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41.  Motivation for Generic Types 

This chapter starts the lecture about generics: Generic types and generic methods. With generics we 
are aiming at more general types (classes, structs, interfaces, etc). The measure that we will bring 
into use is type parametrization.  

This chapter is intended as motivation. Type parameterized types will be the topic of Chapter 42 
and type parameterized methods will be treated in Chapter 43. 

  

41.1.  Operations on sets 
Lecture 11 - slide 2 

In this chapter we decide to develop and use the class Set. We use the class Set as a motivating 
example. It is our goal, once and for all, to be able to write a class Set that supports all possible 
types of elements. It is the intention that the class Set can be used in any future program, in which 
there is a need for sets.  

It is noteworthy that .NET has not supported a mathematical set class until version 3.5. As of 
version 3.5, the class HashSet<T> supports sets, see also Section 45.1. Thus, at the time of writing 
this material, there was no set class available in the .NET Framework. 

The class Set should represent a mathematical set of items. We equip class Set with the usual and 
well-known set operations: 

 • aSet.Member(element) 
• aSet.Insert (element) 
• aSet.Delete (element) 
• aSet.Count  
• aSet.Subset (anotherSet) 
• aSet.GetEnumerator () 
• aSet.Intersection (anotherSet) 
• aSet.Union (anotherSet) 
• aSet.Diff (anotherSet) 

 

The set operations Intersection, Union, and Diff are handled in Exercise 11.1. 

  

41.2.  The classes IntSet and StringSet 
Lecture 11 - slide 3 

Let us imagine that we first encounter a need for sets of integers. This causes us (maybe somewhat 
narrow-minded) to write a class called IntSet. Our version of class IntSet is shown in Program 
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41.1. The version provided in the paper version of the material is abbreviated to save some space. 
The version in the web version is complete with all details. 
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using System; 
using System.Collections; 
 
public class IntSet  { 
 
  private int capacity; 
  private static int DefaultCapacity = 10; 
  private int[]  store; 
  private int next; 
 
  public IntSet (int capacity){ 
    this.capacity = capacity; 
    store = new int[capacity] ; 
    next = 0;                  // The next place to insert 
  } 
 
  public IntSet (): this(DefaultCapacity){ 
  } 
 
  public IntSet (int[]  elements): this(elements.Length){ 
    foreach(int  el in elements) this.Insert(el); 
  } 
 
  // Copy constructor 
  public IntSet (IntSet  s): this(s.capacity){ 
    foreach(int  el in s) this.Insert(el); 
  } 
 
  public bool Member(int  element){ 
    for(int idx = 0; idx < next; idx++) 
      if (element.Equals(store[idx])) 
        return true; 
    return false; 
  } 
 
  public void Insert(int  element){ 
    if (!this.Member(element)){ 
      if (this.Full){ 
        Console.WriteLine("[Resize to {0}]", capacity * 2); 
        Array.Resize<int> (ref store, capacity * 2); 
        capacity = capacity * 2; 
      } 
      store[next] = element; 
      next++; 
    } 
  } 
 
  public void Delete(int  element){ 
    bool found = false; 
    int foundIdx = 0; 
    for(int idx = 0; !found && (idx < next); idx++){ 
      if (element.Equals(store[idx])){ 
         found = true; 
         foundIdx = idx; 
      } 
    } 
    if (found){   // shift remaining elements left 
      for(int idx = foundIdx+1; idx < next; idx++) 
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        store[idx-1] = store[idx]; 
      store[next-1] = default(int  ); 
      next--; 
    } 
  } 
 
  // Additional operations: Count, Subset, ToString, Full, and GetEnumerator 
    
} 

  Program 41.1    The class IntSet.   

The class IntSet is an example of an everyday implementation of integer sets. We have not 
attempted to come up with a clever representation that allows for fast set operations. The IntSet 
class is good enough for small sets. If you are going to work on sets with many elements, you 
should use a set class of better quality. 

We chose to represent the elements in an integer array. We keep track of the position where to 
insert the next element (by use of the instance variable next). If there is not enough room in the 
array, we use the Array.Resize operation to make it larger. We delete elements from the set by 
shifting elements in the array 'to the left', in order to avoid wasted space. This approach is fairly 
expensive, but it is good enough for our purposes. The IntSet class is equipped with a 
GetEnumerator method, which returns an iterator. (We encountered iterators (enumerators) in the 
Interval class studied in Section 21.3. See also Section 31.6 for details on iterators. The 
GetEnumerator details are not shown in the paper version). The enumerator allows for traversal of 
all elements of the set with a foreach  control structure. 

A set is only, in a minimal sense, dependent on the types of elements (in our case, the type int). It 
does not even matter if the type of elements is a value type or a reference type (see Section 14.1 and 
Section 13.1 respectively). We do, however, apply equality on the elements, via use of the Equals 
method. Nevertheless, the type int occurs many times in the class definition of IntSet. We have 
emphasized occurrences of int with color marks in Program 41.1. 
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using System; 
using System.Collections; 
 
class App{ 
 
 public static void Main(){ 
   IntSet  s1 = new IntSet (), 
          s2 = new IntSet (); 
 
   s1.Insert(1); s1.Insert(2);  s1.Insert(3); 
   s1.Insert(4); s1.Insert(5);  s1.Insert(6); 
   s1.Insert(5); s1.Insert(6);  s1.Insert(8); 
   s1.Delete(3); s1.Delete(6);  s1.Insert(9); 
 
   s2.Insert(8); s2.Insert(9);  
 
   Console.WriteLine("s1: {0}", s1); 
   Console.WriteLine("s2: {0}", s2); 
 
// Exercises: 
// Console.WriteLine("{0}", s2.Intersection(s1)); 
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// Console.WriteLine("{0}", s2.Union(s1)); 
// Console.WriteLine("{0}", s2.Diff(s1)); 
 
   if (s1.Subset(s2)) 
     Console.WriteLine("s1 is a subset of s2"); 
   else  
     Console.WriteLine("s1 is not a subset of s2"); 
 
   if (s2.Subset(s1)) 
     Console.WriteLine("s2 is a subset of s1"); 
   else  
     Console.WriteLine("s2 is not a subset of s1"); 
 } 
} 

  Program 41.2    A client of IntSet.   

In Program 41.2 we see a sample application of class IntSet. We establish two empty integer sets 
s1 and s2, we insert some numbers into these, and we try out some of the set operations on them. 
The comment lines 20-23 make use of set operations which will be implemented in Exercise 11.1. 
The output of Program 41.2 confirms that s2 is a subset of s1. The program output is shown in 
Listing 41.3 (only on web). 

We will now assume that we, a couple of days after we have programmed class IntSet, realize a 
need of class StringSet. Too bad! Class StringSet is almost like IntSet. But instead of 
occurrences of int we have occurrences of string. 

We know how bad it is to copy the source text of IntSet to a new file called StringSet, and to 
globally replace 'int' with 'string'. When we need to modify the set class, all our modifications will 
have do be done twice! 

