Nordic Journal of Computing

ELUCIDATIVE PROGRAMMING

KURT NORMARK
Department of Computer Science
Fredrik Bagjers Vej TE, 9220 Aalborg @, Denmark.
E-mail: normark@cs.auc.dk

Abstract.

In this paper we introduce Elucidative Programming as a variant of Literate
Programming. Literate Programming represents the idea of organizing a source
program in an essay that documents the program understanding. An elucidative
program connects textual documentation with the abstractions and the details in
the source program. The documentation and the source program are defined in
separate files. Using Elucidative Programming, the relations between the docu-
mentation and the units of the program are defined without use of containment.
The textual documentation is intended to be technical writing about the program,
and as such an elucidative program can be seen as a reflected program. Elucidative
Programming allows for documentation of transverse relations among the program
constituents. In addition, Elucidative Programming is oriented towards on-line
presentation of documentation and programs in a WWW browser.

1. Introduction

Program development is based on understanding. The understanding is em-
bodied and encoded in the program. Unfortunately, it is not easy to recover
the understanding from the program. Consequently, a great amount of ef-
forts are used to reestablish the original understanding when the program
needs updatings of various kinds. The widespread interest is reverse engi-
neering tools, which are quite dominating in the program comprehension
community [32, 4] is a clear evidence of this observation.

In this paper we recommend an investment in documented program un-
derstanding. The essential understanding, present among the people who
write the program, should be captured and related to the relevant program
constituents. Seen in perspective of the program life time it is not econom-
ical to forget the program understanding and to recover it repeatedly via
detective work, which is difficult to support by effective tools.

The ideas about documented program understanding are not new. Liter-
ate Programming has been around for more than 15 years. Literate Pro-
gramming is supported by a family of systems known as WEB systems
[15, 18, 5, 33, 14]. Unfortunately, Literate Programming has not caused
much impact on everyday software development practice. Part of the rea-
son is that Literate Programming is extreme in several directions:

Received June 22, 2000.

2 KURT NORMARK

o It is based on the ideas of breaking the program into fragments that
are contained physically in the document which represents the program
understanding. Thus, the program “lives in” the documentation. The
concept of a source file (which is familiar to most programmers) does
not exists in the literate programming paradigm.

o It mixes fragments of a text formatting language and fragments of a
programming language in one “ugly” and monolithic file, the value of
which is low in the development situation.

o It aims at documentation with literate value which can serve as tech-
nical literature in the same way as scholarly papers.

It is our hypothesis that Literate Programming is beyond reach of the
average programmer. The ambition of literate programming is too high, the
program artifacts are too far from mainstream, and current programming
environments will suffer too much if adapted to the ‘literate ideas’ in a
WEB-like elaboration.

With Elucidative Programming we keep the basic idea of documented
program understanding from Literate Programming. However, we re-orient
the approach in the following ways:

o In Elucidative Programming, the source program is left intact without
embedded or surrounding documentation.

o The program understanding is described in a document which is firmly
related to named constituents in the source program.

o The physical proximity between documentation and program, which is
characteristic for Literate Programming, is traded for a navigational
proximity in Elucidative Programming. This allows for explanation of
aspects that crosses the boundaries between several program modules,
such as design patterns in object-oriented programs.

Elucidative Programming is intended as as an alternative to Literate Pro-
gramming in the area of internal program documentation and explanation.
We realize, however, that the ideas behind the approach can be used in
most situations where there is a need to write about a program. This in-
cludes program tutorials, program reviews, and student reports which need
to address various program details.

In this paper we will discuss the tools involved in an elucidative pro-
gramming environment. This includes both an elucidative programming
environment for Scheme [21] and for Java [23]. In that respect, we are con-
cerned with two overall goals. First, we want to orient the tools toward
the medium of the Internet, WWW, and HTML. We have witnessed the
great success of documenting class library interfaces using this medium in
the Java Development Kit [6]. During our research we will like to find out
whether program documentation of more internal nature can be made by
similar means. Second, we want to integrate the support of Elucidative Pro-
gramming in an existing editing environment. With this goal programmers

ELUCIDATIVE PROGRAMMING 3

(1) The internal documentation must be oriented towards current and future
developers of the program.

(2) The internal documentation is intended to address explanation which
serves to maintain the program understanding and to clarify the
thoughts behind the program.

(3) The program source file must be intact, without embedded or surround-
ing documentation.

(4) The programmer must experience support of the program explanation
task in the program editing tool.

(5) The program “chunking structure” follows the main abstractions sup-
ported by the programming language.

(6) The documented program must be available in an attractive, on-line
representation suitable for exposition in an Internet browser.

Fig. 1.1: Requirements for an elucidative programming environment.

can continue “programming as usual”’, but now in a documentation enabled
environment.

We are aware of several obstacles that need to be overcome in order for
Elucidative Programming to succeed in the area of internal program docu-
mentation. The obstacles rely on positive answers to the following questions:

o Is it realistic to expect that programmers retain their program under-
standing in a free style story or essay?

o Is it possible to keep the documented program understanding up-to-
date and valuable during the maintenance phase of the program.

We are not presenting substantial answers to these questions in the present
paper. However, these questions are central in our ongoing research, and
future papers from our group are expected to address these important issues.

In section 2 we will introduce the ideas and the concepts of Elucidative
Programming. In section 3 we present a concrete example of an elucidative
program. A discussion of the tools in an elucidative programming environ-
ment follows in section 4. The paper ends with a description of related work,
status of the research, and conclusions.

