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Abstract

Dynamic modeling in the scope of object-oriented design is discussed and clar-

i�ed. A dynamic model is seen as an abstraction of the actual program execution.

In contrast, a static design model is seen as an abstraction of the program descrip-

tion in which the structural relationships are emphasized. The central hypothesis

behind this paper is that designers and programmers think in terms of objects in-

stead of classes, because objects and object relations are more tangible than classes

and class relations. As a consequence it is recommended that dynamic design mod-

els are worked out prior to the construction of static design models. In the paper

a dynamic OOD model is developed as an abstraction of the actual program exe-

cution model. A dynamic exploration tool, which works on the abstract execution

model, is also described. The dynamic exploration tool is seen as a medium which

matches the properties of the dynamic design model.

1 Introduction

This paper is about the role of dynamic models in object-oriented design (OOD). In
this scope a dynamic model is an abstraction of a program execution which involves
objects and their mutual interaction. The counterpart is a static model which is an
abstraction of a program that involves classes and their structural relations. In the
paper we will motivate our way of dealing with dynamic models and we will describe
the approach that we follow in our ongoing research. The main purpose of the paper
is to analyze possibilities and to describe the work we are carrying out.

The paper consists of three main sections:

1. Discussion and concepts.

2. Abstract execution models.
�Department of Mathematics and Computer Science, Fredrik Bajers Vej 7E, 9220 Aalborg �, Den-

mark. Internet: normark@iesd.auc.dk. | This research was supported in part by the Danish Natural
Science Research Council, grant no. 9400911.

1



3. Elements of a dynamic exploration tool.

The �rst section serves as a broad discussion of ideas, approaches and concepts. In
the second section, elements of an abstract program execution model is analyzed. The
third section outlines our ideas in a concrete form via initial considerations of a tool
that supports the exploration of dynamic OOD models.

Finally a description of related work from the leading OOA and OOD literature is
given.

2 Discussion and concepts

What is OOD: In our context, a design is a plan for construction. In a program design
process models may be made of the program (static models) as well as of the program
execution (dynamic models). The static design models, which we are interested in,
are centered about overall structural properties of the program. The dynamic design
models focus on overall process properties of the program execution.

An object-oriented design (ODD) is a design (following the meaning from above) in
which classes and methods play a key role in the static design models, and in which
objects and messages play a key role in the dynamic design models.

The level of abstraction in an OOD model is higher than that of an object-oriented
program. In an object-oriented design model we disregard a great number of details.
These details are taken care of in the programming phase of the development process.

Dynamic modeling before static modeling: At the detailed programming level, it
is di�cult to imagine that the dynamic model (the program execution) can be explored
before the static model (the program). The reason is, of course, that the program
execution is governed, described, and controlled by the program in a very narrow sense.
It is tempting to conclude that static modeling comes before dynamic modeling also at
the object-oriented design level, but in this paper we will argue that this need not to
be the case. The starting point of the argument is the following hypothesis:

Programmers think in terms of objects, object relations, and object interactions

during the creative phases of the design process.

This should be contrasted with the observation that designers typically start with the
construction of a static model. If the hypothesis is correct, it would be more natural to
formulate a dynamic model �rst, in order to capture the intended design at a concrete
and tangible level.

At the programming level, the program can be regarded as a description of the program
execution (see �gure 1). At the design level the static model need not to be a description
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Figure 1: Static and dynamic models in relation to executions.

of the abstracted program execution. The reason is that the typical abstractions, which
are `applied' on the program, disregard the descriptions of process properties in favor of
structural properties. However, selected elements of the static model may be extracted
from an initially developed dynamic model. This is because of the duality between
objects and classes, and between messages and methods; Many object relations induce
similar relations among classes, and vise versa.

Despite the hypothesis from above, we most often succeed in constructing static models
early in the design process. However, when dealing with complicated design tasks the
mental gap between

1. the concrete set of objects that are in play and

2. their class description counterparts

can be great. The \size of the gap" may make it di�cult to capture the necessary
understanding of the problem and its solution in a static design model alone. As an
additional argument in favor of `dynamic model before static model' novice designers
may �nd it di�cult to bridge the gap, even when dealing with relatively trivial problems.

Static is easier than dynamic: It seems to be the case that static models are better
developed and that static models are more often used than dynamic models i object-
oriented development processes. One reason may be that there are some major and
inherent di�culties in dealing with dynamic models in comparison with static models.
As the term indicates, a \dynamic model" consist of elements which appear, change
characteristic, and disappear as a function of time. It is not easy to deal with the
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temporal dimension of dynamic models when using a static medium for descriptions,
such as paper. Often, we are limited to work on a snapshot of a dynamic model which
captures the objects at a given point in time. In some models, one of the dimensions
in the plane (on the paper) is devoted to time; in other models particular graphical
means are related to temporal aspects. A temporal progression of snapshots, which
illustrates the dynamics in a movie-like fashion, would probably be more useful, but it
is awkward to deal with such unwieldy descriptions on a static medium.

The role of the media: One of the ideas behind this work is to use a computer-
based tool as the medium via which to represent dynamic OOD models. There is, of
course, nothing new in using a computer-based tool for the creation and maintenance
of design descriptions. When we deal with analysis and design activities various kinds
of CASE tools are in widespread use. Most CASE tools are used for models of the
static design and program aspects. Our idea is to use tools for creation, maintenance
as well as presentation and interpretation of the dynamic aspects at a reasonable high
abstraction level. It may be di�cult to deal with, and to understand, a dynamic model
through a printed text or a diagram. As a consequence we propose that a dynamic
model is viewed and understood through a separate tool. As a matter of terminology
we call the presentation and interpretation tool for a dynamic exploration tool (DET).

We prefer to think of a dynamic exploration tools as a medium through which to un-
derstand the properties of a dynamic model. The nature of this medium goes perfectly
hand in hand with the nature of the dynamic models, which we want to work with.
The nature of the DET medium is radically di�erent from a drawing or a piece of text
on paper. It takes a great deal of e�orts to interpret a description on paper as \being
alive" in some sense. As a medium, the paper is \dead". In contrast, a DET is able to
convey liveness. In a DET, temporal aspects and dynamic behavior can be dealt with
in a natural way, and much more directly than it is possible on a \dead medium".