For illustrative purposes - and despite the observation just described - we have made the class 
StringSet, see Program 41.4 (only on web). We have also replicated the client program, in 
Program 41.5 (only on web) and the program output in Listing 41.6 (only on web). 

  

41.3.  The class ObjectSet 
Lecture 11 - slide 4 

In Section 41.2 we learned the following lesson: 

There is an endless number of TypeSet classes. One for each Type. Each of them is 
similar to the others. 

We will now review the solution to the problem which was used in Java before version 1.5, and in 
C# before version 2. These are the versions of the two languages prior to the introduction of 
generics.  
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The idea is simple: We implement a set class of element type Object. We call it ObjectSet. The 
type Object is the most general type in the type system (see Section 28.2). All other types inherit 
from the class Object. 

Below, in Program 41.7 we show the class ObjectSet. In the paper version, only an outline with a 
few constructors and methods is included. The web version shows the full definition of class 
ObjectSet. 
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using System; 
using System.Collections; 
 
public class ObjectSet  { 
 
  private int capacity; 
  private static int DefaultCapacity = 10; 
  private Object[]  store; 
  private int next; 
 
  public ObjectSet (int capacity){ 
    this.capacity = capacity; 
    store = new Object[capacity] ; 
    next = 0; 
  } 
 
  // Other constructors 
 
  public bool Member(Object  element){ 
    for(int idx = 0; idx < next; idx++) 
      if (element.Equals(store[idx])) 
        return true; 
    return false; 
  } 
 
  public void Insert(Object  element){ 
    if (!this.Member(element)){ 
      if (this.Full){ 
        Console.WriteLine("[Resize to {0}]", capacity * 2); 
        Array.Resize<Object> (ref store, capacity * 2); 
        capacity = capacity * 2; 
      } 
      store[next] = element; 
      next++; 
    } 
  } 
 
  // Other methods 
    
} 

  Program 41.7    An outline of the class ObjectSet.   

We can now write programs with a set of Die, a set of BankAccount, a set of int, etc. In Program 
41.8 (only on web) we show a program, similar to Program 41.2, which illustrates sets of Die 
objects. (The class Die can be found in Section 10.1). 

The main problem with class ObjectSet is illustrated below in Program 41.10. In line 12-20 we 
make a set of dice (s1), a set of integers (s2), a set of strings (s3), and set of mixed objects (s4). Let 
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us focus on s1. If we take a die out of s1 with the purpose of using a Die operation on it, we need to 
typecase the element to a Die. This is shown in line 23. From the compiler's point of view, all 
elements in the set s1 are instances of class Object. With the cast (Die)o in line 23, we guarantee 
that each element in the set is a Die. (If an integer or a playing card should sneak into the set, an 
exception will be thrown). - The output of the program is shown in Listing 41.11 (only on web). 
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using System; 
using System.Collections; 
 
class App{ 
 
 public static void Main(){ 
   Die d1 = new Die(6),  d2 = new Die(10), 
       d3 = new Die(16), d4 = new Die(8); 
   int sum = 0; 
   string netString = ""; 
 
   ObjectSet   
     s1 = new ObjectSet (                  // A set of dice 
            new Die[]{d1, d2, d3, d4}), 
     s2 = new ObjectSet (                  // A set of ints 
            new Object[]{1, 2, 3, 4}), 
     s3 = new ObjectSet (                  // A set of strings 
            new string[]{"a", "b", "c", "d"}), 
     s4 = new ObjectSet (                  // A set of mixed things... 
            new Object[]{new Die(6), "a", 7}); 
 
   foreach(Object o in s1){ 
      ((Die) o).Toss(); 
      Console.WriteLine("{0}", (Die)o); 
   } 
 
   // Some details have been left out 
 
 } 
} 

  Program 41.10    A client of ObjectSet - working with set 
of different types.  
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41.4.  Problems 
Lecture 11 - slide 5 

The classes IntSet, StringSet and ObjectSet suffer from both programming and type problems: 

 • Problems with IntSet  and StringSet  
• Tedious to write both versions: Copy and paste programming. 
• Error prone to maintain both versions 

• Problems with ObjectSet  
• Elements of the set must be downcasted in case we need to use some of their 

specialized operations 
• We can create an inhomogeneous set 

• A set of "apples" and "bananas" 

 

Generic types, to be introduced in the following chapter, offer a type safe alternative to ObjectSet, 
in which we are able to avoid type casting. 
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42.  Generic Types 

Generic types are types that carry type parameters. Type parameterized classes will be of particular 
importance. The motivation for working with type parameterized classes was gained in Chapter 41. 

  

42.1.  The generic class Set<T> 
Lecture 11 - slide 7 

Let us, right away, present the generic set class Set<T> . It is shown in Program 42.1. As usual, we 
show an abbreviated version of the class in the paper edition of the material. 
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using System; 
using System.Collections.Generic; 
using System.Collections; 
 
public class Set<T>  { 
 
  private int capacity; 
  private static int DefaultCapacity = 10; 
  private T[]  store; 
  private int next; 
 
  public Set(int capacity){ 
    this.capacity = capacity; 
    store = new T[capacity] ; 
    next = 0; 
  } 
 
  public Set(): this(DefaultCapacity){ 
  } 
 
  public Set(T[]  elements): this(elements.Length){ 
    foreach(T el in elements) this.Insert(el); 
  } 
 
  // Copy constructor 
  public Set(Set<T>  s): this(s.capacity){ 
    foreach(T el in s) this.Insert(el); 
  } 
 
  public bool Member(T element){ 
    for(int idx = 0; idx < next; idx++) 
      if (element.Equals(store[idx])) 
        return true; 
    return false; 
  } 
 
  public void Insert(T element){ 
    if (!this.Member(element)){ 
      if (this.Full){ 
        Console.WriteLine("[Resize to {0}]", capacity * 2); 
        Array.Resize<T>(ref store, capacity * 2); 
        capacity = capacity * 2; 
      } 
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      store[next] = element; 
      next++; 
    } 
  } 
 
  public void Delete(T element){ 
    bool found = false; 
    int  foundIdx = 0; 
    for(int idx = 0; !found && (idx < next); idx++){ 
      if (element.Equals(store[idx])){ 
         found = true; 
         foundIdx = idx; 
      } 
    } 
    if (found){   // shift remaining elements left 
      for(int idx = foundIdx+1; idx < next; idx++) 
        store[idx-1] = store[idx]; 
      store[next-1] = default(T); 
      next--; 
    } 
  } 
 
  // Additional operations: Count, Subset, ToString, Full, and GetEnumerator  
    
} 

  Program 42.1    The class Set<T>.   