2. Elucidative Programming Concepts

To elucidate is to throw light on something complex and to make clear or
plain, especially by explanation. We introduced the idea of Elucidative Pro-
gramming in an earlier paper [22]. In that paper we discussed Elucidative
Programming and Literate Programming in relation to each other, and we
came up with six requirements for an elucidative programming environment.
These requirements are summarized in figure 1.1. The paper An Elucidative

4 KURT NORMARK

Menu and index pane

Documentation Program
pane pane

Fig. 2.2: The layout of panes in an Elucidator.

Programming Environment for Scheme (which is an earlier version of this
paper) introduces a set of tools for Scheme - a programming language in
the Lisp family [21]. Similarly, the paper Elucidative Programming in Java
describes facilities for Elucidative Programming in Java [23]. The Java Elu-
cidator was designed and implemented by a group of five master students
[1] based on the preliminary experiences with the Scheme Elucidator.

2.1 User interface

From a user interface point of view, the central idea in Elucidative Program-
ming is to present the program and the documented program understanding
as hypertext in two relative large panes of a window, see figure 2.2. In that
way the documentation may be presented in a pane on the left half part (or
top) of the screen and the program in the right half part (or bottom) of the
screen. A concrete example can be seen in figure 3.4, which will be discussed
in section 3 of this paper.

The proximity of documentation and program gained by this setup of the
user interface forms an interesting contrast to the WEB systems that sup-
ports Literate Programming. The proximity supported by the elucidative
user interface will be called navigational prorimity. Navigational proximity
is weaker than the physical prozimity between documentation and program
in Literate Programming. However, the navigational proximity makes it
possible to describe several program entities in one section of the documen-
tation. This is useful for discussion of transverse program themes, such as
design patterns in object-oriented programs. Furthermore, a single program
entity may be discussed in several different sections of the documentation.
Thus, the user interface ideas in Elucidative Programming mediates a many-
to-many correspondence between documentation entities and program enti-
ties.

2.2 Hypertext aspects

Seen as hypertext, the nodes of an Elucidator are very coarse grained. The
entire documentation is a single node in which sectional units are embed-

ELUCIDATIVE PROGRAMMING 5

ded into each other. Similarly, each source program file can be seen as a
node where the units of the programs are composed and embedded accord-
ing to the rules of the programming language. In that respect, Elucidative
Programming runs counter to other hypertext-based programming environ-
ments [25, 24] where more fragmented models seem to dominate. The hy-
pertext links are derived from relations among program and documentation
entities. This is explained in more details below.

2.3 Central model

From a modelling point of view, the program and the documentation are
broken into entities. At the program side the entities are the overall building
blocks of the program (named abstractions) such as classes, procedures,
and functions. At the documentation sides the entities are sections and
subsections of the program explanation. As an integral part of the entity
concept there must exist a naming scheme which allows the documentation
to address specific constituents of a program. In a more general sense, the
naming scheme provides for definition of relations between documentation

entities and program entities.

In the Scheme environment, the most important program entities are top-
level define forms. The naming scheme in the Scheme Elucidator allows
addressing of top-level abstraction in a specific source file such as

file$function

In the Java environment, the naming scheme is more elaborate. A name of a
Java program entity includes information about package, class, method, and
types of formal parameters of methods (in order to distinguish overloaded
methods from each other). The following serves as an example:

packagel.package2.class@method(class3,type)

In the Scheme environment the documentational entities are identified and
named with specialized markup. The left hand box of figure 2.3 shows an
example of two sections named ‘intro-section’ and ‘attack-plan’. The Java
environment uses XML markup instead of a specialized markup. This is
illustrated in the right hand box of figure 2.3. XML markup is mainstream
standardized markup today, but as can be seen it is more voluminous than
the specialized ad hoc markup used for the Scheme Elucidator. Both the
Scheme and Java systems use plain HTML markup for typographical details.

Program and documentation entities can be connected to each other by
means of a few natural relations, all of which are binary. If we assume that
P (together with P1 and P2) are program entities and D (together with D1
and D2) are documentation entities we can describe the meanings of the
relations in the following way:

o The strong doc-prog relation:
An element (D,P) in the strong doc-prog relation represents that the
program entity P is explained in the documentation entity D.

6 KURT NORMARK

.SECTION intro-section <chapter label="intro-section">
.TITLE Introduction <title Introduction </title>
.BODY Introductory text which may refer to
Introductory text which may refer to section <dlink href = "attack-plan'">.
section [attack-plan].
.END <section label="attack-plan'">
<title The plan of attack </title>
.ENTRY attack-plan Documentation describing the plan of attack which
.TITLE The plan of attack may explain the method <slink role = "strong"
.BODY href ="package.class@method()>.
Documentation describing the plan of attack which </section>
may explain the function {file$function}. </chapter>
.END

Fig. 2.3: An illustration of the documentation markup used in the Scheme
environment (left) and in the Java environment (right).

o The weak doc-prog relation:
An element (D,P) in the weak doc-prog relation represents that the
program entity P is mentioned, without being explained, in the docu-
mentation entity D.

o The prog-prog relation:
An element (P1,P2) in the prog-prog relation represents that P1 uses
the entity P2.

o The doc-doc relation:
An element (D1,D2) in the doc-doc relation represents that the doc-
umentation in D1 relies on the documentation in D2 seen from an
elucidative point of view.
In addition, there is a relation which we could call prog-lang, which relates
an instance of language construct or standard library facility in a program
to its description in a hypertext version of the language report or library
manuals.

In an elucidator tool each element in one of the relations mentioned above
are represented by one or more hypertext links. An element (D,P) in one of
the doc-prog relations gives rise to two links:

o a link source anchored in a position of the documentation entity D,
and destination anchored in the program entity P.

o a link somehow source anchored in the program entity P, and destina-
tion anchored in the documentation entity D.