The means of expression: In the implementation phase of program development
the linguistic and textual means of expression dominate. The situation is di�erent in
the area of analysis and design. Here the diagrammatic style prevails. In general,
diagrams provide overview and only little detail. In addition, a diagram may be easier
to understand than a text in a formal language. Although important in some respects,
we claim that the means of expression is a rather super�cial property of a design artifact.
A DET medium, along the lines proposed above, allows us to use a variety of di�erent
means of expressions. This is achieved by supporting several external presentations
based on an appropriate internal representation of the information in the underlying
tool.

The degree of formalization: Besides the means of expression we can also discuss
the degree of formalization. A formal description lends itself towards a higher degree of
precision than does an informal description. Notice that formalization and the means
of expressions, as discussed above, are orthogonal to each other. (It is possible to
have both diagrams and textual documents with a varying degree of formalization and
precision). Recall that we are interested in dynamic models which are created early
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in the OOD phase of the development process. One of our goals is to capture object
creation and object interaction in a way which enhance the intuitive understanding

of the object dynamics. Consequently we will argue that considerable elements of
informal explanations (in pure, natural language text) is important. We will say that
our description of the OOD dynamic model are narrative. An informal, narrative
account does not necessarily substitute precise and formal elements of descriptions. On
the contrary, there may be redundant elements in the model such that both precision
and intuitive understanding are enhanced.

Thus we are proposing a description of object dynamics, in which intuitive explanations
go hand in hand with more formal and precise descriptions, which are appropriate at
the given level of abstraction. When the resulting descriptions are static (on, e.g., a
sheet of paper) large amounts of intuitive explanations within the descriptions may
easily turn out to be a problem, because it overloads the reader with information, and
because it clutters the description. Using a DET medium this is not necessarily the
case, because we may provide for a variety of di�erent ways to explore the descriptions.
This will be illustrated in section 4 of this paper, where we will outline a dynamic
exploration tool for object-oriented design.

The level of abstraction: As noticed above, the level of abstraction is relatively high
during the OOD process as compared with the OOP process. This is both the case for
the static models and for the dynamic models. It is tempting and natural to compare
dynamic OOD models with models of execution of an object-oriented program. It is
very important to settle on dynamic OOD models which are more abstract than the
actual OOP execution models. In the next section of the paper we will discuss the
problem of abstraction in relation to program execution models.

3 Abstract Execution Models

As discussed above we distinguish between the programs and program executions. These
characterize the static aspects and the dynamic aspects of program development respec-
tively. In this paper we discuss a similar distinction in the area of object-oriented design.
More speci�cally in this paper our interest is the dynamic aspects of object-oriented
design.

Abstraction is familiar and well-known when we talk about programs. Many key ele-
ments in modern programming languages are related to abstraction. Similarly, static
design models do in themselves represent abstractions over a lot of details. On this
background we �nd it natural to study abstraction possibilities over the details in ac-
tual and concrete program executions. In the object-oriented paradigm the program
execution elements are objects and messages.1 The purpose of this section is to develop

1`Objects' and `messages' may, in themselves, be seen as abstraction over `cells' and `instructions'.
Thus with the object-oriented concepts we have already introduced a certain amount of abstraction in
the execution model.
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a model which elevates the dynamic behavior of objects from the implementation level
to a design level.

At the programming/implementation level, the behavior at the dynamic level is gov-
erned and controlled by the description, which we call the program. As such, the actual
program execution is in part described and derived from a static model. At the design
level, it may be di�cult to imagine a similar impact on the dynamic model from the
static models. The problem is that we in most static design models have abstracted
away from the aspects which are related to execution behavior. Furthermore, we are
interested in dynamic design models which are independent of static models, such that
dynamic models can be studied before we develop any static model of the software.

We will now analyze abstract program execution models, and describe these in relation
to actual program execution models. We focus on the following elements in the actual
execution model of an object-oriented program:

� Objects

{ Object �elds and types.

{ Object relations to other objects.

{ Object relations to classes.

� Messages.

{ Actual parameters.

{ Results: value or impact on the state of the program.

� Start situation.

� Classes

{ Class context.

{ Class attributes and types.

{ Class relations to other classes.

� Methods.

{ Method context.

{ Formal parameters.

{ Bodies sending messages in certain control patterns.

We see that the actual execution model has been chosen as a clean object-oriented model
without surrounding procedural or functional elements as such. Objects and messages
are the central elements. In the following we will discuss the abstract execution models
in relation the elements of the actual execution model, which we outlined above.
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Figure 2: A table of possibilities for descriptions of object �elds.

Objects and object �elds: It has to be decided to which degree internal aspects
of objects, which carry the object state, are part of the dynamic OOD model. In the
most concrete extreme the �elds and �eld types from the actual execution model are
also included as elements in the dynamic model (with or without type information).
In the most abstract extreme the internal object aspects are abstracted away entirely.
In between these, one can imagine that we identify a number of di�erent states of the
object. Here, a `state' is a more abstract notion than the vector of actual object �elds.
One can also imagine that we represent the object state in terms of the operation
history. As discussed in section 2, these possibilities may all be formalized, or they
may be kept informal. This design space is illustrated in �gure 2.

Object relations: The object relations de�ne a logical structure among the objects.
The logical structure among the objects is important in its own right, not least because
the object relations may induce similar relations among the classes of objects. Thus,
relations among objects may give hints to the structure of the software we are working
with. In addition, the relations among objects allow us to access one object O1 from
another object O2, provided that O1 can be reached via a relation from O2. Reach-

ability may be handled via the object �elds, if they are part of the dynamic model.
Alternatively, reachability may be handled via an object naming scheme, introduced
exclusively for the purpose of the dynamic model. The naming scheme may or may not
re
ect object visibility in the actual execution model.

Relations between objects and classes: The relations between objects and the
classes, of which the objects are instances, are important, because they provide the
links between a dynamic model and the static models which are to be developed later
on. Thus, in our dynamic models, we �nd it necessary to have a notion of classes, and
to relate an object to its instantiating class.