The advantage of class Set<T>  over class ObjectSet  becomes clear when we study a client of 
Set<T> . Please take a look at Program 42.2 and compare it with Program 41.10. We are able to 
work with both sets of value types, such as Set<int> , and sets of reference types, such as 
Set<Die> . When we take an element out of the set it is not necessary to cast it, as in Program 41.10. 
Notice that a foreach  loop does not provide the best illustration of this aspect, because the type in 
foreach(type var in collection) is used implicitly for casting a value in collection to type. 
The only way to access elements in a set is to use its iterator. Please take a look at Exercise 11.2 if 
you wish to go deeper into this issue. 
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using System; 
using System.Collections; 
 
class App{ 
 
 public static void Main(){ 
   Die d1 = new Die(6),  d2 = new Die(10), 
       d3 = new Die(16), d4 = new Die(8); 
   int sum = 0; 
   string netString = ""; 
 
 
   // Working with sets of dice: 
   Set<Die>   s1 = new Set<Die> (       // A set of dice 
                      new Die[]{d1, d2, d3, d4}); 
   foreach(Die d in s1){ 
      d.Toss(); 
      Console.WriteLine("{0}", d); 
   } 
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   // Working with sets of ints 
   Set<int>  s2 = new Set<int> (        // A set of ints 
                      new int[]{1, 2, 3, 4}); 
   foreach(int i in s2) 
      sum += i; 
   Console.WriteLine("Sum: {0}", sum); 
 
 
   // Working with sets of strings 
   Set<string>  s3 = new Set<string> (  // A set of strings 
                      new string[]{"a", "b", "c", "d"}); 
   foreach(string str in s3) 
      netString += str; 
   Console.WriteLine("Appended string: {0}", netString); 
 
 } 
} 

  Program 42.2    A client of Set<T> - working with sets of 
different types.  

 

The output of Program 42.2 is shown in Listing 42.3 (only on web). 

 
 Exercise 11.1. Intersection, union, and difference: Operations on sets 

On the accompanying slide we have shown a generic class set<T> . 

Add the classical set operations intersection, union and set difference to the generic class set<T> . 

Test the new operations from a client program. 

Hint: The enumerator, that comes with the class set<T> , may be useful for the implementation of 
the requested set operations. 

 
 Exercise 11.2. An element access operation on sets 

The only way to get access to an element from a set is via use of the enumerator (also known as 
the iterator) of the set. In this exercise we wish to change that. 

Invent some operation on the set that allows you to take out an existing element in the set. This 
corresponds to accessing a given item in an array or a list, for instance via an indexer: arr[i] and 
lst[j]. Notice in this context that there is no order between elements in the set. It is not natural 
to talk about "the first" or "the last" element in the set. 

Given the invented operation in Set<T>  use it to illustrate that, for some concrete type T, no 
casting is necessary when elements are accessed from Set<T>  
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42.2.  Generic Types 
Lecture 11 - slide 8 

Let us now describe the general concepts behind Generic Types in C#. C# supports not only generic 
classes, but also generic structs (see Section 42.7), generic interfaces (see Section 42.8), and generic 
delegate types (see Section 43.2 ). Overall, we distinguish between templates and constructed types: 

 • Templates 
• C<T> is not a type 
• C<T> is a template from which a type can be constructed 
• T is a formal type parameter 

• Constructed type 
• The type constructed from a template 
• C<int> , C<string> , and D<C<int>>  
• int , string , and C<int>  are actual type parameters of C and D 

 

When we talk about a generic type we do it in the meaning of a template. 

The word "template" is appropriate, and in fact just to the point. But most C# writers do not use it, 
because the word "template" it used in C++ in a closely related, but slightly different meaning. A 
template in C++ is a type parameterized class, which is expanded at compile time. Each actual type 
parameter will create a new class, just like we would create it ourselves in a text editor. In C#, 
generic classes are able to share the class representation at run-time. For more details on these 
matters, consult for instance [Golding05]. 

As a possible coding style, it is often recommended to use capital, single letter names (such as S, T, 
and U) as formal type parameters. In that way it becomes easier to recognize templates, to spot 
formal type names in our programs, to keep templates apart from constructed types, and to avoid 
very name clauses of generic types. In situations where a type takes more than one formal type 
parameters, an alternative coding style calls for formal type parameter names like Tx and Ty, (such 
as TKey and TValue) where x and y describe the role of each of the formal type parameters. 

 The ability to have generic types is known as parametric polymorphism 
 

 

  

42.3.  Constraints on Formal Type Parameters 
Lecture 11 - slide 9 

Let us again consider our implementation of the generic class Set<T>  in Program 42.1. Take a close 
look at the class, and find out if we make any assumptions about the formal type parameter T in 
Program 42.1. Will any type T really apply? Please consider this, before you proceed! 

In Set<T>  it happens to be the case that we do not make any assumption of the type parameter T. 
This is typical for collection classes (which are classes that serve as element containers). 
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 It is possible to express a number of constraints on a formal type parameter 

The more constraints on T, the more we can do on T-objects in the body of C<T> 
 

 

Sometimes we write a parameterized class, say C<T>, in which we wish to be able to make some 
concrete assumptions about the type parameter T. You may ask what we want to express. We could, 
for instance, want to express that 

1. T is a value type, allowing for instance use of the type T? (nullable types, see Section 14.9 ) 
inside C<T> . 

2. T is a reference type, allowing, for instance, the program fragment T v; v = null;  inside 
C<T> . 

3. T has a multiplicative operator *  , allowing for expressions like T t1, t2; ... t1 * 

t2 ...  in C<T> . 

4. T has a method named M , that accepts a parameter which is also of type T . 

5. T has a C# indexer of two integer parameters, allowing for T t; ... t[i, j] ...  within 
C<T> . 

6. T is a subclass of class BankAccount  , allowing for the program fragment T ba; 

ba.AddInterests();  within C<T> . 

7. T implements the interface IEnumerable  , allowing foreach  iterations based on T in C<T> , 
see Section 31.6 . 

8. T is a type with a parameterless constructor, allowing the expression new T()  in C<T> . 

It turns out that the constraints in 1, 2, 6, 7, and 8 can be expressed directly in C#. The constraints in 
4 and 5 can be expressed indirectly in C#, whereas the constraint in 3 cannot be expressed in C#. 

Here follows a program fragment that illustrates the legal form of constraints on type parameters in 
generic types in C#. We define generic classes C, E, F, and G all of which are subclasses of class D. A 
and B are classes defined elsewhere. The constraints are colored in Program 42.4. 
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class C<S,T>: D   
    where T: A, ICloneable 
    where S: B  { 
 ... 
} 
 
class E<T>: D 
    where T: class { 
 ... 
} 
 
class F<T>: D 
    where T: struct { 
 ... 
} 
 
class G<T>: D 
    where T: new() { 
 ... 
} 

  Program 42.4    Illustrations of the various constraints on 
type parameters.  

 

The class C has formal type parameters S and T. The first constraint requires that T is A, or a subclass 
of A, and that it implements the interface IClonable. Thus, only class A or subclasses of A that 
implement IClonable can be used as actual parameter corresponding to T. The type parameter S 
must be B or a subclass of B. 