An element in the prog-prog relation relates an applied name occurrence
to its defining name occurrence. In order to be more precise, let us assume
that (P1,P2) is an element in the prog-prog relation, that P2 is named N,
and that (P1,P2) gives rise to a link L. L is source anchored at an applied
occurrence of N in P1. The destination anchor of L is a presentation of P2,
which defines N.

An element (D1,D2) in the doc-doc relation gives rise to a cross reference
link from one place in the documentation to another section.

ELUCIDATIVE PROGRAMMING 7

2.4 Sectional Comments

In imperative Scheme programs it is meaningful to have expressions and
commands outside any top-level procedure or function. In Java programs
this is not possible. Thus, in elucidative Scheme programming there may be
a need for discussing and explaining program fragments located outside of
named abstractions. For this purpose we use sectional comments via which
we can identify an arbitrary top-level locations. (More localized positions
can be identified via use of source markers, see section 2.5). A sectional
comment name is enclosed in double colons within a Scheme comment line.
The Scheme form succeeding the sectional comment can be referred to by
the qualified name like file:sectional-comment.

2.5 Source markers

The links derived from the relations described in section 2.3 can be used to
connect sections in the documentation with named abstractions in a program
source file. However, in some explanations it is desirable to address finer
details in the program. Of that reason we have introduced the concept of
source markers. A source marker denotes a particular point or region in
a program entity. Source markers must appear in a comment positions in
order not to interfere with the syntactic rules of the programming language.
In order to minimize clutter in the program comments we use a minimal two
character notation ‘@c’ to denote the source marker c in a Scheme program.
In Java, XML markup like <e:maker/> and <e:marker> ...</e:marker>
is used to denote a point or a region in a source program.

At the documentation side in the Scheme environment, source markers
may be used when we explain the program details next to a source marker
in the program. A source marker in the documentation is associated with
the anchor of the link corresponding to closest preceding strong doc-prog
relation element. A source maker in the documentation is the source anchor
of a link which goes to the corresponding sourcer marker in the program,
and vice versa.

2.6 Organizational aspects

The concept of a documentation bundle is central seen from an organizational
point of view. A documentation bundle keeps the documentation part and
the program parts of an elucidative program together as a unit.

The editor that supports Elucidative Programming is supposed to be aware
of all parts (files) in a documentation bundle. The editor awareness is used
to open, save, process, and close all such files with single operations in the
editor. We will describe the editing tool of the elucidative Scheme environ-
ment in more details in section 4.2.

8 KURT NORMARK

3. An Example of an Elucidative Program

Before the discussion of the tools in the elucidative programming environ-
ment we will present a concrete example of an elucidative program, and we
will explain the process of its development. In the paper we will illustrate
an elucidative Scheme program, but as an on-line accompanying resource
both a Scheme and a Java version is available.

The example is intended to illustrate the concepts introduced in the pre-
vious section. However, the reader should be aware that the example is too
small to illustrate the real needs and challenges of documented program un-
derstanding “the elucidative way”. Furthermore, we should be aware that
Elucidative Programming is not targeted at program publication in the same
way as Literate Programming, cf. the first requirement in figure 1.1. Thus, it
is not really the intention to polish an elucidative program. In that respect,

the example given below may be somewhat misleading.
The Elucidator of the example is available at the Internet address

http://wuw.cs.auc.dk/ " normark/elucidative-programming/njc/

The Scheme version refers to the Java version, and vice versa. The reader is
encouraged to bring the example up in a browser while reading this section
of the paper.

The example is concerned with the development of a program that can
decode the number of seconds elapsed since January 1, 1970, 00:00:00 to a
year, month, day, hour, minute, and second. Most computers can deliver
an integer representing this measure of time, and therefore the conversion
forms a very useful basis for a convenient and regular handling of time in
terms of a number of seconds.

Using the editor tool of the elucidative programming environment we
create the documentation bundle and the underlying directory structure,
which hosts an empty source file, an initial template of the documentation
file, the setup file, a directory for internal files, and a directory for HTML
files. This is done by the editor command make-elucidator (see also sec-
tion 4.2). The editor prompts the user for all necessary information and
creates these files and directories automatically. Next the user issues the
command setup-elucidator which reads the documentation bundle into
editor buffers, and establishes the characteristic split-view window on the
documentation and the program (still empty, of course). Now the elucidative
programming process can start.

First we establish a little context around the problem. We discuss how to
possibly attack the problem. Two approaches are identified, and we happen
to go for a mixture of them in our solution. We shift between writing a piece
of documentation, and writing pieces of programs. In case a name exists in
the program it can be smoothly transferred to the documentation buffer.
This makes the writing about the program relatively easy and “secure”. We
run the Elucidator regularly and refresh the editor in order to get access to
a list of known identifiers. We introduce concepts in order to write about

ELUCIDATIVE PROGRAMMING

4 Time Conversi <aft Internet Explarer
| Fle Edt Wiew Go Favoiss Hep ‘
E a A 5
Back Forard Stop FRefiesh Home | GSearch Favoites Histoy Channels | Fubscreen Fons Pint Edit
Address [&] hitp: /o, os. aue dio~omark prog > tirne. bl = H Lirks

mis!