Messages: It is appealing to use the message passing metaphor for object interaction.
Messages cause activations of procedures or functions on objects, and as such the
messages are crucial elements of a dynamic model. There are two objects involved in a
act of sending a message: a sender and a receiver. At the programming level the receiver
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is speci�ed in a rather direct way, whereas the sender is identi�ed more indirectly (as
\the current object"). In a dynamic object model we have the possibility to chose
an explicit or implicit determination of the sender and/or the receiver of a message.
The actual parameters are in general expressions, but in the dynamic object model
they may be limited to be notions of objects. The parameter passing and parameter
correspondence mechanisms are also up to discussion in the model.

In the actual execution model, the impact of a message may be an e�ect on the program
state and/or an object, which is the value returned as result of a message passing. The
impact of a message may be important enough to warrant some special attention in
the dynamic model. This can be done by accompanying each message with an account
on its result. This account may be formal, informal, or both.

The start situation: The start situation designates in the most limited version an
object which receives an initiating message. In the dynamic model this may be extended
to a set of pre-existing objects on which the execution may take o�.

Classes: Classes are elements of a program, and as such they belong to the static model,
but, as already mentioned, it is important to provide information in the dynamic model
which let us bridge the gap between the two kinds of models. For our purposes there
seems only to be a little point in injecting a complete static model into the dynamic
model. One or more static models should probably be worked out besides the dynamic
model. As discussed in section 2, it is the idea of this work that the static models are
created after the dynamic model. As a consequence, we should probably only include
the classes and the class relations that are necessary to make sense out of the dynamic
properties, and which let us \build a bridge" from the dynamic model to a static model.

Because of the duality between the set of object and their relations on the one hand,
and the set of classes and their relations on the other hand, it may be possible to
automatically derive some properties of the static model from the dynamic model. As
an example, the class attributes and their types may be derived from the object �elds,
provided that the relation among objects and classes is present. Similarly, aggregation
and association among classes may be derived from the relations (`containment' and
`reference to') among the objects. In contrast, it is probably more di�cult to induce
the generalization/specialization relationship among classes from the object relations,
because this relationship does not leave much trace in the object space.

Methods: Methods are parts of the program description. In most object-oriented
design methods, methods are important elements in the central static models. Like
procedures and functions, methods are abstractions of commands or expressions, and
as such they play an important role also in a dynamic model. At our level of abstraction
we do not care whether methods are shared among objects which are instances of the
same class. (This is a distinction which, of obvious pragmatic reasons is important in
the actual execution model). Given a message from one object to another, it is a method
in the receiver-object which is responsible for the state transition in the dynamic model.
Selected aspects of the state transition is one of the key issues in a dynamic model, and
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consequently the treatment of the methods becomes a crucial theme in our discussion.

In the static model the methods are organized to form \horizontal layers" in relation
to the overall program architecture. It is usually recommended only to consider one
layer at a time. Thus the methods in a layer can be regarded as black boxes that
exclusively are concerned with ful�lling the contractual obligations in respect to their
clients (which often are at a higher level). In a dynamic model, where we are concerned
with understanding the mutual interplay among objects via messages, it may be the
best approach to study \vertical cuts" of methods, which are linked together with
message passings (method activations). This is illustrated in �gure 3.

As a minimum we want our dynamic model to include object allocation and object
mutation aspects. 2 I.e., selected object births and object mutations, as prescribed in
a method, should be captured in the dynamic object model. (The level on which to
deal with object mutation depends on the level we deal with �elds/state of the objects.
This has been discussed above). In the one extreme, the description can follow a
�xed control course, and as such we will call it a scenario. A scenario is an example
execution which involves a number of objects and a number of messages. The model
builder determines the branch of each selection and the number iterations in each loop
in advance, at model de�nition time. In the other extreme we deal with a prescription
which can include the actual variations in the control (selection and iteration), along
the lines of the actual program execution; such a prescription will be called a high level

program. If complete enough, one can imagine that a high level program can be used
for a simulation of the program execution at a high abstraction level.

2Object deallocation is implicit in most modern run-time systems of object-oriented programming
systems. This is the job of a garbage collector. Consequently, object deallocation should not be an
issue either in a dynamic design model.
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4 Elements of a Dynamic Exploration Tool

In section 2 we introduced the notion of a dynamic exploration tool. A dynamic
exploration tool is seen as a medium on which to de�ne, analyze and experiment with
a dynamic object model. In this section we will describe the properties of the �rst
version of a dynamic exploration tool. But �rst we will describe a particular abstract
execution model, which we have developed, and on which the tool is based. Again, the
abstract execution model is a �rst version, which is likely to change when we get some
experience with it's use in a dynamic exploration tool.

As the starting point we decide that the �rst version of the dynamic model should
be based on scenarios rather than high level programs (see the discussion of these
concepts in the previous section). A scenario is a �xed sample execution without any
actual dynamics3. Chosing the scenario approach gives us more freedom to introduce
informal aspects in the model. Such aspects cannot easily be simulated in \automatic
execution" of high level programs.

4.1 The abstract execution model

The central concepts in the abstract execution model are objects, messages and scenes.
The class concept is also taken into account, but it is less central. The method concept
is not part of the model. We will now describe each of the concepts of the model in
greater details.

Objects: An object is a abstraction of part of the program state. The abstraction
serves an as encapsulation of the state, and each object has its own identity which
makes it unique in comparison with all other objects. This re
ects the traditional
understanding of objects in an OO model. The model is not explicit about �elds in
an object, but it is possible to declare how new objects are related to existing objects
(global to, part of, associated with). In the model, object identity is handled by giving
each object a unique name in a 
at name space. Hereby each object can be easily
referred. As an implication, reachability issues are ignored in the model. The class of
each object is registered, but apart from this the class concept is not important in the
model.

Objects are born through object provisions. Object provisions is a convenient mech-
anism which establish objects exactly when they are needed. An object provision
declares/claims the existence of an object in addition to a certain relationship to other
objects. The initial state of the object is described informally. If we need to access a
part object P of an object Q, it can be done by `providing P and as a part of Q'. This
compensates for the lack of �eld declarations in Q, and it allows us to introduce objects
and object relations at the point in time, where they are needed in the dynamic course

3By `actual dynamics' we here mean such dynamic behavior which is known from real program
execution.
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Figure 4: An object provision brings an object `onto the scene'.

of the program. In an actual execution model it works the other way around: When
Q is created we should be concerned with the creation of P too. An object provision
may also be used to signal that the provided object P becomes interesting/necessary
for our purposes at object provision time. In the actual execution model, P may have
existed for a long time. The idea is here that an object provision is a somewhat magical
introduction of an object \onto the scene". This is illustrated on �gure 4.

