstract language based
on the concepts which we find useful for ex-
pressing dynamic models. We call it an ab-
stract language because we are not, at the out-
set, concerned with definition of the concrete
syntax of the language, nor any other partic-
ular means of expression. A dynamic design
model is represented as a data structure which
is akin to abstract syntax trees as familiar from
the representation of programs relative to an



abstract grammar.

We see a number of advantages of basing this
work on an abstract dynamic modelling lan-
guage:

1. We may absorb a number of details in
the data structure that represent a model
without necessarily cluttering the external
appearance of the model. There is no no-
tion of a canonical form of a design, dur-
ing which all possible details must be for-
mulated. The designer enters a dynamic
model via some editing tools. Some of
these tools filter the design descriptions
so that only certain aspects of the design
need to be dealt with at a given time.

2. As a special case of the first item, we
can capture intuitive descriptions of ob-
jects and interactions, and make these de-
scriptions available to the designer via the
editing and browsing tools.

3. We can bring life to the dynamic model,
via interpretation or animation of the
internal design representation (the data
structure mentioned above). With this we
may reflect the true nature of a dynamic
model, as something ‘alive’.

4. The abstract representation can be shown,
via a presentation tool, in a variety of dif-
ferent ways to the designer: as a diagram
or graph, or as text in a formal language,
or by other means.

Most of observations above are direct con-
sequences of the structure editing approach
[Ngrmark, 1996b, Ngrmark, 1987] used in DY-
NAMO.

3 The abstract language

In this section we describe a scenario-based dy-
namic modelling language. The purpose of the
scenarios is to serve as the first and primary

model in the object-oriented design process, in
particular in design situations that are “diffi-
cult” to deal with exclusively through static
models (class diagrams).

This paper presents work in progress. As a con-
sequence, the abstract design language has not
yet found its final form. In section 5 we will dis-
cuss the planned extensions and modifications
in the next version of the language.

3.1 Central concepts

The main concepts of our abstract language
are objects, scenes, object-provisions, scenar-
ios, and messages.

An object is an encapsulation of state with iden-
tity. This definition is similar to the object
concept from object-oriented programming lan-
guages. We do not represent the data of an ob-
ject in terms of fields—this would be an overkill
in a scenario-based design language. Keeping
and maintaining a detailed object state would
bias towards actual calculations, but this is not
an issue during the design phase. In the current
version of the language, only indirect and infor-
mal means are used to describe the state of ob-
jects. However, we do represent how an object
is related to other objects. The current version
of the language can capture how an object is
part of or associated with another object. The
class of an object is also registered. The class
itself does not exist as a (meta)object in the
dynamic model. The sole purpose of classes is
to relate the set of objects which are instances
of the same class, and as such share a number
of properties.

A scene is the set objects relevant to a sce-
nario at some given point in time. Objects
enter the scene via a mechanism called object
provision. Each object in a scenario must be
provided exactly once. Object provision is a
convenient mechanism that states the relevance
of an object at exactly the time it is needed by
the designer. In some cases a provided object
may actually have existed for some time, but



in the current scenario it first becomes relevant
at ‘object provision time’. In other situations it
may be the intention of the designer to actually
create the object at provision time. In these
situations, object provision is identical to ob-
ject creation. Either way, an object provision
claims the existence of an object that possesses
certain relationships to the objects already ex-
isting on the scene. As a simple and practi-
cal convention, each object on the scene has a
unique name. Other kinds of object handles
(via references or dot notation) are considered
irrelevant for design purposes.

The life-time of an object and its relationships
to other objects are represented as object keep-
ings. The possible object keepings in the cur-
rent version of the language are:

e Global: The object can be used in the rest
of the scenario relative to the place of its
provision.

e Local: The object can be used in the op-
eration op in which it is provided. The
object may be passed as parameter to op-
erations called from op. However, a local
object ceases to exist when op returns.

e Floating: The object is local (in the sense
from above) to the operation op in which
it provided. In addition, the object may
be returned from op as the result. In that
case the object survives as long as we pass
it around (via parameters and as function
results).

e Part-of: The object is part of another ob-
ject X. X may be global, local, floating, or
part of or associated from a third object.

e Associated-from: The object O is asso-
ciated from another object X. In other
words, there exists and asymmetric rela-
tion between the O and X in the direction
from X to O. Thus, in a programming lan-
guage the object O would be accessed as
X.fieldName0f0. X may be global, local,

floating, part of, or associated from a third
object.