1 Introduction

[time [general

2.1 Dealing with years

1.1 Time systems and functions

2.2 Desling with days, hours, minutes, snd seconds

3 Post Scriptum
3.1 Binal remarks

12 The plan of attack 23 Dealing with months =
2 The solution 2.4 Putting it all together j
= Rathrn The numba ours, minkte: and ceconds 0 setond cotnt n 5
30 is less than the number of feconds in a yea
0a]
b (define i o
H - 5 ks (s (guotient n seconds-in-a-dayd) 3
2.2 Dealing with days, hours, minutes, and seconds e ey R
(s Cgun bramt morestol setonde- n-an-hour))
Mow we have reduced the problem te finding the normalized months, days, et i e tod saonda e an o) | @
hours, minutes and seconds from a rest second counter # that i3 less than gwmt;s E:wd:;enr n- risg éu%%) i H
. secan 0 n-res H
the number of seconds in a year. It would be natural to find the month next, CFrst days hours minutes secondsd))
but doing so would call for yet another connting process, because a month § Betirn 2 145¢ of day am noth given = runber of days in year.
is an irregular time interval (some months have 31 days, others 30, fPay-gaunt 1s 2 runber of days in a yea
i Gefine (day-and-month day-count
February has normally 28 days, but there is 29 days in leap years) A et ok o et et Al day_mu"m 3
a
It is easy to find the unnormalized number of days, and the normalized [def“m _(day and-monthohelp n w ¥)
af da s-in-month m g
hours, tinutes, and seconds from ». This is done by quotient and modulo Ed Tef T el E . o h) C N
< 4 4 1;
calculations. The function how-many-days—-hours-minutes - ymanamentiele ?"syl”12°:om.ﬂ p4 ;4)))’)3I
seconds does that. We first find the (non day-nermalized) number of 3 Return the number of days in month and year

days by dividing r by seconds -in-a-day (#). The remainder, called n-
rest-1 (#) is used te find the hour-notmalized number of hours by division
of n-rest-1 by saconds-in-an-hour (#). Again the remainder, n-
rest-2 (®) is found, and this quantum is vsed to find the mimte-normalized
number of minutes (#). Finally the number of seconds are found in the last
medulo calculation (). We use a sequential name-biding form Tet* to find
the results in a sequential fashion. Stll we are entirely within the finctional
paradigm, of course. The finction returns the bst of days, hours, minutes,
and seconds

(define (days-in-month month year)
Gif ((ffmnﬂnth 2) 5 o
O o e F it e arma -year (- nonth 1979)

§ Raturn 3 Tist of yaar menth day hours minutes seconds from n,
| i which represents the mumber of seconds elapsed since Jamwary'l, 1370.
o aa
(define (time-decode n)
Cet* ((ear-seconds
(yeare-and-seconds n))
(year Cear yaar-seconds))
(days-hours-minutes-secands ; @
<-hours-minutes—seconds (cady year-seconds)))
(hours (second days-hours-ninu tes-seconds)
Dmiiehed e b s stas-scmmi)
(secands Cfourth days-hours-minutes-secondz))
(day-nonth

Gay-ad-month (First days-hours-mintes-seconds) year)) ; #
(day (First day-month))
month)))

Gronth Csacons day
(iist year month day hours minutes seconds)))

e

2.3 Dealing with months

In section 2.2 we almost solved the rest of the problems. However, we still
have to find the month compenent from a non day-normalize number of
days. As an example, we may have 45 days, which should represent
February 14, As another example, day counter £0 represents February 29

il

A

[@& Intemet zone

Fig. 3.4: A screen shot of the browser in an elucidative Scheme environ-
ment.

the program in a concise and precise way. This sharpens our understanding
of the problem, and makes the solution easier to understand, hereby easing
the development of the program. We introduce source markers for program
details which we want to address in details in the explanations.

It takes longer time to produce an elucidative program than just to write a
conventional source program. However, it is our firm belief that the quality
of the program is improved through this process. Several author’s of literate
programs support this observation [16, 27]. Furthermore it should be evident
that the construction of the documentation is an investment which, to some
degree, will pay off when we need to modify the program. Notice, however,
that future program modifications imply a substantial work on updating the
program understanding, as represented by the documentation.

Figure 3.4 shows a snapshot of a browser which presents the result pro-
duced by the Elucidator. (For a better presentation, please consult the
on-line version of the example). The three frames in the browser correspond
to the panes of the basic layout, as illustrated in figure 2.2. The menu and
index pane show the detailed table of contents of the documentation.

10 KURT NORMARK

.ENTRY days-hours-minutes-seconds

.TITLE Dealing with days, hours, minutes, and seconds

.BODY

Now we have reduced the problem to finding the normalized months,
days, hours, minutes and seconds from a rest second counter r
that is less than the number of seconds in a year. It would be natural
to find the month next, but doing so would call for yet another
counting process, because a month is an irregular time
interval (some months have 31 days, others 30, February has normally
28 days, but there is 29 days in leap years).<p>

It is easy to find the unnormalized number of days, and the normalized
hours, minutes, and seconds from r. This is done by quotient
and modulo calculations. The function
{*how-many-days-hours-minutes-seconds} does that. We first find the
(non day-normalized) number of days by dividing r by
{seconds-in-a-day} (@a). The remainder, called {-n-rest-1} (@b) is
used to find the hour-normalized number of hours by division of
{-n-rest-1} by {seconds-in-an-hour} (@c). Again the remainder,
{-n-rest-2} (@d) is found, and this quantum is used to find the
minute-normalized number of minutes (Qe). Finally the number of
seconds are found in the last modulo calculation (@f).

We use a sequential name-biding form {-let}* to find the results in a
sequential fashion. Still we are entirely within the functional
paradigm, of course. The function returns the list of days, hours,
minutes, and seconds.

.END

Fig. 3.5: An excerpt of the documentation source text.

Figure 3.5 shows a portion of the documentation source, in order to illus-
trate the specialized markup introduced for our purposes. The example is
relative to the Scheme version of the Elucidator. In the figure we see the
mixture of specialized markup (roff-like ‘dot notation’ at the start of a line)
and HTML markup. The excerpt in this figure corresponds to section 2.2,
as shown in figure 3.4.