Messages: Objects interact via message passing. In our current dynamic model only
the message receiver is explicitly given. This corresponds to the static description of
message passing, in which the sender object is given implicitly as `the current object'.
However, it might be desirable if both the sender and the receiver could be given
explicitly. The actual parameters of a message are also taken into account. Actual
parameters may either be already provided object, new object provisions, or informally
described values. Thus, expressions (here actual parameter expressions) have only
limited power in our model.

We focus on \vertical cuts" of message passings in the model. I.e., we directly describe a
chain of messages across the boundaries of abstraction barriers. This is shown in �gure
5. The �gure illustrates that a message M1 is sent from O1 to O2. Next O2 sends
messages M2 and M3 to O3 and O4 respectively. Following that O4 sends a message
M4 to O5. An additional structure, shown as rectangles on the �gure, is introduced
among the messages. All the messages in a rectangle belong to the same method. This
is the only trace of methods in our model. Thus, when sending the message M1 from
O1 to O2, a method is presumably located in O2 which sends messages M2, M3 and
M2 (second time) to O3, O4 and O7 respectively.

Scenes: A scene is a pre-existing set of objects which we want to exist as the starting
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Figure 5: A sample message passing structure.

point for one or more scenarios. A scene can be characterized by a set of object-
provisions. Object provisions which appear within a scenario add objects onto the
scene.

As already mentioned, several aspects are described at an informal level in the dynamic
model. Above we have seen that object states and more complicated expressions are
not handled formally. Besides this, a number of informal aspects complements the
formal aspects, in order to enhance intuitive understanding. Every message, object
provision, and result of a message can be (and should be) described intuitively, in pure
text. Such descriptions are called understandings. The understandings are in addition
to the more formalized accounts, which are part of the dynamic model.

4.2 The tool and its parts

The tool that realizes the dynamic medium on which we de�ne dynamic object models
can be divided into three conceptually distinct parts:

1. A model builder.

2. A model explorer.

3. A model analyzer.
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In an actual elaboration these parts may be more or less integrated.

The model builder allows the designer (the user of the tool) to create and modify
a dynamic model. Thus, the model builder is some kind of an editor. The means of
expression (as discussed in section 3) plays an important role for the model builder.
There are basically two di�erent possibilities: A linguistic approach and a `data struc-
ture approach'.

In the linguistic approach the dynamic model is formulated as text in a formal language,
which later can be processed and interpreted in an appropriate way (we will later in
this section come back to what interpretation of dynamic models means).

In the data structure approach a dynamic model is represented by an (internal) data
structure which may be viewed in di�erent ways on a display medium. The data
structure may be directly interpreted without prior parsing. The data structure, which
represents the model, is constructed via a structure editor.

The `data structure approach', supported by a structure editor, is preferred. In our case
the data structure is a tree which represents objects, messages, object-provisions, actual
parameters and understandings (and other concepts) of the dynamic model. One reason
for chosing the data structure approach is that it allows for an incremental de�nition
of the various aspects (e.g., formal and informal aspects) in a dynamic model. At �rst,
a scene may constructed which is appropriate for a number of related scenarios. Next,
a naked message passing structure may be built on top of the scene. Finally, the scene
and the message passing structure may be attributed with informal explanations (called
understandings in our model). If we use the traditional linguistic approach all of these
aspects would be described together, thereby giving us large and unwieldy descriptions
that are hard to de�ne and hard to grasp. Moreover, using the data structure approach
we may switch between a textual and diagrammatic interaction style. It is clearly
the case that while formulating the understandings we should use plain text. However,
when de�ning the message structures, it may be much more convenient to use a grapher
tool, in which each object manifests itself as a node from which we can de�ne messages
to other nodes as edges.

As the name indicates, the second part of the tool lets the user explore the dynamic

model. The purpose of `exploring' is to consolidate the understanding of the dynamic
behavior of an object system. To some degree, it may be possible to gain such an
understanding by simply reading the model (in some linguistic og diagrammatic pre-
sentation). The model may also be traced in the order of the actual message passings.
While tracing, some overview of the objects on the scene may be maintained. During
tracing, the explorer (the user) may determine the control course through selections
and iterations (if/when they become part of the model). Tracing may be seen as one
possible way of animating the model.

The purpose of the model analyzer is to infer and extract properties of the dynamic
model. The analysis results may be used as the starting point of a static model. The
analysis results may alternatively be used to enhance the dynamic model itself, e.g.,
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SCENE
     OBJECT-PROVISION A-POINT : POINT [global]           The initial point of this example.
MESSAGE A-POINT .CIRCLE-ON-POINTS(OBJECT-PROVISION P: POINT   
                                                                           OBJECT-PROVISION Q: POINT )  
                                                                                                   Determine a circle through this point and 
                                                                                                          the two points passed as parameter.
       OBJECT-PROVISION L1: LINE [local]                          The line between this point and P
       OBJECT-PROVISION L2: LINE [local]                          The line between this point and Q
       MESSAGE L1.CENTRAL-LINE()                                   Find the central line of L2
            OBJECT-PROVISION P1-L1: POINT [part of L1]    The starting point of L1
            OBJECT-PROVISION P2-L1: POINT [part of L1]    The ending point of L1
            OBJECT-PROVISION C1-L1: CIRCLE [local]          Circle with center in P1-L1, radius: length of L1.
            OBJECT-PROVISION C2-L1: CIRCLE [local]          Circle with center in P2-L1, radius: length of L1
            MESSAGE C1-L1.LINE-THROUGH-INTERSECTION-POINTS(C2-L1 )  
                                                                                                   We find the line through the two points where
                                                                                                          this circle and C2-L!  intersect each other.
            RESULT: OBJECT-PROVISION L-RES: LINE [local]  The line through intersection points of circles.
       RESULT: L-RES , also known as CENTRAL-LINE-1
       MESSAGE L2.CENTRAL-LINE()                                    Find the central line of l2.
       RESULT: OBJECT-PROVISION CENTRAL-LINE-2 : LINE [local]     
                                                                                                         The line perpendicular on L2, on its center.
       MESSAGE CENTRAL-LINE-1 .PARALLEL_WITH?(CENTRAL-LINE-2  )  
                                                                                                  Check if receiver is parallel with central-line-2
       RESULT: Assume the lines are not parallel.
       MESSAGE CENTRAL-LINE-1 .INTERSECTION(CENTRAL-LINE-2  )  
                                                                                                  The intersection points between central lines.
       RESULT: OBJECT-PROVISION C: POINT [local]       The point of intersection.
       MESSAGE P.DISTANCE(C )                                          Find the distance between the point C and 
                                                                                                         one of the original three points.
       RESULT: The distance (a number).
  RESULT: OBJECT-PROVISION C: CIRCLE                     The circle with center in C and radius ‘distance’.