The class E has a formal type parameter T, which must be a class. In the same way, the class F has a 
formal type parameter T, which must be a struct. 

The class G has a formal type parameter T, which must have a parameterless constructor. 

As a consequence of the inheritance rules in C#, only a single class can be given in a constraint. 
Multiple interfaces can be given. A class should come before any interface. Thus, in line 2 of 
Program 42.4, where T is constrained by A, ICloneable, A can be a class, and everything after A in 
the constraint need to be interfaces. 

  

42.4.  Constraints: Strings of comparable elements 
Lecture 11 - slide 10 

We will now program a generic class with constraints. We will make a class String<T> which 
generalizes System.String from C#. An instance of String<T> contains a sequence of T-values/ 
T-objects. In contrast, an instance of System.String contains a sequence of Unicode characters. 
With use of String<T> we can for instance make a string of integers, a string of bank accounts, and 
a string of dice. 
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Old-fashioned character strings can be ordered, because we have an ordering of characters. The 
ordering we have in mind is sometimes called lexicographic ordering, because it reflects the 
ordering of words in dictionaries and encyclopedia. We also wish to support ordering of our new 
generalized strings from String<T>. It can only be achieved if we provide an ordering of the 
values/objects in T. This is done by requiring that T implements the interface IComparable, which 
has a single method CompareTo. For details on IComparable and CompareTo, please consult 
Section 31.5. 

Now take a look at the definition of String<T> in Program 42.5. In line 3 we state that String<T> 
should implement the interface IComparable<String<T>>. It is important to understand that we 
hereby commit ourselves to implement a CompareTo method in String<T>. 

You may be confused about the interface IComparable, as discussed in Program 42.5 in contrast to 
IComparable<S>, which is used as IComparable<String<T>> in line 3 of Program 42.5. 
IComparable<S> is a generic interface. It is generic because this allows us to specify the parameter 
to the method CompareTo with better precision. We discuss the generic interface IComparable<S> 
in Section 42.8. 

There is an additional important detail in line 3 of Program 42.5, namely the constraint, which is 
colored. The constraint states that the type T must be IComparable itself (again using the generic 
version of the interface). In plain English it means that there must be a CompareTo method available 
on the type, which we provide as the actual type parameter of our new string class. Our plan is, of 
course, to use the CompareTo method of T to program the CompareTo method of String<T>. 
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using System; 
 
public class String<T>: IComparable<String<T>> where T: IComparable<T> { 
   
  private T[] content; 
 
  public String(){ 
    content = new T[0]; 
  } 
 
  public String(T e){ 
    content = new T[]{e};  
  } 
 
  public String(T e1, T e2){ 
    content = new T[]{e1, e2};  
  } 
 
  public String(T e1, T e2, T e3){ 
    content = new T[]{e1, e2, e3};  
  } 
 
  public int CompareTo(String<T> other){ 
    int thisLength = this.content.Length, 
        otherLength = other.content.Length; 
  
    for (int i = 0; i < Math.Min(thisLength,otherLength); i++){ 
      if (this.content[i].CompareTo(other.content[i] ) < 0)   
         return -1; 
      else if (this.content[i].CompareTo(other.content[i])  > 0) 



 388 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

         return 1; 
    } 
    // longest possible prefixes of this and other are pair-wise equal. 
    if (thisLength < otherLength) 
       return -1; 
    else if (thisLength > otherLength) 
       return 1; 
    else return 0; 
  } 
 
  public override string ToString(){ 
    string res = "["; 
    for(int i = 0; i < content.Length;i++){ 
      res += content[i]; 
      if (i < content.Length - 1) res += ", "; 
    } 
    res += "]"; 
    return res; 
  }  
 
} 

  Program 42.5    The generic class String<T>.   

In line 5 we see that a string of T-elements is represented as an array of T elements. This is a natural 
and straightforward choice. Next we see four constructors, which allows us to make strings of zero, 
one, two or three parameters. This is convenient, and good enough for toy usage. For real life use, 
we need a general constructor that accepts an array of T elements. The can most conveniently be 
made by use of parameter arrays, see Section 20.9. 

After the constructors, from line 23-39, we see our implementation of CompareTo. From an overall 
point of view we can observe that it uses CompareTo of type T, as discussed above. This is the blue 
aspects in line 28 and 30. It may be sufficient to make this observation for some readers. If you 
want to understand what goes on inside the method, read on. 

Recall that CompareTo must return a negative result if the current object is less than other, 0 if the 
current object is equal to other, and a positive result if the current object is greater than other. The 
for-loop in line 27 traverses the overlapping prefixes of two strings. Inside the loop we return a 
result, if it is possible to do so. If the for-loop terminates, the longest possible prefixes of the two 
string are equal to each other. The lengths of the two strings are now used to determine a result. 

If T is the type char, if the current string is "abcxy", and if other is "abcxyz", we compare "abcxy" 
with "abcxy" in the for loop. "abcxy" is shorter than "abcxyz", and therefore the result of the 
comparison -1. 

The method ToString starting in line 41 allows us to print instances of String<T> in the usual way. 

In Program 42.6 we see a client class of String<T>. We construct and compare strings of integers, 
strings of strings, strings of doubles, strings of booleans, and strings of dice. The dimmed method 
ReportCompare activates the String<T> operation CompareTo on pairs of such strings. 
ReportCompare is a generic method, and it will be "undimmed" and explained in Program 43.1. 
Take a look at the program output in Listing 42.7 and be sure that you can understand the results. 
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using System; 
 
class StringApp{ 
 
  public static void Main(){ 
 
    ReportCompare(new String<int>(1, 2) ,  
                  new String<int>(1) ); 
    ReportCompare(new String<string>("1", "2", "3") ,  
                  new String<string>("1") ); 
    ReportCompare(new String<double>(0.5, 1.7, 3.0) ,  
                  new String<double>(1.0, 1.7, 3.0) ); 
    ReportCompare(new String<bool>(true, false) ,  
                  new String<bool>(false, true) ); 
    ReportCompare(new String<Die>(new Die(), new Die()) , 
                  new String<Die>(new Die(), new Die()) ); 
  } 
 
  public static void ReportCompare<T>(String<T> s, String<T> t) 
    where T: IComparable<T>{ 
    Console.WriteLine("Result of comparing {0} and {1}: {2}",  
                      s, t, s.CompareTo(t)); 
  }    
 
} 

  Program 42.6    Illustrating Strings of different 
types.  

 
1 
2 
3 
4 
5 

Result of comparing [1, 2] and [1]: 1  
Result of comparing [1, 2, 3] and [1]: 1  
Result of comparing [0,5, 1,7, 3] and [1, 1,7, 3]: -1  
Result of comparing [True, False] and [False, True]: 1  
Result of comparing [[3], [6]] and [[3], [5]]: 1  

  Listing 42.7    Output from the String of different types 
program.  