A scenario is described in terms of a message
from the “surround” to a receiver object R on
the scene. (The message concept is described
in detail below). In addition a scenario may, re-
cursively, include messages from R to other ob-
jects. Thus, a scenario can be used to describe
object interaction across the usual abstraction
barriers of an object-oriented design. These
abstraction barriers are carefully protected in
the late design phase and in the implementa-
tion phase of the program development, thus
adding to the decentralized and fragmented na-
ture of an object-oriented design. However,
in the early design phase it is often useful to
describe the interaction across these barriers.
Scenarios crossing the abstraction barriers tend
to give holistic views on crucial interaction pat-
terns among objects, and as such the scenarios
may be important vehicles for understanding
some of the overall elements in the chosen so-
lution to the problem.

A dynamic model in DYNAMO consists of an
mitial scene and a set of scenarios. A subset of
the scenarios may involve identical messages to
a particular object. For instance, if we model a
programming environment, there may be sev-
eral scenarios which at the top level involve a
message compile sent to a source program ob-
ject. This makes sense because there may be
several different outcomes of compiling a source
program: compilation complete, syntactic er-
rors, type errors, etc. Each of these is described
by a particular scenario.

We use the conventional message passing
metaphor for object-interaction. A message is
passed from a sender object to a receiver ob-
ject. At the top-level of the scenario there is
no real sender object, although the “surround”
or the designer may be seen as the sender. In
addition to the receiver, it is also possible to
pass parameters. Parameters may be exist-
ing objects (referred to by their names), object
provisions (objects whose existence we claim



Send message REQUEST-COMMAND-EXECUTION to A-CLIENT
Send message REQUEST-COMMAND-EXECUTION to AN-INVOKER
Provide A-COMMAND as the object which has been associated from AN_INVOKER

Send message EXECUTE to A-COMMAND

Provide A-RECEIVER as the object on which the command ultimately is carried out
Send message SAVE-UNDO-INFORMATION to A-COMMAND

Result of SAVE-UNDO-INFORMATION:
Send message DO-ACTIONS to A-RECEIVER
Result of DO-ACTIONS:

undo information has been saved.

command has been effected.

Result of EXECUTE: the effect of command has taken place.
Send message ADD(A-COMMAND) to COMMAND-HISTORY
Result of ADD: the parameter has been added to the list.
Result of REQUEST-COMMAND-EXECUTION: The command has been executed.
Result of REQUEST-COMMAND-EXECUTION: The command has been executed.

Figure 1: A trace of REQUEST-COMMAND-EXECUTION.

at parameter-passing time), or informally-given
values (of basic types that are not necessarily
related to any class).

Passing a message M to a receiver R may cause
the following actions to take place in the model:

1. Provision of a number of objects.

2. The passing of a number of messages from
R to other objects.

3. The establishing of a result of M (in terms
of an existing object, an object provision,
an informally given value, or an informally
described effect on the state of R).

The passing of messages from R to other ob-
jects in item 2 illustrates the recursive nature
of a scenario with respect to message passing.

In addition, the start situation just after the
parameter passing may be described by an as-
sertion. Such assertions allow us to distinguish
scenarios which involve identical top-level mes-
sages, as discussed above. The start situa-
tion is somewhat similar to a pre-condition, as
known from programming languages, such as
Eiffel [Meyer, 1988]. However, the start asser-
tion does not express a prerequisite that must
be met in order for the scenario to proceed.
Rather, the assertion describes the situation

which we assume is present at the given point
in a scenario.

Similarly, we support an end situation, which
is an assertion that characterize the result of a
message. The end situation assertion is quite
similar to an Eiffel-like post condition.

3.2 An example

We will now discuss an example of a dynamic
model: the command design pattern [Gamma
et al., 1996]. The idea behind the command
design pattern is to turn interactive commands
(such as the ‘cut’ and ‘paste’ commands in an
editor) into objects, and to install such com-
mand objects in invoker objects (such as in pop
menu items). When a command is installed
it receives information about a receiver object
(such as the document being edited) that will
be affected by executing a command.