Figure 6: A sample traversing of a dynamic model.

removal of inconsistencies.

4.3 An example

In order to illustrate our approach we will in this section discuss a sample dynamic
model, which we have developed with an early prototype of our envisioned dynamic
exploration tool.

The problem domain of the example is geometric objects such as points, lines, and
circles, on which a number of classical geometric constructions can take place. We
imagine that we are about to construct a computer-based system, which support such
a construction work. We start the design work by making a number of scenarios, which
together constitute our dynamic model. First afterward, and based on this dynamic
model, we deal with the static model of the involved classes. The problem, which we
will consider here, is the construction of a circle through three given points.

As explained above, we represent a dynamic model as a tree. By traversing this tree
we get a trace of the messages in the scenario. Figure 6 shows an example of such
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Figure 7: The data structure behind the trace of �gure 6.

a trace. The explanations of messages and object provisions are also shown on the
right-hand side of the �gure, in italic font. The example illustrates an object-oriented
realization of the circle construction through three given points. We see that the initial
scene consists of a single point, called A POINT. A message circle on points is sent to
A POINT with two newly provided points P1 and P2 as parameters. We next provide
two lines L1 and L2 through the three points. On each of L1 and L2 we now construct
the central lines4. The dynamic model includes a trace of the objects and messages
which are involved in the creation of the central line to L1. The central line of L1 is
constructed by drawing circles in the two extreme points of the line segment. Notice
how the start and ending points of L1 are provided as part of L1. The two points, where
these circles intersect gives the direction of the central line. (The pattern is, of course
the same in the construction of the central line to L2, and therefore this line segment
is just provided \magically"). Finally, the intersection between the central line of L1
and the central line of L2 gives the center of the resulting circle.

The actual data structures behind the trace is a tree implemented in the Common Lisp

4The central line of a line segment L is a line segment of the same length as L, perpendicular on L,
which intersects L in its midpoint.
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Object System (CLOS) [1]. A sketch of such a tree is shown in �gure 7.5 The tree is
akin to an abstract syntax tree. In the current, early prototype, the tree is built via
a simple custom made structure editor. The structure editor works via a number of
specialized commands which augment, change and prune the tree structure. Following
each modi�cation the trace is redrawn on outline form.

In the current prototype it is possible to analyze the trees in various ways. The most
interesting analysis extracts the list of classes of the dynamic model together with a
list of messages, which are activated on instances of the classes. The following is the
result of such an analysis for the trace discussed above:

((CIRCLE

LINE-THROUGH-INTERSECTION-POINTS)

(LINE

CENTRAL-LINE

PARALLEL_WITH?

INTERSECTION)

(POINT

CIRCLE-ON-POINTS

DISTANCE))

Such a listing, based on a number of samples, may be seen as a starting point for the
construction of the static model.

5 Similar work

In this section we will describe and characterize the treatment of dynamic models in
some central works on object-oriented design. We will also compare other's work with
the work described in this paper.

5.1 The work by Nerson and Wald�en.

In the book \Seamless Object-oriented Software Architecture { Analysis and Design of
reliable Systems" [4] Nerson and Wald�en devote a chapter to description of dynamic
models in the BON notation. They �rst describe a number of \event charts" and other
charts (which are just tables with selected relations among elements in a dynamic
model). They reject state transition diagrams and �nite state machines as the only
formalism for description of dynamic models because of the mismatch between static
OO models and state transition diagrams. Following that they develop a scenario
concept and they introduce some simple diagrams, through which a number of objects

5In �gure 7 we use the term `sample' for the nodes which aggregate the information of message
passings. Each box in the �gure is a node in the tree. The name of the node is shown in bold face.
Below the name of the node we show a number of �elds, some of which refer to other nodes in the tree.
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Scenario: Borrow a car and go for a ride
1.  Driver obtains keys from car owner
2.  Driver turns ignition key
3.  Engine starts
4.  Driver removes ignition key
5.  Engine stops
6.  Driver returns keys to owner

DRIVER

CAR

OWNER

ENGINE

1, 6

2, 4 3, 5

Figure 8: A dynamic model in the BON notation.

and `message relations' (in terms of arrows) among objects are drawn. The temporal
aspects are captured by numbers on the message relations.

As an interesting idea, Nerson and Wald�en introduce the concept of an object group
which can take part in message relations. Object groups simplify the diagrams of dy-
namic models, and object groups can be seen as abstractions of a number of objects
with similar properties. One usage of object groups is indeed to group together objects
which are instances of a common, general class. The grouping of objects may be a
�rst step in the direction of classi�cation, and may consequently lead to generaliza-
tion/specialization in the static model.

In contrast to our approach, Nerson and Wald�en's work is quite heavily focussed on
the means of expression. Their work is primarily a diagraming technique for expressing
dynamic models. The degree of formalization is rather low in the BON notation. This
in also in contrast to our approach, in which formal and informal aspects complement
each other. The BON notation is at a slightly higher level of abstraction than our
proposal. This is mainly due to the generality of the BON message relations, which are
(n-n), and due to the object grouping concept.