 
 

 Exercise 11.3. Comparable Pairs 

This exercise is inspired by an example in the book by Hansen and Sestoft: C# Precisely. 

Program a class ComparablePair<T,U>  which implements the interface 
IComparable<ComparablePair<T,U>> . If you prefer, you can build the class 
ComparablePair<T,U>  on top of class Pair<S,T>  from an earlier exercise in this lecture. 

It is required that T and U are types that implement Icomparable<T>  and Icomparable<U>  
respectively. How is that expressed in the class ComparablePair<T,U> ? 

The generic class ComparablePair<T,U>  should represent a pair (t,u) of values/objects where t is 
of type T and u is of type U. The generic class should have an appropriate constructor that 
initializes both parts of the pair. In addition, there should be properties that return each of the 
parts. Finally, the class should - of course - implement the operation CompareTo because it is 
prescribed by the interface System.IComparable<ComparablePair<T,U>> . 

Given two pairs p = (a,b) and q= (c,d). p is considered less than q if a is less than c. If a is equal to 
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c then b and d controls the ordering. This is similar to lexicographic ordering on strings. 

If needed, you may get useful inspiration from the Icomparable class String<T>  on the 
accompanying slide. 

Be sure to test-drive your solution! 

 
  

42.5.  Another example of constraints 
Lecture 11 - slide 11 

We will now illustrate the need for the class and struct constraints. We have already touched on 
these constraints in our discussion of Program 42.4. 

In Program 42.8 we have two generic classes C and D. Each of them have a single type parameter, T 
and U respectively. As shown with red color in line 7 and 15, the compiler complains. In line 7 we 
assign the value null to the variable f of type T. In line 15 we make a nullable type U? from U. (If 
you wish to be reminded about nullable types, consult Section 14.9). Before you go on, attempt to 
explain the error messages, which are shown as comments in Program 42.8. 
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/* Example from Hansen and Sestoft: C# Precisely */ 
 
class C<T>{ 
  // Compiler Error message: 
  // Cannot convert null to type parameter 'T' becaus e it could  
  // be a value type. Consider using 'default(T)' ins tead. 
  T f = null;  
} 
 
class D<U>{ 
  // Compiler Error message: 
  // The type 'U' must be a non-nullable value type i n order to use  
  // it as parameter 'T' in the generic type or metho d  
  // 'System.Nullable<T>' 
  U? f ; 
} 

  Program 42.8    Two generic classes C and D - with 
compiler errors.  

 

In Program 42.9 we show new versions of C<T> and D<U>. Shown in purple we emphasize the 
constraints that are necessary for solving the problems. 

The instance variable f of type T in C<T> is assigned to null. This only makes sense if T is a 
reference type. Therefore the class constraint on T is necessary. 

The use of U? in D<U> only makes sense if U is a value type. (To understand this, you are referred to 
the discussion in Section 14.9). Value types in C# are provided by structs (see Section 6.6). The 
struct constraint on U is therefore the one to use. 
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/* Example from Hansen and Sestoft: C# Precisely */ 
 
class C<T> where T: class { 
  T f = null; 
} 
 
class D<U> where U: struct { 
  U? f; 
}  
 
class Appl{ 
 
  // Does NOT compile: 
  C<double> c = new C<double>(); 
  D<A>      d = new D<A>();   
 
  // OK: 
  C<A>      c1 = new C<A>(); 
  D<double> d1 = new D<double>();   
   
}  
 
class A{} 

  Program 42.9    Two generic classes C and D - with the 
necessary constraints.  

 

In line 11-21 we show clients of C<T> and D<U>. The compiler errors in line 14 and 15 are easy to 
explain. The type double is not a reference type, and A, which is programmed in line 23, is not a 
value type. Therefore double and A violate the constraints of C<T> and D<U>. In line 18 and 19 we 
switch the roles of double and A. Now everything is fine. 

  

42.6.  Variance 
Lecture 11 - slide 12 

Consider the question asked in the following box. 

 A CheckAccount  is a BankAccount  

But is a Set<CheckAccount>  a Set<BankAccount>  ? 
 

 

You are encouraged to review our discussion of the is a relation in Section 25.2. 

The question is how Set<T> is varies when T varies. Variation in this context is specialization, cf. 
Chapter 25. Is Set<T> specialized when T is specialized? 

Take a look at Program 42.10. In line 7-14 we construct a number of bank accounts and check 
accounts, and we make a set of bank accounts (s1, in line 17) and a set of check accounts (s2, in 
line 18). In line 21 and 22 we populate the two sets. So far so good. Next, in line 25 (shown in 
purple) we play the polymorphism game as we have done many times earlier, for example in line 
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13 of Program 28.17. If Set<CheckAccount> is a Set<BankAccount> line 25 of Program 42.10 
should be OK (just as line 13 of Program 28.17 is OK). 

The compiler does not like line 25, however. The reason is that Set<CheckAccount> is NOT a 
Set<BankAccount>. 

If we for a moment assume that Set<CheckAccount> is a Set<BankAccount> the rest of the 
program reveals the troubles. We insert a new BankAccount object in s1, and via the alias 
established in line 25, the new BankAccount object is also inserted into s2. When we in line 34-35 
iterate through all the CheckAccount objects of the set s2, we encounter an instance of 
BankAccount. We cannot carry out a SomeCheckAccountOperation on an instance of 
BankAccount. 
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using System; 
 
class SetOfAccounts{ 
 
  public static void Main(){ 
 
    // Construct accounts: 
    BankAccount ba1 = new BankAccount("John", 0.02), 
                ba2 = new BankAccount("Anne", 0.02), 
                ba3 = new BankAccount("Frank", 0.02); 
 
    CheckAccount ca1 = new CheckAccount("Mike", 0.03), 
                 ca2 = new CheckAccount("Lene", 0.03), 
                 ca3 = new CheckAccount("Joan", 0.03); 
 
    // Constructs empty sets of accounts: 
    Set<BankAccount> s1 = new Set<BankAccount>();  
    Set<CheckAccount> s2 = new Set<CheckAccount>();  
 
    // Insert elements in the sets: 
    s1.Insert(ba1);  s1.Insert(ba2); 
    s2.Insert(ca1);  s2.Insert(ca2); 
 
    // Establish s1 as an alias to s2 
    s1 = s2 ;   // Compile-time error: 
               // Cannot implicitly convert type 'Set<CheckAccount >'  
               // to 'Set<BankAccount>' 
 
    // Insert a BankAccount object into s1,  
    // and via the alias also in s2 
    s1.Insert(new BankAccount("Bodil", 0.02));  
 



 393 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

    // Activates some CheckAccount operation on a BankA ccount object 
    foreach(CheckAccount ca in s2) 
      ca.SomeCheckAccountOperation(); 
 
    Console.WriteLine("Set of BankAccount: {0}", s1); 
    Console.WriteLine("Set of CheckAccount: {0}", s2); 
    
 
  } 
 
} 

  Program 42.10    Sets of check accounts and bank 
accounts.  