4. Tools in an Elucidative Environment

There are three important tools in an elucidative programming environment:
(1) The elucidator.

(2) The editor.

(3) The browser.

The elucidator is the most central of these. The Elucidator processes the
files of the documentation bundle in order to prepare for a presentation of an
elucidative program in the browser. The second tool is the editor. It is the
qualities of the editor tool that make it realistic and feasible to produce a
program and its related documentation. Without specialized editor support,
Elucidative Programming is probably out of reach for most programmers.
The browser is a standard Internet browser, and as such it supports a user
friendly exploration and navigation of the documentation bundle.

In the following two sections we will discuss the Elucidator tool and the
editing support in an elucidative programming environment.

ELUCIDATIVE PROGRAMMING 11

Editor Browser

~_]

Elucidator /

Abstractors Synthesizers

Documentation

bundle

Repository

Fig. 4.6: The architecture of an elucidative programming environment.

4.1 The elucidator tool

An Elucidator is composed by two major components: an abstractor and a
synthesizer. In turn, both the abstractor and the synthesizer has a docu-
mentation part and a program part.

The program abstractor parses a source program in order to identify the
relevant program entities. The documentation abstractor similarly parses
the documentation with the purpose of identifying the documentation en-
tities. The program abstractor makes up the only programming language
dependent component of an Elucidator. Consequently, another program-
ming language can be supported solely by providing an abstractor for it.

The result of the abstraction processes needs to be organized as a program
model in a repository such that the synthesizer component of the Elucida-
tor as well as the editor tool (see section 4.2 below) can make use of the
information. The interplay between these components are illustrated in fig-
ure 4.6. It is worth emphasizing that the repository is confined to hold a
structural extract of the files in the documentation bundle; The full, but
less structured information is available in the documentation and the source
program files.

The information in program comments cannot be entirely ignored by the
Elucidator tools. The sectional comments of the Scheme Elucidator (see
section 2.4) and the source markers (described in section 2.5) both require
that the program comments are parsed. This causes a problem because
program comments usually are considered as lexical elements, and as such
they are not available during the syntax analysis phase. The solution ap-
plied in the Scheme Elucidator is to apply a pre-processor which transforms

12 KURT NORMARK

lexical Scheme comment to syntactical Lisp forms. In the Java Elucidator,
the parser has been modified to deal properly with the information in the
comments.

An incremental abstraction process becomes a need when large programs
are to be dealt with. In such situations we cannot afford to throw away the
entire repository upon a few modifications of either the documentation or
the program. In the Scheme Elucidator we can manually arrange that only
a subset of the documentation bundle is abstracted and further processed.
A better and more automatic solution would be major improvement for the
environment.

The program synthesizer renders the source programs of the documenta-
tion bundle in HTML such that the programs can be shown in a browser.
Similarly, the documentation synthesizer decorates the documentation text.
The handling of anchoring and linking is the most important concern of the
synthesizer components. As discussed in section 2.3, an element in the doc-
prog relation gives rise to a link from the documentation to the program as
well as a link in the opposite direction. The first of these makes it possible
to navigate from a discussion in the documentation to the involved program
entity. The opposite link is helpful in a situation where the program reader is
located in a program entitity and wants an explanation of it. In the Scheme
environment this navigation is carried out by following one of the links that
are anchored in the tiny yellow ’left arrow symbols’. These are the symbol
that are rendered in front of the Scheme definitions (see figure 3.4). More
than one such symbol may be present for a given definition in case that
the definition is explained in several sections of the documentation. In the
Java environment a so-called navigation window supports this possibility.
The navigation window is brought up by the browser when the name of an
abstraction (class, method, or variable) is selected.

Based on the result of the abstraction process the Scheme Elucidator
makes a number of useful indexes:

o An index of the definitions in the program

o A cross reference index of the names in the program (only names that
are bound at top-level).

o A table of contents of the documentation (in two different depths).

Navigational possibilities in the same vein are made possible via use of the
navigation window of the Java Elucidator. All indexes are presented in the
‘Menu and index pane’, cf. figure 2.2. The entries in the indexes are anchors
for links to the appropriate entities in the documentation or the program.
The cross reference index maps names to all the definitions, in which they
are applied. As a convenient shortcut in the Scheme Elucidator, a definition
of (say N) in the synthesized program is prefixed with an icon which allows
navigation to the name N in the cross reference index. Using these shortcuts
it is relative easy to follow a selected chain of function calls, from the details
towards the overall program structures (upwards in a possible procedure
calling chain).

ELUCIDATIVE PROGRAMMING 13

The Scheme Elucidator creates a fixed number of HTML files, which stat-
ically present the files from a documentation bundle. All the bindings are
done at elucidation time. The Java Elucidator creates the HTML files on
demand, at at browse time. The WWW server behind the Java Elucidator
produces the HTML file via Java servlets, based on the documentation and
the program files in the documentation bundle and the structural knowledge
in the repository (see figure 4.6).

The static solution, which produces the fixed number of HTML files, is
independent of WWW server technology. Once the HTML mirror of the
documentation bundle is produced the result can be accessed from an ar-
bitrary WWW browser (via a server, or locally on a lab top, for instance).
The dynamic solution is more flexible in the sense that it can provide a great
variety of different presentations if or when they are requested. But the dy-
namic solution is also more vulnerable, because it depends of a WWW server
which supports a particular technology. If such a server is not available, the
documentation bundle cannot be browsed.