The designer works with the dynamic model via
a set of tools. The design itself is represented
internally as a data structure. Here we will dis-
cuss the example scenarios by means of traces
and interaction diagrams. A trace contains a
selection of the most relevant information from
a scenario.

Figure 1 and 2 shows a scenario for executing
an atomic command following the ideas behind



the command design pattern. The dynamic
model, from which the example is taken, con-
tains several other scenarios for command ex-
ecution, such as executing a composite com-
mand.

At root level of the scenario we send the
message REQUEST-COMMAND-EXECUTION from
the surround to A-CLIENT object. In turn,
the client object sends a similar message
to AN-INVOKER. Via the setup, which we
here assume already has taken place, the in-
voker is associated with an object A-COMMAND,
which is executed by passing it the message
EXECUTE. At the next level the two impor-
tant interactions of execute are shown. First
undo information is saved by the message
SAVE-UNDO-INFORMATION, sent to the com-
mand object itself. Following that the ul-
timate action is carried out by sending the
message DO-ACTION to the so-called receiver,
here an object called A-RECEIVER. Again, the
association from the command to the re-
ceiver has been established during a setup
message, which we do not show as part of
the current scenario. Finally, we see that
REQUEST-COMMAND-EXECUTION adds A-COMMAND
to an object called COMMAND-HISTORY. This is
an object, which holds the entire history of ex-
ecuted commands.

In the trace in figure 1 we see how A-COMMAND
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Figure 2: An interaction diagram similar to the
trace in figure 1.

and A-RECEIVER are provided during the sce-
nario. In both cases, the objects become rele-
vant for our purposes, and therefore we bring
the objects on the scene via use of the object
provision mechanism. The other objects used
in the scenario are part of the initial scene of
the dynamic model, and as such they are avail-
able in all scenarios.

The trace shown above does not reflect all the
details of the model, as captured in the internal
representation. Traces do not show the asser-
tions (start and end situations), the class of
the objects, the keepings of objects, and the
message understandings (which comes in both
general and specific flavors).

When working with a scenario it is very use-
ful to know the objects on the scene at any
given time during a scenario. This is valuable
because these are the objects among which in-
teraction can take place. We may ask for an
exact listing of the objects on the scene at any
point in a scenario. Even more useful and ver-
satile, the scene is illustrated in the interaction
diagrams via the solid lines imposed on the ver-
tical lines representing objects. In figure 2 we
see clearly that A-COMMAND and A-RECEIVER en-
ter the scene during the scenario.

4 'Tool support

The DYNAMO tools' realize what we think of
as a dynamic medium in which we can create

and explore a dynamic object-oriented design
model [Ngrmark, 1997b].

There are three tools in DYNAMO that act as
browsers through which we can create a dy-
namic model. The dynamic model browser al-
lows editing of the initial scene and the mes-
sage structure of the scenarios. As such the
dynamic model browser serves as the tool that
keeps track of the overall elements of a dynamic

Tt is possible to see examples of the DYNAMO tools
via. WWW on http://wuw.cs.auc.dk/~normark/-
dyn-models/tool-tour/all.html.
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Figure 3: A snapshot of some of the DYNAMO tools.

model as well as a tool that allows editing the
structure of the individual scenarios. The mes-
sage browser allows editing of the details of a
single message, such as parameters, pre- and
post-situations, message result, and the mes-
sage understanding. The object browser allows
editing of the details of an object (name, class,
object keeping, and the object understanding).

In addition, we support an interaction diagram
editor, which allows the designer to view and
edit a single scenario as an interaction dia-
gram. An example of a DYNAMO interaction
diagram has been shown in figure 2. One of

the very useful aspects of the DYNAMO in-
teraction diagrams is the indication of object
life times along the vertical lines that represent
each individual object. The object life time in-
formation in an interaction diagram shows the
scene of objects graphically, at any time of a
scenario. We also explicitly present the nest-
ing of messages to a particular object by slid-
ing the messages a few pixels to the right of
the line which represents the object in the di-
agram. Furthermore, the interaction diagram
allows creation of new messages and editing of
existing messages by direct manipulation of the



arrows in the diagram.