 

The experimental insight obtained above is - perhaps - against our intuition. It can be argued that an 
instance of Set<CheckAccount> should be a valid stand in for an instance of Set<BankAccount>, 
as attempted in line 25. On the other hand, it can be asked if the extension of Set<CheckAccount> 
is a subset of Set<BankAccount>. (See Section 25.2 for a definition of extension). Or asked in this 
way: Is the set of set of check accounts a subset of a set of set of bank accounts? As designed in 
Section 25.3 the set of CheckAccounts is a subset of the set of BankAccount. But this does not imply 
that the set of set of CheckAccount is a subset of the set of set of BankAccount. A set of 
CheckAccount (understood as a single objects) is incompatible with a set of BankAccount 
(understood as a single object). 

 
Figure 42.1    A set of bank accounts and a set of check accounts 

In Program 42.10 we establish the scene illustrated in Figure 42.1. More precisely, the illustration 
shows the situation as of line 28 of Program 42.10. The problem is that we in line 31 add a new 
instance of BankAccount to s1, which refers to an instance of Set<CheckAccount>. Later in the 
program (line 35) this would cause "a minor explosion" if the program was allowed to reach this 
point . Thus, the real problem occurs if we mutate the set of check accounts that are referred from a 
variable of static type Set<BankAccount>. (See Section 28.10 for the definition of static type). 

In general, we distinguish between the following kinds of variances in between Set<T> and T: 
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 • Covariance 
• The set types vary in the same way as the element types 

• Contravariance 
• The set types vary in the opposite way as the element types 

• Invariance 
• The set types are not affected by the variations of the element types 

 

If Program 42.10 could be compiled and executed without problems (if line 25 is considered OK), 
then we would have covariance between Set<T> and T 

In C# Set<T> is invariant in relation to T. 

We notice that the problem discussed above is similar to the parameter variance problem, which we 
discussed in Section 29.2. 

C# and Java do both agree on invariance in between Set<T> and T. But in contrast to C#, Java has a 
solution to the problem in terms of wildcard types. We realized above that Set<T> is not a 
generalization of all sets. In Java 1.5, a wildcard type written as Set<?> (a set of unknown) is a 
generalization of all sets. It is, however, not possible to mutate an object of static type Set<?>. If 
you are interested to known more about generics in Java, you should consult Gilad Bracha's tutorial 
"Generics in the Java Programming Language", [Bracha2004]. 

  

42.7.  Generic structs 
Lecture 11 - slide 13 

It is possible to make type parameterized structs, similar to the type parameterized classes that we 
have seen in the previous sections. 

As an example we will see how we can define the generic struct Nullable<T> which defines the 
type behind the notation T? for an arbitrary value type T. Nullable types were discussed earlier in 
Section 14.9. Recall that nullable types enjoy particular compiler support, beyond the translation of 
T? to Nullable<T>. This includes support of lifted operators (operators that are extended to work 
on T? in addition to T) and support of the null value as such. 
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using System; 
 
public struct  Nullable<T>  
  where T : struct { 
 
  private T value; 
  private bool hasValue; 
 
  public Nullable(T value){ 
    this.value = value; 
    this.hasValue = true; 
  } 
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  public bool HasValue{ 
    get{ 
      return hasValue; 
    } 
  } 
 
  public T Value{ 
    get{ 
      if(hasValue) 
        return value; 
      else throw new InvalidOperationException(); 
    } 
  } 
 
} 

  
Program 42.11    A partial reproduction of struct 
Nullable<T>.  

 

The generic struct Nullable<T> aggregates a value of type T and a boolean value. The boolean 
value is stored in the boolean instance variable hasValue. If nv is of type Nullable<T> for some 
value type T, and if the variable hasValue of nv is false, then nv is considered to have the value 
null. The compiler arranges that the assignment nv = null is translated to nv.hasValue = false. 
This is somehow done behind the scene because hasValue is private. 

  

 

42.8.  Generic interfaces: IComparable<T> 
Lecture 11 - slide 14 

In this section we will take a look at the generic interface IComparable<T>. We have earlier in the 
material (Section 31.5) studied the non-generic interface Icomparable, see Program 31.6. 

If you review your solution to Exercise 8.6 you should be able to spot the weakness of a class 
ComparableDie, which implements IComparable. The weakness is that the parameter of the 
method CompareTo must have an Object as parameter. A method with the signature 
CompareTo(Die) does not implement the interface IComparable. (Due to static overloading of 
methods in C#, the methods CompareTo(Object) and CompareTo(Die) are two different methods, 
which just as well could have the signatures ObjectCompareTo(Object) and DieCompareTo(Die)). 
Thus, as given by the signature of CompareTo, we compare a Die and any possible object. 

In Program 42.12 we reproduce IComparable<T>. Program 42.12 corresponds to Program 31.6. 
(Do not use any of these - both interfaces are parts of the System namespace). As it appears, in the 
generic interface the parameter of CompareTo is of type T. This alleviates the problem of the non-
generic interface IComparable. 
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using System; 
 
public interface IComparable <T>{ 
  int CompareTo(T other); 
} 

  
Program 42.12    A reproduction of the generic interface 
IComparable<T>.  

 

Below we show a version of class Die which implements the interface IComparable<Die>. You 
should notice that this allows us to use Die as formal parameter of the method CompareTo. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

using System; 
 
public class Die: IComparable<Die>  { 
  private int numberOfEyes; 
  private Random randomNumberSupplier;  
  private const int maxNumberOfEyes = 6; 
 
  public Die(){ 
    randomNumberSupplier = Random.Instance(); 
    numberOfEyes = NewTossHowManyEyes(); 
  }    
 
  public int CompareTo( Die other ){ 
    return this.numberOfEyes.CompareTo(other.number OfEyes); 
  }  
     
  // Other Die methods 
 
} 

  
Program 42.13    A class Die that implements 
IComparable<T>.  

 
 The implementation of the generic interface is more type safe and less clumsy than the 

implementation of the non-generic solution 
 

 

  

42.9.  Generic equality interfaces 
Lecture 11 - slide 15 

Before reading this section you may want to remind yourself about the fundamental equality 
operations in C#, see Section 13.5. 

There exist a couple of generic interfaces which prescribes Equals operations. The most 
fundamental is IEquatable<T>, which prescribes a single Equals instance method. It may be 
attractive to implement IEquatable in certain structs, because it could avoid the need of boxing the 
struct value in order to make use of the inherited Equals method from class Object. 

IEqualityComparer<T> is similar, but it also supports a GetHasCode method. (Notice also that the 
signatures of the Equals methods are different in the two interfaces. IEquatable<T> prescribes 
x.Equals(y) whereas IEqualityComparer<T> prescribes Equals(x,y)). 
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Below, in Program 42.14 and Program 42.15 we show reproductions of the two interfaces. Notice 
again that the two interfaces are present in the namespaces System and 
System.Collections.Generic respectively. Use them from there if you need them. 
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using System; 
 
public interface IEquatable <T>{ 
  bool Equals (T other); 
} 

  
Program 42.14    A reproduction of the generic interface 
IEquatable<T>.  
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using System; 
 
public interface IEqualityComparer <T>{ 
  bool Equals (T x, T y); 
  int GetHashCode (T x); 
} 

  
Program 42.15    A reproduction of the generic interface 
IEqualityComparer<T>.  