Figure 8 shows a simple example of a dynamic model formulated in the BON notation.
In order to compare this with our approach, we show a trace of our similar representa-
tion of the example in �gure. We start with the driver and the car on the scene, and we
introduce the owner via a provision of a global object at a later time, when the owner
becomes necessary for the example. As another di�erence, we also provide an explicit
key object. Notice that it is di�cult to deal with object instantiation in the BON
notation. The reason is, of course, that a diagram contains a �xed set of object (and
a �xed set of message relations). In that sense the dynamic model is static. This is in
contrast to our representation of a dynamic model, in which it is possible to prescribe
new object creations as a function of time, during the development of the scenario.

The weakness of the BON notation with respect to object creation becomes even more
clear if we attempt to make a diagram of the circle construction scenario, which we
described in section 4.3. Figure 10 shows an attempt. In this example there are several
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  SCENE:
     OBJECT-PROVISION  C: CAR [global]
     OBJECT-PROVISION  DRIVER : PERSON [global]
  MESSAGE   DRIVER .TEST-DRIVE(C ) 
        OBJECT-PROVISION  OWNER: PERSON [global]
        MESSAGE   OWNER.GET-KEY()
        RESULT: OBJECT-PROVISION  K : KEY [local]
        MESSAGE   C.START(K  )
              OBJECT-PROVISION   E: ENGINE [part of C]
              MESSAGE  E.START()
              RESULT: The engine starts
        RESULT: The car starts
        MESSAGE   C.REMOVE-KEY(K  )
              MESSAGE   E.STOP()
              RESULT: The engine stops running.
        RESULT: There are now no keys in the car.
        MESSAGE   OWNER.DELIVER-KEY(K  )
        RESULT: The driver has no keys any more.
  RESULT: The driver is done and happy.

Figure 9: A traversal of a dynamic model corresponding to the one on �gure 8.

point objects and several line objects involved which all can be seen on the �gure. The
roles of the di�erent objects are given as group names. As noticed above it is not
possible to illustrate how objects are created as the result of messages. This is a severe
limitation in this example, because most of the objects are not `on the scene' at the
beginning of the scenario. In addition, there are many objects in this example that
never receive any message, with which we are concerned. These objects are parameters
to the messages involved. The actual parameters of the messages cannot be shown in
the BON notation. In summary we do not think that the diagram in �gure 10 gives a
good account of the dynamics of the circle construction.

5.2 The work by Jacobson et al.

The OOSE method described in the book Object-Oriented Software Engineering - A

use Case Driven Approach [3] by Ivar Jacobson et al. has a number of contributions
which are relevant for a discussion of dynamic OOD models.

The central concept in the book is use cases. A use case is a scenario which involves the
computer system and a number actors (users and external computer systems). Thus,
a use case describes the borderline between the forthcoming computer system and the
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Scenario: Construct a circle through three points.

1. From outside, we want to determine a circle through  the
receiver point and two other points.

2. Create the line between this point and the second point.
3. Create the line between this point and the third point.
4. Create the central line of the first line.
5. Create the central line of the second line.
6. Determine if the central lines are parallel
7. Determine the intersection point between the two central

lines.
8. Determine the distance between the intersection point and

the original point.
9. Create a circle with center in the intersection point and

with the distance from 8 as the radius.

Point

Line

Circle

Point

Point

1
2

3

Line

Line

4

Line

5

6

7

Point

8

The three original points

Lines through points Central lines

Figure 10: A dynamic model in the BON notation.

surrounding world in terms of the interaction between the system and the actors. A
number of use cases, which cover the problem domain, are formulated early in the OOA
and OOD process, during a requirement gathering phase. The use cases are stated
informally, in plain text and use cases can be specialized/generalized and extended in
various ways. In the subsequent design steps the use cases are basis for the majority of
the further developments, such as �nding the objects (classes) and operations.

In the design phase of the construction process the use cases are turned into interaction
diagrams, in which objects (called blocks in OOSE) send messages (called stimuli in
OOSE) to each other. The temporal relations among the message passings can be seen
from the interaction diagrams. In addition the interaction diagrams can be related to
pieces of pseudo program, which realizes the interaction.

Figure 11 shows an example of an interaction diagram. The diagram is reproduced
directly from (the upper part of) �gure 8.11 of [3].

The example is a recycling machine for bottles, cans and crates. When the user of
the machine deposits an item (such as a bottle) the machine �rst checks whether the
item is acceptable. If it is, the machines increments a counter which keeps track of this
particular kind of item. In addition it increments a counter which keeps track of the
total number of items received, again speci�c to each possible kind of item. All this
makes up the basis for printing a receipt to the customer.

The interaction diagram in �gure 11 involves four objects: A customer panel (which is
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System
border

Customer
panel

Receipt
basis

Deposit
item

Deposit item
receiver

start

activate

create

new item

Customer presses the start button
The sensors are activated

DO
New deposit item is inserted
Measure and check if this kind 
of item is acceptable
IF not found THEN create a new
daily Amount := daily Amount + 1
noReceived := noReceived + 1

WHILE Items are deposited

exists()

insertItem(Item)

incr

item()

Figure 11: An interaction diagram reproduced from Jacobson et al.

an interface object in OOSE terms), a Deposit item receiver (which is a control object),
a Receipt basis and a Deposit item (both entity objects). Each `Deposit item' object
contains information about (1) the value of the item, (2) the total number received
this day, and (3) the physical characteristics of the item. A `Receipt basis' object is
able to count how many items of each kind the customers has deposited. From the
diagram and the pseudo code we see that it is �rst checked whether the deposited item
is acceptable. If it is acceptable, it is inserted into the Receipt basis object, and its
counter is incremented.

There are several things to notice in the interaction diagram from above:

1. There is no messages shown which cares about acceptance of an item.

2. It is not easy to �nd out how the individual `Deposit item' objects are organized
in relation to the `Receipt basis' object.

In addition, it would be awkward to deal with very many di�erent objects in an inter-
action diagram, simply because of the spatial layout of the diagram.

In the solution which we adopt for this paper there are two central objects:

� An object ACCEPTABLE ITEMS which allows us to check whether an item is
acceptable. This object must contain descriptions of the physical characteristics
of each of the allowed items, which the machine recycles. Each of the allowed
items are either a BOTTLE, a CAN, or a CRATE. These three concepts are
generalized to a DEPOSIT ITEM.