4.2 The editor tool

In this section we will discuss the editor tool of the elucidative Scheme
environment. In a future development we want to develop a similar editor
support for the Java environment. The editor tool of the elucidative Scheme
programming environment presents the documentation and a selected pro-
gram file in a split-view window, in a similar way as the Elucidator. We use
a customized version of the Emacs editor. The customization is programmed
in Emacs Lisp.

The editor offers navigation possibilities which are similar to the facilities
in the browser discussed above. More specifically, the following kinds of
navigation are supported via a generic elucidator-goto command in the
editor:

o navigation from a program name N in the documentation to the defi-
nition of N in a program.

o navigation from a defining, top-level name occurrence N in a program
to a section in the documentation that explains N.

o navigation from an applied name occurrence N in a program to the
corresponding defining name occurrence.

o navigation from one section to another in the documentation via a
doc-doc cross reference link.

Navigation steps are stacked in order to provide for convenient backing up
to previous locations (using the elucidator-back edit command). The
navigation made possible by elucidator-goto and elucidator-back is
more powerful than plain text searching, because it may move the focus
from one Emacs buffer to another. Currently the editor does not support
direct navigation between pairs of source markers.

14 KURT NORMARK

As it can be seen in figure 3.5 anchored links a represented by specialized
markup in the documentation. Asan example, {multiplum-of } refers to the
place of the definition of the function multiplum-of. The editor supports
the creation of this markup, in particular the entering of names such as
‘multiplum-of’. The name may either be taken and transferred from a
program window, or it may be entered by means of Emacs completion (just
type the first few letters of a name and Emacs will finalize it). Both of these
creations are supported by the editor command prog-ref. In a similar way,
doc-ref supports the creation of cross reference links between sections in
the documentation.

The editor shows the documentation in raw and undecorated form, with-
out any special rendering of the elucidator-specific markup nor the HTML
markup. Therefore, it is much more pleasant to explore an elucidative pro-
gram in an Internet browser than in Emacs. In the development situation,
it is attractive to use both an editor and a browser. The core navigational
functionalities are overlapping. The editor is more flexible with respect to
searching than both Netscape and the Internet Explorer. The browser pro-
vides more elaborate and more user friendly navigation.

The editor offers a number of other convenient commands specific to the
Scheme Elucidator. The editor knows the files of a documentation bun-
dle. At any given point in time, one of the program files is in focus. The
command show-program brings another program in focus. The command
reset-elucidator establishes a split-view window, with documentation in
the upper part and a program in the lower part. The reset-elucidator
command is very useful if Emacs has been used for other and perhaps non-
related purposes, such as mail reading or plain file editing.

We find that the use of Emacs is a better alternative than proposing a
new and special editing tools, targeted exclusively at the creation of elu-
cidative programs. It seems to be a general experience that programmers
are reluctant to use brand new and special purpose program construction
tools.

In the ideal situation, however, the elucidative editing tool should be part
of an existing integrated development environment. In that situation, sup-
port of Elucidative Programming would be implanted into an existing and
more complete environment, which hereby will be documented enabled.

4.8 Tool integration

Integration of tools is an issue in every programming environment. In an
environment with an Elucidator, an editor and a browser, as outlined above,
the following integrations are attractive:

o Editor-elucidator integration
o Editor-browser integration.

In the current Scheme environment, it has been made very flexible to
activate the Elucidator tool on the current documentation bundle from the

ELUCIDATIVE PROGRAMMING 15

editor (single keystroke activation). In the Java environment, the Elucidator
is a more implicit tool which is activated by the WWW server. However,
the activation of the abstractors from the editor is still an issue in the Java
environment.

The editor depends on information from the Elucidator tool. As explained
in section 4.1 the Elucidator saves the information, which is extracted by the
abstractors, in the repository, cf. figure 4.6. This information is used by the
editor to support both navigation and flexible creation of links. When the
Elucidator finishes its processing, the editor command refresh-elucidator
updates the editor’s knowledge about the documentation bundle, using the
information from the repository.

The editor and the browser are often used side by side, because of their
complementing support of useful functionalities. A simple integration of the
editor and the browser would make it possible to activate or re-position the
browser from the editor, and vice versa. By such an integration it would be
easier to perform more frequent switching between the two tools.

A total integration of a development environment (including editor func-
tionality), an Elucidator, and the browser can be seen as a final goal. The
development environment should provide a seamless integration of the edi-
tor, Elucidator, and browser functionalities. In addition, such an environ-
ment should make it possible to export a documentation bundle as HTML.
However, in our point of view, such an integration is a natural concern for
the leading vendors of professional, integrated development environments.
In the longer perspective we can hope for elucidative documentation enabling
of the major professional development environments.

5. Related Work

The field of Literate Programming is the foundation of our work on Elu-
cidative Programming. Literate Programming was coined by Knuth in 1984
[16] as a result of major software undertakings with the TeX text formatting
system [17]. Knuth’s research group implemented the WEB system [15, 18]
as a set of tools (weave and tangle) which supports Literate Programming.
After that a number of similar systems appeared [5, 33, 14]. The main varia-
tions stem from the programming and documentation languages supported.
Some systems, such as Noweb and Nuweb, are programming language in-
dependent. There exists a published annotated bibliography of Literate
Programming [30]. However, the most complete and up-to-date bibliogra-
phy is available via a WWW page provided by Nelson H. F. Beebe [3]. In
our earlier paper on Elucidative Programming [22] we refer to a number of
small examples of literate programs (mainly from The Communications of
the ACM in the late eighties) and to other literate programming approaches
than WEB-systems.

Sametinger and colleagues at Johannes Kepler University of Linz, Aus-
tria, have developed the DOGMA programming environment for C++ [29].