 

Several operations in generic collections, such as in List<T> in Section 45.9, need equality 
operations. The IndexOf method in List<T> is a concrete example, see Section 45.11. Using 
lst.IndexOf(el) we search for the element el in the list lst. Comparison of el with the elements 
of the list is done by the default equality comparer of the type T. The abstract generic class 
EqualityComparer<T> offers a static Default property. The Default property delivers the default 
equality comparer for type T. The abstract, generic class EqualityComparer<T> implements the 
interface IEqualityComparer<T>. 

Unfortunately the relations between the generic interfaces IEquatable<T> and 
IEqualityComparer<T>, the class EqualityComparer<T> and its subclasses are quite complicated. 
It seems to be the cases that these interfaces and classes have been patched several times, during the 
evolution of versions of the .Net libraries. The final landscape of types is therefore more 
complicated than it could have been desired. 

  

 

42.10.  Generic Classes and Inheritance 
Lecture 11 - slide 16 

In this section we will clarify inheritance relative to generic classes. We will answer the following 
questions: 

 Can a generic/non-generic class inherit from a non-generic/generic class? 
 

 

The legal and illegal subclassings are summarized below: 
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 • Legal subclassing 
• A generic subclass of a non-generic superclass 
• A generic subclass of a constructed superclass 
• A generic subclass of generic superclass 

• Illegal subclassing 
• A non-generic subclass of generic superclass 

 

You can refresh the terminology (generic class/constructed class) in Section 42.2. 

The rules are exemplified below. 
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using System; 
 
// A generic subclass of a non-generic superclass. 
class SomeGenericSet1<T>: IntSet{ 
  // ... 
} 
 
// A generic subclass of a constructed superclass 
class SomeGenericSet2<T>: Set<int>{ 
  // ... 
} 
 
// A generic subclass of a generic superclass 
// The most realistic case 
class SpecializedSet<T>: Set<T>{ 
  // ... 
} 
 
// A non-generic subclass of a generic superclass 
// Illegal. Compile-time error: 
// The type or namespace name 'T' could not be foun d 
class Set: Set<T>{ 
  // ... 
} 

  
Program 42.16    Possible and impossible subclasses of 
Set classes.  

 

From line 4 to 6 we are about to program a generic class SomeGenericSet1<T> based on a non-
generic class IntSet. This particular task seems to be a difficult endeavor, but it is legal - in general 
- to use a non-generic class as a subclass of generic class. 

Next, from line 9 to 11, we are about to program a generic class SomeGenericSet2<T> based on a 
constructed class Set<int>. This is also OK. 

From line 15-17 we show the most realistic case. Here we program a generic class based on another 
generic class. In the specific example, we are about to specialize Set<T> to SpecializedSet<T>. 
The type parameter T of SpecializedSet<T> also becomes the type parameter of Set<T>. In 
general, it would also be allowed for SpecializedSet<T> to introduce additional type parameters, 
such as in SpecializedSet<T,S> : Set<T>. 
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The case shown from line 22 to 24 is illegal, simply because T is not the name of any known type. 
In line 22, T is name of an actual type parameter, but T is not around! It is most likely that the 
programmer is confused about the roles of formal and actual type parameters, see Section 42.2. 
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43.  Generic Methods 

We are used to working with procedures, functions, and methods with parameters. Procedures, 
functions and methods are all known as abstractions. A parameter is like a variable that generalizes 
the abstraction. Each parameter of a procedure, a function, or a method is of a particular type. In 
this chapter we shall see how such types themselves can be passed as parameters to methods. When 
methods are parameterized with types, we talk about generic methods. 

  

43.1.  Generic Methods 
Lecture 11 - slide 18 

In Section 42.2 we realized that a generic type (such as a generic class) is a template from which it 
is possible to construct a real class. In the same way, a generic method is template from which we 
can construct a real method. 

In C# and similar languages, all methods belong to classes. Some of these classes are generic, some 
are just simple, ordinary classes. We can have generic methods in both generic types, and in non-
generic types. 

Our first example in Program 43.1 is the generic method ReportCompare in the non-generic class 
StringApp. ReportCompare is a method in the client class of String<T> which we encountered in 
Section 42.4. When we first met it, we where not interested in the details of it, so therefore it was 
dimmed in Program 42.6. 

Notice first that the method ReportCompare takes two ordinary parameters s and t. They are both 
of type String<T> for some given type T. The method is supposed to report the ordering of s 
relative to t via output written to the console. T is a (formal) type parameter of the method. Type 
parameters of methods are given in "triangular brackets" <...> in between the method name and the 
ordinary parameter list. It is highlighted with purple in Program 43.1. 

The formal type parameter of ReportCompare is passed on as an actual type parameter to our 
generic class String<T> from Section 42.4. If we look at our definition of the generic class 
String<T> in Program 42.5 we notice that T must implement Icomparable<T>. This is a constraint 
of T, identical to one of the constraints of type parameters of types, see Section 42.3. The only way 
to ensure this in Program 43.1 is to add the constraint to the generic method. This is the blue part, 
see line 15. 

Notice in line 7-11 of Program 43.1 that the actual type parameter of ReportCompare is not given 
explicitly. The actual type parameters of the five calls are conveniently inferred from the context. It 
is, however, possible to pass the actual type parameter explicitly. If we chose to do so, line 7 of 
Program 43.1 would be 

 
  ReportCompare<int>(new String<int>(), new String<int>(1)); 



 402 

The remaining aspects of ReportMethod are simple and straightforward. 
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using System; 
 
class StringApp{ 
 
  public static void Main(){ 
 
    ReportCompare(new String<int>(), new String<int>(1));              
    ReportCompare(new String<int>(1), new String<int>(1));             
    ReportCompare(new String<int>(1,2,3), new String<int>(1));         
    ReportCompare(new String<int>(1), new String<int>(1,2,3));         
    ReportCompare(new String<int>(1,2,3), new String<int>(1,2,3));     
  } 
 
  public static void ReportCompare <T>(String<T> s, String<T> t) 
    where T: IComparable<T> { 
    Console.WriteLine("Result of comparing {0} and {1}: {2}",  
                      s, t, s.CompareTo(t)); 
  }    
 
} 

  Program 43.1    The generic method ReportCompare in 
the generic String programs.  

 

Let us now study an additional program example with generic methods. Program 43.2 contains a 
bubblesort method in line 5-11. Bubblesort sorts an array of element type T, where T is a type 
parameter of the method. The type parameter makes our bubblesort method more general, because it 
allow us to sort an array of arbitrary type T. The only requirement is, quite naturally, that 
objects/values of type type T should be comparable, such that we can ask if one value is less than or 
equal to another value. This is expressed by the Icomparable<T> constraint on T at the end of line 
5. 