� Objects of the class ITEM SET, which counts the number of items of each kind
that have been delivered. This object contains a collection of ITEM COUNTERS,
which aggregates an integer counter and a (reference to) a particular DEPOSIT ITEM.
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OBJECT-PROVISION SENSORS: SENSOR-SET [global]
OBJECT-PROVISION RECEIPT-PRINTER : PRINTER [global]
OBJECT-PROVISION GRAND-TOTAL : ITEM-SET [global]
OBJECT-PROVISION PANEL : CUSTOMER-PANEL [global]
OBJECT-PROVISION ACCEPTABLE-ITEMS : ITEM-COLLECTION [global]
MESSAGE PANEL .START()

OBJECT-PROVISION CUSTOMER-TOTAL : ITEM-SET [global]
MESSAGE SENSORS.ACTIVATE()
RESULT: The sensors have been activated

RESULT: The systems is started and ready to receive items.
MESSAGE PANEL .DEPOSIT-ITEM(A description of deposited item)

MESSAGE ACCEPTABLE-ITEMS.DOES-EXIST?(A description of deposited item)
RESULT: OBJECT-PROVISION ITEM : BOTTLE [local]
MESSAGE CUSTOMER-TOTAL .EXISTS?(ITEM  )
RESULT: Assume it does not.
MESSAGE CUSTOMER-TOTAL .INSERT(ITEM  )

OBJECT-PROVISION IC : ITEM-COUNTER [part]
RESULT: The kind of item has been registered in the customers record.
MESSAGE CUSTOMER-TOTAL .INCREMENT(ITEM  )
RESULT: counter has been incremented
MESSAGE GRAND-TOTAL .INCREMENT(ITEM  )
RESULT: counter has been incremented

RESULT: item has been deposited.

Figure 12: A trace of the recycling scenario using the concepts from this report.

Objects of type ITEM SET can be used to keep track of the individual customer's
record (CUSTOMER TOTAL) as well as to administer the total number of items
(GRAND TOTAL) of each particular kind, which is returned during a day.6

In �gure 12 we show a trace of our representation of the recycling example from above.
Recall that such a trace shows an extract of the information in an underlying tree
structure. As can be seen from the �gure, �ve di�erent global objects are provided
initially. The interesting messages is `deposit-item', which takes some description of
the deposited item as a parameter. We �rst check whether the item is acceptable,
by sending the message does-exist? to the object ACCEPTABLE ITEMS. We assume
that this operation returns the relevant item object, if the description of the item
matches an item object from the acceptable items. In turn, this item is inserted into
the CUSTOMER-TOTAL object. Next an item counter in the CUSTOMER-TOTAL
object is incremented. Finally the GRAND-TOTAL object is incremented with respect
to the item.

In section 5.1 we showed how the circle construction through three given points could be
described in Nerson's and Wald�en's BON notation. Although the circle construction
example probably is far away from the typical problems supposed to be attacked in
OOSE, we will also sketch an OOSE interaction diagram for the circle construction
problem. The result is shown in �gure 13.

6In the solution from [3] the daily total of each kind of item is an attribute of `Deposit item'
objects. In our opinion this is not a good modeling, because the number of items received hardly can
be considered as a quality of a `Deposit item'.
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Figure 13: An interaction diagram for the circle construction problem.

One of the main di�culties is to illustrate how objects are created dynamically during
the course of the interaction. Neither of Line1, Line2 and the central lines exist when
Circle-on-points operation is called; they are all created as temporary objects during
the execution of the operation. Similarly it is awkward to illustrate how objects are
passed as parameters to operations. As a consequence it is di�cult to make a good
correspondence between the pseudo-program in �gure 13 and the interaction diagram
proper. Notice that these weaknesses basicly are the same as those identi�ed with the
BON notation in section 5.1.

5.3 The work by Booch.

In Booch's book Object-oriented Analysis and Design with Applications (2. edition) [2]

two di�erent dynamic modeling notations are introduced. The �rst of these, which
is called object diagrams, presents a dynamic model as a graph, where the nodes are
objects and where the edges are object relations in a broad sense. Following Booch's
notation it is possible to adorn both nodes and links with a variety of details. The
second notation is interaction diagrams. As acknowledged by Booch, the interaction
diagrams in the Booch notation are very similar to Jacobsons's interaction diagrams
which we described in section 5.2 of this paper. In addition interaction diagram and
object diagram carry the same semantics. Consequently, we will limit ourselves to a
discussion of Booch's object diagrams in this paper.

Booch introduces Object Diagrams through a simple example, which we have repro-
duced in �gure 14. We will not here explain the details of Booch's notation nor the
intuition behind the example; for that purpose the reader should consult section 5.4
of [2]. From the �gure it it appears that a PlanAnalyst object sends a message time-
ToHarvest to the PlanMetrics \utility class" (a collection of procedures) which in turn
activates GardeningPlan object. The GardeningPlan object is seen to be a parameter
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:PlanAnalyst

C:Crop

PlanMetrics

:Gardening
Plan

C:GrainCrop

1: timeToHarvest(C)

2: status

3: maturationTime()5: yield()

4: yield()

6: netcost(C)

G

F

P

P Plan must be
executing

Figure 14: An object diagram reproduced from Booch.

of the PlanMetrics procedure (because of the P symbol in the GardeningPlan object).
Further on, the GardeningPlan object sends the message maturationTime to the C
object (of type GrainCrop). The latter is a part of the GardeningPlan object because
of the F symbol in C. The temporal sequencing of the messages is described by the
numbers in front of each message.

A number of additional graphical means associated with the nodes and edges make
it possible to describe such aspects as (1) the returned object from an operation, (2)
roles of the object associations, (3) data 
ow, (4) syncronization among objects, and
(5) informal 'development notes'. It is not intended that all these aspects should be
present on all objects or object relations in an object diagram. Still, it is our evaluation
that one can easily end up with complicated and cluttered diagrams.

When dealing with object diagrams from Booch, the designer's attention is attracted
towards the graphical means of expressions in the diagrams. The degree of formalization
is relatively high, compared with Jacobson and the BON notation, not least because
it is required that the object diagram should be consistent with a preexisting static
model (a class diagram). In itself the diagrammatic style of presentation appeals to the
reader's intuition: It is possible to see a number of objects that communicate via the
established object relations. In addition, a number of qualities of the objects and the
object communications can be read directly from the applied adornments.