The browsers mentioned above can be thought
of as syntax-directed structure editors of a dy-
namic model. The designer’s interface to these
tools consist of a number of fields in which in-
formation can be entered, a number of lists
which may be extended and pruned, and a
variety of command buttons, via which the
browsers can be controlled. In contrast, the in-
teraction diagram editor provides a graphical
user interface, which supports one particular
diagrammatic view of a dynamic model.

Figure 3 shows a snapshot of the dynamic
model browser, the interaction diagram and the
object browser on the example discussed in sec-
tion 3.2.

While working with the objects and object in-
teractions of a dynamic model, the associated
static model may, in several respects, serve as
an abstraction of the dynamic model. The rea-
son is that a number of objects are abstracted
to the class of which they are instances. Sim-
ilarly, a number of messages are abstracted to
the method that is invoked when the message
is sent. Consequently, it is useful to consult
the associated static model in order to get an
overview of the dynamic model. The static
model browser of DYNAMO presents such an
overview to the designer.

The static model browser enumerates the
classes that have instances in the dynamic
model. When selecting a class, the list of mes-
sages sent to objects of this class is shown.
These are interpreted as methods in the classes.
It is possible to generate class descriptions in
various concrete syntaxes, either as interface
descriptions or as outlines of full classes. The
visibility of methods (private or public) is also
estimated. Method bodies are generated by
merging the relevant scenarios. If more than
one scenario is given for a particular message,
this may cause the generation of a selection (an
if-then-else) in the body of a method. The as-
sertions (start and end situations, as described
in section 3) play an important role here. If

part of a scenario is repeated later on in the
scenario this may cause us to conjecture a rep-
etition (a loop). For further details about this
please consult [Ngrmark, 1997a).

Class relations (aggregations and associations)
can be derived from the similar object rela-
tions. We do not, however, plan to infer class
inheritance relations from the dynamic model.
Although one could consider sets and subsets
of messages to objects as the basis for deriv-
ing some inheritance relations, we do not think
that automatically derived inheritance infor-
mation will be useful for modelling purposes.

5 Discussion

In this section we first discuss the differences
and the similarities between programs and sce-
narios. Following that we outline the modifica-
tions and extensions to the abstract dynamic
modelling language we plan in the future.

5.1 Scenarios versus programs

A program (relative to some object-oriented
programming language) is a prescription of the
object dynamics that we model. The program
itself represents a static model, in which a num-
ber of structures among classes are empha-
sized. However, the program is also interpreted
and thereby executed. During execution the
program prescribes the dynamic development
among the objects, possibly as a function of
some input data.

A scenario is a direct description of the dy-
namic development at a high level of abstrac-
tion. The program is a more indirect descrip-
tion of the dynamic development, because most
of the description is directed towards classes, as
opposed to objects. A set of scenarios represent
examples of dynamic development whereas the
program is a more general and more complete
description, which ideally takes all necessary
cases into consideration. However, by provid-



ing a number of different scenarios of a single,
top-level message, we may cover the essential
cases, both normal and abnormal.

As already discussed earlier in this paper, we
carefully protect the abstraction barriers in an
object-oriented program. One good reason for
this stems from maintainability. During the de-
sign phases, however, we deal with interaction
among objects that cross the abstraction bar-
riers. This causes no harm at this level. Quite
the opposite, it gives us a chance to understand
some important overall patterns of interaction
among objects that are part of our design.

Execution is not meaningful on scenarios. Sce-
narios may, however, be explored and analyzed
by the designer. The purpose of such explo-
ration and analysis is many-fold:

1. To understand and develop adequate and
desired interaction patterns among objects
as directly as possible.

2. To derive aspects of a static model from
the dynamic model, for instance class in-
terfaces and method outlines.

3. To provide an overview of aspects of the
dynamic model, for instance the exact set
of objects on the scene at a given point in
the scenario.