16 KURT NORMARK

The DOGMA project has in the same way as the elucidative programming
project gained inspiration from Literate Programming. Both systems are
based on relations between documentation units and program units. The
relations are used to make relevant documentation appear when documented
program units are in focus. It is worth mentioning that Sametinger et al.
have developed a notion of object-oriented documentation for DOGMA [28].
Using these ideas, object-oriented concepts (such as inheritance) is used on
sections of documentation, which are attached to classes in C++. DOGMA
is a complete and integrated programming environment for C++, includ-
ing a residential text editor. As a contrast, the elucidative programming
environments that we have developed consist of two separate and partly
overlapping tools (an editor and a browser, which is powered by the Elu-
cidator) with a relatively simple integration in between them. In particular,
we rely on an external editor (Emacs) which is customized to support an elu-
cidative programming process. This may seem to be of minor importance;
Nevertheless, we believe that most programmers are conservative in adopt-
ing new editing environments, and as such our less integrated environment
may turn out to be a good, pragmatic alternative to a system like DOGMA.

In our current work on Elucidative Programming we use the World Wide
Web and the Internet as a medium for program documentation. JavaDoc [6]
is the main inspiration with respect Internet mediated program documen-
tation. JavaDoc makes it possible to extract interface documentation from
comments in Java programs that are marked in a special way and follow
special conventions. The extracted interface documentation is organized as
a set of interrelated WWW pages. JavaDoc documentation is particularly
useful for documentation of class libraries, and as such it is oriented to-
wards program reusability. Elucidative program documentation is targeted
at the team of programmers who are responsible for further development
and maintenance of particular applications.

Work on program understanding can be categorized in at least two differ-
ent groups: Prevenient and posterior approaches. Our work represents the
prevenient approach. As discussed in this paper the idea is to document
the program understanding before, or side by side with the development of
the program. We hypothesize that interleaved documentation and program
develop processes improve the quality of our programs. Furthermore, we
see the documented program understanding as an investment that pays off
during the maintenance phase. However, we are aware that the prevenient
approach is somewhat idealistic, and that mainstream program development
takes place without much emphasis on pro-active documentation of the pro-
gram understanding. The posterior approach deals with extraction of pro-
gram understanding from existing programs. A variety of different reverse
engineering tools have been proposed for such endeavors (for an overview,
see [32]). Because of the relative dominance of the posterior approach there
is much literature on this branch of program understanding. The IEEE In-
ternational Workshop on Program Comprehension is one of the main forums
for reverse engineering papers [7, 8, 9, 10, 11, 12, 13].

ELUCIDATIVE PROGRAMMING 17

A few years ago our work was focussed on hyper structured programming
environments. We carried out a number experiments with a system called
HyperPro. The main contribution of this work was the notion of rich hy-
pertext, and in particular the possibilities of defining flexible interaction
schemes on rich hypertexts [24, 26]. The work on Elucidative Programming
steps away from a fine grained hypertextual representation of the underlying
programs and documentation. In our current tools we deal with traditional
and coarse grained program source files. As such, our current work is much
more pragmatic than the work on HyperPro.

Kasper Osterbye’s work on literate Smalltalk programming [25] was an
important part of the HyperPro project. Like in HyperPro, Osterbye’s
Smalltalk environment was based on a fine grained representation of classes,
methods, and textual documentation. The work by Reenskaug and Skaar
[27] is also about literate programming support for Smalltalk.

It is natural to study the needs for program documentation in relation to
both the analysis and design phases of the software development process.
UML is the dominating ‘language’ for description of analysis and design arti-
facts. The work by Vestdam et al. (from our group) describes a contribution
to a CASE system which introduces the idea of documentation threads [31].
Documentation threads may involve elements from UML diagrams, program
fragments, as well as pieces of documentation.

6. Status and conclusions

In this paper we have described the ideas behind Elucidative Programming.
The paper has addressed both the Scheme Elucidator and the Java Elucida-
tor.

The idea of dividing a window (or screen) in a documentation pane and
a program pane, in between which mutual navigation takes place, is central
to Elucidative Programming. A complicated programming situation is of-
ten characterized by juggling with many aspects of the program at the same
time. Often it is difficult and demanding to mobilize sufficient concentration
on all these aspects (pieces of the program). In this situation the documen-
tation pane may be used to keep a number of program parts together (by
means of links) in a way, which makes it easier and safer to handle a complex
programming task.

Both the Scheme Elucidator and the Java Elucidator are in local but
limited use at Aalborg University. We plan to use the Java Elucidator in
the introductory object-oriented programming course at Aalborg University
in the fall 2000. A number of elucidative programs are available from the
Elucidative Programming home page [19].

Recently we have developed a second version of the Java Elucidator [2].
The main extensions are threefold: First, as opposed to the existing Elucida-
tive Environment, the documentation is divided into small hypertext nodes,
with focused contents. Second, these documentation nodes are organized

18 KURT NORMARK

with respect to a documentation model which divides the documentation
into three interrelated deliberative categories: Motivations, Rationales and
Solution descriptions. Finally, this new model is utilized in the Java elucida-
tive programming environment by the implementation of a coloring scheme
and extensive navigation facilities.

The work on the Scheme and Java Elucidators raises several interesting
questions with respect to documentation of program understanding. First,
is it possible to convince and discipline programmers to document their
program understanding? Second, is it possible to convince the managers of
program development projects to invest in an improved program quality, by
means of documented program understanding “the elucidative way”. Third,
can the documented program understanding of an elucidative program be
maintained with reasonable means? And finally, can we develop practical
documentation patterns that will allow average programmers to write good
elucidative documentation of their programs? In the next couple of years
we hope to find good answers to these questions.