As a weakness of the approach behind the Booch object diagram it can be noticed
that there is a limit to the number of aspects of a dynamic model that can be put
into a graph presentation, as adornments. The limit is probably already reached in the
proposed notation. If it is attempted to add elements of explanations (along the lines of
the so-called development note in �gure 14), the diagram would be totally overloaded
with information.

In �gure 15 we show a trace of the example from �gure 14 in the notation adopted for

23



 OBJECT-PROVISION PA: PLANANALYST [global]
 OBJECT-PROVISION DUMMY : PLANMETRICS [global]
 OBJECT-PROVISION GP: GARDENINGPLAN [global]
 OBJECT-PROVISION C: GRAINCROP [part of GP]
 MESSAGE PA.START(C) 
   MESSAGE DUMMY .TIMETOHARVEST(C)
     MESSAGE GP.STATUS()
       MESSAGE C.MATURATIONTIME()
       RESULT: Here the result is explained.
     RESULT: Here the result is explained.
   RESULT: Here the result is explained.
   MESSAGE C.YIELD()
     MESSAGE C.YIELD()
     RESULT: Here the result is explained.
   RESULT: Here the result is explained.
   MESSAGE PA.NETCOST(C)
   RESULT: Here the result is explained.
 RESULT: Net result can be described here.

Figure 15: A trace of the scenario from �gure 14.

this report. We are mainly interested to show the structure of a scenario trace of the
graph in �gure 14. (The details, especially the intuitive explanations, are only standard
strings). We provide the four7 di�erent objects as being on an initial scene. (There
is no need for objects that show up during the scenario). Notice that we are able to
express that the C object is part of the GP object, see line four of the trace in �gure
15. This corresponds to the small F symbol in the GrainCrop object in �gure 14.

In our approach to making dynamic models, we are able to deal with the problem of
'information overloading', because we focus on an internal representation instead of just
means of digrammatical presentation. A trace is only one out of many possible presen-
tations, which may select information from the internal representation and somehow
present that information for the designer.

Using Booch's object diagrams it is not possible to capture creation of new objects
(nor destruction of existing objects). In that respect, object diagrams are similar to
the other dynamic models we have found in the literature and described in this paper.
It is, however, interesting to observe that Rumbaugh has introduced a notation called
object interaction diagrams for the 2nd-generation OMT method (JOOP paper) which
to some degree is able to capture the creation of new objects in the notation. In many
respects, Rumbaugh's object interaction diagrams are similar in style to Booch's object
diagrams, although di�erent graphical conventions are used. What is important here is
that Rumbaugh propose to use colors (or similar means) in order to distinguish existing
objects, new objects, and disposed objects from each other. This may be useful in some
limited scenarios, but it is di�cult to imagine that colors can be used to give a full

7There seems to be �ve di�erent objects in the graph of �gure 14. However, the C object is shown
twice, namely in terms of the Crop part of the object and in terms of the GrainCrop part of the object.
The class Crop is a superclass of the class GrainCrop. In our opinion, this is an unfortunate duplication.
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Figure 16: Circle construction through three given points using a Booch object diagram.

account on the temporal aspects of dynamic models.

As we have done for both the BON notation and for the Jacobsons's interaction dia-
grams, we will �nally in this section show how the circle construction problem can be
expressed in a Booch object diagram, see �gure 16.

In step 1, the message circleThroughPoints is sent to APoint. In step 2 and 3 we
construct two line segments from APoint to P, and from Apoint to Q. We see that
these messages return the lines L1 and L2. In step 4 the central line of L1 is found.
The resulting object is called CL1. Step 5 through 7 show the di�erent step that are
necessary for the construction of CL1. It might be attractive to modularize the scenario
such that the details involved in the construction of a central line is shown in its own
scenario. We also need the central line CL2 of L2, but the messages that are involved
in constructing it are not shown on �gure 16. In step 8 we test whether the two central
lines are parallel. As it appears, we assume in the shown scenario that they are not. In
step 9 we �nd the center point of the desired circle as the intersection of CL1 and CL2,
and we �nd the distance from the center point to one of the original points (step 10).
Finally we construct the circle in step 11 (by sending a message to the class Circle).
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By using the data
ow symbol to indicate returned values and returned objects from
messages, it is possible to indicate which objects are created by which message. How-
ever, all the necessary details make the object diagram quite di�cult to read (and
di�cult to produce and maintain). And as it has been the case for all static presenta-
tions of dynamic models, which we have exercised in this paper, the actual dynamics of
object creation cannot easily be captured. I.e., all the objects are present in the �gure,
although the majority of the objects actually appear during the construction process
(and disappear again, because they are only temporary objects, local to some of the
methods involved in the construction task).

6 Status and conclusions

In this paper we have discussed dynamic models in relation to static models, as they
are used during an object-oriented design process. It is a central claim of the paper
that the dynamic model should be constructed before the static model, especially in
complicated design situations. Whether a design situation is complicated depends on
the skills of the designer. The main purpose of our research is to �nd out to which
degree the claim is true.

A design model can be characterized with respect to

1. the means of expressions

2. the degree of formalization, and

3. the level of abstraction.

Our proposal for a dynamic OOD model avoids a �xed stand on the �rst characteristics,
because we chose an abstract, internal representation which can be presented in many
di�erent ways, using several di�erent means of expressions. We go for a dynamic model
with both formal and informal aspects. In several respects, the informal and formal
aspects describe the same elements. Finally, the level of abstraction is modest in our
proposal. The starting point of the model was the actual program execution model,
on which we abstracted irrelevant details away. Consequently, our dynamic model has
similarities with an actual execution of an object-oriented program.

We do not think it is possible to make satisfactory descriptions of dynamic OOD models
as diagrams on sheets of paper. Therefore we have proposed to deal with dynamic
models on a more dynamic medium. The medium we have described is a dynamic

exploration tool. With the tool we have in mind, it is possible to build, explore, and
analyze a dynamic model.

Currently we have implemented a very simple prototype of a dynamic exploration tool
in CLOS. We are also in the process of implementing a graphical user interface to the
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tool. We plan to make an additional and improved prototype in order to gain more
experience, and in order to test the hypothesis, which have been formulated in this
paper.
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