4. To check for possible inconsistencies in the
dynamic model, for instance use of unpro-
vided objects.

The exploration of a dynamic model will typi-
cally lead to a redesign and an “improvement”
of the model, for instance a re-distribution of
respounsibilities among the objects.

5.2 Planned language extensions

The dynamic modelling language described in
section 3 of this paper has not yet found its
final form. Here we discuss a number of issues
that are likely to affect the next version of the
language.

Our current model is relatively weak with re-
spect to description of object state. Our main
philosophy has been to describe object state
informally. In the future we are likely to in-
troduce a concept of named states in the mod-
elling language. As a consequence of sending
a message from one object to another, the re-
ceiving object may turn into another state. By
introducing named states in scenarios, we will
be able—in a straightforward way—to gener-
ate some elements of state machines directly
from the scenarios. The reason is that the in-
formation about states and state transitions is
contained directly in the dynamic model. No-
tice that this approach is different from (and
simpler than) the approach taken in [Koskimies
and Mikinen, 1994, where state machines are
synthesized from scenarios without any inte-
grated state concept.

In the current version of the language we sup-
port the part-of and associated-from relations
between objects via object keepings, but these
are static relations. We are likely to extend
this aspect so that a more versatile set of ob-
ject relations can be supported, and so that
these relations become more dynamic (in the
sense that the relations can be changed during
a scenario). In the ideal situation we hope to be
able to integrate named states and dynamic re-
lations to one overall object state concept. The
object state concept is likely to be part of a
more formalized assertion sub-language of DY-
NAMO.

In the current version of the abstract language,
there are no means for a scenario S to “call”
another scenario T. It is currently necessary to
inline T into S. This simplifies matters because
there is no need for any actual-to-formal pa-
rameter passings. In fact, there is currently no
notion of formal parameters to operations in
DYNAMO. One obvious drawback of this ap-
proach is the need for duplication of T into a
number of scenarios. This leads to substantial
maintenance problems of a design.

We do not support any kind of selection (if-
then-else) or iteration (loops) in the dynamic



modelling language of DYNAMO. If variations
are needed in a scenario we have to make two
or more scenarios, one for each variation. The
assertions distinguish between the variations.
If iteration is needed, we can only exemplify
this (say with two or more repetitions in a sce-
nario). Recall, however, that we try to infer
both selections and iterations from DYNAMO
scenarios. We have no plans to introduce con-
trol structures in the dynamic modelling lan-
guage along the lines of algorithmic scenarios
found in [Koskimies et al., 1996a]. We think
that one of the strengths of the current sce-
nario language is it simplicity, and we want to
keep it this way also in the next version of the
language.

Object provision is a central concept in the cur-
rent version of the language. Object provision
is namely a mechanism to state the relevance
of a new or existing object, with certain ini-
tial properties (object state and relations to
other objects on the scene). In addition, we are
forced to use the object provision mechanism to
access an object (Q which is somehow related to
a named object N in the current scenario.? The
reason is that the language, as of now, lacks
dereferencing mechanisms and mechanisms for
“object relation navigation”.

6 Similar work

As already noticed in section 2 our work with
scenario-based dynamic modelling is related to
use case driven design, as described by Jacob-
son et al. in [Jacobson et al., 1992]. A set of
scenarios may be seen as a formal elaboration
of a use case.

The scenario concept is important in many
object-oriented design notations and methods,

2The underlying problem is that the object Q origi-
nally was provided with a unique name, but that name
is not in the scope of the current scenario. However,
the object has survived because it stands in a relation
to an object which is directly on the scene of the current
scenario.

such as in UML [Rational Software Coorpora-
tion, 1997] and in earlier work by Booch, Rum-
baugh, and Jacobson [Booch, 1994, Rumbaugh
et al., 1991, Jacobson et al., 1992]. However,
the main emphasis in these authors’ work is
centered around diagrammatic notations of sce-
narios. UML-like sequence diagrams emphasize
the temporal order of the object’s interactions.
UML-like collaboration diagrams show the ob-
ject interactions in terms of a graph, where
the vertices represent objects and the edges
messages and links between objects. Chapters
5 trough 8 of the version 1.0 UML Notation
Guide [Rational Software Coorporation, 1997]
contain some good overview of use cases and
various notations of scenarios.