The Scheme Elucidator is available as free software from the LAML home
page on the Internet [20].

Acknowledgements. The Java Elucidator was implemented by Max
Rydahl Andersen, Claus Nyhus Christensen, Vathanan Kumar, Sgren Staun-
Pedersen, and Kristian Lykkegaard Sgrensen in the first part of a Master
thesis project.

References

[1] Max Rydahl Andersen, Claus Nyhus Christensen, Vathanan Kumar, Sgren Staun-
Pedersen, and Kristian Lykkegaard Sgrensen. The elucidator - for Java. Preliminary
master thesis report, January 2000. Available from http://dopu.cs.auc.dk.

[2] Max Rydahl Andersen, Claus Nyhus Christensen, and Kristian Lykkegaard Sgrensen.
Internal documentation in an elucidative environment. Master’s thesis, Aalborg Uni-
versity, June 2000. Available from http://dopu.cs.auc.dk.

[3] Nelson H. F. Beebe. A bibliography of literate programming. http://www.math.-
utah.edu/pub/tex/bib/litprog.htm, 2000.

[4] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The concept assign-
ment problem in program understanding. In Proceedings of the 15th international
conference on Software Engineering, pages 482-498. ACM, May 1993.

[5] Preston Briggs. Nuweb, A simple literate programming tool. Technical report, Rice
University, Houston, TX, USA, 1993.

[6] Lisa Friendly. The design of distributed hyperlinked programming documentation.
In Sylvain Frass, Franca Garzotto, Toms Isakowitz, Jocelyne Nanard, and Marc
Nanard, editors, Proceedings of the International Workshop on Hypermedia Design
(IWHD’95), Montpellier, France, 1995.

[7] IEEE. Proceedings of the Second Workshop on Program Comprehension, July 1993.

[8] IEEE. Proceedings of the third Workshop on Program Comprehension - WPC’9/.
IEEE Computer Society Press, November 1994.

[9] IEEE. Proceedings of the fourth Workshop on Program Comprehension. IEEE Com-
puter Society Press, March 1996.

[10] IEEE. Fifth International Workshop on Program Comprehension. IEEE Computer

27]
(28]

29]

ELUCIDATIVE PROGRAMMING 19

Society Press, March 1997.

IEEE. Sixth International Workshop on Program Comprehension. IEEE Computer
Society Press, June 1998.

IEEE. Seventh International Workshop on Program Comprehension. IEEE Computer
Society Press, May 1999.

IEEE. FEight International Workshop on Program Comprehension. IEEE Computer
Society Press, June 2000.

Andrew L. Johnson and Brad C. Johnson. Literate programming using noweb. Linux
Journal, 42:64—69, October 1997.

Donald E. Knuth. The WEB system of structured documentation. Technical Report
STAN-CS-83-980, Department of Computer Science, Stanford University, September
1983.

Donald E. Knuth. Literate programming. The Computer Journal, May 1984.
Donald E. Knuth. The Texbook. Addison-Wesley Publishing Company, 1984.
Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documentation,
Version 3.0. Addison Wesley, 1993.

Kurt Ngrmark. The elucidative programming home page. http://www.cs.auc.dk/-
~normark/elucidative-programming/, 1999.

Kurt Ngrmark. The LAML home page. http://www.cs.auc.dk/~normark/laml/,
1999.

Kurt Ngrmark. An elucidative programming environment for Scheme. In Proceedings
of NWPER’2000 - Nordic Workshop on Programming Environment Research, May
2000. Available via [19].

Kurt Ngrmark. Requirements for an elucidative programming environment. In Fight
International Workshop on Program Comprehension. IEEE, June 2000. Available via
[19].

Kurt Ngrmark, Max Rydahl Andersen, Claus Nyhus Christensen, Vathanan Kumar,
Sgren Staun-Pedersen, and Kristian Lykkegaard Sgrensen. Elucidative programming
in Java. In The Proceedings on the eighteenth annual international conference on
Computer documentation, September 2000. Accepted but not yet published.

Kurt Ngrmark and Kasper @sterbye. Rich hypertext: A foundation for improved
interaction techniques. International Journal of Human-Computer Studies, (43):301—
321, 1995.

K. @Osterbye. Literate Smalltalk programming using hypertext. IEEE Transactions
on Software Engineering, 21(2):138-145, February 1995.

Kasper Osterbye and Kurt Ngrmark. An interaction engine for rich hypertexts. In
European Conference on Hypermedia Technology 1994 Proceedings, pages 167—176.
ACM Press, September 1994.

Trygve Reenskaug and Anne Lise Skaar. An environment for literate Smalltalk pro-
gramming. Sigplan Notices, 24(10):337-345, October 1989.

J. Sametinger. Object-oriented documentation. Journal of Computer Documenta-
tion, 18(1):3-14, January 1994.

J. Sametinger and S. Schiffer. Design and implementation aspects of an experimental
C++ programming environment. Software Practice and Ezperience, 25(2):111-128,
February 1995.

L. M. C. Smith and M. H. Samadzadeh. An annotated bibliography of literate pro-
gramming. Sigplan Notices, 26(1):14-20, January 1991.

Thomas Vestdam. Pulling threads through documentation. In Mughal and Opdahl,
editors, Proceedings of NWPER’2000 - Nordic Workshop on Programming Environ-
ment Research, May 2000.

Richard C. Waters and Elliot Chikofsky. Reverse engineering: Progress along many
dimensions. Communications of the ACM, 37(5):22-25, May 1994.

Ross Williams. FunnelWeb user’s manual. Technical report, University of Adelaide,
Adelaide, South Australia, Australia, 1992.