The implementation of bubblesort in Program 43.2 has no surprises. In a double for loop we 
compare and swap elements. Comparison is made possible because a[i] values are of type T that 
implements Icomparable<T>. Swapping of elements are done by the Swap method via use of C# 
ref parameters, see Section 20.6. Notice that Swap is also a generic method, because it can swap 
values/objects of arbitrary types. Be sure to notice the formal type parameter T of Swap in line 13. 

Finally we have the generic method ReportArray, (see line 18-21), which simply prints the values 
of the array to standard output. 
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using System; 
 
class SortDemo{ 
 
  static void BubbleSort<T>(T[] a) where T: IComparable<T> { 
   int n = a.Length; 
   for (int i = 0; i < n - 1; ++i) 
     for (int j = n - 1; j > i; --j) 
       if (a[j-1].CompareTo(a[j]) > 0) 
          Swap(ref a[j-1], ref a[j]); 
  } 
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  public static void Swap<T>(ref T a, ref T b) { 
    T temp; 
    temp = a; a = b; b = temp; 
  } 
 
  public static void ReportArray<T>(T[] a) { 
    foreach(T t in a) Console.Write("{0,4}", t); 
    Console.WriteLine();   
  } 
 
  public static void Main(){ 
    double[] da = new double[]{5.7, 3.0, 6.9, -5,3, 0.3}; 
 
    Die[] dia = new Die[]{new Die(), new Die(),  new Die(),  
                          new Die(),  new Die(),  new Die()}; 
 
    ReportArray(da); BubbleSort(da) ; ReportArray(da); 
    Console.WriteLine(); 
    ReportArray(dia); BubbleSort(dia) ; ReportArray(dia); 
    Console.WriteLine(); 
 
    // Equivalent: 
    ReportArray(da); BubbleSort<double>(da) ; ReportArray(da); 
    Console.WriteLine(); 
    ReportArray(dia); BubbleSort<Die>(dia) ; ReportArray(dia); 
  } 
 
} 

  Program 43.2    A generic bubble sort program.   

In the Main method we make an array of doubles and an array of dice. Values of type double are 
comparable. We compile the program with a version of class Die that implements IComparable<T>, 
such as the Die class of Program 42.13. The calls of BubbleSort in line 29 and 31 do not supply an 
actual type parameter to BubbleSort<T>. The compiler is smart enough to infer the actual type 
parameter from the declared types of the variables da and dia respectively. In line 35 and 37 we 
show equivalent calls of BubbleSort to which we explicitly supply the actual type parameters 
double and Die. 

The output of Program 43.2 is shown in Listing 43.3 (only on web). 

  

43.2.  Generic Delegates 
Lecture 11 - slide 19 

Delegates were introduced in Section 22.1. Recall from there that a delegate is a type of methods. In 
the previous section we learned about generic methods. It therefore not surprising that we also need 
to discuss generic delegates. 

In Program 22.3 we introduced a delegate NumericFunction, which covers all function from 
double to double. In the same program we also introduced Compose, which composes two numeric 
functions to a single numeric function. In mathematical notation, the composition of f and g is 
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denoted f o g, and it maps x to f(g(x)). We are now going to generalize the function Compose, such 
that it can be used on other functions of more general signatures. 

Let us assume that we work with two functions f and g of the following signatures: 

• g : T → U 

• f : U → S 

Thus, g maps a value of type T to a value of type U. f maps a value of type U to a value of type S. 
The composite function f o g therefore maps a value of type T to a value of type S via a value of 
type U: 

• f o g : T → S 

In line 6 of Program 43.4 we show a delegate called Function, which is a function type that maps a 
value of type S to values of type T. (It corresponds to NumericFunction in Program 22.3). In line 
10-13 of Program 43.4 we show the function Compose, which we motivated above. Function is a 
generic delegate because it is type parameterized. Compose is a generic method, as discussed in 
Section 43.1. The generic method PrintTableOfFunction, shown in line 16-23, takes a Function 
f and an array inputValues of type S[], and it applies and prints f(s) on each element s of 
inputValues. 
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using System; 
 
public class CompositionDemo { 
 
  // A function from S to T 
  public delegate T Function <S,T>(S d); 
 
  // The generic function for function composition 
  // from T to S via U 
  public static Function<T,S> Compose<T,U,S> 
                   (Function<U,S> f, Function<T,U> g){ 
    return delegate(T d){return f(g(d));}; 
  }    
 
  // A generic PrintTable function 
  public static void PrintTableOfFunction<S,T> 
                   (Function<S,T> f, string fname,  
                    S[] inputValues){ 
    foreach(S s in inputValues) 
      Console.WriteLine("{0,35}({1,-4:F3}) = {2}", fname, s, f(s)); 
 
    Console.WriteLine(); 
  }    
 
  // DieFromInt: int -> Die 
  public static Die DieFromInt(int i){ 
    return new Die(i); 
  }  
 
  // Round: double -> int 
  public static int Round(double d){ 
    return (int)(Math.Round(d)); 
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  }  
 
  public static void Main(){ 
    double[] input = new double[25]; 
    for(int i = 0; i < 25; i++) 
      input[i] = (double) (i*2); 
 
    // Compose(DieFromInt, Round): double -> Die  
    // (via int)  
 
    PrintTableOfFunction(Compose<double,int,Die>(DieFromInt, Round) ,  
                         "Die of double",  
                         input); 
  } 
 
} 

  Program 43.4    An example that involves other types 
than double.  

 

In line 43 of Main we compose the two functions DieFromInt and Round. They are both 
programmed explicitly, in line 26 and 31 respectively. The function Round maps a double to an int. 
The function DieFromInt maps an int to a Die. Thus, Compose(DieFromInt, Round) maps a 
double to a Die. Notice how we pass the three involved types double, int, and Die as actual type 
parameters to Compose in line 43. 

The version of class Die used in Program 43.4 can, for instance, be the class shown in Program 12.6. 
The parameter of the constructor determines the maximum number of eyes of the die. 

The output of Program 43.4 is shown in Listing 43.5 (only on web). 
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43.3.  Generic types and methods - Pros and Cons 
Lecture 11 - slide 21 

In this final section about generic types and methods we will briefly summarize the advantages and 
disadvantages of generics. 

 • Advantages 
• Readability and Documentation 

• More precise indication of types.  
• Less downcasting from class Object 

• Type Checking 
• Better and more precise typechecking 

• Efficiency 
• There is a potential for more efficient programs 
• Less casting - fewer boxings 

• Disadvantages 
• Complexity 

• Yet another abstraction and parametrization-level on top of the existing 

 

This ends the general discussion of generics. In the lecture about collections, from Chapter 44 to 
Chapter 48, we will make heavy use of generic types. 