In the book “Seamless Object-oriented Soft-
ware Architecture — Analysis and Design of reli-
able Systems” [Walden and Nerson, 1995] Ner-
son and Waldén devote a chapter to the de-
scription of dynamic models in the BON nota-
tion. They first describe a number of “event
charts” and other charts (which are just tables
with selected relations among elements in a dy-
namic model). They reject state transition dia-
grams and finite state machines as the only rea-
sonable formalism for description of dynamic
models because of the mismatch between static
OO models and state transition diagrams. Fol-
lowing this they develop a scenario concept
and introduce some simple diagrams, through
which a number of objects and ‘message rela-
tions’ (in terms of arrows) are drawn between
objects. The temporal aspects are captured by
numbers on the message relations.

Koskimies et al. have explored the inter-
play between scenarios and state machines
[Koskimies et al., 1996a, Koskimies et al.,
1996b, Koskimies et al., 1994]. The most im-
portant result of this work is an algorithm for
automatic generation of state machines from a
set of scenarios [Koskimies and Mikinen, 1994].
The algorithm is based on a relatively old algo-
rithm by Biermann et al. which deals with pro-
gram construction from examples [Biermann
and Krishnaswamy, 1976]. The results of the



work by Koskimies et al. has been implemented
in the SCED tool. SCED is considered a CASE
tool that allows for editing both scenarios and
state diagrams. The more interesting capabil-
ities of SCED are, however, the possibilities of
integrating the work with the two notations.

Salmela et al. identify the need for graphical
animation techniques for object-oriented mod-
elling purposes [Salmela et al., 1994]. Their
main observation is the same as the observa-
tion behind DYNAMO: it is very difficult to
capture a “living” dynamic model in a static
medium. Salmela et al. take the full conse-
quence of this observation by proposing a vi-
sualization schema for dynamic object-oriented
models based on animation. Their work is es-
pecially directed towards real-time software.

As part of the Beta Mjglner programming envi-
ronment, Christensen and Sandvand describe a
CASE tool called Freja [Christenen and Sand-
vad, 1996]. One of the main ideas behind Freja
is to provide an integrated support of design
models and programs via a shared, internal rep-
resentation. Consequently, a static design dia-
gram may be created as a wview of an underly-
ing program representation. In addition, Freja
supports the creation of a kind of collaboration
diagram. In Freja, these diagrams stem from a
static analysis of a Beta program.

The Scene system [Koskimies and Mossenbock,
1996] is able to produce scenario diagrams from
program executions. As such, the Scene sys-
tem follows a different approach from Freja (de-
scribed above). The main focus in the Scene
work is, however, to use scenarios for under-
standing and browsing existing software. As
such, there are only few similarities between
Scene and the DYNAMO work.

Scenarios are also wused in the human-
computer-interaction area for analyzing user
tasks [Carroll, 1994, Rosson and Carroll, 1995].
In this setting the scenario concept tend to be
narrative descriptions of the user requirements,
problems, and observations. Although infor-
mal, the scenarios used here are organized sys-

tematically in order for the designer to bring
order to concrete observations of the interac-
tion between the user and the computer. In
[Rosson and Carroll, 1995] a set of tools are
described, the intention of which is to nar-
row the gap between task analysis (oriented
towards the user’s interaction with a com-
puter system) and object-oriented analysis and
design (oriented towards the organization of
problem-oriented concepts and the structure
of the object-oriented software). The paper
cited above contains discussions on a number
of issues (scenario evolution, completeness, and
consistency) which turn out to be relevant for
both design of user tasks and design of software
using a scenario-based approach.

The original and early ideas behind DYNAMO
are presented in a technical report [Ngrmark,
1996a), in which we perform a detailed compar-
ison with Booch’s, Rumbaughs’s, and Nerson’s
diagrammatic notations, especially with re-
spect to the expressive power when new objects
are introduced during a scenario. The ideas be-
hind the early DYNAMO tools are described in
[Ngrmark, 1996b]. The DYNAMO home page
on the Internet [Ngrmark, 1997c| provides full
information on our past and present work, in-
cluding a description of the tools which we use
to create and explore dynamic models.
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